| Index: src/s390/simulator-s390.cc
|
| diff --git a/src/s390/simulator-s390.cc b/src/s390/simulator-s390.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..deba02fb024096e693f6f13539d46e337391da76
|
| --- /dev/null
|
| +++ b/src/s390/simulator-s390.cc
|
| @@ -0,0 +1,5012 @@
|
| +// Copyright 2014 the V8 project authors. All rights reserved.
|
| +// Use of this source code is governed by a BSD-style license that can be
|
| +// found in the LICENSE file.
|
| +
|
| +#include <stdarg.h>
|
| +#include <stdlib.h>
|
| +#include <cmath>
|
| +
|
| +#if V8_TARGET_ARCH_S390
|
| +
|
| +#include "src/assembler.h"
|
| +#include "src/base/bits.h"
|
| +#include "src/codegen.h"
|
| +#include "src/disasm.h"
|
| +#include "src/runtime/runtime-utils.h"
|
| +#include "src/s390/constants-s390.h"
|
| +#include "src/s390/frames-s390.h"
|
| +#include "src/s390/simulator-s390.h"
|
| +#if defined(USE_SIMULATOR)
|
| +
|
| +// Only build the simulator if not compiling for real s390 hardware.
|
| +namespace v8 {
|
| +namespace internal {
|
| +
|
| +// This macro provides a platform independent use of sscanf. The reason for
|
| +// SScanF not being implemented in a platform independent way through
|
| +// ::v8::internal::OS in the same way as SNPrintF is that the
|
| +// Windows C Run-Time Library does not provide vsscanf.
|
| +#define SScanF sscanf // NOLINT
|
| +
|
| +// The S390Debugger class is used by the simulator while debugging simulated
|
| +// z/Architecture code.
|
| +class S390Debugger {
|
| + public:
|
| + explicit S390Debugger(Simulator* sim) : sim_(sim) {}
|
| + ~S390Debugger();
|
| +
|
| + void Stop(Instruction* instr);
|
| + void Debug();
|
| +
|
| + private:
|
| +#if V8_TARGET_LITTLE_ENDIAN
|
| + static const Instr kBreakpointInstr = (0x0000FFB2); // TRAP4 0000
|
| + static const Instr kNopInstr = (0x00160016); // OR r0, r0 x2
|
| +#else
|
| + static const Instr kBreakpointInstr = (0xB2FF0000); // TRAP4 0000
|
| + static const Instr kNopInstr = (0x16001600); // OR r0, r0 x2
|
| +#endif
|
| +
|
| + Simulator* sim_;
|
| +
|
| + intptr_t GetRegisterValue(int regnum);
|
| + double GetRegisterPairDoubleValue(int regnum);
|
| + double GetFPDoubleRegisterValue(int regnum);
|
| + float GetFPFloatRegisterValue(int regnum);
|
| + bool GetValue(const char* desc, intptr_t* value);
|
| + bool GetFPDoubleValue(const char* desc, double* value);
|
| +
|
| + // Set or delete a breakpoint. Returns true if successful.
|
| + bool SetBreakpoint(Instruction* break_pc);
|
| + bool DeleteBreakpoint(Instruction* break_pc);
|
| +
|
| + // Undo and redo all breakpoints. This is needed to bracket disassembly and
|
| + // execution to skip past breakpoints when run from the debugger.
|
| + void UndoBreakpoints();
|
| + void RedoBreakpoints();
|
| +};
|
| +
|
| +S390Debugger::~S390Debugger() {}
|
| +
|
| +#ifdef GENERATED_CODE_COVERAGE
|
| +static FILE* coverage_log = NULL;
|
| +
|
| +static void InitializeCoverage() {
|
| + char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG");
|
| + if (file_name != NULL) {
|
| + coverage_log = fopen(file_name, "aw+");
|
| + }
|
| +}
|
| +
|
| +void S390Debugger::Stop(Instruction* instr) {
|
| + // Get the stop code.
|
| + uint32_t code = instr->SvcValue() & kStopCodeMask;
|
| + // Retrieve the encoded address, which comes just after this stop.
|
| + char** msg_address =
|
| + reinterpret_cast<char**>(sim_->get_pc() + sizeof(FourByteInstr));
|
| + char* msg = *msg_address;
|
| + DCHECK(msg != NULL);
|
| +
|
| + // Update this stop description.
|
| + if (isWatchedStop(code) && !watched_stops_[code].desc) {
|
| + watched_stops_[code].desc = msg;
|
| + }
|
| +
|
| + if (strlen(msg) > 0) {
|
| + if (coverage_log != NULL) {
|
| + fprintf(coverage_log, "%s\n", msg);
|
| + fflush(coverage_log);
|
| + }
|
| + // Overwrite the instruction and address with nops.
|
| + instr->SetInstructionBits(kNopInstr);
|
| + reinterpret_cast<Instruction*>(msg_address)->SetInstructionBits(kNopInstr);
|
| + }
|
| + sim_->set_pc(sim_->get_pc() + sizeof(FourByteInstr) + kPointerSize);
|
| +}
|
| +
|
| +#else // ndef GENERATED_CODE_COVERAGE
|
| +
|
| +static void InitializeCoverage() {}
|
| +
|
| +void S390Debugger::Stop(Instruction* instr) {
|
| + // Get the stop code.
|
| + // use of kStopCodeMask not right on PowerPC
|
| + uint32_t code = instr->SvcValue() & kStopCodeMask;
|
| + // Retrieve the encoded address, which comes just after this stop.
|
| + char* msg = *reinterpret_cast<char**>(sim_->get_pc() + sizeof(FourByteInstr));
|
| + // Update this stop description.
|
| + if (sim_->isWatchedStop(code) && !sim_->watched_stops_[code].desc) {
|
| + sim_->watched_stops_[code].desc = msg;
|
| + }
|
| + // Print the stop message and code if it is not the default code.
|
| + if (code != kMaxStopCode) {
|
| + PrintF("Simulator hit stop %u: %s\n", code, msg);
|
| + } else {
|
| + PrintF("Simulator hit %s\n", msg);
|
| + }
|
| + sim_->set_pc(sim_->get_pc() + sizeof(FourByteInstr) + kPointerSize);
|
| + Debug();
|
| +}
|
| +#endif
|
| +
|
| +intptr_t S390Debugger::GetRegisterValue(int regnum) {
|
| + return sim_->get_register(regnum);
|
| +}
|
| +
|
| +double S390Debugger::GetRegisterPairDoubleValue(int regnum) {
|
| + return sim_->get_double_from_register_pair(regnum);
|
| +}
|
| +
|
| +double S390Debugger::GetFPDoubleRegisterValue(int regnum) {
|
| + return sim_->get_double_from_d_register(regnum);
|
| +}
|
| +
|
| +float S390Debugger::GetFPFloatRegisterValue(int regnum) {
|
| + return sim_->get_float32_from_d_register(regnum);
|
| +}
|
| +
|
| +bool S390Debugger::GetValue(const char* desc, intptr_t* value) {
|
| + int regnum = Registers::Number(desc);
|
| + if (regnum != kNoRegister) {
|
| + *value = GetRegisterValue(regnum);
|
| + return true;
|
| + } else {
|
| + if (strncmp(desc, "0x", 2) == 0) {
|
| + return SScanF(desc + 2, "%" V8PRIxPTR,
|
| + reinterpret_cast<uintptr_t*>(value)) == 1;
|
| + } else {
|
| + return SScanF(desc, "%" V8PRIuPTR, reinterpret_cast<uintptr_t*>(value)) ==
|
| + 1;
|
| + }
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +bool S390Debugger::GetFPDoubleValue(const char* desc, double* value) {
|
| + int regnum = DoubleRegisters::Number(desc);
|
| + if (regnum != kNoRegister) {
|
| + *value = sim_->get_double_from_d_register(regnum);
|
| + return true;
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +bool S390Debugger::SetBreakpoint(Instruction* break_pc) {
|
| + // Check if a breakpoint can be set. If not return without any side-effects.
|
| + if (sim_->break_pc_ != NULL) {
|
| + return false;
|
| + }
|
| +
|
| + // Set the breakpoint.
|
| + sim_->break_pc_ = break_pc;
|
| + sim_->break_instr_ = break_pc->InstructionBits();
|
| + // Not setting the breakpoint instruction in the code itself. It will be set
|
| + // when the debugger shell continues.
|
| + return true;
|
| +}
|
| +
|
| +bool S390Debugger::DeleteBreakpoint(Instruction* break_pc) {
|
| + if (sim_->break_pc_ != NULL) {
|
| + sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
|
| + }
|
| +
|
| + sim_->break_pc_ = NULL;
|
| + sim_->break_instr_ = 0;
|
| + return true;
|
| +}
|
| +
|
| +void S390Debugger::UndoBreakpoints() {
|
| + if (sim_->break_pc_ != NULL) {
|
| + sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
|
| + }
|
| +}
|
| +
|
| +void S390Debugger::RedoBreakpoints() {
|
| + if (sim_->break_pc_ != NULL) {
|
| + sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
|
| + }
|
| +}
|
| +
|
| +void S390Debugger::Debug() {
|
| + intptr_t last_pc = -1;
|
| + bool done = false;
|
| +
|
| +#define COMMAND_SIZE 63
|
| +#define ARG_SIZE 255
|
| +
|
| +#define STR(a) #a
|
| +#define XSTR(a) STR(a)
|
| +
|
| + char cmd[COMMAND_SIZE + 1];
|
| + char arg1[ARG_SIZE + 1];
|
| + char arg2[ARG_SIZE + 1];
|
| + char* argv[3] = {cmd, arg1, arg2};
|
| +
|
| + // make sure to have a proper terminating character if reaching the limit
|
| + cmd[COMMAND_SIZE] = 0;
|
| + arg1[ARG_SIZE] = 0;
|
| + arg2[ARG_SIZE] = 0;
|
| +
|
| + // Undo all set breakpoints while running in the debugger shell. This will
|
| + // make them invisible to all commands.
|
| + UndoBreakpoints();
|
| + // Disable tracing while simulating
|
| + bool trace = ::v8::internal::FLAG_trace_sim;
|
| + ::v8::internal::FLAG_trace_sim = false;
|
| +
|
| + while (!done && !sim_->has_bad_pc()) {
|
| + if (last_pc != sim_->get_pc()) {
|
| + disasm::NameConverter converter;
|
| + disasm::Disassembler dasm(converter);
|
| + // use a reasonably large buffer
|
| + v8::internal::EmbeddedVector<char, 256> buffer;
|
| + dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(sim_->get_pc()));
|
| + PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(), buffer.start());
|
| + last_pc = sim_->get_pc();
|
| + }
|
| + char* line = ReadLine("sim> ");
|
| + if (line == NULL) {
|
| + break;
|
| + } else {
|
| + char* last_input = sim_->last_debugger_input();
|
| + if (strcmp(line, "\n") == 0 && last_input != NULL) {
|
| + line = last_input;
|
| + } else {
|
| + // Ownership is transferred to sim_;
|
| + sim_->set_last_debugger_input(line);
|
| + }
|
| + // Use sscanf to parse the individual parts of the command line. At the
|
| + // moment no command expects more than two parameters.
|
| + int argc = SScanF(line,
|
| + "%" XSTR(COMMAND_SIZE) "s "
|
| + "%" XSTR(ARG_SIZE) "s "
|
| + "%" XSTR(ARG_SIZE) "s",
|
| + cmd, arg1, arg2);
|
| + if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
|
| + intptr_t value;
|
| +
|
| + // If at a breakpoint, proceed past it.
|
| + if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
|
| + ->InstructionBits() == 0x7d821008) {
|
| + sim_->set_pc(sim_->get_pc() + sizeof(FourByteInstr));
|
| + } else {
|
| + sim_->ExecuteInstruction(
|
| + reinterpret_cast<Instruction*>(sim_->get_pc()));
|
| + }
|
| +
|
| + if (argc == 2 && last_pc != sim_->get_pc() && GetValue(arg1, &value)) {
|
| + for (int i = 1; (!sim_->has_bad_pc()) && i < value; i++) {
|
| + disasm::NameConverter converter;
|
| + disasm::Disassembler dasm(converter);
|
| + // use a reasonably large buffer
|
| + v8::internal::EmbeddedVector<char, 256> buffer;
|
| + dasm.InstructionDecode(buffer,
|
| + reinterpret_cast<byte*>(sim_->get_pc()));
|
| + PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(),
|
| + buffer.start());
|
| + sim_->ExecuteInstruction(
|
| + reinterpret_cast<Instruction*>(sim_->get_pc()));
|
| + }
|
| + }
|
| + } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
|
| + // If at a breakpoint, proceed past it.
|
| + if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
|
| + ->InstructionBits() == 0x7d821008) {
|
| + sim_->set_pc(sim_->get_pc() + sizeof(FourByteInstr));
|
| + } else {
|
| + // Execute the one instruction we broke at with breakpoints disabled.
|
| + sim_->ExecuteInstruction(
|
| + reinterpret_cast<Instruction*>(sim_->get_pc()));
|
| + }
|
| + // Leave the debugger shell.
|
| + done = true;
|
| + } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
|
| + if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) {
|
| + intptr_t value;
|
| + double dvalue;
|
| + if (strcmp(arg1, "all") == 0) {
|
| + for (int i = 0; i < kNumRegisters; i++) {
|
| + value = GetRegisterValue(i);
|
| + PrintF(" %3s: %08" V8PRIxPTR,
|
| + Register::from_code(i).ToString(), value);
|
| + if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
|
| + (i % 2) == 0) {
|
| + dvalue = GetRegisterPairDoubleValue(i);
|
| + PrintF(" (%f)\n", dvalue);
|
| + } else if (i != 0 && !((i + 1) & 3)) {
|
| + PrintF("\n");
|
| + }
|
| + }
|
| + PrintF(" pc: %08" V8PRIxPTR " cr: %08x\n", sim_->special_reg_pc_,
|
| + sim_->condition_reg_);
|
| + } else if (strcmp(arg1, "alld") == 0) {
|
| + for (int i = 0; i < kNumRegisters; i++) {
|
| + value = GetRegisterValue(i);
|
| + PrintF(" %3s: %08" V8PRIxPTR " %11" V8PRIdPTR,
|
| + Register::from_code(i).ToString(), value, value);
|
| + if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
|
| + (i % 2) == 0) {
|
| + dvalue = GetRegisterPairDoubleValue(i);
|
| + PrintF(" (%f)\n", dvalue);
|
| + } else if (!((i + 1) % 2)) {
|
| + PrintF("\n");
|
| + }
|
| + }
|
| + PrintF(" pc: %08" V8PRIxPTR " cr: %08x\n", sim_->special_reg_pc_,
|
| + sim_->condition_reg_);
|
| + } else if (strcmp(arg1, "allf") == 0) {
|
| + for (int i = 0; i < DoubleRegister::kNumRegisters; i++) {
|
| + float fvalue = GetFPFloatRegisterValue(i);
|
| + uint32_t as_words = bit_cast<uint32_t>(fvalue);
|
| + PrintF("%3s: %f 0x%08x\n",
|
| + DoubleRegister::from_code(i).ToString(), fvalue, as_words);
|
| + }
|
| + } else if (strcmp(arg1, "alld") == 0) {
|
| + for (int i = 0; i < DoubleRegister::kNumRegisters; i++) {
|
| + dvalue = GetFPDoubleRegisterValue(i);
|
| + uint64_t as_words = bit_cast<uint64_t>(dvalue);
|
| + PrintF("%3s: %f 0x%08x %08x\n",
|
| + DoubleRegister::from_code(i).ToString(), dvalue,
|
| + static_cast<uint32_t>(as_words >> 32),
|
| + static_cast<uint32_t>(as_words & 0xffffffff));
|
| + }
|
| + } else if (arg1[0] == 'r' &&
|
| + (arg1[1] >= '0' && arg1[1] <= '2' &&
|
| + (arg1[2] == '\0' || (arg1[2] >= '0' && arg1[2] <= '5' &&
|
| + arg1[3] == '\0')))) {
|
| + int regnum = strtoul(&arg1[1], 0, 10);
|
| + if (regnum != kNoRegister) {
|
| + value = GetRegisterValue(regnum);
|
| + PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
|
| + value);
|
| + } else {
|
| + PrintF("%s unrecognized\n", arg1);
|
| + }
|
| + } else {
|
| + if (GetValue(arg1, &value)) {
|
| + PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
|
| + value);
|
| + } else if (GetFPDoubleValue(arg1, &dvalue)) {
|
| + uint64_t as_words = bit_cast<uint64_t>(dvalue);
|
| + PrintF("%s: %f 0x%08x %08x\n", arg1, dvalue,
|
| + static_cast<uint32_t>(as_words >> 32),
|
| + static_cast<uint32_t>(as_words & 0xffffffff));
|
| + } else {
|
| + PrintF("%s unrecognized\n", arg1);
|
| + }
|
| + }
|
| + } else {
|
| + PrintF("print <register>\n");
|
| + }
|
| + } else if ((strcmp(cmd, "po") == 0) ||
|
| + (strcmp(cmd, "printobject") == 0)) {
|
| + if (argc == 2) {
|
| + intptr_t value;
|
| + OFStream os(stdout);
|
| + if (GetValue(arg1, &value)) {
|
| + Object* obj = reinterpret_cast<Object*>(value);
|
| + os << arg1 << ": \n";
|
| +#ifdef DEBUG
|
| + obj->Print(os);
|
| + os << "\n";
|
| +#else
|
| + os << Brief(obj) << "\n";
|
| +#endif
|
| + } else {
|
| + os << arg1 << " unrecognized\n";
|
| + }
|
| + } else {
|
| + PrintF("printobject <value>\n");
|
| + }
|
| + } else if (strcmp(cmd, "setpc") == 0) {
|
| + intptr_t value;
|
| +
|
| + if (!GetValue(arg1, &value)) {
|
| + PrintF("%s unrecognized\n", arg1);
|
| + continue;
|
| + }
|
| + sim_->set_pc(value);
|
| + } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
|
| + intptr_t* cur = NULL;
|
| + intptr_t* end = NULL;
|
| + int next_arg = 1;
|
| +
|
| + if (strcmp(cmd, "stack") == 0) {
|
| + cur = reinterpret_cast<intptr_t*>(sim_->get_register(Simulator::sp));
|
| + } else { // "mem"
|
| + intptr_t value;
|
| + if (!GetValue(arg1, &value)) {
|
| + PrintF("%s unrecognized\n", arg1);
|
| + continue;
|
| + }
|
| + cur = reinterpret_cast<intptr_t*>(value);
|
| + next_arg++;
|
| + }
|
| +
|
| + intptr_t words; // likely inaccurate variable name for 64bit
|
| + if (argc == next_arg) {
|
| + words = 10;
|
| + } else {
|
| + if (!GetValue(argv[next_arg], &words)) {
|
| + words = 10;
|
| + }
|
| + }
|
| + end = cur + words;
|
| +
|
| + while (cur < end) {
|
| + PrintF(" 0x%08" V8PRIxPTR ": 0x%08" V8PRIxPTR " %10" V8PRIdPTR,
|
| + reinterpret_cast<intptr_t>(cur), *cur, *cur);
|
| + HeapObject* obj = reinterpret_cast<HeapObject*>(*cur);
|
| + intptr_t value = *cur;
|
| + Heap* current_heap = sim_->isolate_->heap();
|
| + if (((value & 1) == 0) ||
|
| + current_heap->ContainsSlow(obj->address())) {
|
| + PrintF("(smi %d)", PlatformSmiTagging::SmiToInt(obj));
|
| + } else if (current_heap->Contains(obj)) {
|
| + PrintF(" (");
|
| + obj->ShortPrint();
|
| + PrintF(")");
|
| + }
|
| + PrintF("\n");
|
| + cur++;
|
| + }
|
| + } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) {
|
| + disasm::NameConverter converter;
|
| + disasm::Disassembler dasm(converter);
|
| + // use a reasonably large buffer
|
| + v8::internal::EmbeddedVector<char, 256> buffer;
|
| +
|
| + byte* prev = NULL;
|
| + byte* cur = NULL;
|
| + // Default number of instructions to disassemble.
|
| + int32_t numInstructions = 10;
|
| +
|
| + if (argc == 1) {
|
| + cur = reinterpret_cast<byte*>(sim_->get_pc());
|
| + } else if (argc == 2) {
|
| + int regnum = Registers::Number(arg1);
|
| + if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) {
|
| + // The argument is an address or a register name.
|
| + intptr_t value;
|
| + if (GetValue(arg1, &value)) {
|
| + cur = reinterpret_cast<byte*>(value);
|
| + }
|
| + } else {
|
| + // The argument is the number of instructions.
|
| + intptr_t value;
|
| + if (GetValue(arg1, &value)) {
|
| + cur = reinterpret_cast<byte*>(sim_->get_pc());
|
| + // Disassemble <arg1> instructions.
|
| + numInstructions = static_cast<int32_t>(value);
|
| + }
|
| + }
|
| + } else {
|
| + intptr_t value1;
|
| + intptr_t value2;
|
| + if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
|
| + cur = reinterpret_cast<byte*>(value1);
|
| + // Disassemble <arg2> instructions.
|
| + numInstructions = static_cast<int32_t>(value2);
|
| + }
|
| + }
|
| +
|
| + while (numInstructions > 0) {
|
| + prev = cur;
|
| + cur += dasm.InstructionDecode(buffer, cur);
|
| + PrintF(" 0x%08" V8PRIxPTR " %s\n", reinterpret_cast<intptr_t>(prev),
|
| + buffer.start());
|
| + numInstructions--;
|
| + }
|
| + } else if (strcmp(cmd, "gdb") == 0) {
|
| + PrintF("relinquishing control to gdb\n");
|
| + v8::base::OS::DebugBreak();
|
| + PrintF("regaining control from gdb\n");
|
| + } else if (strcmp(cmd, "break") == 0) {
|
| + if (argc == 2) {
|
| + intptr_t value;
|
| + if (GetValue(arg1, &value)) {
|
| + if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
|
| + PrintF("setting breakpoint failed\n");
|
| + }
|
| + } else {
|
| + PrintF("%s unrecognized\n", arg1);
|
| + }
|
| + } else {
|
| + PrintF("break <address>\n");
|
| + }
|
| + } else if (strcmp(cmd, "del") == 0) {
|
| + if (!DeleteBreakpoint(NULL)) {
|
| + PrintF("deleting breakpoint failed\n");
|
| + }
|
| + } else if (strcmp(cmd, "cr") == 0) {
|
| + PrintF("Condition reg: %08x\n", sim_->condition_reg_);
|
| + } else if (strcmp(cmd, "stop") == 0) {
|
| + intptr_t value;
|
| + intptr_t stop_pc =
|
| + sim_->get_pc() - (sizeof(FourByteInstr) + kPointerSize);
|
| + Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc);
|
| + Instruction* msg_address =
|
| + reinterpret_cast<Instruction*>(stop_pc + sizeof(FourByteInstr));
|
| + if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
|
| + // Remove the current stop.
|
| + if (sim_->isStopInstruction(stop_instr)) {
|
| + stop_instr->SetInstructionBits(kNopInstr);
|
| + msg_address->SetInstructionBits(kNopInstr);
|
| + } else {
|
| + PrintF("Not at debugger stop.\n");
|
| + }
|
| + } else if (argc == 3) {
|
| + // Print information about all/the specified breakpoint(s).
|
| + if (strcmp(arg1, "info") == 0) {
|
| + if (strcmp(arg2, "all") == 0) {
|
| + PrintF("Stop information:\n");
|
| + for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
|
| + sim_->PrintStopInfo(i);
|
| + }
|
| + } else if (GetValue(arg2, &value)) {
|
| + sim_->PrintStopInfo(value);
|
| + } else {
|
| + PrintF("Unrecognized argument.\n");
|
| + }
|
| + } else if (strcmp(arg1, "enable") == 0) {
|
| + // Enable all/the specified breakpoint(s).
|
| + if (strcmp(arg2, "all") == 0) {
|
| + for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
|
| + sim_->EnableStop(i);
|
| + }
|
| + } else if (GetValue(arg2, &value)) {
|
| + sim_->EnableStop(value);
|
| + } else {
|
| + PrintF("Unrecognized argument.\n");
|
| + }
|
| + } else if (strcmp(arg1, "disable") == 0) {
|
| + // Disable all/the specified breakpoint(s).
|
| + if (strcmp(arg2, "all") == 0) {
|
| + for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
|
| + sim_->DisableStop(i);
|
| + }
|
| + } else if (GetValue(arg2, &value)) {
|
| + sim_->DisableStop(value);
|
| + } else {
|
| + PrintF("Unrecognized argument.\n");
|
| + }
|
| + }
|
| + } else {
|
| + PrintF("Wrong usage. Use help command for more information.\n");
|
| + }
|
| + } else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) {
|
| + ::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim;
|
| + PrintF("Trace of executed instructions is %s\n",
|
| + ::v8::internal::FLAG_trace_sim ? "on" : "off");
|
| + } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
|
| + PrintF("cont\n");
|
| + PrintF(" continue execution (alias 'c')\n");
|
| + PrintF("stepi [num instructions]\n");
|
| + PrintF(" step one/num instruction(s) (alias 'si')\n");
|
| + PrintF("print <register>\n");
|
| + PrintF(" print register content (alias 'p')\n");
|
| + PrintF(" use register name 'all' to display all integer registers\n");
|
| + PrintF(
|
| + " use register name 'alld' to display integer registers "
|
| + "with decimal values\n");
|
| + PrintF(" use register name 'rN' to display register number 'N'\n");
|
| + PrintF(" add argument 'fp' to print register pair double values\n");
|
| + PrintF(
|
| + " use register name 'allf' to display floating-point "
|
| + "registers\n");
|
| + PrintF("printobject <register>\n");
|
| + PrintF(" print an object from a register (alias 'po')\n");
|
| + PrintF("cr\n");
|
| + PrintF(" print condition register\n");
|
| + PrintF("stack [<num words>]\n");
|
| + PrintF(" dump stack content, default dump 10 words)\n");
|
| + PrintF("mem <address> [<num words>]\n");
|
| + PrintF(" dump memory content, default dump 10 words)\n");
|
| + PrintF("disasm [<instructions>]\n");
|
| + PrintF("disasm [<address/register>]\n");
|
| + PrintF("disasm [[<address/register>] <instructions>]\n");
|
| + PrintF(" disassemble code, default is 10 instructions\n");
|
| + PrintF(" from pc (alias 'di')\n");
|
| + PrintF("gdb\n");
|
| + PrintF(" enter gdb\n");
|
| + PrintF("break <address>\n");
|
| + PrintF(" set a break point on the address\n");
|
| + PrintF("del\n");
|
| + PrintF(" delete the breakpoint\n");
|
| + PrintF("trace (alias 't')\n");
|
| + PrintF(" toogle the tracing of all executed statements\n");
|
| + PrintF("stop feature:\n");
|
| + PrintF(" Description:\n");
|
| + PrintF(" Stops are debug instructions inserted by\n");
|
| + PrintF(" the Assembler::stop() function.\n");
|
| + PrintF(" When hitting a stop, the Simulator will\n");
|
| + PrintF(" stop and and give control to the S390Debugger.\n");
|
| + PrintF(" The first %d stop codes are watched:\n",
|
| + Simulator::kNumOfWatchedStops);
|
| + PrintF(" - They can be enabled / disabled: the Simulator\n");
|
| + PrintF(" will / won't stop when hitting them.\n");
|
| + PrintF(" - The Simulator keeps track of how many times they \n");
|
| + PrintF(" are met. (See the info command.) Going over a\n");
|
| + PrintF(" disabled stop still increases its counter. \n");
|
| + PrintF(" Commands:\n");
|
| + PrintF(" stop info all/<code> : print infos about number <code>\n");
|
| + PrintF(" or all stop(s).\n");
|
| + PrintF(" stop enable/disable all/<code> : enables / disables\n");
|
| + PrintF(" all or number <code> stop(s)\n");
|
| + PrintF(" stop unstop\n");
|
| + PrintF(" ignore the stop instruction at the current location\n");
|
| + PrintF(" from now on\n");
|
| + } else {
|
| + PrintF("Unknown command: %s\n", cmd);
|
| + }
|
| + }
|
| + }
|
| +
|
| + // Add all the breakpoints back to stop execution and enter the debugger
|
| + // shell when hit.
|
| + RedoBreakpoints();
|
| + // Restore tracing
|
| + ::v8::internal::FLAG_trace_sim = trace;
|
| +
|
| +#undef COMMAND_SIZE
|
| +#undef ARG_SIZE
|
| +
|
| +#undef STR
|
| +#undef XSTR
|
| +}
|
| +
|
| +static bool ICacheMatch(void* one, void* two) {
|
| + DCHECK((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0);
|
| + DCHECK((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0);
|
| + return one == two;
|
| +}
|
| +
|
| +static uint32_t ICacheHash(void* key) {
|
| + return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
|
| +}
|
| +
|
| +static bool AllOnOnePage(uintptr_t start, int size) {
|
| + intptr_t start_page = (start & ~CachePage::kPageMask);
|
| + intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
|
| + return start_page == end_page;
|
| +}
|
| +
|
| +void Simulator::set_last_debugger_input(char* input) {
|
| + DeleteArray(last_debugger_input_);
|
| + last_debugger_input_ = input;
|
| +}
|
| +
|
| +void Simulator::FlushICache(v8::internal::HashMap* i_cache, void* start_addr,
|
| + size_t size) {
|
| + intptr_t start = reinterpret_cast<intptr_t>(start_addr);
|
| + int intra_line = (start & CachePage::kLineMask);
|
| + start -= intra_line;
|
| + size += intra_line;
|
| + size = ((size - 1) | CachePage::kLineMask) + 1;
|
| + int offset = (start & CachePage::kPageMask);
|
| + while (!AllOnOnePage(start, size - 1)) {
|
| + int bytes_to_flush = CachePage::kPageSize - offset;
|
| + FlushOnePage(i_cache, start, bytes_to_flush);
|
| + start += bytes_to_flush;
|
| + size -= bytes_to_flush;
|
| + DCHECK_EQ(0, static_cast<int>(start & CachePage::kPageMask));
|
| + offset = 0;
|
| + }
|
| + if (size != 0) {
|
| + FlushOnePage(i_cache, start, size);
|
| + }
|
| +}
|
| +
|
| +CachePage* Simulator::GetCachePage(v8::internal::HashMap* i_cache, void* page) {
|
| + v8::internal::HashMap::Entry* entry =
|
| + i_cache->LookupOrInsert(page, ICacheHash(page));
|
| + if (entry->value == NULL) {
|
| + CachePage* new_page = new CachePage();
|
| + entry->value = new_page;
|
| + }
|
| + return reinterpret_cast<CachePage*>(entry->value);
|
| +}
|
| +
|
| +// Flush from start up to and not including start + size.
|
| +void Simulator::FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start,
|
| + int size) {
|
| + DCHECK(size <= CachePage::kPageSize);
|
| + DCHECK(AllOnOnePage(start, size - 1));
|
| + DCHECK((start & CachePage::kLineMask) == 0);
|
| + DCHECK((size & CachePage::kLineMask) == 0);
|
| + void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
|
| + int offset = (start & CachePage::kPageMask);
|
| + CachePage* cache_page = GetCachePage(i_cache, page);
|
| + char* valid_bytemap = cache_page->ValidityByte(offset);
|
| + memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
|
| +}
|
| +
|
| +void Simulator::CheckICache(v8::internal::HashMap* i_cache,
|
| + Instruction* instr) {
|
| + intptr_t address = reinterpret_cast<intptr_t>(instr);
|
| + void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
|
| + void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
|
| + int offset = (address & CachePage::kPageMask);
|
| + CachePage* cache_page = GetCachePage(i_cache, page);
|
| + char* cache_valid_byte = cache_page->ValidityByte(offset);
|
| + bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
|
| + char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
|
| + if (cache_hit) {
|
| + // Check that the data in memory matches the contents of the I-cache.
|
| + CHECK_EQ(memcmp(reinterpret_cast<void*>(instr),
|
| + cache_page->CachedData(offset), sizeof(FourByteInstr)),
|
| + 0);
|
| + } else {
|
| + // Cache miss. Load memory into the cache.
|
| + memcpy(cached_line, line, CachePage::kLineLength);
|
| + *cache_valid_byte = CachePage::LINE_VALID;
|
| + }
|
| +}
|
| +
|
| +void Simulator::Initialize(Isolate* isolate) {
|
| + if (isolate->simulator_initialized()) return;
|
| + isolate->set_simulator_initialized(true);
|
| + ::v8::internal::ExternalReference::set_redirector(isolate,
|
| + &RedirectExternalReference);
|
| +}
|
| +
|
| +Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
|
| + i_cache_ = isolate_->simulator_i_cache();
|
| + if (i_cache_ == NULL) {
|
| + i_cache_ = new v8::internal::HashMap(&ICacheMatch);
|
| + isolate_->set_simulator_i_cache(i_cache_);
|
| + }
|
| + Initialize(isolate);
|
| +// Set up simulator support first. Some of this information is needed to
|
| +// setup the architecture state.
|
| +#if V8_TARGET_ARCH_S390X
|
| + size_t stack_size = FLAG_sim_stack_size * KB;
|
| +#else
|
| + size_t stack_size = MB; // allocate 1MB for stack
|
| +#endif
|
| + stack_size += 2 * stack_protection_size_;
|
| + stack_ = reinterpret_cast<char*>(malloc(stack_size));
|
| + pc_modified_ = false;
|
| + icount_ = 0;
|
| + break_pc_ = NULL;
|
| + break_instr_ = 0;
|
| +
|
| +// make sure our register type can hold exactly 4/8 bytes
|
| +#ifdef V8_TARGET_ARCH_S390X
|
| + DCHECK(sizeof(intptr_t) == 8);
|
| +#else
|
| + DCHECK(sizeof(intptr_t) == 4);
|
| +#endif
|
| + // Set up architecture state.
|
| + // All registers are initialized to zero to start with.
|
| + for (int i = 0; i < kNumGPRs; i++) {
|
| + registers_[i] = 0;
|
| + }
|
| + condition_reg_ = 0;
|
| + special_reg_pc_ = 0;
|
| +
|
| + // Initializing FP registers.
|
| + for (int i = 0; i < kNumFPRs; i++) {
|
| + fp_registers_[i] = 0.0;
|
| + }
|
| +
|
| + // The sp is initialized to point to the bottom (high address) of the
|
| + // allocated stack area. To be safe in potential stack underflows we leave
|
| + // some buffer below.
|
| + registers_[sp] =
|
| + reinterpret_cast<intptr_t>(stack_) + stack_size - stack_protection_size_;
|
| + InitializeCoverage();
|
| +
|
| + last_debugger_input_ = NULL;
|
| +}
|
| +
|
| +Simulator::~Simulator() { free(stack_); }
|
| +
|
| +// When the generated code calls an external reference we need to catch that in
|
| +// the simulator. The external reference will be a function compiled for the
|
| +// host architecture. We need to call that function instead of trying to
|
| +// execute it with the simulator. We do that by redirecting the external
|
| +// reference to a svc (Supervisor Call) instruction that is handled by
|
| +// the simulator. We write the original destination of the jump just at a known
|
| +// offset from the svc instruction so the simulator knows what to call.
|
| +class Redirection {
|
| + public:
|
| + Redirection(Isolate* isolate, void* external_function,
|
| + ExternalReference::Type type)
|
| + : external_function_(external_function),
|
| +// we use TRAP4 here (0xBF22)
|
| +#if V8_TARGET_LITTLE_ENDIAN
|
| + swi_instruction_(0x1000FFB2),
|
| +#else
|
| + swi_instruction_(0xB2FF0000 | kCallRtRedirected),
|
| +#endif
|
| + type_(type),
|
| + next_(NULL) {
|
| + next_ = isolate->simulator_redirection();
|
| + Simulator::current(isolate)->FlushICache(
|
| + isolate->simulator_i_cache(),
|
| + reinterpret_cast<void*>(&swi_instruction_), sizeof(FourByteInstr));
|
| + isolate->set_simulator_redirection(this);
|
| + if (ABI_USES_FUNCTION_DESCRIPTORS) {
|
| + function_descriptor_[0] = reinterpret_cast<intptr_t>(&swi_instruction_);
|
| + function_descriptor_[1] = 0;
|
| + function_descriptor_[2] = 0;
|
| + }
|
| + }
|
| +
|
| + void* address() {
|
| + if (ABI_USES_FUNCTION_DESCRIPTORS) {
|
| + return reinterpret_cast<void*>(function_descriptor_);
|
| + } else {
|
| + return reinterpret_cast<void*>(&swi_instruction_);
|
| + }
|
| + }
|
| +
|
| + void* external_function() { return external_function_; }
|
| + ExternalReference::Type type() { return type_; }
|
| +
|
| + static Redirection* Get(Isolate* isolate, void* external_function,
|
| + ExternalReference::Type type) {
|
| + Redirection* current = isolate->simulator_redirection();
|
| + for (; current != NULL; current = current->next_) {
|
| + if (current->external_function_ == external_function) {
|
| + DCHECK_EQ(current->type(), type);
|
| + return current;
|
| + }
|
| + }
|
| + return new Redirection(isolate, external_function, type);
|
| + }
|
| +
|
| + static Redirection* FromSwiInstruction(Instruction* swi_instruction) {
|
| + char* addr_of_swi = reinterpret_cast<char*>(swi_instruction);
|
| + char* addr_of_redirection =
|
| + addr_of_swi - offsetof(Redirection, swi_instruction_);
|
| + return reinterpret_cast<Redirection*>(addr_of_redirection);
|
| + }
|
| +
|
| + static Redirection* FromAddress(void* address) {
|
| + int delta = ABI_USES_FUNCTION_DESCRIPTORS
|
| + ? offsetof(Redirection, function_descriptor_)
|
| + : offsetof(Redirection, swi_instruction_);
|
| + char* addr_of_redirection = reinterpret_cast<char*>(address) - delta;
|
| + return reinterpret_cast<Redirection*>(addr_of_redirection);
|
| + }
|
| +
|
| + static void* ReverseRedirection(intptr_t reg) {
|
| + Redirection* redirection = FromAddress(reinterpret_cast<void*>(reg));
|
| + return redirection->external_function();
|
| + }
|
| +
|
| + static void DeleteChain(Redirection* redirection) {
|
| + while (redirection != nullptr) {
|
| + Redirection* next = redirection->next_;
|
| + delete redirection;
|
| + redirection = next;
|
| + }
|
| + }
|
| +
|
| + private:
|
| + void* external_function_;
|
| + uint32_t swi_instruction_;
|
| + ExternalReference::Type type_;
|
| + Redirection* next_;
|
| + intptr_t function_descriptor_[3];
|
| +};
|
| +
|
| +// static
|
| +void Simulator::TearDown(HashMap* i_cache, Redirection* first) {
|
| + Redirection::DeleteChain(first);
|
| + if (i_cache != nullptr) {
|
| + for (HashMap::Entry* entry = i_cache->Start(); entry != nullptr;
|
| + entry = i_cache->Next(entry)) {
|
| + delete static_cast<CachePage*>(entry->value);
|
| + }
|
| + delete i_cache;
|
| + }
|
| +}
|
| +
|
| +void* Simulator::RedirectExternalReference(Isolate* isolate,
|
| + void* external_function,
|
| + ExternalReference::Type type) {
|
| + Redirection* redirection = Redirection::Get(isolate, external_function, type);
|
| + return redirection->address();
|
| +}
|
| +
|
| +// Get the active Simulator for the current thread.
|
| +Simulator* Simulator::current(Isolate* isolate) {
|
| + v8::internal::Isolate::PerIsolateThreadData* isolate_data =
|
| + isolate->FindOrAllocatePerThreadDataForThisThread();
|
| + DCHECK(isolate_data != NULL);
|
| +
|
| + Simulator* sim = isolate_data->simulator();
|
| + if (sim == NULL) {
|
| + // TODO(146): delete the simulator object when a thread/isolate goes away.
|
| + sim = new Simulator(isolate);
|
| + isolate_data->set_simulator(sim);
|
| + }
|
| + return sim;
|
| +}
|
| +
|
| +// Sets the register in the architecture state.
|
| +void Simulator::set_register(int reg, uint64_t value) {
|
| + DCHECK((reg >= 0) && (reg < kNumGPRs));
|
| + registers_[reg] = value;
|
| +}
|
| +
|
| +// Get the register from the architecture state.
|
| +uint64_t Simulator::get_register(int reg) const {
|
| + DCHECK((reg >= 0) && (reg < kNumGPRs));
|
| + // Stupid code added to avoid bug in GCC.
|
| + // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
|
| + if (reg >= kNumGPRs) return 0;
|
| + // End stupid code.
|
| + return registers_[reg];
|
| +}
|
| +
|
| +template <typename T>
|
| +T Simulator::get_low_register(int reg) const {
|
| + DCHECK((reg >= 0) && (reg < kNumGPRs));
|
| + // Stupid code added to avoid bug in GCC.
|
| + // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
|
| + if (reg >= kNumGPRs) return 0;
|
| + // End stupid code.
|
| + return static_cast<T>(registers_[reg] & 0xFFFFFFFF);
|
| +}
|
| +
|
| +template <typename T>
|
| +T Simulator::get_high_register(int reg) const {
|
| + DCHECK((reg >= 0) && (reg < kNumGPRs));
|
| + // Stupid code added to avoid bug in GCC.
|
| + // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
|
| + if (reg >= kNumGPRs) return 0;
|
| + // End stupid code.
|
| + return static_cast<T>(registers_[reg] >> 32);
|
| +}
|
| +
|
| +void Simulator::set_low_register(int reg, uint32_t value) {
|
| + uint64_t shifted_val = static_cast<uint64_t>(value);
|
| + uint64_t orig_val = static_cast<uint64_t>(registers_[reg]);
|
| + uint64_t result = (orig_val >> 32 << 32) | shifted_val;
|
| + registers_[reg] = result;
|
| +}
|
| +
|
| +void Simulator::set_high_register(int reg, uint32_t value) {
|
| + uint64_t shifted_val = static_cast<uint64_t>(value) << 32;
|
| + uint64_t orig_val = static_cast<uint64_t>(registers_[reg]);
|
| + uint64_t result = (orig_val & 0xFFFFFFFF) | shifted_val;
|
| + registers_[reg] = result;
|
| +}
|
| +
|
| +double Simulator::get_double_from_register_pair(int reg) {
|
| + DCHECK((reg >= 0) && (reg < kNumGPRs) && ((reg % 2) == 0));
|
| +
|
| + double dm_val = 0.0;
|
| +#if 0 && !V8_TARGET_ARCH_S390X // doesn't make sense in 64bit mode
|
| + // Read the bits from the unsigned integer register_[] array
|
| + // into the double precision floating point value and return it.
|
| + char buffer[sizeof(fp_registers_[0])];
|
| + memcpy(buffer, ®isters_[reg], 2 * sizeof(registers_[0]));
|
| + memcpy(&dm_val, buffer, 2 * sizeof(registers_[0]));
|
| +#endif
|
| + return (dm_val);
|
| +}
|
| +
|
| +// Raw access to the PC register.
|
| +void Simulator::set_pc(intptr_t value) {
|
| + pc_modified_ = true;
|
| + special_reg_pc_ = value;
|
| +}
|
| +
|
| +bool Simulator::has_bad_pc() const {
|
| + return ((special_reg_pc_ == bad_lr) || (special_reg_pc_ == end_sim_pc));
|
| +}
|
| +
|
| +// Raw access to the PC register without the special adjustment when reading.
|
| +intptr_t Simulator::get_pc() const { return special_reg_pc_; }
|
| +
|
| +// Runtime FP routines take:
|
| +// - two double arguments
|
| +// - one double argument and zero or one integer arguments.
|
| +// All are consructed here from d1, d2 and r2.
|
| +void Simulator::GetFpArgs(double* x, double* y, intptr_t* z) {
|
| + *x = get_double_from_d_register(0);
|
| + *y = get_double_from_d_register(2);
|
| + *z = get_register(2);
|
| +}
|
| +
|
| +// The return value is in d0.
|
| +void Simulator::SetFpResult(const double& result) {
|
| + set_d_register_from_double(0, result);
|
| +}
|
| +
|
| +void Simulator::TrashCallerSaveRegisters() {
|
| +// We don't trash the registers with the return value.
|
| +#if 0 // A good idea to trash volatile registers, needs to be done
|
| + registers_[2] = 0x50Bad4U;
|
| + registers_[3] = 0x50Bad4U;
|
| + registers_[12] = 0x50Bad4U;
|
| +#endif
|
| +}
|
| +
|
| +uint32_t Simulator::ReadWU(intptr_t addr, Instruction* instr) {
|
| + uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
|
| + return *ptr;
|
| +}
|
| +
|
| +int32_t Simulator::ReadW(intptr_t addr, Instruction* instr) {
|
| + int32_t* ptr = reinterpret_cast<int32_t*>(addr);
|
| + return *ptr;
|
| +}
|
| +
|
| +void Simulator::WriteW(intptr_t addr, uint32_t value, Instruction* instr) {
|
| + uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
|
| + *ptr = value;
|
| + return;
|
| +}
|
| +
|
| +void Simulator::WriteW(intptr_t addr, int32_t value, Instruction* instr) {
|
| + int32_t* ptr = reinterpret_cast<int32_t*>(addr);
|
| + *ptr = value;
|
| + return;
|
| +}
|
| +
|
| +uint16_t Simulator::ReadHU(intptr_t addr, Instruction* instr) {
|
| + uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
|
| + return *ptr;
|
| +}
|
| +
|
| +int16_t Simulator::ReadH(intptr_t addr, Instruction* instr) {
|
| + int16_t* ptr = reinterpret_cast<int16_t*>(addr);
|
| + return *ptr;
|
| +}
|
| +
|
| +void Simulator::WriteH(intptr_t addr, uint16_t value, Instruction* instr) {
|
| + uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
|
| + *ptr = value;
|
| + return;
|
| +}
|
| +
|
| +void Simulator::WriteH(intptr_t addr, int16_t value, Instruction* instr) {
|
| + int16_t* ptr = reinterpret_cast<int16_t*>(addr);
|
| + *ptr = value;
|
| + return;
|
| +}
|
| +
|
| +uint8_t Simulator::ReadBU(intptr_t addr) {
|
| + uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
|
| + return *ptr;
|
| +}
|
| +
|
| +int8_t Simulator::ReadB(intptr_t addr) {
|
| + int8_t* ptr = reinterpret_cast<int8_t*>(addr);
|
| + return *ptr;
|
| +}
|
| +
|
| +void Simulator::WriteB(intptr_t addr, uint8_t value) {
|
| + uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
|
| + *ptr = value;
|
| +}
|
| +
|
| +void Simulator::WriteB(intptr_t addr, int8_t value) {
|
| + int8_t* ptr = reinterpret_cast<int8_t*>(addr);
|
| + *ptr = value;
|
| +}
|
| +
|
| +int64_t Simulator::ReadDW(intptr_t addr) {
|
| + int64_t* ptr = reinterpret_cast<int64_t*>(addr);
|
| + return *ptr;
|
| +}
|
| +
|
| +void Simulator::WriteDW(intptr_t addr, int64_t value) {
|
| + int64_t* ptr = reinterpret_cast<int64_t*>(addr);
|
| + *ptr = value;
|
| + return;
|
| +}
|
| +
|
| +/**
|
| + * Reads a double value from memory at given address.
|
| + */
|
| +double Simulator::ReadDouble(intptr_t addr) {
|
| + double* ptr = reinterpret_cast<double*>(addr);
|
| + return *ptr;
|
| +}
|
| +
|
| +// Returns the limit of the stack area to enable checking for stack overflows.
|
| +uintptr_t Simulator::StackLimit(uintptr_t c_limit) const {
|
| + // The simulator uses a separate JS stack. If we have exhausted the C stack,
|
| + // we also drop down the JS limit to reflect the exhaustion on the JS stack.
|
| + if (GetCurrentStackPosition() < c_limit) {
|
| + return reinterpret_cast<uintptr_t>(get_sp());
|
| + }
|
| +
|
| + // Otherwise the limit is the JS stack. Leave a safety margin to prevent
|
| + // overrunning the stack when pushing values.
|
| + return reinterpret_cast<uintptr_t>(stack_) + stack_protection_size_;
|
| +}
|
| +
|
| +// Unsupported instructions use Format to print an error and stop execution.
|
| +void Simulator::Format(Instruction* instr, const char* format) {
|
| + PrintF("Simulator found unsupported instruction:\n 0x%08" V8PRIxPTR ": %s\n",
|
| + reinterpret_cast<intptr_t>(instr), format);
|
| + UNIMPLEMENTED();
|
| +}
|
| +
|
| +// Calculate C flag value for additions.
|
| +bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) {
|
| + uint32_t uleft = static_cast<uint32_t>(left);
|
| + uint32_t uright = static_cast<uint32_t>(right);
|
| + uint32_t urest = 0xffffffffU - uleft;
|
| +
|
| + return (uright > urest) ||
|
| + (carry && (((uright + 1) > urest) || (uright > (urest - 1))));
|
| +}
|
| +
|
| +// Calculate C flag value for subtractions.
|
| +bool Simulator::BorrowFrom(int32_t left, int32_t right) {
|
| + uint32_t uleft = static_cast<uint32_t>(left);
|
| + uint32_t uright = static_cast<uint32_t>(right);
|
| +
|
| + return (uright > uleft);
|
| +}
|
| +
|
| +// Calculate V flag value for additions and subtractions.
|
| +bool Simulator::OverflowFrom(int32_t alu_out, int32_t left, int32_t right,
|
| + bool addition) {
|
| + bool overflow;
|
| + if (addition) {
|
| + // operands have the same sign
|
| + overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0))
|
| + // and operands and result have different sign
|
| + && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
|
| + } else {
|
| + // operands have different signs
|
| + overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0))
|
| + // and first operand and result have different signs
|
| + && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
|
| + }
|
| + return overflow;
|
| +}
|
| +
|
| +#if V8_TARGET_ARCH_S390X
|
| +static void decodeObjectPair(ObjectPair* pair, intptr_t* x, intptr_t* y) {
|
| + *x = reinterpret_cast<intptr_t>(pair->x);
|
| + *y = reinterpret_cast<intptr_t>(pair->y);
|
| +}
|
| +#else
|
| +static void decodeObjectPair(ObjectPair* pair, intptr_t* x, intptr_t* y) {
|
| +#if V8_TARGET_BIG_ENDIAN
|
| + *x = static_cast<int32_t>(*pair >> 32);
|
| + *y = static_cast<int32_t>(*pair);
|
| +#else
|
| + *x = static_cast<int32_t>(*pair);
|
| + *y = static_cast<int32_t>(*pair >> 32);
|
| +#endif
|
| +}
|
| +#endif
|
| +
|
| +// Calls into the V8 runtime.
|
| +typedef intptr_t (*SimulatorRuntimeCall)(intptr_t arg0, intptr_t arg1,
|
| + intptr_t arg2, intptr_t arg3,
|
| + intptr_t arg4, intptr_t arg5);
|
| +typedef ObjectPair (*SimulatorRuntimePairCall)(intptr_t arg0, intptr_t arg1,
|
| + intptr_t arg2, intptr_t arg3,
|
| + intptr_t arg4, intptr_t arg5);
|
| +typedef ObjectTriple (*SimulatorRuntimeTripleCall)(intptr_t arg0, intptr_t arg1,
|
| + intptr_t arg2, intptr_t arg3,
|
| + intptr_t arg4,
|
| + intptr_t arg5);
|
| +
|
| +// These prototypes handle the four types of FP calls.
|
| +typedef int (*SimulatorRuntimeCompareCall)(double darg0, double darg1);
|
| +typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1);
|
| +typedef double (*SimulatorRuntimeFPCall)(double darg0);
|
| +typedef double (*SimulatorRuntimeFPIntCall)(double darg0, intptr_t arg0);
|
| +
|
| +// This signature supports direct call in to API function native callback
|
| +// (refer to InvocationCallback in v8.h).
|
| +typedef void (*SimulatorRuntimeDirectApiCall)(intptr_t arg0);
|
| +typedef void (*SimulatorRuntimeProfilingApiCall)(intptr_t arg0, void* arg1);
|
| +
|
| +// This signature supports direct call to accessor getter callback.
|
| +typedef void (*SimulatorRuntimeDirectGetterCall)(intptr_t arg0, intptr_t arg1);
|
| +typedef void (*SimulatorRuntimeProfilingGetterCall)(intptr_t arg0,
|
| + intptr_t arg1, void* arg2);
|
| +
|
| +// Software interrupt instructions are used by the simulator to call into the
|
| +// C-based V8 runtime.
|
| +void Simulator::SoftwareInterrupt(Instruction* instr) {
|
| + int svc = instr->SvcValue();
|
| + switch (svc) {
|
| + case kCallRtRedirected: {
|
| + // Check if stack is aligned. Error if not aligned is reported below to
|
| + // include information on the function called.
|
| + bool stack_aligned =
|
| + (get_register(sp) & (::v8::internal::FLAG_sim_stack_alignment - 1)) ==
|
| + 0;
|
| + Redirection* redirection = Redirection::FromSwiInstruction(instr);
|
| + const int kArgCount = 6;
|
| + int arg0_regnum = 2;
|
| + intptr_t result_buffer = 0;
|
| + bool uses_result_buffer =
|
| + redirection->type() == ExternalReference::BUILTIN_CALL_TRIPLE ||
|
| + (redirection->type() == ExternalReference::BUILTIN_CALL_PAIR &&
|
| + !ABI_RETURNS_OBJECTPAIR_IN_REGS);
|
| + if (uses_result_buffer) {
|
| + result_buffer = get_register(r2);
|
| + arg0_regnum++;
|
| + }
|
| + intptr_t arg[kArgCount];
|
| + for (int i = 0; i < kArgCount - 1; i++) {
|
| + arg[i] = get_register(arg0_regnum + i);
|
| + }
|
| + intptr_t* stack_pointer = reinterpret_cast<intptr_t*>(get_register(sp));
|
| + arg[5] = stack_pointer[kCalleeRegisterSaveAreaSize / kPointerSize];
|
| + bool fp_call =
|
| + (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
|
| + (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
|
| + (redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
|
| + (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);
|
| +
|
| + // Place the return address on the stack, making the call GC safe.
|
| + *reinterpret_cast<intptr_t*>(get_register(sp) +
|
| + kStackFrameRASlot * kPointerSize) =
|
| + get_register(r14);
|
| +
|
| + intptr_t external =
|
| + reinterpret_cast<intptr_t>(redirection->external_function());
|
| + if (fp_call) {
|
| + double dval0, dval1; // one or two double parameters
|
| + intptr_t ival; // zero or one integer parameters
|
| + int iresult = 0; // integer return value
|
| + double dresult = 0; // double return value
|
| + GetFpArgs(&dval0, &dval1, &ival);
|
| + if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
| + SimulatorRuntimeCall generic_target =
|
| + reinterpret_cast<SimulatorRuntimeCall>(external);
|
| + switch (redirection->type()) {
|
| + case ExternalReference::BUILTIN_FP_FP_CALL:
|
| + case ExternalReference::BUILTIN_COMPARE_CALL:
|
| + PrintF("Call to host function at %p with args %f, %f",
|
| + FUNCTION_ADDR(generic_target), dval0, dval1);
|
| + break;
|
| + case ExternalReference::BUILTIN_FP_CALL:
|
| + PrintF("Call to host function at %p with arg %f",
|
| + FUNCTION_ADDR(generic_target), dval0);
|
| + break;
|
| + case ExternalReference::BUILTIN_FP_INT_CALL:
|
| + PrintF("Call to host function at %p with args %f, %" V8PRIdPTR,
|
| + FUNCTION_ADDR(generic_target), dval0, ival);
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| + if (!stack_aligned) {
|
| + PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
|
| + static_cast<intptr_t>(get_register(sp)));
|
| + }
|
| + PrintF("\n");
|
| + }
|
| + CHECK(stack_aligned);
|
| + switch (redirection->type()) {
|
| + case ExternalReference::BUILTIN_COMPARE_CALL: {
|
| + SimulatorRuntimeCompareCall target =
|
| + reinterpret_cast<SimulatorRuntimeCompareCall>(external);
|
| + iresult = target(dval0, dval1);
|
| + set_register(r2, iresult);
|
| + break;
|
| + }
|
| + case ExternalReference::BUILTIN_FP_FP_CALL: {
|
| + SimulatorRuntimeFPFPCall target =
|
| + reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
|
| + dresult = target(dval0, dval1);
|
| + SetFpResult(dresult);
|
| + break;
|
| + }
|
| + case ExternalReference::BUILTIN_FP_CALL: {
|
| + SimulatorRuntimeFPCall target =
|
| + reinterpret_cast<SimulatorRuntimeFPCall>(external);
|
| + dresult = target(dval0);
|
| + SetFpResult(dresult);
|
| + break;
|
| + }
|
| + case ExternalReference::BUILTIN_FP_INT_CALL: {
|
| + SimulatorRuntimeFPIntCall target =
|
| + reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
|
| + dresult = target(dval0, ival);
|
| + SetFpResult(dresult);
|
| + break;
|
| + }
|
| + default:
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| + if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
| + switch (redirection->type()) {
|
| + case ExternalReference::BUILTIN_COMPARE_CALL:
|
| + PrintF("Returned %08x\n", iresult);
|
| + break;
|
| + case ExternalReference::BUILTIN_FP_FP_CALL:
|
| + case ExternalReference::BUILTIN_FP_CALL:
|
| + case ExternalReference::BUILTIN_FP_INT_CALL:
|
| + PrintF("Returned %f\n", dresult);
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| + }
|
| + } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
|
| + // See callers of MacroAssembler::CallApiFunctionAndReturn for
|
| + // explanation of register usage.
|
| + if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
| + PrintF("Call to host function at %p args %08" V8PRIxPTR,
|
| + reinterpret_cast<void*>(external), arg[0]);
|
| + if (!stack_aligned) {
|
| + PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
|
| + static_cast<intptr_t>(get_register(sp)));
|
| + }
|
| + PrintF("\n");
|
| + }
|
| + CHECK(stack_aligned);
|
| + SimulatorRuntimeDirectApiCall target =
|
| + reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
|
| + target(arg[0]);
|
| + } else if (redirection->type() == ExternalReference::PROFILING_API_CALL) {
|
| + // See callers of MacroAssembler::CallApiFunctionAndReturn for
|
| + // explanation of register usage.
|
| + if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
| + PrintF("Call to host function at %p args %08" V8PRIxPTR
|
| + " %08" V8PRIxPTR,
|
| + reinterpret_cast<void*>(external), arg[0], arg[1]);
|
| + if (!stack_aligned) {
|
| + PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
|
| + static_cast<intptr_t>(get_register(sp)));
|
| + }
|
| + PrintF("\n");
|
| + }
|
| + CHECK(stack_aligned);
|
| + SimulatorRuntimeProfilingApiCall target =
|
| + reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external);
|
| + target(arg[0], Redirection::ReverseRedirection(arg[1]));
|
| + } else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
|
| + // See callers of MacroAssembler::CallApiFunctionAndReturn for
|
| + // explanation of register usage.
|
| + if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
| + PrintF("Call to host function at %p args %08" V8PRIxPTR
|
| + " %08" V8PRIxPTR,
|
| + reinterpret_cast<void*>(external), arg[0], arg[1]);
|
| + if (!stack_aligned) {
|
| + PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
|
| + static_cast<intptr_t>(get_register(sp)));
|
| + }
|
| + PrintF("\n");
|
| + }
|
| + CHECK(stack_aligned);
|
| + SimulatorRuntimeDirectGetterCall target =
|
| + reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
|
| + if (!ABI_PASSES_HANDLES_IN_REGS) {
|
| + arg[0] = *(reinterpret_cast<intptr_t*>(arg[0]));
|
| + }
|
| + target(arg[0], arg[1]);
|
| + } else if (redirection->type() ==
|
| + ExternalReference::PROFILING_GETTER_CALL) {
|
| + if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
| + PrintF("Call to host function at %p args %08" V8PRIxPTR
|
| + " %08" V8PRIxPTR " %08" V8PRIxPTR,
|
| + reinterpret_cast<void*>(external), arg[0], arg[1], arg[2]);
|
| + if (!stack_aligned) {
|
| + PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
|
| + static_cast<intptr_t>(get_register(sp)));
|
| + }
|
| + PrintF("\n");
|
| + }
|
| + CHECK(stack_aligned);
|
| + SimulatorRuntimeProfilingGetterCall target =
|
| + reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external);
|
| + if (!ABI_PASSES_HANDLES_IN_REGS) {
|
| + arg[0] = *(reinterpret_cast<intptr_t*>(arg[0]));
|
| + }
|
| + target(arg[0], arg[1], Redirection::ReverseRedirection(arg[2]));
|
| + } else {
|
| + // builtin call.
|
| + if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
| + SimulatorRuntimeCall target =
|
| + reinterpret_cast<SimulatorRuntimeCall>(external);
|
| + PrintF(
|
| + "Call to host function at %p,\n"
|
| + "\t\t\t\targs %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR
|
| + ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR,
|
| + FUNCTION_ADDR(target), arg[0], arg[1], arg[2], arg[3], arg[4],
|
| + arg[5]);
|
| + if (!stack_aligned) {
|
| + PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
|
| + static_cast<intptr_t>(get_register(sp)));
|
| + }
|
| + PrintF("\n");
|
| + }
|
| + CHECK(stack_aligned);
|
| + if (redirection->type() == ExternalReference::BUILTIN_CALL_TRIPLE) {
|
| + SimulatorRuntimeTripleCall target =
|
| + reinterpret_cast<SimulatorRuntimeTripleCall>(external);
|
| + ObjectTriple result =
|
| + target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
|
| + if (::v8::internal::FLAG_trace_sim) {
|
| + PrintF("Returned {%08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR
|
| + "}\n",
|
| + reinterpret_cast<intptr_t>(result.x),
|
| + reinterpret_cast<intptr_t>(result.y),
|
| + reinterpret_cast<intptr_t>(result.z));
|
| + }
|
| + memcpy(reinterpret_cast<void*>(result_buffer), &result,
|
| + sizeof(ObjectTriple));
|
| + set_register(r2, result_buffer);
|
| + } else {
|
| + if (redirection->type() == ExternalReference::BUILTIN_CALL_PAIR) {
|
| + SimulatorRuntimePairCall target =
|
| + reinterpret_cast<SimulatorRuntimePairCall>(external);
|
| + ObjectPair result =
|
| + target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
|
| + intptr_t x;
|
| + intptr_t y;
|
| + decodeObjectPair(&result, &x, &y);
|
| + if (::v8::internal::FLAG_trace_sim) {
|
| + PrintF("Returned {%08" V8PRIxPTR ", %08" V8PRIxPTR "}\n", x, y);
|
| + }
|
| + if (ABI_RETURNS_OBJECTPAIR_IN_REGS) {
|
| + set_register(r2, x);
|
| + set_register(r3, y);
|
| + } else {
|
| + memcpy(reinterpret_cast<void*>(result_buffer), &result,
|
| + sizeof(ObjectPair));
|
| + set_register(r2, result_buffer);
|
| + }
|
| + } else {
|
| + DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL);
|
| + SimulatorRuntimeCall target =
|
| + reinterpret_cast<SimulatorRuntimeCall>(external);
|
| + intptr_t result =
|
| + target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
|
| + if (::v8::internal::FLAG_trace_sim) {
|
| + PrintF("Returned %08" V8PRIxPTR "\n", result);
|
| + }
|
| + set_register(r2, result);
|
| + }
|
| + }
|
| + // #if !V8_TARGET_ARCH_S390X
|
| + // DCHECK(redirection->type() ==
|
| + // ExternalReference::BUILTIN_CALL);
|
| + // SimulatorRuntimeCall target =
|
| + // reinterpret_cast<SimulatorRuntimeCall>(external);
|
| + // int64_t result = target(arg[0], arg[1], arg[2], arg[3],
|
| + // arg[4],
|
| + // arg[5]);
|
| + // int32_t lo_res = static_cast<int32_t>(result);
|
| + // int32_t hi_res = static_cast<int32_t>(result >> 32);
|
| + // #if !V8_TARGET_LITTLE_ENDIAN
|
| + // if (::v8::internal::FLAG_trace_sim) {
|
| + // PrintF("Returned %08x\n", hi_res);
|
| + // }
|
| + // set_register(r2, hi_res);
|
| + // set_register(r3, lo_res);
|
| + // #else
|
| + // if (::v8::internal::FLAG_trace_sim) {
|
| + // PrintF("Returned %08x\n", lo_res);
|
| + // }
|
| + // set_register(r2, lo_res);
|
| + // set_register(r3, hi_res);
|
| + // #endif
|
| + // #else
|
| + // if (redirection->type() == ExternalReference::BUILTIN_CALL) {
|
| + // SimulatorRuntimeCall target =
|
| + // reinterpret_cast<SimulatorRuntimeCall>(external);
|
| + // intptr_t result = target(arg[0], arg[1], arg[2], arg[3],
|
| + // arg[4],
|
| + // arg[5]);
|
| + // if (::v8::internal::FLAG_trace_sim) {
|
| + // PrintF("Returned %08" V8PRIxPTR "\n", result);
|
| + // }
|
| + // set_register(r2, result);
|
| + // } else {
|
| + // DCHECK(redirection->type() ==
|
| + // ExternalReference::BUILTIN_CALL_PAIR);
|
| + // SimulatorRuntimePairCall target =
|
| + // reinterpret_cast<SimulatorRuntimePairCall>(external);
|
| + // ObjectPair result = target(arg[0], arg[1], arg[2], arg[3],
|
| + // arg[4], arg[5]);
|
| + // if (::v8::internal::FLAG_trace_sim) {
|
| + // PrintF("Returned %08" V8PRIxPTR ", %08" V8PRIxPTR "\n",
|
| + // result.x, result.y);
|
| + // }
|
| + // #if ABI_RETURNS_OBJECTPAIR_IN_REGS
|
| + // set_register(r2, result.x);
|
| + // set_register(r3, result.y);
|
| + // #else
|
| + // memcpy(reinterpret_cast<void *>(result_buffer), &result,
|
| + // sizeof(ObjectPair));
|
| + // #endif
|
| + // }
|
| + // #endif
|
| + }
|
| + int64_t saved_lr = *reinterpret_cast<intptr_t*>(
|
| + get_register(sp) + kStackFrameRASlot * kPointerSize);
|
| +#if (!V8_TARGET_ARCH_S390X && V8_HOST_ARCH_S390)
|
| + // On zLinux-31, the saved_lr might be tagged with a high bit of 1.
|
| + // Cleanse it before proceeding with simulation.
|
| + saved_lr &= 0x7FFFFFFF;
|
| +#endif
|
| + set_pc(saved_lr);
|
| + break;
|
| + }
|
| + case kBreakpoint: {
|
| + S390Debugger dbg(this);
|
| + dbg.Debug();
|
| + break;
|
| + }
|
| + // stop uses all codes greater than 1 << 23.
|
| + default: {
|
| + if (svc >= (1 << 23)) {
|
| + uint32_t code = svc & kStopCodeMask;
|
| + if (isWatchedStop(code)) {
|
| + IncreaseStopCounter(code);
|
| + }
|
| + // Stop if it is enabled, otherwise go on jumping over the stop
|
| + // and the message address.
|
| + if (isEnabledStop(code)) {
|
| + S390Debugger dbg(this);
|
| + dbg.Stop(instr);
|
| + } else {
|
| + set_pc(get_pc() + sizeof(FourByteInstr) + kPointerSize);
|
| + }
|
| + } else {
|
| + // This is not a valid svc code.
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +// Stop helper functions.
|
| +bool Simulator::isStopInstruction(Instruction* instr) {
|
| + return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode);
|
| +}
|
| +
|
| +bool Simulator::isWatchedStop(uint32_t code) {
|
| + DCHECK(code <= kMaxStopCode);
|
| + return code < kNumOfWatchedStops;
|
| +}
|
| +
|
| +bool Simulator::isEnabledStop(uint32_t code) {
|
| + DCHECK(code <= kMaxStopCode);
|
| + // Unwatched stops are always enabled.
|
| + return !isWatchedStop(code) ||
|
| + !(watched_stops_[code].count & kStopDisabledBit);
|
| +}
|
| +
|
| +void Simulator::EnableStop(uint32_t code) {
|
| + DCHECK(isWatchedStop(code));
|
| + if (!isEnabledStop(code)) {
|
| + watched_stops_[code].count &= ~kStopDisabledBit;
|
| + }
|
| +}
|
| +
|
| +void Simulator::DisableStop(uint32_t code) {
|
| + DCHECK(isWatchedStop(code));
|
| + if (isEnabledStop(code)) {
|
| + watched_stops_[code].count |= kStopDisabledBit;
|
| + }
|
| +}
|
| +
|
| +void Simulator::IncreaseStopCounter(uint32_t code) {
|
| + DCHECK(code <= kMaxStopCode);
|
| + DCHECK(isWatchedStop(code));
|
| + if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) {
|
| + PrintF(
|
| + "Stop counter for code %i has overflowed.\n"
|
| + "Enabling this code and reseting the counter to 0.\n",
|
| + code);
|
| + watched_stops_[code].count = 0;
|
| + EnableStop(code);
|
| + } else {
|
| + watched_stops_[code].count++;
|
| + }
|
| +}
|
| +
|
| +// Print a stop status.
|
| +void Simulator::PrintStopInfo(uint32_t code) {
|
| + DCHECK(code <= kMaxStopCode);
|
| + if (!isWatchedStop(code)) {
|
| + PrintF("Stop not watched.");
|
| + } else {
|
| + const char* state = isEnabledStop(code) ? "Enabled" : "Disabled";
|
| + int32_t count = watched_stops_[code].count & ~kStopDisabledBit;
|
| + // Don't print the state of unused breakpoints.
|
| + if (count != 0) {
|
| + if (watched_stops_[code].desc) {
|
| + PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code,
|
| + state, count, watched_stops_[code].desc);
|
| + } else {
|
| + PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state,
|
| + count);
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +// Method for checking overflow on signed addition:
|
| +// Test src1 and src2 have opposite sign,
|
| +// (1) No overflow if they have opposite sign
|
| +// (2) Test the result and one of the operands have opposite sign
|
| +// (a) No overflow if they don't have opposite sign
|
| +// (b) Overflow if opposite
|
| +#define CheckOverflowForIntAdd(src1, src2) \
|
| + (((src1) ^ (src2)) < 0 ? false : ((((src1) + (src2)) ^ (src1)) < 0))
|
| +
|
| +// Method for checking overflow on signed subtraction:
|
| +#define CheckOverflowForIntSub(src1, src2) \
|
| + (((src1 - src2) < src1) != (src2 > 0))
|
| +
|
| +// Method for checking overflow on unsigned addtion
|
| +#define CheckOverflowForUIntAdd(src1, src2) \
|
| + ((src1) + (src2) < (src1) || (src1) + (src2) < (src2))
|
| +
|
| +// Method for checking overflow on unsigned subtraction
|
| +#define CheckOverflowForUIntSub(src1, src2) ((src1) - (src2) > (src1))
|
| +
|
| +// Method for checking overflow on multiplication
|
| +#define CheckOverflowForMul(src1, src2) (((src1) * (src2)) / (src2) != (src1))
|
| +
|
| +// Method for checking overflow on shift right
|
| +#define CheckOverflowForShiftRight(src1, src2) \
|
| + (((src1) >> (src2)) << (src2) != (src1))
|
| +
|
| +// Method for checking overflow on shift left
|
| +#define CheckOverflowForShiftLeft(src1, src2) \
|
| + (((src1) << (src2)) >> (src2) != (src1))
|
| +
|
| +// S390 Decode and simulate helpers
|
| +bool Simulator::DecodeTwoByte(Instruction* instr) {
|
| + Opcode op = instr->S390OpcodeValue();
|
| +
|
| + switch (op) {
|
| + // RR format instructions
|
| + case AR:
|
| + case SR:
|
| + case MR:
|
| + case DR:
|
| + case OR:
|
| + case NR:
|
| + case XR: {
|
| + RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
|
| + int r1 = rrinst->R1Value();
|
| + int r2 = rrinst->R2Value();
|
| + int32_t r1_val = get_low_register<int32_t>(r1);
|
| + int32_t r2_val = get_low_register<int32_t>(r2);
|
| + bool isOF = false;
|
| + switch (op) {
|
| + case AR:
|
| + isOF = CheckOverflowForIntAdd(r1_val, r2_val);
|
| + r1_val += r2_val;
|
| + SetS390ConditionCode<int32_t>(r1_val, 0);
|
| + SetS390OverflowCode(isOF);
|
| + break;
|
| + case SR:
|
| + isOF = CheckOverflowForIntSub(r1_val, r2_val);
|
| + r1_val -= r2_val;
|
| + SetS390ConditionCode<int32_t>(r1_val, 0);
|
| + SetS390OverflowCode(isOF);
|
| + break;
|
| + case OR:
|
| + r1_val |= r2_val;
|
| + SetS390BitWiseConditionCode<uint32_t>(r1_val);
|
| + break;
|
| + case NR:
|
| + r1_val &= r2_val;
|
| + SetS390BitWiseConditionCode<uint32_t>(r1_val);
|
| + break;
|
| + case XR:
|
| + r1_val ^= r2_val;
|
| + SetS390BitWiseConditionCode<uint32_t>(r1_val);
|
| + break;
|
| + case MR: {
|
| + DCHECK(r1 % 2 == 0);
|
| + r1_val = get_low_register<int32_t>(r1 + 1);
|
| + int64_t product =
|
| + static_cast<int64_t>(r1_val) * static_cast<int64_t>(r2_val);
|
| + int32_t high_bits = product >> 32;
|
| + r1_val = high_bits;
|
| + int32_t low_bits = product & 0x00000000FFFFFFFF;
|
| + set_low_register(r1, high_bits);
|
| + set_low_register(r1 + 1, low_bits);
|
| + break;
|
| + }
|
| + case DR: {
|
| + // reg-reg pair should be even-odd pair, assert r1 is an even register
|
| + DCHECK(r1 % 2 == 0);
|
| + // leftmost 32 bits of the dividend are in r1
|
| + // rightmost 32 bits of the dividend are in r1+1
|
| + // get the signed value from r1
|
| + int64_t dividend = static_cast<int64_t>(r1_val) << 32;
|
| + // get unsigned value from r1+1
|
| + // avoid addition with sign-extended r1+1 value
|
| + dividend += get_low_register<uint32_t>(r1 + 1);
|
| + int32_t remainder = dividend % r2_val;
|
| + int32_t quotient = dividend / r2_val;
|
| + r1_val = remainder;
|
| + set_low_register(r1, remainder);
|
| + set_low_register(r1 + 1, quotient);
|
| + break; // reg pair
|
| + }
|
| + default:
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| + set_low_register(r1, r1_val);
|
| + break;
|
| + }
|
| + case LR: {
|
| + RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
|
| + int r1 = rrinst->R1Value();
|
| + int r2 = rrinst->R2Value();
|
| + set_low_register(r1, get_low_register<int32_t>(r2));
|
| + break;
|
| + }
|
| + case LDR: {
|
| + RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
|
| + int r1 = rrinst->R1Value();
|
| + int r2 = rrinst->R2Value();
|
| + int64_t r2_val = get_d_register(r2);
|
| + set_d_register(r1, r2_val);
|
| + break;
|
| + }
|
| + case CR: {
|
| + RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
|
| + int r1 = rrinst->R1Value();
|
| + int r2 = rrinst->R2Value();
|
| + int32_t r1_val = get_low_register<int32_t>(r1);
|
| + int32_t r2_val = get_low_register<int32_t>(r2);
|
| + SetS390ConditionCode<int32_t>(r1_val, r2_val);
|
| + break;
|
| + }
|
| + case CLR: {
|
| + RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
|
| + int r1 = rrinst->R1Value();
|
| + int r2 = rrinst->R2Value();
|
| + uint32_t r1_val = get_low_register<uint32_t>(r1);
|
| + uint32_t r2_val = get_low_register<uint32_t>(r2);
|
| + SetS390ConditionCode<uint32_t>(r1_val, r2_val);
|
| + break;
|
| + }
|
| + case BCR: {
|
| + RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
|
| + int r1 = rrinst->R1Value();
|
| + int r2 = rrinst->R2Value();
|
| + if (TestConditionCode(Condition(r1))) {
|
| + intptr_t r2_val = get_register(r2);
|
| +#if (!V8_TARGET_ARCH_S390X && V8_HOST_ARCH_S390)
|
| + // On 31-bit, the top most bit may be 0 or 1, but is ignored by the
|
| + // hardware. Cleanse the top bit before jumping to it, unless it's one
|
| + // of the special PCs
|
| + if (r2_val != bad_lr && r2_val != end_sim_pc) r2_val &= 0x7FFFFFFF;
|
| +#endif
|
| + set_pc(r2_val);
|
| + }
|
| + break;
|
| + }
|
| + case LTR: {
|
| + RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
|
| + int r1 = rrinst->R1Value();
|
| + int r2 = rrinst->R2Value();
|
| + int32_t r2_val = get_low_register<int32_t>(r2);
|
| + SetS390ConditionCode<int32_t>(r2_val, 0);
|
| + set_low_register(r1, r2_val);
|
| + break;
|
| + }
|
| + case ALR:
|
| + case SLR: {
|
| + RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
|
| + int r1 = rrinst->R1Value();
|
| + int r2 = rrinst->R2Value();
|
| + uint32_t r1_val = get_low_register<uint32_t>(r1);
|
| + uint32_t r2_val = get_low_register<uint32_t>(r2);
|
| + uint32_t alu_out = 0;
|
| + bool isOF = false;
|
| + if (ALR == op) {
|
| + alu_out = r1_val + r2_val;
|
| + isOF = CheckOverflowForUIntAdd(r1_val, r2_val);
|
| + } else if (SLR == op) {
|
| + alu_out = r1_val - r2_val;
|
| + isOF = CheckOverflowForUIntSub(r1_val, r2_val);
|
| + } else {
|
| + UNREACHABLE();
|
| + }
|
| + set_low_register(r1, alu_out);
|
| + SetS390ConditionCode<uint32_t>(alu_out, 0);
|
| + SetS390OverflowCode(isOF);
|
| + break;
|
| + }
|
| + case LNR: {
|
| + // Load Negative (32)
|
| + RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
|
| + int r1 = rrinst->R1Value();
|
| + int r2 = rrinst->R2Value();
|
| + int32_t r2_val = get_low_register<int32_t>(r2);
|
| + r2_val = (r2_val >= 0) ? -r2_val : r2_val; // If pos, then negate it.
|
| + set_low_register(r1, r2_val);
|
| + condition_reg_ = (r2_val == 0) ? CC_EQ : CC_LT; // CC0 - result is zero
|
| + // CC1 - result is negative
|
| + break;
|
| + }
|
| + case BASR: {
|
| + RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
|
| + int r1 = rrinst->R1Value();
|
| + int r2 = rrinst->R2Value();
|
| + intptr_t link_addr = get_pc() + 2;
|
| + // If R2 is zero, the BASR does not branch.
|
| + int64_t r2_val = (r2 == 0) ? link_addr : get_register(r2);
|
| +#if (!V8_TARGET_ARCH_S390X && V8_HOST_ARCH_S390)
|
| + // On 31-bit, the top most bit may be 0 or 1, which can cause issues
|
| + // for stackwalker. The top bit should either be cleanse before being
|
| + // pushed onto the stack, or during stack walking when dereferenced.
|
| + // For simulator, we'll take the worst case scenario and always tag
|
| + // the high bit, to flush out more problems.
|
| + link_addr |= 0x80000000;
|
| +#endif
|
| + set_register(r1, link_addr);
|
| + set_pc(r2_val);
|
| + break;
|
| + }
|
| + case LCR: {
|
| + RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
|
| + int r1 = rrinst->R1Value();
|
| + int r2 = rrinst->R2Value();
|
| + int32_t r2_val = get_low_register<int32_t>(r2);
|
| + int32_t original_r2_val = r2_val;
|
| + r2_val = ~r2_val;
|
| + r2_val = r2_val + 1;
|
| + set_low_register(r1, r2_val);
|
| + SetS390ConditionCode<int32_t>(r2_val, 0);
|
| + // Checks for overflow where r2_val = -2147483648.
|
| + // Cannot do int comparison due to GCC 4.8 bug on x86.
|
| + // Detect INT_MIN alternatively, as it is the only value where both
|
| + // original and result are negative due to overflow.
|
| + if (r2_val < 0 && original_r2_val < 0) {
|
| + SetS390OverflowCode(true);
|
| + }
|
| + break;
|
| + }
|
| + case BKPT: {
|
| + set_pc(get_pc() + 2);
|
| + S390Debugger dbg(this);
|
| + dbg.Debug();
|
| + break;
|
| + }
|
| + default:
|
| + UNREACHABLE();
|
| + return false;
|
| + break;
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +// Decode routine for four-byte instructions
|
| +bool Simulator::DecodeFourByte(Instruction* instr) {
|
| + Opcode op = instr->S390OpcodeValue();
|
| +
|
| + // Pre-cast instruction to various types
|
| + RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr);
|
| + SIInstruction* siInstr = reinterpret_cast<SIInstruction*>(instr);
|
| +
|
| + switch (op) {
|
| + case POPCNT_Z: {
|
| + int r1 = rreInst->R1Value();
|
| + int r2 = rreInst->R2Value();
|
| + int64_t r2_val = get_register(r2);
|
| + int64_t r1_val = 0;
|
| +
|
| + uint8_t* r2_val_ptr = reinterpret_cast<uint8_t*>(&r2_val);
|
| + uint8_t* r1_val_ptr = reinterpret_cast<uint8_t*>(&r1_val);
|
| + for (int i = 0; i < 8; i++) {
|
| + uint32_t x = static_cast<uint32_t>(r2_val_ptr[i]);
|
| +#if defined(__GNUC__)
|
| + r1_val_ptr[i] = __builtin_popcount(x);
|
| +#else
|
| +#error unsupport __builtin_popcount
|
| +#endif
|
| + }
|
| +
|
| + set_register(r1, static_cast<uint64_t>(r1_val));
|
| + break;
|
| + }
|
| + case LLGFR: {
|
| + int r1 = rreInst->R1Value();
|
| + int r2 = rreInst->R2Value();
|
| + int32_t r2_val = get_low_register<int32_t>(r2);
|
| + uint64_t r2_finalval =
|
| + (static_cast<uint64_t>(r2_val) & 0x00000000ffffffff);
|
| + set_register(r1, r2_finalval);
|
| + break;
|
| + }
|
| + case EX: {
|
| + RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
|
| + int r1 = rxinst->R1Value();
|
| + int b2 = rxinst->B2Value();
|
| + int x2 = rxinst->X2Value();
|
| + int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
| + int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
| + intptr_t d2_val = rxinst->D2Value();
|
| + int32_t r1_val = get_low_register<int32_t>(r1);
|
| +
|
| + SixByteInstr the_instr = Instruction::InstructionBits(
|
| + reinterpret_cast<const byte*>(b2_val + x2_val + d2_val));
|
| + int length = Instruction::InstructionLength(
|
| + reinterpret_cast<const byte*>(b2_val + x2_val + d2_val));
|
| +
|
| + char new_instr_buf[8];
|
| + char* addr = reinterpret_cast<char*>(&new_instr_buf[0]);
|
| + the_instr |= static_cast<SixByteInstr>(r1_val & 0xff)
|
| + << (8 * length - 16);
|
| + Instruction::SetInstructionBits<SixByteInstr>(
|
| + reinterpret_cast<byte*>(addr), static_cast<SixByteInstr>(the_instr));
|
| + ExecuteInstruction(reinterpret_cast<Instruction*>(addr), false);
|
| + break;
|
| + }
|
| + case LGR: {
|
| + // Load Register (64)
|
| + int r1 = rreInst->R1Value();
|
| + int r2 = rreInst->R2Value();
|
| + set_register(r1, get_register(r2));
|
| + break;
|
| + }
|
| + case LDGR: {
|
| + // Load FPR from GPR (L <- 64)
|
| + uint64_t int_val = get_register(rreInst->R2Value());
|
| + // double double_val = bit_cast<double, uint64_t>(int_val);
|
| + // set_d_register_from_double(rreInst->R1Value(), double_val);
|
| + set_d_register(rreInst->R1Value(), int_val);
|
| + break;
|
| + }
|
| + case LGDR: {
|
| + // Load GPR from FPR (64 <- L)
|
| + int64_t double_val = get_d_register(rreInst->R2Value());
|
| + set_register(rreInst->R1Value(), double_val);
|
| + break;
|
| + }
|
| + case LTGR: {
|
| + // Load Register (64)
|
| + int r1 = rreInst->R1Value();
|
| + int r2 = rreInst->R2Value();
|
| + int64_t r2_val = get_register(r2);
|
| + SetS390ConditionCode<int64_t>(r2_val, 0);
|
| + set_register(r1, get_register(r2));
|
| + break;
|
| + }
|
| + case LZDR: {
|
| + int r1 = rreInst->R1Value();
|
| + set_d_register_from_double(r1, 0.0);
|
| + break;
|
| + }
|
| + case LTEBR: {
|
| + RREInstruction* rreinst = reinterpret_cast<RREInstruction*>(instr);
|
| + int r1 = rreinst->R1Value();
|
| + int r2 = rreinst->R2Value();
|
| + int64_t r2_val = get_d_register(r2);
|
| + float fr2_val = get_float32_from_d_register(r2);
|
| + SetS390ConditionCode<float>(fr2_val, 0.0);
|
| + set_d_register(r1, r2_val);
|
| + break;
|
| + }
|
| + case LTDBR: {
|
| + RREInstruction* rreinst = reinterpret_cast<RREInstruction*>(instr);
|
| + int r1 = rreinst->R1Value();
|
| + int r2 = rreinst->R2Value();
|
| + int64_t r2_val = get_d_register(r2);
|
| + SetS390ConditionCode<double>(bit_cast<double, int64_t>(r2_val), 0.0);
|
| + set_d_register(r1, r2_val);
|
| + break;
|
| + }
|
| + case CGR: {
|
| + // Compare (64)
|
| + int64_t r1_val = get_register(rreInst->R1Value());
|
| + int64_t r2_val = get_register(rreInst->R2Value());
|
| + SetS390ConditionCode<int64_t>(r1_val, r2_val);
|
| + break;
|
| + }
|
| + case CLGR: {
|
| + // Compare Logical (64)
|
| + uint64_t r1_val = static_cast<uint64_t>(get_register(rreInst->R1Value()));
|
| + uint64_t r2_val = static_cast<uint64_t>(get_register(rreInst->R2Value()));
|
| + SetS390ConditionCode<uint64_t>(r1_val, r2_val);
|
| + break;
|
| + }
|
| + case LH: {
|
| + // Load Halfword
|
| + RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
|
| + int r1 = rxinst->R1Value();
|
| + int x2 = rxinst->X2Value();
|
| + int b2 = rxinst->B2Value();
|
| +
|
| + int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
| + int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
| + intptr_t d2_val = rxinst->D2Value();
|
| + intptr_t mem_addr = x2_val + b2_val + d2_val;
|
| +
|
| + int32_t result = static_cast<int32_t>(ReadH(mem_addr, instr));
|
| + set_low_register(r1, result);
|
| + break;
|
| + }
|
| + case LHI: {
|
| + RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
|
| + int r1 = riinst->R1Value();
|
| + int i = riinst->I2Value();
|
| + set_low_register(r1, i);
|
| + break;
|
| + }
|
| + case LGHI: {
|
| + RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
|
| + int r1 = riinst->R1Value();
|
| + int64_t i = riinst->I2Value();
|
| + set_register(r1, i);
|
| + break;
|
| + }
|
| + case CHI: {
|
| + RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
|
| + int r1 = riinst->R1Value();
|
| + int16_t i = riinst->I2Value();
|
| + int32_t r1_val = get_low_register<int32_t>(r1);
|
| + SetS390ConditionCode<int32_t>(r1_val, i);
|
| + break;
|
| + }
|
| + case CGHI: {
|
| + RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
|
| + int r1 = riinst->R1Value();
|
| + int64_t i = static_cast<int64_t>(riinst->I2Value());
|
| + int64_t r1_val = get_register(r1);
|
| + SetS390ConditionCode<int64_t>(r1_val, i);
|
| + break;
|
| + }
|
| + case BRAS: {
|
| + // Branch Relative and Save
|
| + RILInstruction* rilInstr = reinterpret_cast<RILInstruction*>(instr);
|
| + int r1 = rilInstr->R1Value();
|
| + intptr_t d2 = rilInstr->I2Value();
|
| + intptr_t pc = get_pc();
|
| + // Set PC of next instruction to register
|
| + set_register(r1, pc + sizeof(FourByteInstr));
|
| + // Update PC to branch target
|
| + set_pc(pc + d2 * 2);
|
| + break;
|
| + }
|
| + case BRC: {
|
| + // Branch Relative on Condition
|
| + RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
|
| + int m1 = riinst->M1Value();
|
| + if (TestConditionCode((Condition)m1)) {
|
| + intptr_t offset = riinst->I2Value() * 2;
|
| + set_pc(get_pc() + offset);
|
| + }
|
| + break;
|
| + }
|
| + case BRCT:
|
| + case BRCTG: {
|
| + // Branch On Count (32/64).
|
| + RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
|
| + int r1 = riinst->R1Value();
|
| + int64_t value =
|
| + (op == BRCT) ? get_low_register<int32_t>(r1) : get_register(r1);
|
| + if (BRCT == op)
|
| + set_low_register(r1, --value);
|
| + else
|
| + set_register(r1, --value);
|
| + // Branch if value != 0
|
| + if (value != 0) {
|
| + intptr_t offset = riinst->I2Value() * 2;
|
| + set_pc(get_pc() + offset);
|
| + }
|
| + break;
|
| + }
|
| + case BXH: {
|
| + RSInstruction* rsinst = reinterpret_cast<RSInstruction*>(instr);
|
| + int r1 = rsinst->R1Value();
|
| + int r3 = rsinst->R3Value();
|
| + int b2 = rsinst->B2Value();
|
| + int d2 = rsinst->D2Value();
|
| +
|
| + // r1_val is the first operand, r3_val is the increment
|
| + int32_t r1_val = r1 == 0 ? 0 : get_register(r1);
|
| + int32_t r3_val = r2 == 0 ? 0 : get_register(r3);
|
| + intptr_t b2_val = b2 == 0 ? 0 : get_register(b2);
|
| + intptr_t branch_address = b2_val + d2;
|
| + // increment r1_val
|
| + r1_val += r3_val;
|
| +
|
| + // if the increment is even, then it designates a pair of registers
|
| + // and the contents of the even and odd registers of the pair are used as
|
| + // the increment and compare value respectively. If the increment is odd,
|
| + // the increment itself is used as both the increment and compare value
|
| + int32_t compare_val = r3 % 2 == 0 ? get_register(r3 + 1) : r3_val;
|
| + if (r1_val > compare_val) {
|
| + // branch to address if r1_val is greater than compare value
|
| + set_pc(branch_address);
|
| + }
|
| +
|
| + // update contents of register in r1 with the new incremented value
|
| + set_register(r1, r1_val);
|
| + break;
|
| + }
|
| + case IIHH:
|
| + case IIHL:
|
| + case IILH:
|
| + case IILL: {
|
| + UNIMPLEMENTED();
|
| + break;
|
| + }
|
| + case STM:
|
| + case LM: {
|
| + // Store Multiple 32-bits.
|
| + RSInstruction* rsinstr = reinterpret_cast<RSInstruction*>(instr);
|
| + int r1 = rsinstr->R1Value();
|
| + int r3 = rsinstr->R3Value();
|
| + int rb = rsinstr->B2Value();
|
| + int offset = rsinstr->D2Value();
|
| +
|
| + // Regs roll around if r3 is less than r1.
|
| + // Artifically increase r3 by 16 so we can calculate
|
| + // the number of regs stored properly.
|
| + if (r3 < r1) r3 += 16;
|
| +
|
| + int32_t rb_val = (rb == 0) ? 0 : get_low_register<int32_t>(rb);
|
| +
|
| + // Store each register in ascending order.
|
| + for (int i = 0; i <= r3 - r1; i++) {
|
| + if (op == STM) {
|
| + int32_t value = get_low_register<int32_t>((r1 + i) % 16);
|
| + WriteW(rb_val + offset + 4 * i, value, instr);
|
| + } else if (op == LM) {
|
| + int32_t value = ReadW(rb_val + offset + 4 * i, instr);
|
| + set_low_register((r1 + i) % 16, value);
|
| + }
|
| + }
|
| + break;
|
| + }
|
| + case SLL:
|
| + case SRL: {
|
| + RSInstruction* rsInstr = reinterpret_cast<RSInstruction*>(instr);
|
| + int r1 = rsInstr->R1Value();
|
| + int b2 = rsInstr->B2Value();
|
| + intptr_t d2 = rsInstr->D2Value();
|
| + // only takes rightmost 6bits
|
| + int64_t b2_val = b2 == 0 ? 0 : get_register(b2);
|
| + int shiftBits = (b2_val + d2) & 0x3F;
|
| + uint32_t r1_val = get_low_register<uint32_t>(r1);
|
| + uint32_t alu_out = 0;
|
| + if (SLL == op) {
|
| + alu_out = r1_val << shiftBits;
|
| + } else if (SRL == op) {
|
| + alu_out = r1_val >> shiftBits;
|
| + } else {
|
| + UNREACHABLE();
|
| + }
|
| + set_low_register(r1, alu_out);
|
| + break;
|
| + }
|
| + case SLA:
|
| + case SRA: {
|
| + RSInstruction* rsInstr = reinterpret_cast<RSInstruction*>(instr);
|
| + int r1 = rsInstr->R1Value();
|
| + int b2 = rsInstr->B2Value();
|
| + intptr_t d2 = rsInstr->D2Value();
|
| + // only takes rightmost 6bits
|
| + int64_t b2_val = b2 == 0 ? 0 : get_register(b2);
|
| + int shiftBits = (b2_val + d2) & 0x3F;
|
| + int32_t r1_val = get_low_register<int32_t>(r1);
|
| + int32_t alu_out = 0;
|
| + bool isOF = false;
|
| + if (op == SLA) {
|
| + isOF = CheckOverflowForShiftLeft(r1_val, shiftBits);
|
| + alu_out = r1_val << shiftBits;
|
| + } else if (op == SRA) {
|
| + alu_out = r1_val >> shiftBits;
|
| + }
|
| + set_low_register(r1, alu_out);
|
| + SetS390ConditionCode<int32_t>(alu_out, 0);
|
| + SetS390OverflowCode(isOF);
|
| + break;
|
| + }
|
| + case LLHR: {
|
| + UNIMPLEMENTED();
|
| + break;
|
| + }
|
| + case LLGHR: {
|
| + UNIMPLEMENTED();
|
| + break;
|
| + }
|
| + case L:
|
| + case LA:
|
| + case LD:
|
| + case LE: {
|
| + RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
|
| + int b2 = rxinst->B2Value();
|
| + int x2 = rxinst->X2Value();
|
| + int32_t r1 = rxinst->R1Value();
|
| + int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
| + int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
| + intptr_t d2_val = rxinst->D2Value();
|
| + intptr_t addr = b2_val + x2_val + d2_val;
|
| + if (op == L) {
|
| + int32_t mem_val = ReadW(addr, instr);
|
| + set_low_register(r1, mem_val);
|
| + } else if (op == LA) {
|
| + set_register(r1, addr);
|
| + } else if (op == LD) {
|
| + int64_t dbl_val = *reinterpret_cast<int64_t*>(addr);
|
| + set_d_register(r1, dbl_val);
|
| + } else if (op == LE) {
|
| + float float_val = *reinterpret_cast<float*>(addr);
|
| + set_d_register_from_float32(r1, float_val);
|
| + }
|
| + break;
|
| + }
|
| + case C:
|
| + case CL: {
|
| + RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
|
| + int b2 = rxinst->B2Value();
|
| + int x2 = rxinst->X2Value();
|
| + int32_t r1_val = get_low_register<int32_t>(rxinst->R1Value());
|
| + int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
| + int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
| + intptr_t d2_val = rxinst->D2Value();
|
| + intptr_t addr = b2_val + x2_val + d2_val;
|
| + int32_t mem_val = ReadW(addr, instr);
|
| + if (C == op)
|
| + SetS390ConditionCode<int32_t>(r1_val, mem_val);
|
| + else if (CL == op)
|
| + SetS390ConditionCode<uint32_t>(r1_val, mem_val);
|
| + break;
|
| + }
|
| + case CLI: {
|
| + // Compare Immediate (Mem - Imm) (8)
|
| + int b1 = siInstr->B1Value();
|
| + int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
|
| + intptr_t d1_val = siInstr->D1Value();
|
| + intptr_t addr = b1_val + d1_val;
|
| + uint8_t mem_val = ReadB(addr);
|
| + uint8_t imm_val = siInstr->I2Value();
|
| + SetS390ConditionCode<uint8_t>(mem_val, imm_val);
|
| + break;
|
| + }
|
| + case TM: {
|
| + // Test Under Mask (Mem - Imm) (8)
|
| + int b1 = siInstr->B1Value();
|
| + int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
|
| + intptr_t d1_val = siInstr->D1Value();
|
| + intptr_t addr = b1_val + d1_val;
|
| + uint8_t mem_val = ReadB(addr);
|
| + uint8_t imm_val = siInstr->I2Value();
|
| + uint8_t selected_bits = mem_val & imm_val;
|
| + // CC0: Selected bits are zero
|
| + // CC1: Selected bits mixed zeros and ones
|
| + // CC3: Selected bits all ones
|
| + if (0 == selected_bits) {
|
| + condition_reg_ = CC_EQ; // CC0
|
| + } else if (selected_bits == imm_val) {
|
| + condition_reg_ = 0x1; // CC3
|
| + } else {
|
| + condition_reg_ = 0x4; // CC1
|
| + }
|
| + break;
|
| + }
|
| + case ST:
|
| + case STE:
|
| + case STD: {
|
| + RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
|
| + int b2 = rxinst->B2Value();
|
| + int x2 = rxinst->X2Value();
|
| + int32_t r1_val = get_low_register<int32_t>(rxinst->R1Value());
|
| + int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
| + int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
| + intptr_t d2_val = rxinst->D2Value();
|
| + intptr_t addr = b2_val + x2_val + d2_val;
|
| + if (op == ST) {
|
| + WriteW(addr, r1_val, instr);
|
| + } else if (op == STD) {
|
| + int64_t frs_val = get_d_register(rxinst->R1Value());
|
| + WriteDW(addr, frs_val);
|
| + } else if (op == STE) {
|
| + int64_t frs_val = get_d_register(rxinst->R1Value()) >> 32;
|
| + WriteW(addr, static_cast<int32_t>(frs_val), instr);
|
| + }
|
| + break;
|
| + }
|
| + case LTGFR:
|
| + case LGFR: {
|
| + // Load and Test Register (64 <- 32) (Sign Extends 32-bit val)
|
| + // Load Register (64 <- 32) (Sign Extends 32-bit val)
|
| + RREInstruction* rreInstr = reinterpret_cast<RREInstruction*>(instr);
|
| + int r1 = rreInstr->R1Value();
|
| + int r2 = rreInstr->R2Value();
|
| + int32_t r2_val = get_low_register<int32_t>(r2);
|
| + int64_t result = static_cast<int64_t>(r2_val);
|
| + set_register(r1, result);
|
| +
|
| + if (LTGFR == op) SetS390ConditionCode<int64_t>(result, 0);
|
| + break;
|
| + }
|
| + case LNGR: {
|
| + // Load Negative (64)
|
| + int r1 = rreInst->R1Value();
|
| + int r2 = rreInst->R2Value();
|
| + int64_t r2_val = get_register(r2);
|
| + r2_val = (r2_val >= 0) ? -r2_val : r2_val; // If pos, then negate it.
|
| + set_register(r1, r2_val);
|
| + condition_reg_ = (r2_val == 0) ? CC_EQ : CC_LT; // CC0 - result is zero
|
| + // CC1 - result is negative
|
| + break;
|
| + }
|
| + case TRAP4: {
|
| + // whack the space of the caller allocated stack
|
| + int64_t sp_addr = get_register(sp);
|
| + for (int i = 0; i < kCalleeRegisterSaveAreaSize / kPointerSize; ++i) {
|
| + // we dont want to whack the RA (r14)
|
| + if (i != 14) (reinterpret_cast<intptr_t*>(sp_addr))[i] = 0xdeadbabe;
|
| + }
|
| + SoftwareInterrupt(instr);
|
| + break;
|
| + }
|
| + case STC: {
|
| + // Store Character/Byte
|
| + RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
|
| + int b2 = rxinst->B2Value();
|
| + int x2 = rxinst->X2Value();
|
| + uint8_t r1_val = get_low_register<int32_t>(rxinst->R1Value());
|
| + int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
| + int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
| + intptr_t d2_val = rxinst->D2Value();
|
| + intptr_t mem_addr = b2_val + x2_val + d2_val;
|
| + WriteB(mem_addr, r1_val);
|
| + break;
|
| + }
|
| + case STH: {
|
| + RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
|
| + int b2 = rxinst->B2Value();
|
| + int x2 = rxinst->X2Value();
|
| + int16_t r1_val = get_low_register<int32_t>(rxinst->R1Value());
|
| + int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
| + int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
| + intptr_t d2_val = rxinst->D2Value();
|
| + intptr_t mem_addr = b2_val + x2_val + d2_val;
|
| + WriteH(mem_addr, r1_val, instr);
|
| + break;
|
| + }
|
| +#if V8_TARGET_ARCH_S390X
|
| + case LCGR: {
|
| + int r1 = rreInst->R1Value();
|
| + int r2 = rreInst->R2Value();
|
| + int64_t r2_val = get_register(r2);
|
| + r2_val = ~r2_val;
|
| + r2_val = r2_val + 1;
|
| + set_register(r1, r2_val);
|
| + SetS390ConditionCode<int64_t>(r2_val, 0);
|
| + // if the input is INT_MIN, loading its compliment would be overflowing
|
| + if (r2_val < 0 && (r2_val + 1) > 0) {
|
| + SetS390OverflowCode(true);
|
| + }
|
| + break;
|
| + }
|
| +#endif
|
| + case SRDA: {
|
| + RSInstruction* rsInstr = reinterpret_cast<RSInstruction*>(instr);
|
| + int r1 = rsInstr->R1Value();
|
| + DCHECK(r1 % 2 == 0); // must be a reg pair
|
| + int b2 = rsInstr->B2Value();
|
| + intptr_t d2 = rsInstr->D2Value();
|
| + // only takes rightmost 6bits
|
| + int64_t b2_val = b2 == 0 ? 0 : get_register(b2);
|
| + int shiftBits = (b2_val + d2) & 0x3F;
|
| + int64_t opnd1 = static_cast<int64_t>(get_low_register<int32_t>(r1)) << 32;
|
| + int64_t opnd2 = static_cast<uint64_t>(get_low_register<uint32_t>(r1 + 1));
|
| + int64_t r1_val = opnd1 + opnd2;
|
| + int64_t alu_out = r1_val >> shiftBits;
|
| + set_low_register(r1, alu_out >> 32);
|
| + set_low_register(r1 + 1, alu_out & 0x00000000FFFFFFFF);
|
| + SetS390ConditionCode<int32_t>(alu_out, 0);
|
| + break;
|
| + }
|
| + case SRDL: {
|
| + RSInstruction* rsInstr = reinterpret_cast<RSInstruction*>(instr);
|
| + int r1 = rsInstr->R1Value();
|
| + DCHECK(r1 % 2 == 0); // must be a reg pair
|
| + int b2 = rsInstr->B2Value();
|
| + intptr_t d2 = rsInstr->D2Value();
|
| + // only takes rightmost 6bits
|
| + int64_t b2_val = b2 == 0 ? 0 : get_register(b2);
|
| + int shiftBits = (b2_val + d2) & 0x3F;
|
| + uint64_t opnd1 = static_cast<uint64_t>(get_low_register<uint32_t>(r1))
|
| + << 32;
|
| + uint64_t opnd2 =
|
| + static_cast<uint64_t>(get_low_register<uint32_t>(r1 + 1));
|
| + uint64_t r1_val = opnd1 | opnd2;
|
| + uint64_t alu_out = r1_val >> shiftBits;
|
| + set_low_register(r1, alu_out >> 32);
|
| + set_low_register(r1 + 1, alu_out & 0x00000000FFFFFFFF);
|
| + SetS390ConditionCode<int32_t>(alu_out, 0);
|
| + break;
|
| + }
|
| + default: { return DecodeFourByteArithmetic(instr); }
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +/**
|
| + * Decodes and simulates four byte arithmetic instructions
|
| + */
|
| +bool Simulator::DecodeFourByteArithmetic(Instruction* instr) {
|
| + Opcode op = instr->S390OpcodeValue();
|
| +
|
| + // Pre-cast instruction to various types
|
| + RRFInstruction* rrfInst = reinterpret_cast<RRFInstruction*>(instr);
|
| + RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr);
|
| +
|
| + switch (op) {
|
| + case AGR:
|
| + case SGR:
|
| + case OGR:
|
| + case NGR:
|
| + case XGR: {
|
| + int r1 = rreInst->R1Value();
|
| + int r2 = rreInst->R2Value();
|
| + int64_t r1_val = get_register(r1);
|
| + int64_t r2_val = get_register(r2);
|
| + bool isOF = false;
|
| + switch (op) {
|
| + case AGR:
|
| + isOF = CheckOverflowForIntAdd(r1_val, r2_val);
|
| + r1_val += r2_val;
|
| + SetS390ConditionCode<int64_t>(r1_val, 0);
|
| + SetS390OverflowCode(isOF);
|
| + break;
|
| + case SGR:
|
| + isOF = CheckOverflowForIntSub(r1_val, r2_val);
|
| + r1_val -= r2_val;
|
| + SetS390ConditionCode<int64_t>(r1_val, 0);
|
| + SetS390OverflowCode(isOF);
|
| + break;
|
| + case OGR:
|
| + r1_val |= r2_val;
|
| + SetS390BitWiseConditionCode<uint64_t>(r1_val);
|
| + break;
|
| + case NGR:
|
| + r1_val &= r2_val;
|
| + SetS390BitWiseConditionCode<uint64_t>(r1_val);
|
| + break;
|
| + case XGR:
|
| + r1_val ^= r2_val;
|
| + SetS390BitWiseConditionCode<uint64_t>(r1_val);
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| + set_register(r1, r1_val);
|
| + break;
|
| + }
|
| + case AGFR: {
|
| + // Add Register (64 <- 32) (Sign Extends 32-bit val)
|
| + int r1 = rreInst->R1Value();
|
| + int r2 = rreInst->R2Value();
|
| + int64_t r1_val = get_register(r1);
|
| + int64_t r2_val = static_cast<int64_t>(get_low_register<int32_t>(r2));
|
| + bool isOF = CheckOverflowForIntAdd(r1_val, r2_val);
|
| + r1_val += r2_val;
|
| + SetS390ConditionCode<int64_t>(r1_val, 0);
|
| + SetS390OverflowCode(isOF);
|
| + set_register(r1, r1_val);
|
| + break;
|
| + }
|
| + case SGFR: {
|
| + // Sub Reg (64 <- 32)
|
| + int r1 = rreInst->R1Value();
|
| + int r2 = rreInst->R2Value();
|
| + int64_t r1_val = get_register(r1);
|
| + int64_t r2_val = static_cast<int64_t>(get_low_register<int32_t>(r2));
|
| + bool isOF = false;
|
| + isOF = CheckOverflowForIntSub(r1_val, r2_val);
|
| + r1_val -= r2_val;
|
| + SetS390ConditionCode<int64_t>(r1_val, 0);
|
| + SetS390OverflowCode(isOF);
|
| + set_register(r1, r1_val);
|
| + break;
|
| + }
|
| + case ARK:
|
| + case SRK:
|
| + case NRK:
|
| + case ORK:
|
| + case XRK: {
|
| + // 32-bit Non-clobbering arithmetics / bitwise ops
|
| + int r1 = rrfInst->R1Value();
|
| + int r2 = rrfInst->R2Value();
|
| + int r3 = rrfInst->R3Value();
|
| + int32_t r2_val = get_low_register<int32_t>(r2);
|
| + int32_t r3_val = get_low_register<int32_t>(r3);
|
| + if (ARK == op) {
|
| + bool isOF = CheckOverflowForIntAdd(r2_val, r3_val);
|
| + SetS390ConditionCode<int32_t>(r2_val + r3_val, 0);
|
| + SetS390OverflowCode(isOF);
|
| + set_low_register(r1, r2_val + r3_val);
|
| + } else if (SRK == op) {
|
| + bool isOF = CheckOverflowForIntSub(r2_val, r3_val);
|
| + SetS390ConditionCode<int32_t>(r2_val - r3_val, 0);
|
| + SetS390OverflowCode(isOF);
|
| + set_low_register(r1, r2_val - r3_val);
|
| + } else {
|
| + // Assume bitwise operation here
|
| + uint32_t bitwise_result = 0;
|
| + if (NRK == op) {
|
| + bitwise_result = r2_val & r3_val;
|
| + } else if (ORK == op) {
|
| + bitwise_result = r2_val | r3_val;
|
| + } else if (XRK == op) {
|
| + bitwise_result = r2_val ^ r3_val;
|
| + }
|
| + SetS390BitWiseConditionCode<uint32_t>(bitwise_result);
|
| + set_low_register(r1, bitwise_result);
|
| + }
|
| + break;
|
| + }
|
| + case ALRK:
|
| + case SLRK: {
|
| + // 32-bit Non-clobbering unsigned arithmetics
|
| + int r1 = rrfInst->R1Value();
|
| + int r2 = rrfInst->R2Value();
|
| + int r3 = rrfInst->R3Value();
|
| + uint32_t r2_val = get_low_register<uint32_t>(r2);
|
| + uint32_t r3_val = get_low_register<uint32_t>(r3);
|
| + if (ALRK == op) {
|
| + bool isOF = CheckOverflowForUIntAdd(r2_val, r3_val);
|
| + SetS390ConditionCode<uint32_t>(r2_val + r3_val, 0);
|
| + SetS390OverflowCode(isOF);
|
| + set_low_register(r1, r2_val + r3_val);
|
| + } else if (SLRK == op) {
|
| + bool isOF = CheckOverflowForUIntSub(r2_val, r3_val);
|
| + SetS390ConditionCode<uint32_t>(r2_val - r3_val, 0);
|
| + SetS390OverflowCode(isOF);
|
| + set_low_register(r1, r2_val - r3_val);
|
| + }
|
| + break;
|
| + }
|
| + case AGRK:
|
| + case SGRK:
|
| + case NGRK:
|
| + case OGRK:
|
| + case XGRK: {
|
| + // 64-bit Non-clobbering arithmetics / bitwise ops.
|
| + int r1 = rrfInst->R1Value();
|
| + int r2 = rrfInst->R2Value();
|
| + int r3 = rrfInst->R3Value();
|
| + int64_t r2_val = get_register(r2);
|
| + int64_t r3_val = get_register(r3);
|
| + if (AGRK == op) {
|
| + bool isOF = CheckOverflowForIntAdd(r2_val, r3_val);
|
| + SetS390ConditionCode<int64_t>(r2_val + r3_val, 0);
|
| + SetS390OverflowCode(isOF);
|
| + set_register(r1, r2_val + r3_val);
|
| + } else if (SGRK == op) {
|
| + bool isOF = CheckOverflowForIntSub(r2_val, r3_val);
|
| + SetS390ConditionCode<int64_t>(r2_val - r3_val, 0);
|
| + SetS390OverflowCode(isOF);
|
| + set_register(r1, r2_val - r3_val);
|
| + } else {
|
| + // Assume bitwise operation here
|
| + uint64_t bitwise_result = 0;
|
| + if (NGRK == op) {
|
| + bitwise_result = r2_val & r3_val;
|
| + } else if (OGRK == op) {
|
| + bitwise_result = r2_val | r3_val;
|
| + } else if (XGRK == op) {
|
| + bitwise_result = r2_val ^ r3_val;
|
| + }
|
| + SetS390BitWiseConditionCode<uint64_t>(bitwise_result);
|
| + set_register(r1, bitwise_result);
|
| + }
|
| + break;
|
| + }
|
| + case ALGRK:
|
| + case SLGRK: {
|
| + // 64-bit Non-clobbering unsigned arithmetics
|
| + int r1 = rrfInst->R1Value();
|
| + int r2 = rrfInst->R2Value();
|
| + int r3 = rrfInst->R3Value();
|
| + uint64_t r2_val = get_register(r2);
|
| + uint64_t r3_val = get_register(r3);
|
| + if (ALGRK == op) {
|
| + bool isOF = CheckOverflowForUIntAdd(r2_val, r3_val);
|
| + SetS390ConditionCode<uint64_t>(r2_val + r3_val, 0);
|
| + SetS390OverflowCode(isOF);
|
| + set_register(r1, r2_val + r3_val);
|
| + } else if (SLGRK == op) {
|
| + bool isOF = CheckOverflowForUIntSub(r2_val, r3_val);
|
| + SetS390ConditionCode<uint64_t>(r2_val - r3_val, 0);
|
| + SetS390OverflowCode(isOF);
|
| + set_register(r1, r2_val - r3_val);
|
| + }
|
| + break;
|
| + }
|
| + case AHI:
|
| + case MHI: {
|
| + RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
|
| + int r1 = riinst->R1Value();
|
| + int i = riinst->I2Value();
|
| + int32_t r1_val = get_low_register<int32_t>(r1);
|
| + bool isOF = false;
|
| + switch (op) {
|
| + case AHI:
|
| + isOF = CheckOverflowForIntAdd(r1_val, i);
|
| + r1_val += i;
|
| + break;
|
| + case MHI:
|
| + isOF = CheckOverflowForMul(r1_val, i);
|
| + r1_val *= i;
|
| + break; // no overflow indication is given
|
| + default:
|
| + break;
|
| + }
|
| + set_low_register(r1, r1_val);
|
| + SetS390ConditionCode<int32_t>(r1_val, 0);
|
| + SetS390OverflowCode(isOF);
|
| + break;
|
| + }
|
| + case AGHI:
|
| + case MGHI: {
|
| + RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
|
| + int r1 = riinst->R1Value();
|
| + int64_t i = static_cast<int64_t>(riinst->I2Value());
|
| + int64_t r1_val = get_register(r1);
|
| + bool isOF = false;
|
| + switch (op) {
|
| + case AGHI:
|
| + isOF = CheckOverflowForIntAdd(r1_val, i);
|
| + r1_val += i;
|
| + break;
|
| + case MGHI:
|
| + isOF = CheckOverflowForMul(r1_val, i);
|
| + r1_val *= i;
|
| + break; // no overflow indication is given
|
| + default:
|
| + break;
|
| + }
|
| + set_register(r1, r1_val);
|
| + SetS390ConditionCode<int32_t>(r1_val, 0);
|
| + SetS390OverflowCode(isOF);
|
| + break;
|
| + }
|
| + case MLR: {
|
| + RREInstruction* rreinst = reinterpret_cast<RREInstruction*>(instr);
|
| + int r1 = rreinst->R1Value();
|
| + int r2 = rreinst->R2Value();
|
| + DCHECK(r1 % 2 == 0);
|
| +
|
| + uint32_t r1_val = get_low_register<uint32_t>(r1 + 1);
|
| + uint32_t r2_val = get_low_register<uint32_t>(r2);
|
| + uint64_t product =
|
| + static_cast<uint64_t>(r1_val) * static_cast<uint64_t>(r2_val);
|
| + int32_t high_bits = product >> 32;
|
| + int32_t low_bits = product & 0x00000000FFFFFFFF;
|
| + set_low_register(r1, high_bits);
|
| + set_low_register(r1 + 1, low_bits);
|
| + break;
|
| + }
|
| + case DLGR: {
|
| +#ifdef V8_TARGET_ARCH_S390X
|
| + RREInstruction* rreinst = reinterpret_cast<RREInstruction*>(instr);
|
| + int r1 = rreinst->R1Value();
|
| + int r2 = rreinst->R2Value();
|
| + uint64_t r1_val = static_cast<uint64_t>(r1);
|
| + uint64_t r2_val = static_cast<uint64_t>(r2);
|
| + DCHECK(r1 % 2 == 0);
|
| + unsigned __int128 dividend = static_cast<unsigned __int128>(r1_val) << 64;
|
| + dividend += static_cast<uint64_t>(r1 + 1);
|
| + uint64_t remainder = dividend % r2_val;
|
| + uint64_t quotient = dividend / r2_val;
|
| + r1_val = remainder;
|
| + set_register(r1, remainder);
|
| + set_register(r1 + 1, quotient);
|
| +#else
|
| + UNREACHABLE();
|
| +#endif
|
| + break;
|
| + }
|
| + case DLR: {
|
| + RREInstruction* rreinst = reinterpret_cast<RREInstruction*>(instr);
|
| + int r1 = rreinst->R1Value();
|
| + int r2 = rreinst->R2Value();
|
| + uint32_t r1_val = get_low_register<uint32_t>(r1);
|
| + uint32_t r2_val = get_low_register<uint32_t>(r2);
|
| + DCHECK(r1 % 2 == 0);
|
| + uint64_t dividend = static_cast<uint64_t>(r1_val) << 32;
|
| + dividend += get_low_register<uint32_t>(r1 + 1);
|
| + uint32_t remainder = dividend % r2_val;
|
| + uint32_t quotient = dividend / r2_val;
|
| + r1_val = remainder;
|
| + set_low_register(r1, remainder);
|
| + set_low_register(r1 + 1, quotient);
|
| + break;
|
| + }
|
| + case A:
|
| + case S:
|
| + case M:
|
| + case D:
|
| + case O:
|
| + case N:
|
| + case X: {
|
| + // 32-bit Reg-Mem instructions
|
| + RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
|
| + int b2 = rxinst->B2Value();
|
| + int x2 = rxinst->X2Value();
|
| + int32_t r1_val = get_low_register<int32_t>(rxinst->R1Value());
|
| + int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
| + int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
| + intptr_t d2_val = rxinst->D2Value();
|
| + int32_t mem_val = ReadW(b2_val + x2_val + d2_val, instr);
|
| + int32_t alu_out = 0;
|
| + bool isOF = false;
|
| + switch (op) {
|
| + case A:
|
| + isOF = CheckOverflowForIntAdd(r1_val, mem_val);
|
| + alu_out = r1_val + mem_val;
|
| + SetS390ConditionCode<int32_t>(alu_out, 0);
|
| + SetS390OverflowCode(isOF);
|
| + break;
|
| + case S:
|
| + isOF = CheckOverflowForIntSub(r1_val, mem_val);
|
| + alu_out = r1_val - mem_val;
|
| + SetS390ConditionCode<int32_t>(alu_out, 0);
|
| + SetS390OverflowCode(isOF);
|
| + break;
|
| + case M:
|
| + case D:
|
| + UNIMPLEMENTED();
|
| + break;
|
| + case O:
|
| + alu_out = r1_val | mem_val;
|
| + SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
| + break;
|
| + case N:
|
| + alu_out = r1_val & mem_val;
|
| + SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
| + break;
|
| + case X:
|
| + alu_out = r1_val ^ mem_val;
|
| + SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| + set_low_register(r1, alu_out);
|
| + break;
|
| + }
|
| + case OILL:
|
| + case OIHL: {
|
| + RIInstruction* riInst = reinterpret_cast<RIInstruction*>(instr);
|
| + int r1 = riInst->R1Value();
|
| + int i = riInst->I2Value();
|
| + int32_t r1_val = get_low_register<int32_t>(r1);
|
| + if (OILL == op) {
|
| + // CC is set based on the 16 bits that are AND'd
|
| + SetS390BitWiseConditionCode<uint16_t>(r1_val | i);
|
| + } else if (OILH == op) {
|
| + // CC is set based on the 16 bits that are AND'd
|
| + SetS390BitWiseConditionCode<uint16_t>((r1_val >> 16) | i);
|
| + i = i << 16;
|
| + } else {
|
| + UNIMPLEMENTED();
|
| + }
|
| + set_low_register(r1, r1_val | i);
|
| + break;
|
| + }
|
| + case NILL:
|
| + case NILH: {
|
| + RIInstruction* riInst = reinterpret_cast<RIInstruction*>(instr);
|
| + int r1 = riInst->R1Value();
|
| + int i = riInst->I2Value();
|
| + int32_t r1_val = get_low_register<int32_t>(r1);
|
| + if (NILL == op) {
|
| + // CC is set based on the 16 bits that are AND'd
|
| + SetS390BitWiseConditionCode<uint16_t>(r1_val & i);
|
| + i |= 0xFFFF0000;
|
| + } else if (NILH == op) {
|
| + // CC is set based on the 16 bits that are AND'd
|
| + SetS390BitWiseConditionCode<uint16_t>((r1_val >> 16) & i);
|
| + i = (i << 16) | 0x0000FFFF;
|
| + } else {
|
| + UNIMPLEMENTED();
|
| + }
|
| + set_low_register(r1, r1_val & i);
|
| + break;
|
| + }
|
| + case AH:
|
| + case SH:
|
| + case MH: {
|
| + RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
|
| + int b2 = rxinst->B2Value();
|
| + int x2 = rxinst->X2Value();
|
| + int32_t r1_val = get_low_register<int32_t>(rxinst->R1Value());
|
| + int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
| + int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
| + intptr_t d2_val = rxinst->D2Value();
|
| + intptr_t addr = b2_val + x2_val + d2_val;
|
| + int16_t mem_val = ReadH(addr, instr);
|
| + int32_t alu_out = 0;
|
| + bool isOF = false;
|
| + if (AH == op) {
|
| + isOF = CheckOverflowForIntAdd(r1_val, mem_val);
|
| + alu_out = r1_val + mem_val;
|
| + } else if (SH == op) {
|
| + isOF = CheckOverflowForIntSub(r1_val, mem_val);
|
| + alu_out = r1_val - mem_val;
|
| + } else if (MH == op) {
|
| + alu_out = r1_val * mem_val;
|
| + } else {
|
| + UNREACHABLE();
|
| + }
|
| + set_low_register(r1, alu_out);
|
| + if (MH != op) { // MH does not change condition code
|
| + SetS390ConditionCode<int32_t>(alu_out, 0);
|
| + SetS390OverflowCode(isOF);
|
| + }
|
| + break;
|
| + }
|
| + case DSGR: {
|
| + RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr);
|
| + int r1 = rreInst->R1Value();
|
| + int r2 = rreInst->R2Value();
|
| +
|
| + DCHECK(r1 % 2 == 0);
|
| +
|
| + int64_t dividend = get_register(r1 + 1);
|
| + int64_t divisor = get_register(r2);
|
| + set_register(r1, dividend % divisor);
|
| + set_register(r1 + 1, dividend / divisor);
|
| +
|
| + break;
|
| + }
|
| + case FLOGR: {
|
| + RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr);
|
| + int r1 = rreInst->R1Value();
|
| + int r2 = rreInst->R2Value();
|
| +
|
| + DCHECK(r1 % 2 == 0);
|
| +
|
| + int64_t r2_val = get_register(r2);
|
| +
|
| + int i = 0;
|
| + for (; i < 64; i++) {
|
| + if (r2_val < 0) break;
|
| + r2_val <<= 1;
|
| + }
|
| +
|
| + r2_val = get_register(r2);
|
| +
|
| + int64_t mask = ~(1 << (63 - i));
|
| + set_register(r1, i);
|
| + set_register(r1 + 1, r2_val & mask);
|
| +
|
| + break;
|
| + }
|
| + case MSR:
|
| + case MSGR: { // they do not set overflow code
|
| + RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr);
|
| + int r1 = rreInst->R1Value();
|
| + int r2 = rreInst->R2Value();
|
| + if (op == MSR) {
|
| + int32_t r1_val = get_low_register<int32_t>(r1);
|
| + int32_t r2_val = get_low_register<int32_t>(r2);
|
| + set_low_register(r1, r1_val * r2_val);
|
| + } else if (op == MSGR) {
|
| + int64_t r1_val = get_register(r1);
|
| + int64_t r2_val = get_register(r2);
|
| + set_register(r1, r1_val * r2_val);
|
| + } else {
|
| + UNREACHABLE();
|
| + }
|
| + break;
|
| + }
|
| + case MS: {
|
| + RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
|
| + int r1 = rxinst->R1Value();
|
| + int b2 = rxinst->B2Value();
|
| + int x2 = rxinst->X2Value();
|
| + int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
| + int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
| + intptr_t d2_val = rxinst->D2Value();
|
| + int32_t mem_val = ReadW(b2_val + x2_val + d2_val, instr);
|
| + int32_t r1_val = get_low_register<int32_t>(r1);
|
| + set_low_register(r1, r1_val * mem_val);
|
| + break;
|
| + }
|
| + case LGBR:
|
| + case LBR: {
|
| + RREInstruction* rrinst = reinterpret_cast<RREInstruction*>(instr);
|
| + int r1 = rrinst->R1Value();
|
| + int r2 = rrinst->R2Value();
|
| +#ifdef V8_TARGET_ARCH_S390X
|
| + int64_t r2_val = get_low_register<int64_t>(r2);
|
| + r2_val <<= 56;
|
| + r2_val >>= 56;
|
| + set_register(r1, r2_val);
|
| +#else
|
| + int32_t r2_val = get_low_register<int32_t>(r2);
|
| + r2_val <<= 24;
|
| + r2_val >>= 24;
|
| + set_low_register(r1, r2_val);
|
| +#endif
|
| + break;
|
| + }
|
| + case LGHR:
|
| + case LHR: {
|
| + RREInstruction* rrinst = reinterpret_cast<RREInstruction*>(instr);
|
| + int r1 = rrinst->R1Value();
|
| + int r2 = rrinst->R2Value();
|
| +#ifdef V8_TARGET_ARCH_S390X
|
| + int64_t r2_val = get_low_register<int64_t>(r2);
|
| + r2_val <<= 48;
|
| + r2_val >>= 48;
|
| + set_register(r1, r2_val);
|
| +#else
|
| + int32_t r2_val = get_low_register<int32_t>(r2);
|
| + r2_val <<= 16;
|
| + r2_val >>= 16;
|
| + set_low_register(r1, r2_val);
|
| +#endif
|
| + break;
|
| + }
|
| + default: { return DecodeFourByteFloatingPoint(instr); }
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +void Simulator::DecodeFourByteFloatingPointIntConversion(Instruction* instr) {
|
| + Opcode op = instr->S390OpcodeValue();
|
| + switch (op) {
|
| + case CDLFBR:
|
| + case CDLGBR:
|
| + case CELGBR:
|
| + case CLFDBR:
|
| + case CLGDBR:
|
| + case CELFBR:
|
| + case CLGEBR: {
|
| + RREInstruction* rreInstr = reinterpret_cast<RREInstruction*>(instr);
|
| + int r1 = rreInstr->R1Value();
|
| + int r2 = rreInstr->R2Value();
|
| + if (op == CDLFBR) {
|
| + uint32_t r2_val = get_low_register<uint32_t>(r2);
|
| + double r1_val = static_cast<double>(r2_val);
|
| + set_d_register_from_double(r1, r1_val);
|
| + } else if (op == CELFBR) {
|
| + uint32_t r2_val = get_low_register<uint32_t>(r2);
|
| + float r1_val = static_cast<float>(r2_val);
|
| + set_d_register_from_float32(r1, r1_val);
|
| + } else if (op == CDLGBR) {
|
| + uint64_t r2_val = get_register(r2);
|
| + double r1_val = static_cast<double>(r2_val);
|
| + set_d_register_from_double(r1, r1_val);
|
| + } else if (op == CELGBR) {
|
| + uint64_t r2_val = get_register(r2);
|
| + float r1_val = static_cast<float>(r2_val);
|
| + set_d_register_from_float32(r1, r1_val);
|
| + } else if (op == CLFDBR) {
|
| + double r2_val = get_double_from_d_register(r2);
|
| + uint32_t r1_val = static_cast<uint32_t>(r2_val);
|
| + set_low_register(r1, r1_val);
|
| + SetS390ConditionCode<double>(r2_val, 0);
|
| + } else if (op == CLGDBR) {
|
| + double r2_val = get_double_from_d_register(r2);
|
| + uint64_t r1_val = static_cast<uint64_t>(r2_val);
|
| + set_register(r1, r1_val);
|
| + SetS390ConditionCode<double>(r2_val, 0);
|
| + } else if (op == CLGEBR) {
|
| + float r2_val = get_float32_from_d_register(r2);
|
| + uint64_t r1_val = static_cast<uint64_t>(r2_val);
|
| + set_register(r1, r1_val);
|
| + SetS390ConditionCode<double>(r2_val, 0);
|
| + }
|
| + break;
|
| + }
|
| + default:
|
| + UNREACHABLE();
|
| + }
|
| +}
|
| +
|
| +void Simulator::DecodeFourByteFloatingPointRound(Instruction* instr) {
|
| + Opcode op = instr->S390OpcodeValue();
|
| + RREInstruction* rreInstr = reinterpret_cast<RREInstruction*>(instr);
|
| + int r1 = rreInstr->R1Value();
|
| + int r2 = rreInstr->R2Value();
|
| + double r2_val = get_double_from_d_register(r2);
|
| + float r2_fval = get_float32_from_d_register(r2);
|
| +
|
| + switch (op) {
|
| + case CFDBR: {
|
| + int mask_val = rreInstr->M3Value();
|
| + int32_t r1_val = 0;
|
| +
|
| + if (r2_val == 0.0)
|
| + condition_reg_ = 8;
|
| + else if (r2_val < 0.0)
|
| + condition_reg_ = 4;
|
| + else if (r2_val > 0.0)
|
| + condition_reg_ = 2;
|
| + else
|
| + condition_reg_ = 1;
|
| +
|
| + switch (mask_val) {
|
| + case CURRENT_ROUNDING_MODE:
|
| + case ROUND_TO_PREPARE_FOR_SHORTER_PRECISION: {
|
| + r1_val = static_cast<int32_t>(r2_val);
|
| + break;
|
| + }
|
| + case ROUND_TO_NEAREST_WITH_TIES_AWAY_FROM_0: {
|
| + double ceil_val = std::ceil(r2_val);
|
| + double floor_val = std::floor(r2_val);
|
| + double sub_val1 = std::fabs(r2_val - floor_val);
|
| + double sub_val2 = std::fabs(r2_val - ceil_val);
|
| + if (sub_val1 > sub_val2) {
|
| + r1_val = static_cast<int32_t>(ceil_val);
|
| + } else if (sub_val1 < sub_val2) {
|
| + r1_val = static_cast<int32_t>(floor_val);
|
| + } else { // round away from zero:
|
| + if (r2_val > 0.0) {
|
| + r1_val = static_cast<int32_t>(ceil_val);
|
| + } else {
|
| + r1_val = static_cast<int32_t>(floor_val);
|
| + }
|
| + }
|
| + break;
|
| + }
|
| + case ROUND_TO_NEAREST_WITH_TIES_TO_EVEN: {
|
| + double ceil_val = std::ceil(r2_val);
|
| + double floor_val = std::floor(r2_val);
|
| + double sub_val1 = std::fabs(r2_val - floor_val);
|
| + double sub_val2 = std::fabs(r2_val - ceil_val);
|
| + if (sub_val1 > sub_val2) {
|
| + r1_val = static_cast<int32_t>(ceil_val);
|
| + } else if (sub_val1 < sub_val2) {
|
| + r1_val = static_cast<int32_t>(floor_val);
|
| + } else { // check which one is even:
|
| + int32_t c_v = static_cast<int32_t>(ceil_val);
|
| + int32_t f_v = static_cast<int32_t>(floor_val);
|
| + if (f_v % 2 == 0)
|
| + r1_val = f_v;
|
| + else
|
| + r1_val = c_v;
|
| + }
|
| + break;
|
| + }
|
| + case ROUND_TOWARD_0: {
|
| + // check for overflow, cast r2_val to 64bit integer
|
| + // then check value within the range of INT_MIN and INT_MAX
|
| + // and set condition code accordingly
|
| + int64_t temp = static_cast<int64_t>(r2_val);
|
| + if (temp < INT_MIN || temp > INT_MAX) {
|
| + condition_reg_ = CC_OF;
|
| + }
|
| + r1_val = static_cast<int32_t>(r2_val);
|
| + break;
|
| + }
|
| + case ROUND_TOWARD_PLUS_INFINITE: {
|
| + r1_val = static_cast<int32_t>(std::ceil(r2_val));
|
| + break;
|
| + }
|
| + case ROUND_TOWARD_MINUS_INFINITE: {
|
| + // check for overflow, cast r2_val to 64bit integer
|
| + // then check value within the range of INT_MIN and INT_MAX
|
| + // and set condition code accordingly
|
| + int64_t temp = static_cast<int64_t>(std::floor(r2_val));
|
| + if (temp < INT_MIN || temp > INT_MAX) {
|
| + condition_reg_ = CC_OF;
|
| + }
|
| + r1_val = static_cast<int32_t>(std::floor(r2_val));
|
| + break;
|
| + }
|
| + default:
|
| + UNREACHABLE();
|
| + }
|
| + set_low_register(r1, r1_val);
|
| + break;
|
| + }
|
| + case CGDBR: {
|
| + int mask_val = rreInstr->M3Value();
|
| + int64_t r1_val = 0;
|
| +
|
| + if (r2_val == 0.0)
|
| + condition_reg_ = 8;
|
| + else if (r2_val < 0.0)
|
| + condition_reg_ = 4;
|
| + else if (r2_val > 0.0)
|
| + condition_reg_ = 2;
|
| + else
|
| + condition_reg_ = 1;
|
| +
|
| + switch (mask_val) {
|
| + case CURRENT_ROUNDING_MODE:
|
| + case ROUND_TO_NEAREST_WITH_TIES_AWAY_FROM_0:
|
| + case ROUND_TO_PREPARE_FOR_SHORTER_PRECISION: {
|
| + UNIMPLEMENTED();
|
| + break;
|
| + }
|
| + case ROUND_TO_NEAREST_WITH_TIES_TO_EVEN: {
|
| + double ceil_val = std::ceil(r2_val);
|
| + double floor_val = std::floor(r2_val);
|
| + if (std::abs(r2_val - floor_val) > std::abs(r2_val - ceil_val)) {
|
| + r1_val = static_cast<int64_t>(ceil_val);
|
| + } else if (std::abs(r2_val - floor_val) <
|
| + std::abs(r2_val - ceil_val)) {
|
| + r1_val = static_cast<int64_t>(floor_val);
|
| + } else { // check which one is even:
|
| + int64_t c_v = static_cast<int64_t>(ceil_val);
|
| + int64_t f_v = static_cast<int64_t>(floor_val);
|
| + if (f_v % 2 == 0)
|
| + r1_val = f_v;
|
| + else
|
| + r1_val = c_v;
|
| + }
|
| + break;
|
| + }
|
| + case ROUND_TOWARD_0: {
|
| + r1_val = static_cast<int64_t>(r2_val);
|
| + break;
|
| + }
|
| + case ROUND_TOWARD_PLUS_INFINITE: {
|
| + r1_val = static_cast<int64_t>(std::ceil(r2_val));
|
| + break;
|
| + }
|
| + case ROUND_TOWARD_MINUS_INFINITE: {
|
| + r1_val = static_cast<int64_t>(std::floor(r2_val));
|
| + break;
|
| + }
|
| + default:
|
| + UNREACHABLE();
|
| + }
|
| + set_register(r1, r1_val);
|
| + break;
|
| + }
|
| + case CGEBR: {
|
| + int mask_val = rreInstr->M3Value();
|
| + int64_t r1_val = 0;
|
| +
|
| + if (r2_fval == 0.0)
|
| + condition_reg_ = 8;
|
| + else if (r2_fval < 0.0)
|
| + condition_reg_ = 4;
|
| + else if (r2_fval > 0.0)
|
| + condition_reg_ = 2;
|
| + else
|
| + condition_reg_ = 1;
|
| +
|
| + switch (mask_val) {
|
| + case CURRENT_ROUNDING_MODE:
|
| + case ROUND_TO_NEAREST_WITH_TIES_AWAY_FROM_0:
|
| + case ROUND_TO_PREPARE_FOR_SHORTER_PRECISION: {
|
| + UNIMPLEMENTED();
|
| + break;
|
| + }
|
| + case ROUND_TO_NEAREST_WITH_TIES_TO_EVEN: {
|
| + float ceil_val = std::ceil(r2_fval);
|
| + float floor_val = std::floor(r2_fval);
|
| + if (std::abs(r2_fval - floor_val) > std::abs(r2_fval - ceil_val)) {
|
| + r1_val = static_cast<int64_t>(ceil_val);
|
| + } else if (std::abs(r2_fval - floor_val) <
|
| + std::abs(r2_fval - ceil_val)) {
|
| + r1_val = static_cast<int64_t>(floor_val);
|
| + } else { // check which one is even:
|
| + int64_t c_v = static_cast<int64_t>(ceil_val);
|
| + int64_t f_v = static_cast<int64_t>(floor_val);
|
| + if (f_v % 2 == 0)
|
| + r1_val = f_v;
|
| + else
|
| + r1_val = c_v;
|
| + }
|
| + break;
|
| + }
|
| + case ROUND_TOWARD_0: {
|
| + r1_val = static_cast<int64_t>(r2_fval);
|
| + break;
|
| + }
|
| + case ROUND_TOWARD_PLUS_INFINITE: {
|
| + r1_val = static_cast<int64_t>(std::ceil(r2_fval));
|
| + break;
|
| + }
|
| + case ROUND_TOWARD_MINUS_INFINITE: {
|
| + r1_val = static_cast<int64_t>(std::floor(r2_fval));
|
| + break;
|
| + }
|
| + default:
|
| + UNREACHABLE();
|
| + }
|
| + set_register(r1, r1_val);
|
| + break;
|
| + }
|
| + case CFEBR: {
|
| + int mask_val = rreInstr->M3Value();
|
| + int32_t r1_val = 0;
|
| +
|
| + if (r2_fval == 0.0)
|
| + condition_reg_ = 8;
|
| + else if (r2_fval < 0.0)
|
| + condition_reg_ = 4;
|
| + else if (r2_fval > 0.0)
|
| + condition_reg_ = 2;
|
| + else
|
| + condition_reg_ = 1;
|
| +
|
| + switch (mask_val) {
|
| + case CURRENT_ROUNDING_MODE:
|
| + case ROUND_TO_PREPARE_FOR_SHORTER_PRECISION: {
|
| + r1_val = static_cast<int32_t>(r2_fval);
|
| + break;
|
| + }
|
| + case ROUND_TO_NEAREST_WITH_TIES_AWAY_FROM_0: {
|
| + float ceil_val = std::ceil(r2_fval);
|
| + float floor_val = std::floor(r2_fval);
|
| + float sub_val1 = std::fabs(r2_fval - floor_val);
|
| + float sub_val2 = std::fabs(r2_fval - ceil_val);
|
| + if (sub_val1 > sub_val2) {
|
| + r1_val = static_cast<int32_t>(ceil_val);
|
| + } else if (sub_val1 < sub_val2) {
|
| + r1_val = static_cast<int32_t>(floor_val);
|
| + } else { // round away from zero:
|
| + if (r2_fval > 0.0) {
|
| + r1_val = static_cast<int32_t>(ceil_val);
|
| + } else {
|
| + r1_val = static_cast<int32_t>(floor_val);
|
| + }
|
| + }
|
| + break;
|
| + }
|
| + case ROUND_TO_NEAREST_WITH_TIES_TO_EVEN: {
|
| + float ceil_val = std::ceil(r2_fval);
|
| + float floor_val = std::floor(r2_fval);
|
| + float sub_val1 = std::fabs(r2_fval - floor_val);
|
| + float sub_val2 = std::fabs(r2_fval - ceil_val);
|
| + if (sub_val1 > sub_val2) {
|
| + r1_val = static_cast<int32_t>(ceil_val);
|
| + } else if (sub_val1 < sub_val2) {
|
| + r1_val = static_cast<int32_t>(floor_val);
|
| + } else { // check which one is even:
|
| + int32_t c_v = static_cast<int32_t>(ceil_val);
|
| + int32_t f_v = static_cast<int32_t>(floor_val);
|
| + if (f_v % 2 == 0)
|
| + r1_val = f_v;
|
| + else
|
| + r1_val = c_v;
|
| + }
|
| + break;
|
| + }
|
| + case ROUND_TOWARD_0: {
|
| + // check for overflow, cast r2_fval to 64bit integer
|
| + // then check value within the range of INT_MIN and INT_MAX
|
| + // and set condition code accordingly
|
| + int64_t temp = static_cast<int64_t>(r2_fval);
|
| + if (temp < INT_MIN || temp > INT_MAX) {
|
| + condition_reg_ = CC_OF;
|
| + }
|
| + r1_val = static_cast<int32_t>(r2_fval);
|
| + break;
|
| + }
|
| + case ROUND_TOWARD_PLUS_INFINITE: {
|
| + r1_val = static_cast<int32_t>(std::ceil(r2_fval));
|
| + break;
|
| + }
|
| + case ROUND_TOWARD_MINUS_INFINITE: {
|
| + // check for overflow, cast r2_fval to 64bit integer
|
| + // then check value within the range of INT_MIN and INT_MAX
|
| + // and set condition code accordingly
|
| + int64_t temp = static_cast<int64_t>(std::floor(r2_fval));
|
| + if (temp < INT_MIN || temp > INT_MAX) {
|
| + condition_reg_ = CC_OF;
|
| + }
|
| + r1_val = static_cast<int32_t>(std::floor(r2_fval));
|
| + break;
|
| + }
|
| + default:
|
| + UNREACHABLE();
|
| + }
|
| + set_low_register(r1, r1_val);
|
| +
|
| + break;
|
| + }
|
| + default:
|
| + UNREACHABLE();
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Decodes and simulates four byte floating point instructions
|
| + */
|
| +bool Simulator::DecodeFourByteFloatingPoint(Instruction* instr) {
|
| + Opcode op = instr->S390OpcodeValue();
|
| +
|
| + switch (op) {
|
| + case ADBR:
|
| + case AEBR:
|
| + case SDBR:
|
| + case SEBR:
|
| + case MDBR:
|
| + case MEEBR:
|
| + case MADBR:
|
| + case DDBR:
|
| + case DEBR:
|
| + case CDBR:
|
| + case CEBR:
|
| + case CDFBR:
|
| + case CDGBR:
|
| + case CEGBR:
|
| + case CGEBR:
|
| + case CFDBR:
|
| + case CGDBR:
|
| + case SQDBR:
|
| + case SQEBR:
|
| + case CFEBR:
|
| + case CEFBR:
|
| + case LCDBR:
|
| + case LPDBR:
|
| + case LPEBR: {
|
| + RREInstruction* rreInstr = reinterpret_cast<RREInstruction*>(instr);
|
| + int r1 = rreInstr->R1Value();
|
| + int r2 = rreInstr->R2Value();
|
| + double r1_val = get_double_from_d_register(r1);
|
| + double r2_val = get_double_from_d_register(r2);
|
| + float fr1_val = get_float32_from_d_register(r1);
|
| + float fr2_val = get_float32_from_d_register(r2);
|
| + if (op == ADBR) {
|
| + r1_val += r2_val;
|
| + set_d_register_from_double(r1, r1_val);
|
| + SetS390ConditionCode<double>(r1_val, 0);
|
| + } else if (op == AEBR) {
|
| + fr1_val += fr2_val;
|
| + set_d_register_from_float32(r1, fr1_val);
|
| + SetS390ConditionCode<float>(fr1_val, 0);
|
| + } else if (op == SDBR) {
|
| + r1_val -= r2_val;
|
| + set_d_register_from_double(r1, r1_val);
|
| + SetS390ConditionCode<double>(r1_val, 0);
|
| + } else if (op == SEBR) {
|
| + fr1_val -= fr2_val;
|
| + set_d_register_from_float32(r1, fr1_val);
|
| + SetS390ConditionCode<float>(fr1_val, 0);
|
| + } else if (op == MDBR) {
|
| + r1_val *= r2_val;
|
| + set_d_register_from_double(r1, r1_val);
|
| + SetS390ConditionCode<double>(r1_val, 0);
|
| + } else if (op == MEEBR) {
|
| + fr1_val *= fr2_val;
|
| + set_d_register_from_float32(r1, fr1_val);
|
| + SetS390ConditionCode<float>(fr1_val, 0);
|
| + } else if (op == MADBR) {
|
| + RRDInstruction* rrdInstr = reinterpret_cast<RRDInstruction*>(instr);
|
| + int r1 = rrdInstr->R1Value();
|
| + int r2 = rrdInstr->R2Value();
|
| + int r3 = rrdInstr->R3Value();
|
| + double r1_val = get_double_from_d_register(r1);
|
| + double r2_val = get_double_from_d_register(r2);
|
| + double r3_val = get_double_from_d_register(r3);
|
| + r1_val += r2_val * r3_val;
|
| + set_d_register_from_double(r1, r1_val);
|
| + SetS390ConditionCode<double>(r1_val, 0);
|
| + } else if (op == DDBR) {
|
| + r1_val /= r2_val;
|
| + set_d_register_from_double(r1, r1_val);
|
| + SetS390ConditionCode<double>(r1_val, 0);
|
| + } else if (op == DEBR) {
|
| + fr1_val /= fr2_val;
|
| + set_d_register_from_float32(r1, fr1_val);
|
| + SetS390ConditionCode<float>(fr1_val, 0);
|
| + } else if (op == CDBR) {
|
| + if (isNaN(r1_val) || isNaN(r2_val)) {
|
| + condition_reg_ = CC_OF;
|
| + } else {
|
| + SetS390ConditionCode<double>(r1_val, r2_val);
|
| + }
|
| + } else if (op == CEBR) {
|
| + if (isNaN(r1_val) || isNaN(r2_val)) {
|
| + condition_reg_ = CC_OF;
|
| + } else {
|
| + SetS390ConditionCode<float>(r1_val, r2_val);
|
| + }
|
| + } else if (op == CDGBR) {
|
| + int64_t r2_val = get_register(r2);
|
| + double r1_val = static_cast<double>(r2_val);
|
| + set_d_register_from_double(r1, r1_val);
|
| + } else if (op == CEGBR) {
|
| + int64_t fr2_val = get_register(r2);
|
| + float fr1_val = static_cast<float>(fr2_val);
|
| + set_d_register_from_float32(r1, fr1_val);
|
| + } else if (op == CDFBR) {
|
| + int32_t r2_val = get_low_register<int32_t>(r2);
|
| + double r1_val = static_cast<double>(r2_val);
|
| + set_d_register_from_double(r1, r1_val);
|
| + } else if (op == CEFBR) {
|
| + int32_t fr2_val = get_low_register<int32_t>(r2);
|
| + float fr1_val = static_cast<float>(fr2_val);
|
| + set_d_register_from_float32(r1, fr1_val);
|
| + } else if (op == CFDBR) {
|
| + DecodeFourByteFloatingPointRound(instr);
|
| + } else if (op == CGDBR) {
|
| + DecodeFourByteFloatingPointRound(instr);
|
| + } else if (op == CGEBR) {
|
| + DecodeFourByteFloatingPointRound(instr);
|
| + } else if (op == SQDBR) {
|
| + r1_val = std::sqrt(r2_val);
|
| + set_d_register_from_double(r1, r1_val);
|
| + } else if (op == SQEBR) {
|
| + r1_val = std::sqrt(r2_val);
|
| + set_d_register_from_float32(r1, r1_val);
|
| + } else if (op == CFEBR) {
|
| + DecodeFourByteFloatingPointRound(instr);
|
| + } else if (op == LCDBR) {
|
| + r1_val = -r2_val;
|
| + set_d_register_from_double(r1, r1_val);
|
| + if (r2_val != r2_val) { // input is NaN
|
| + condition_reg_ = CC_OF;
|
| + } else if (r2_val == 0) {
|
| + condition_reg_ = CC_EQ;
|
| + } else if (r2_val < 0) {
|
| + condition_reg_ = CC_LT;
|
| + } else if (r2_val > 0) {
|
| + condition_reg_ = CC_GT;
|
| + }
|
| + } else if (op == LPDBR) {
|
| + r1_val = std::fabs(r2_val);
|
| + set_d_register_from_double(r1, r1_val);
|
| + if (r2_val != r2_val) { // input is NaN
|
| + condition_reg_ = CC_OF;
|
| + } else if (r2_val == 0) {
|
| + condition_reg_ = CC_EQ;
|
| + } else {
|
| + condition_reg_ = CC_GT;
|
| + }
|
| + } else if (op == LPEBR) {
|
| + fr1_val = std::fabs(fr2_val);
|
| + set_d_register_from_float32(r1, fr1_val);
|
| + if (fr2_val != fr2_val) { // input is NaN
|
| + condition_reg_ = CC_OF;
|
| + } else if (fr2_val == 0) {
|
| + condition_reg_ = CC_EQ;
|
| + } else {
|
| + condition_reg_ = CC_GT;
|
| + }
|
| + } else {
|
| + UNREACHABLE();
|
| + }
|
| + break;
|
| + }
|
| + case CDLFBR:
|
| + case CDLGBR:
|
| + case CELGBR:
|
| + case CLFDBR:
|
| + case CELFBR:
|
| + case CLGDBR:
|
| + case CLGEBR: {
|
| + DecodeFourByteFloatingPointIntConversion(instr);
|
| + break;
|
| + }
|
| + case TMLL: {
|
| + RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
|
| + int r1 = riinst->R1Value();
|
| + int mask = riinst->I2Value() & 0x0000FFFF;
|
| + if (mask == 0) {
|
| + condition_reg_ = 0x0;
|
| + break;
|
| + }
|
| + uint32_t r1_val = get_low_register<uint32_t>(r1);
|
| + r1_val = r1_val & 0x0000FFFF; // uses only the last 16bits
|
| +
|
| + // Test if all selected bits are Zero
|
| + bool allSelectedBitsAreZeros = true;
|
| + for (int i = 0; i < 15; i++) {
|
| + if (mask & (1 << i)) {
|
| + if (r1_val & (1 << i)) {
|
| + allSelectedBitsAreZeros = false;
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + if (allSelectedBitsAreZeros) {
|
| + condition_reg_ = 0x8;
|
| + break; // Done!
|
| + }
|
| +
|
| + // Test if all selected bits are one
|
| + bool allSelectedBitsAreOnes = true;
|
| + for (int i = 0; i < 15; i++) {
|
| + if (mask & (1 << i)) {
|
| + if (!(r1_val & (1 << i))) {
|
| + allSelectedBitsAreOnes = false;
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + if (allSelectedBitsAreOnes) {
|
| + condition_reg_ = 0x1;
|
| + break; // Done!
|
| + }
|
| +
|
| + // Now we know selected bits mixed zeros and ones
|
| + // Test if the leftmost bit is zero or one
|
| + for (int i = 14; i >= 0; i--) {
|
| + if (mask & (1 << i)) {
|
| + if (r1_val & (1 << i)) {
|
| + // leftmost bit is one
|
| + condition_reg_ = 0x2;
|
| + } else {
|
| + // leftmost bit is zero
|
| + condition_reg_ = 0x4;
|
| + }
|
| + break; // Done!
|
| + }
|
| + }
|
| + break;
|
| + }
|
| + case LEDBR: {
|
| + RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr);
|
| + int r1 = rreInst->R1Value();
|
| + int r2 = rreInst->R2Value();
|
| + double r2_val = get_double_from_d_register(r2);
|
| + set_d_register_from_float32(r1, static_cast<float>(r2_val));
|
| + break;
|
| + }
|
| + case FIDBRA: {
|
| + RRFInstruction* rrfInst = reinterpret_cast<RRFInstruction*>(instr);
|
| + int r1 = rrfInst->R1Value();
|
| + int r2 = rrfInst->R2Value();
|
| + int m3 = rrfInst->M3Value();
|
| + double r2_val = get_double_from_d_register(r2);
|
| + DCHECK(rrfInst->M4Value() == 0);
|
| + switch (m3) {
|
| + case Assembler::FIDBRA_ROUND_TO_NEAREST_AWAY_FROM_0:
|
| + set_d_register_from_double(r1, round(r2_val));
|
| + break;
|
| + case Assembler::FIDBRA_ROUND_TOWARD_0:
|
| + set_d_register_from_double(r1, trunc(r2_val));
|
| + break;
|
| + case Assembler::FIDBRA_ROUND_TOWARD_POS_INF:
|
| + set_d_register_from_double(r1, std::ceil(r2_val));
|
| + break;
|
| + case Assembler::FIDBRA_ROUND_TOWARD_NEG_INF:
|
| + set_d_register_from_double(r1, std::floor(r2_val));
|
| + break;
|
| + default:
|
| + UNIMPLEMENTED();
|
| + break;
|
| + }
|
| + break;
|
| + }
|
| + case FIEBRA: {
|
| + RRFInstruction* rrfInst = reinterpret_cast<RRFInstruction*>(instr);
|
| + int r1 = rrfInst->R1Value();
|
| + int r2 = rrfInst->R2Value();
|
| + int m3 = rrfInst->M3Value();
|
| + float r2_val = get_float32_from_d_register(r2);
|
| + DCHECK(rrfInst->M4Value() == 0);
|
| + switch (m3) {
|
| + case Assembler::FIDBRA_ROUND_TO_NEAREST_AWAY_FROM_0:
|
| + set_d_register_from_float32(r1, round(r2_val));
|
| + break;
|
| + case Assembler::FIDBRA_ROUND_TOWARD_0:
|
| + set_d_register_from_float32(r1, trunc(r2_val));
|
| + break;
|
| + case Assembler::FIDBRA_ROUND_TOWARD_POS_INF:
|
| + set_d_register_from_float32(r1, std::ceil(r2_val));
|
| + break;
|
| + case Assembler::FIDBRA_ROUND_TOWARD_NEG_INF:
|
| + set_d_register_from_float32(r1, std::floor(r2_val));
|
| + break;
|
| + default:
|
| + UNIMPLEMENTED();
|
| + break;
|
| + }
|
| + break;
|
| + }
|
| + case MSDBR: {
|
| + UNIMPLEMENTED();
|
| + break;
|
| + }
|
| + case LDEBR: {
|
| + RREInstruction* rreInstr = reinterpret_cast<RREInstruction*>(instr);
|
| + int r1 = rreInstr->R1Value();
|
| + int r2 = rreInstr->R2Value();
|
| + float fp_val = get_float32_from_d_register(r2);
|
| + double db_val = static_cast<double>(fp_val);
|
| + set_d_register_from_double(r1, db_val);
|
| + break;
|
| + }
|
| + default: {
|
| + UNREACHABLE();
|
| + return false;
|
| + }
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +// Decode routine for six-byte instructions
|
| +bool Simulator::DecodeSixByte(Instruction* instr) {
|
| + Opcode op = instr->S390OpcodeValue();
|
| +
|
| + // Pre-cast instruction to various types
|
| + RIEInstruction* rieInstr = reinterpret_cast<RIEInstruction*>(instr);
|
| + RILInstruction* rilInstr = reinterpret_cast<RILInstruction*>(instr);
|
| + RSYInstruction* rsyInstr = reinterpret_cast<RSYInstruction*>(instr);
|
| + RXEInstruction* rxeInstr = reinterpret_cast<RXEInstruction*>(instr);
|
| + RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
|
| + SIYInstruction* siyInstr = reinterpret_cast<SIYInstruction*>(instr);
|
| + SILInstruction* silInstr = reinterpret_cast<SILInstruction*>(instr);
|
| + SSInstruction* ssInstr = reinterpret_cast<SSInstruction*>(instr);
|
| +
|
| + switch (op) {
|
| + case CLIY: {
|
| + // Compare Immediate (Mem - Imm) (8)
|
| + int b1 = siyInstr->B1Value();
|
| + int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
|
| + intptr_t d1_val = siyInstr->D1Value();
|
| + intptr_t addr = b1_val + d1_val;
|
| + uint8_t mem_val = ReadB(addr);
|
| + uint8_t imm_val = siyInstr->I2Value();
|
| + SetS390ConditionCode<uint8_t>(mem_val, imm_val);
|
| + break;
|
| + }
|
| + case TMY: {
|
| + // Test Under Mask (Mem - Imm) (8)
|
| + int b1 = siyInstr->B1Value();
|
| + int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
|
| + intptr_t d1_val = siyInstr->D1Value();
|
| + intptr_t addr = b1_val + d1_val;
|
| + uint8_t mem_val = ReadB(addr);
|
| + uint8_t imm_val = siyInstr->I2Value();
|
| + uint8_t selected_bits = mem_val & imm_val;
|
| + // CC0: Selected bits are zero
|
| + // CC1: Selected bits mixed zeros and ones
|
| + // CC3: Selected bits all ones
|
| + if (0 == selected_bits) {
|
| + condition_reg_ = CC_EQ; // CC0
|
| + } else if (selected_bits == imm_val) {
|
| + condition_reg_ = 0x1; // CC3
|
| + } else {
|
| + condition_reg_ = 0x4; // CC1
|
| + }
|
| + break;
|
| + }
|
| + case LDEB: {
|
| + // Load Float
|
| + int r1 = rxeInstr->R1Value();
|
| + int rb = rxeInstr->B2Value();
|
| + int rx = rxeInstr->X2Value();
|
| + int offset = rxeInstr->D2Value();
|
| + int64_t rb_val = (rb == 0) ? 0 : get_register(rb);
|
| + int64_t rx_val = (rx == 0) ? 0 : get_register(rx);
|
| + double ret = static_cast<double>(
|
| + *reinterpret_cast<float*>(rx_val + rb_val + offset));
|
| + set_d_register_from_double(r1, ret);
|
| + break;
|
| + }
|
| + case LAY: {
|
| + // Load Address
|
| + int r1 = rxyInstr->R1Value();
|
| + int rb = rxyInstr->B2Value();
|
| + int rx = rxyInstr->X2Value();
|
| + int offset = rxyInstr->D2Value();
|
| + int64_t rb_val = (rb == 0) ? 0 : get_register(rb);
|
| + int64_t rx_val = (rx == 0) ? 0 : get_register(rx);
|
| + set_register(r1, rx_val + rb_val + offset);
|
| + break;
|
| + }
|
| + case LARL: {
|
| + // Load Addresss Relative Long
|
| + int r1 = rilInstr->R1Value();
|
| + intptr_t offset = rilInstr->I2Value() * 2;
|
| + set_register(r1, get_pc() + offset);
|
| + break;
|
| + }
|
| + case LLILF: {
|
| + // Load Logical into lower 32-bits (zero extend upper 32-bits)
|
| + int r1 = rilInstr->R1Value();
|
| + uint64_t imm = static_cast<uint64_t>(rilInstr->I2UnsignedValue());
|
| + set_register(r1, imm);
|
| + break;
|
| + }
|
| + case LLIHF: {
|
| + // Load Logical Immediate into high word
|
| + int r1 = rilInstr->R1Value();
|
| + uint64_t imm = static_cast<uint64_t>(rilInstr->I2UnsignedValue());
|
| + set_register(r1, imm << 32);
|
| + break;
|
| + }
|
| + case OILF:
|
| + case NILF:
|
| + case IILF: {
|
| + // Bitwise Op on lower 32-bits
|
| + int r1 = rilInstr->R1Value();
|
| + uint32_t imm = rilInstr->I2UnsignedValue();
|
| + uint32_t alu_out = get_low_register<uint32_t>(r1);
|
| + if (NILF == op) {
|
| + alu_out &= imm;
|
| + SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
| + } else if (OILF == op) {
|
| + alu_out |= imm;
|
| + SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
| + } else if (op == IILF) {
|
| + alu_out = imm;
|
| + } else {
|
| + DCHECK(false);
|
| + }
|
| + set_low_register(r1, alu_out);
|
| + break;
|
| + }
|
| + case OIHF:
|
| + case NIHF:
|
| + case IIHF: {
|
| + // Bitwise Op on upper 32-bits
|
| + int r1 = rilInstr->R1Value();
|
| + uint32_t imm = rilInstr->I2Value();
|
| + uint32_t alu_out = get_high_register<uint32_t>(r1);
|
| + if (op == NIHF) {
|
| + alu_out &= imm;
|
| + SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
| + } else if (op == OIHF) {
|
| + alu_out |= imm;
|
| + SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
| + } else if (op == IIHF) {
|
| + alu_out = imm;
|
| + } else {
|
| + DCHECK(false);
|
| + }
|
| + set_high_register(r1, alu_out);
|
| + break;
|
| + }
|
| + case CLFI: {
|
| + // Compare Logical with Immediate (32)
|
| + int r1 = rilInstr->R1Value();
|
| + uint32_t imm = rilInstr->I2UnsignedValue();
|
| + SetS390ConditionCode<uint32_t>(get_low_register<uint32_t>(r1), imm);
|
| + break;
|
| + }
|
| + case CFI: {
|
| + // Compare with Immediate (32)
|
| + int r1 = rilInstr->R1Value();
|
| + int32_t imm = rilInstr->I2Value();
|
| + SetS390ConditionCode<int32_t>(get_low_register<int32_t>(r1), imm);
|
| + break;
|
| + }
|
| + case CLGFI: {
|
| + // Compare Logical with Immediate (64)
|
| + int r1 = rilInstr->R1Value();
|
| + uint64_t imm = static_cast<uint64_t>(rilInstr->I2UnsignedValue());
|
| + SetS390ConditionCode<uint64_t>(get_register(r1), imm);
|
| + break;
|
| + }
|
| + case CGFI: {
|
| + // Compare with Immediate (64)
|
| + int r1 = rilInstr->R1Value();
|
| + int64_t imm = static_cast<int64_t>(rilInstr->I2Value());
|
| + SetS390ConditionCode<int64_t>(get_register(r1), imm);
|
| + break;
|
| + }
|
| + case BRASL: {
|
| + // Branch and Save Relative Long
|
| + int r1 = rilInstr->R1Value();
|
| + intptr_t d2 = rilInstr->I2Value();
|
| + intptr_t pc = get_pc();
|
| + set_register(r1, pc + 6); // save next instruction to register
|
| + set_pc(pc + d2 * 2); // update register
|
| + break;
|
| + }
|
| + case BRCL: {
|
| + // Branch on Condition Relative Long
|
| + Condition m1 = (Condition)rilInstr->R1Value();
|
| + if (TestConditionCode((Condition)m1)) {
|
| + intptr_t offset = rilInstr->I2Value() * 2;
|
| + set_pc(get_pc() + offset);
|
| + }
|
| + break;
|
| + }
|
| + case LMG:
|
| + case STMG: {
|
| + // Store Multiple 64-bits.
|
| + int r1 = rsyInstr->R1Value();
|
| + int r3 = rsyInstr->R3Value();
|
| + int rb = rsyInstr->B2Value();
|
| + int offset = rsyInstr->D2Value();
|
| +
|
| + // Regs roll around if r3 is less than r1.
|
| + // Artifically increase r3 by 16 so we can calculate
|
| + // the number of regs stored properly.
|
| + if (r3 < r1) r3 += 16;
|
| +
|
| + int64_t rb_val = (rb == 0) ? 0 : get_register(rb);
|
| +
|
| + // Store each register in ascending order.
|
| + for (int i = 0; i <= r3 - r1; i++) {
|
| + if (op == LMG) {
|
| + int64_t value = ReadDW(rb_val + offset + 8 * i);
|
| + set_register((r1 + i) % 16, value);
|
| + } else if (op == STMG) {
|
| + int64_t value = get_register((r1 + i) % 16);
|
| + WriteDW(rb_val + offset + 8 * i, value);
|
| + } else {
|
| + DCHECK(false);
|
| + }
|
| + }
|
| + break;
|
| + }
|
| + case SLLK:
|
| + case RLL:
|
| + case SRLK: {
|
| + // For SLLK/SRLL, the 32-bit third operand is shifted the number
|
| + // of bits specified by the second-operand address, and the result is
|
| + // placed at the first-operand location. Except for when the R1 and R3
|
| + // fields designate the same register, the third operand remains
|
| + // unchanged in general register R3.
|
| + int r1 = rsyInstr->R1Value();
|
| + int r3 = rsyInstr->R3Value();
|
| + int b2 = rsyInstr->B2Value();
|
| + intptr_t d2 = rsyInstr->D2Value();
|
| + // only takes rightmost 6 bits
|
| + int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
| + int shiftBits = (b2_val + d2) & 0x3F;
|
| + // unsigned
|
| + uint32_t r3_val = get_low_register<uint32_t>(r3);
|
| + uint32_t alu_out = 0;
|
| + if (SLLK == op) {
|
| + alu_out = r3_val << shiftBits;
|
| + } else if (SRLK == op) {
|
| + alu_out = r3_val >> shiftBits;
|
| + } else if (RLL == op) {
|
| + uint32_t rotateBits = r3_val >> (32 - shiftBits);
|
| + alu_out = (r3_val << shiftBits) | (rotateBits);
|
| + } else {
|
| + UNREACHABLE();
|
| + }
|
| + set_low_register(r1, alu_out);
|
| + break;
|
| + }
|
| + case SLLG:
|
| + case SRLG: {
|
| + // For SLLG/SRLG, the 64-bit third operand is shifted the number
|
| + // of bits specified by the second-operand address, and the result is
|
| + // placed at the first-operand location. Except for when the R1 and R3
|
| + // fields designate the same register, the third operand remains
|
| + // unchanged in general register R3.
|
| + int r1 = rsyInstr->R1Value();
|
| + int r3 = rsyInstr->R3Value();
|
| + int b2 = rsyInstr->B2Value();
|
| + intptr_t d2 = rsyInstr->D2Value();
|
| + // only takes rightmost 6 bits
|
| + int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
| + int shiftBits = (b2_val + d2) & 0x3F;
|
| + // unsigned
|
| + uint64_t r3_val = get_register(r3);
|
| + uint64_t alu_out = 0;
|
| + if (op == SLLG) {
|
| + alu_out = r3_val << shiftBits;
|
| + } else if (op == SRLG) {
|
| + alu_out = r3_val >> shiftBits;
|
| + } else {
|
| + UNREACHABLE();
|
| + }
|
| + set_register(r1, alu_out);
|
| + break;
|
| + }
|
| + case SLAK:
|
| + case SRAK: {
|
| + // 32-bit non-clobbering shift-left/right arithmetic
|
| + int r1 = rsyInstr->R1Value();
|
| + int r3 = rsyInstr->R3Value();
|
| + int b2 = rsyInstr->B2Value();
|
| + intptr_t d2 = rsyInstr->D2Value();
|
| + // only takes rightmost 6 bits
|
| + int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
| + int shiftBits = (b2_val + d2) & 0x3F;
|
| + int32_t r3_val = get_low_register<int32_t>(r3);
|
| + int32_t alu_out = 0;
|
| + bool isOF = false;
|
| + if (op == SLAK) {
|
| + isOF = CheckOverflowForShiftLeft(r3_val, shiftBits);
|
| + alu_out = r3_val << shiftBits;
|
| + } else if (op == SRAK) {
|
| + alu_out = r3_val >> shiftBits;
|
| + }
|
| + set_low_register(r1, alu_out);
|
| + SetS390ConditionCode<int32_t>(alu_out, 0);
|
| + SetS390OverflowCode(isOF);
|
| + break;
|
| + }
|
| + case SLAG:
|
| + case SRAG: {
|
| + // 64-bit non-clobbering shift-left/right arithmetic
|
| + int r1 = rsyInstr->R1Value();
|
| + int r3 = rsyInstr->R3Value();
|
| + int b2 = rsyInstr->B2Value();
|
| + intptr_t d2 = rsyInstr->D2Value();
|
| + // only takes rightmost 6 bits
|
| + int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
| + int shiftBits = (b2_val + d2) & 0x3F;
|
| + int64_t r3_val = get_register(r3);
|
| + intptr_t alu_out = 0;
|
| + bool isOF = false;
|
| + if (op == SLAG) {
|
| + isOF = CheckOverflowForShiftLeft(r3_val, shiftBits);
|
| + alu_out = r3_val << shiftBits;
|
| + } else if (op == SRAG) {
|
| + alu_out = r3_val >> shiftBits;
|
| + }
|
| + set_register(r1, alu_out);
|
| + SetS390ConditionCode<intptr_t>(alu_out, 0);
|
| + SetS390OverflowCode(isOF);
|
| + break;
|
| + }
|
| + case LMY:
|
| + case STMY: {
|
| + RSYInstruction* rsyInstr = reinterpret_cast<RSYInstruction*>(instr);
|
| + // Load/Store Multiple (32)
|
| + int r1 = rsyInstr->R1Value();
|
| + int r3 = rsyInstr->R3Value();
|
| + int b2 = rsyInstr->B2Value();
|
| + int offset = rsyInstr->D2Value();
|
| +
|
| + // Regs roll around if r3 is less than r1.
|
| + // Artifically increase r3 by 16 so we can calculate
|
| + // the number of regs stored properly.
|
| + if (r3 < r1) r3 += 16;
|
| +
|
| + int32_t b2_val = (b2 == 0) ? 0 : get_low_register<int32_t>(b2);
|
| +
|
| + // Store each register in ascending order.
|
| + for (int i = 0; i <= r3 - r1; i++) {
|
| + if (op == LMY) {
|
| + int32_t value = ReadW(b2_val + offset + 4 * i, instr);
|
| + set_low_register((r1 + i) % 16, value);
|
| + } else {
|
| + int32_t value = get_low_register<int32_t>((r1 + i) % 16);
|
| + WriteW(b2_val + offset + 4 * i, value, instr);
|
| + }
|
| + }
|
| + break;
|
| + }
|
| + case LT:
|
| + case LTG: {
|
| + // Load and Test (32/64)
|
| + int r1 = rxyInstr->R1Value();
|
| + int x2 = rxyInstr->X2Value();
|
| + int b2 = rxyInstr->B2Value();
|
| + int d2 = rxyInstr->D2Value();
|
| +
|
| + int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
| + int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
| + intptr_t addr = x2_val + b2_val + d2;
|
| +
|
| + if (op == LT) {
|
| + int32_t value = ReadW(addr, instr);
|
| + set_low_register(r1, value);
|
| + SetS390ConditionCode<int32_t>(value, 0);
|
| + } else if (op == LTG) {
|
| + int64_t value = ReadDW(addr);
|
| + set_register(r1, value);
|
| + SetS390ConditionCode<int64_t>(value, 0);
|
| + }
|
| + break;
|
| + }
|
| + case LY:
|
| + case LB:
|
| + case LGB:
|
| + case LG:
|
| + case LGF:
|
| + case LGH:
|
| + case LLGF:
|
| + case STG:
|
| + case STY:
|
| + case STCY:
|
| + case STHY:
|
| + case STEY:
|
| + case LDY:
|
| + case LHY:
|
| + case STDY:
|
| + case LEY: {
|
| + // Miscellaneous Loads and Stores
|
| + int r1 = rxyInstr->R1Value();
|
| + int x2 = rxyInstr->X2Value();
|
| + int b2 = rxyInstr->B2Value();
|
| + int d2 = rxyInstr->D2Value();
|
| + int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
| + int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
| + intptr_t addr = x2_val + b2_val + d2;
|
| + if (op == LY) {
|
| + uint32_t mem_val = ReadWU(addr, instr);
|
| + set_low_register(r1, mem_val);
|
| + } else if (op == LB) {
|
| + int32_t mem_val = ReadB(addr);
|
| + set_low_register(r1, mem_val);
|
| + } else if (op == LGB) {
|
| + int64_t mem_val = ReadB(addr);
|
| + set_register(r1, mem_val);
|
| + } else if (op == LG) {
|
| + int64_t mem_val = ReadDW(addr);
|
| + set_register(r1, mem_val);
|
| + } else if (op == LGF) {
|
| + int64_t mem_val = static_cast<int64_t>(ReadW(addr, instr));
|
| + set_register(r1, mem_val);
|
| + } else if (op == LGH) {
|
| + int64_t mem_val = static_cast<int64_t>(ReadH(addr, instr));
|
| + set_register(r1, mem_val);
|
| + } else if (op == LLGF) {
|
| + // int r1 = rreInst->R1Value();
|
| + // int r2 = rreInst->R2Value();
|
| + // int32_t r2_val = get_low_register<int32_t>(r2);
|
| + // uint64_t r2_finalval = (static_cast<uint64_t>(r2_val)
|
| + // & 0x00000000ffffffff);
|
| + // set_register(r1, r2_finalval);
|
| + // break;
|
| + uint64_t mem_val = static_cast<uint64_t>(ReadWU(addr, instr));
|
| + set_register(r1, mem_val);
|
| + } else if (op == LDY) {
|
| + uint64_t dbl_val = *reinterpret_cast<uint64_t*>(addr);
|
| + set_d_register(r1, dbl_val);
|
| + } else if (op == STEY) {
|
| + int64_t frs_val = get_d_register(r1) >> 32;
|
| + WriteW(addr, static_cast<int32_t>(frs_val), instr);
|
| + } else if (op == LEY) {
|
| + float float_val = *reinterpret_cast<float*>(addr);
|
| + set_d_register_from_float32(r1, float_val);
|
| + } else if (op == STY) {
|
| + uint32_t value = get_low_register<uint32_t>(r1);
|
| + WriteW(addr, value, instr);
|
| + } else if (op == STG) {
|
| + uint64_t value = get_register(r1);
|
| + WriteDW(addr, value);
|
| + } else if (op == STDY) {
|
| + int64_t frs_val = get_d_register(r1);
|
| + WriteDW(addr, frs_val);
|
| + } else if (op == STCY) {
|
| + uint8_t value = get_low_register<uint32_t>(r1);
|
| + WriteB(addr, value);
|
| + } else if (op == STHY) {
|
| + uint16_t value = get_low_register<uint32_t>(r1);
|
| + WriteH(addr, value, instr);
|
| + } else if (op == LHY) {
|
| + int32_t result = static_cast<int32_t>(ReadH(addr, instr));
|
| + set_low_register(r1, result);
|
| + }
|
| + break;
|
| + }
|
| + case MVC: {
|
| + // Move Character
|
| + int b1 = ssInstr->B1Value();
|
| + intptr_t d1 = ssInstr->D1Value();
|
| + int b2 = ssInstr->B2Value();
|
| + intptr_t d2 = ssInstr->D2Value();
|
| + int length = ssInstr->Length();
|
| + int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
|
| + int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
| + intptr_t src_addr = b2_val + d2;
|
| + intptr_t dst_addr = b1_val + d1;
|
| + // remember that the length is the actual length - 1
|
| + for (int i = 0; i < length + 1; ++i) {
|
| + WriteB(dst_addr++, ReadB(src_addr++));
|
| + }
|
| + break;
|
| + }
|
| + case MVHI: {
|
| + // Move Integer (32)
|
| + int b1 = silInstr->B1Value();
|
| + intptr_t d1 = silInstr->D1Value();
|
| + int16_t i2 = silInstr->I2Value();
|
| + int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
|
| + intptr_t src_addr = b1_val + d1;
|
| + WriteW(src_addr, i2, instr);
|
| + break;
|
| + }
|
| + case MVGHI: {
|
| + // Move Integer (64)
|
| + int b1 = silInstr->B1Value();
|
| + intptr_t d1 = silInstr->D1Value();
|
| + int16_t i2 = silInstr->I2Value();
|
| + int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
|
| + intptr_t src_addr = b1_val + d1;
|
| + WriteDW(src_addr, i2);
|
| + break;
|
| + }
|
| + case LLH:
|
| + case LLGH: {
|
| + // Load Logical Halfworld
|
| + int r1 = rxyInstr->R1Value();
|
| + int b2 = rxyInstr->B2Value();
|
| + int x2 = rxyInstr->X2Value();
|
| + int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
| + int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
| + intptr_t d2_val = rxyInstr->D2Value();
|
| + uint16_t mem_val = ReadHU(b2_val + d2_val + x2_val, instr);
|
| + if (op == LLH) {
|
| + set_low_register(r1, mem_val);
|
| + } else if (op == LLGH) {
|
| + set_register(r1, mem_val);
|
| + } else {
|
| + UNREACHABLE();
|
| + }
|
| + break;
|
| + }
|
| + case LLC:
|
| + case LLGC: {
|
| + // Load Logical Character - loads a byte and zero extends.
|
| + int r1 = rxyInstr->R1Value();
|
| + int b2 = rxyInstr->B2Value();
|
| + int x2 = rxyInstr->X2Value();
|
| + int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
| + int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
| + intptr_t d2_val = rxyInstr->D2Value();
|
| + uint8_t mem_val = ReadBU(b2_val + d2_val + x2_val);
|
| + if (op == LLC) {
|
| + set_low_register(r1, static_cast<uint32_t>(mem_val));
|
| + } else if (op == LLGC) {
|
| + set_register(r1, static_cast<uint64_t>(mem_val));
|
| + } else {
|
| + UNREACHABLE();
|
| + }
|
| + break;
|
| + }
|
| + case XIHF:
|
| + case XILF: {
|
| + int r1 = rilInstr->R1Value();
|
| + uint32_t imm = rilInstr->I2UnsignedValue();
|
| + uint32_t alu_out = 0;
|
| + if (op == XILF) {
|
| + alu_out = get_low_register<uint32_t>(r1);
|
| + alu_out = alu_out ^ imm;
|
| + set_low_register(r1, alu_out);
|
| + } else if (op == XIHF) {
|
| + alu_out = get_high_register<uint32_t>(r1);
|
| + alu_out = alu_out ^ imm;
|
| + set_high_register(r1, alu_out);
|
| + } else {
|
| + UNREACHABLE();
|
| + }
|
| + SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
| + break;
|
| + }
|
| + case RISBG: {
|
| + // Rotate then insert selected bits
|
| + int r1 = rieInstr->R1Value();
|
| + int r2 = rieInstr->R2Value();
|
| + // Starting Bit Position is Bits 2-7 of I3 field
|
| + uint32_t start_bit = rieInstr->I3Value() & 0x3F;
|
| + // Ending Bit Position is Bits 2-7 of I4 field
|
| + uint32_t end_bit = rieInstr->I4Value() & 0x3F;
|
| + // Shift Amount is Bits 2-7 of I5 field
|
| + uint32_t shift_amount = rieInstr->I5Value() & 0x3F;
|
| + // Zero out Remaining (unslected) bits if Bit 0 of I4 is 1.
|
| + bool zero_remaining = (0 != (rieInstr->I4Value() & 0x80));
|
| +
|
| + uint64_t src_val = get_register(r2);
|
| +
|
| + // Rotate Left by Shift Amount first
|
| + uint64_t rotated_val =
|
| + (src_val << shift_amount) | (src_val >> (64 - shift_amount));
|
| + int32_t width = end_bit - start_bit + 1;
|
| +
|
| + uint64_t selection_mask = 0;
|
| + if (width < 64) {
|
| + selection_mask = (static_cast<uint64_t>(1) << width) - 1;
|
| + } else {
|
| + selection_mask = static_cast<uint64_t>(static_cast<int64_t>(-1));
|
| + }
|
| + selection_mask = selection_mask << (63 - end_bit);
|
| +
|
| + uint64_t selected_val = rotated_val & selection_mask;
|
| +
|
| + if (!zero_remaining) {
|
| + // Merged the unselected bits from the original value
|
| + selected_val = (src_val & ~selection_mask) | selected_val;
|
| + }
|
| +
|
| + // Condition code is set by treating result as 64-bit signed int
|
| + SetS390ConditionCode<int64_t>(selected_val, 0);
|
| + set_register(r1, selected_val);
|
| + break;
|
| + }
|
| + default:
|
| + return DecodeSixByteArithmetic(instr);
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +/**
|
| + * Decodes and simulates six byte arithmetic instructions
|
| + */
|
| +bool Simulator::DecodeSixByteArithmetic(Instruction* instr) {
|
| + Opcode op = instr->S390OpcodeValue();
|
| +
|
| + // Pre-cast instruction to various types
|
| + SIYInstruction* siyInstr = reinterpret_cast<SIYInstruction*>(instr);
|
| +
|
| + switch (op) {
|
| + case CDB:
|
| + case ADB:
|
| + case SDB:
|
| + case MDB:
|
| + case DDB:
|
| + case SQDB: {
|
| + RXEInstruction* rxeInstr = reinterpret_cast<RXEInstruction*>(instr);
|
| + int b2 = rxeInstr->B2Value();
|
| + int x2 = rxeInstr->X2Value();
|
| + int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
| + int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
| + intptr_t d2_val = rxeInstr->D2Value();
|
| + double r1_val = get_double_from_d_register(rxeInstr->R1Value());
|
| + double dbl_val = ReadDouble(b2_val + x2_val + d2_val);
|
| +
|
| + switch (op) {
|
| + case CDB:
|
| + SetS390ConditionCode<double>(r1_val, dbl_val);
|
| + break;
|
| + case ADB:
|
| + r1_val += dbl_val;
|
| + set_d_register_from_double(r1, r1_val);
|
| + SetS390ConditionCode<double>(r1_val, 0);
|
| + break;
|
| + case SDB:
|
| + r1_val -= dbl_val;
|
| + set_d_register_from_double(r1, r1_val);
|
| + SetS390ConditionCode<double>(r1_val, 0);
|
| + break;
|
| + case MDB:
|
| + r1_val *= dbl_val;
|
| + set_d_register_from_double(r1, r1_val);
|
| + SetS390ConditionCode<double>(r1_val, 0);
|
| + break;
|
| + case DDB:
|
| + r1_val /= dbl_val;
|
| + set_d_register_from_double(r1, r1_val);
|
| + SetS390ConditionCode<double>(r1_val, 0);
|
| + break;
|
| + case SQDB:
|
| + r1_val = std::sqrt(dbl_val);
|
| + set_d_register_from_double(r1, r1_val);
|
| + default:
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| + break;
|
| + }
|
| + case LRV:
|
| + case LRVH:
|
| + case STRV:
|
| + case STRVH: {
|
| + RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
|
| + int r1 = rxyInstr->R1Value();
|
| + int x2 = rxyInstr->X2Value();
|
| + int b2 = rxyInstr->B2Value();
|
| + int d2 = rxyInstr->D2Value();
|
| + int32_t r1_val = get_low_register<int32_t>(r1);
|
| + int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
| + int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
| + intptr_t mem_addr = b2_val + x2_val + d2;
|
| +
|
| + if (op == LRVH) {
|
| + int16_t mem_val = ReadH(mem_addr, instr);
|
| + int32_t result = ByteReverse(mem_val) & 0x0000ffff;
|
| + result |= r1_val & 0xffff0000;
|
| + set_low_register(r1, result);
|
| + } else if (op == LRV) {
|
| + int32_t mem_val = ReadW(mem_addr, instr);
|
| + set_low_register(r1, ByteReverse(mem_val));
|
| + } else if (op == STRVH) {
|
| + int16_t result = static_cast<int16_t>(r1_val >> 16);
|
| + WriteH(mem_addr, ByteReverse(result), instr);
|
| + } else if (op == STRV) {
|
| + WriteW(mem_addr, ByteReverse(r1_val), instr);
|
| + }
|
| +
|
| + break;
|
| + }
|
| + case AHIK:
|
| + case AGHIK: {
|
| + // Non-clobbering Add Halfword Immediate
|
| + RIEInstruction* rieInst = reinterpret_cast<RIEInstruction*>(instr);
|
| + int r1 = rieInst->R1Value();
|
| + int r2 = rieInst->R2Value();
|
| + bool isOF = false;
|
| + if (AHIK == op) {
|
| + // 32-bit Add
|
| + int32_t r2_val = get_low_register<int32_t>(r2);
|
| + int32_t imm = rieInst->I6Value();
|
| + isOF = CheckOverflowForIntAdd(r2_val, imm);
|
| + set_low_register(r1, r2_val + imm);
|
| + SetS390ConditionCode<int32_t>(r2_val + imm, 0);
|
| + } else if (AGHIK == op) {
|
| + // 64-bit Add
|
| + int64_t r2_val = get_register(r2);
|
| + int64_t imm = static_cast<int64_t>(rieInst->I6Value());
|
| + isOF = CheckOverflowForIntAdd(r2_val, imm);
|
| + set_register(r1, r2_val + imm);
|
| + SetS390ConditionCode<int64_t>(r2_val + imm, 0);
|
| + }
|
| + SetS390OverflowCode(isOF);
|
| + break;
|
| + }
|
| + case ALFI:
|
| + case SLFI: {
|
| + RILInstruction* rilInstr = reinterpret_cast<RILInstruction*>(instr);
|
| + int r1 = rilInstr->R1Value();
|
| + uint32_t imm = rilInstr->I2UnsignedValue();
|
| + uint32_t alu_out = get_low_register<uint32_t>(r1);
|
| + if (op == ALFI) {
|
| + alu_out += imm;
|
| + } else if (op == SLFI) {
|
| + alu_out -= imm;
|
| + }
|
| + SetS390ConditionCode<uint32_t>(alu_out, 0);
|
| + set_low_register(r1, alu_out);
|
| + break;
|
| + }
|
| + case ML: {
|
| + UNIMPLEMENTED();
|
| + break;
|
| + }
|
| + case AY:
|
| + case SY:
|
| + case NY:
|
| + case OY:
|
| + case XY:
|
| + case CY: {
|
| + RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
|
| + int r1 = rxyInstr->R1Value();
|
| + int x2 = rxyInstr->X2Value();
|
| + int b2 = rxyInstr->B2Value();
|
| + int d2 = rxyInstr->D2Value();
|
| + int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
| + int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
| + int32_t alu_out = get_low_register<int32_t>(r1);
|
| + int32_t mem_val = ReadW(b2_val + x2_val + d2, instr);
|
| + bool isOF = false;
|
| + if (op == AY) {
|
| + isOF = CheckOverflowForIntAdd(alu_out, mem_val);
|
| + alu_out += mem_val;
|
| + SetS390ConditionCode<int32_t>(alu_out, 0);
|
| + SetS390OverflowCode(isOF);
|
| + } else if (op == SY) {
|
| + isOF = CheckOverflowForIntSub(alu_out, mem_val);
|
| + alu_out -= mem_val;
|
| + SetS390ConditionCode<int32_t>(alu_out, 0);
|
| + SetS390OverflowCode(isOF);
|
| + } else if (op == NY) {
|
| + alu_out &= mem_val;
|
| + SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
| + } else if (op == OY) {
|
| + alu_out |= mem_val;
|
| + SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
| + } else if (op == XY) {
|
| + alu_out ^= mem_val;
|
| + SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
| + } else if (op == CY) {
|
| + SetS390ConditionCode<int32_t>(alu_out, mem_val);
|
| + }
|
| + if (op != CY) {
|
| + set_low_register(r1, alu_out);
|
| + }
|
| + break;
|
| + }
|
| + case AHY:
|
| + case SHY: {
|
| + RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
|
| + int32_t r1_val = get_low_register<int32_t>(rxyInstr->R1Value());
|
| + int b2 = rxyInstr->B2Value();
|
| + int x2 = rxyInstr->X2Value();
|
| + int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
| + int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
| + intptr_t d2_val = rxyInstr->D2Value();
|
| + int16_t mem_val = ReadH(b2_val + d2_val + x2_val, instr);
|
| + int32_t alu_out = 0;
|
| + bool isOF = false;
|
| + switch (op) {
|
| + case AHY:
|
| + alu_out = r1_val + mem_val;
|
| + isOF = CheckOverflowForIntAdd(r1_val, mem_val);
|
| + break;
|
| + case SHY:
|
| + alu_out = r1_val - mem_val;
|
| + isOF = CheckOverflowForIntSub(r1_val, mem_val);
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| + set_low_register(r1, alu_out);
|
| + SetS390ConditionCode<int32_t>(alu_out, 0);
|
| + SetS390OverflowCode(isOF);
|
| + break;
|
| + }
|
| + case AG:
|
| + case SG:
|
| + case NG:
|
| + case OG:
|
| + case XG:
|
| + case CG:
|
| + case CLG: {
|
| + RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
|
| + int r1 = rxyInstr->R1Value();
|
| + int x2 = rxyInstr->X2Value();
|
| + int b2 = rxyInstr->B2Value();
|
| + int d2 = rxyInstr->D2Value();
|
| + int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
| + int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
| + int64_t alu_out = get_register(r1);
|
| + int64_t mem_val = ReadDW(b2_val + x2_val + d2);
|
| +
|
| + switch (op) {
|
| + case AG: {
|
| + alu_out += mem_val;
|
| + SetS390ConditionCode<int32_t>(alu_out, 0);
|
| + break;
|
| + }
|
| + case SG: {
|
| + alu_out -= mem_val;
|
| + SetS390ConditionCode<int32_t>(alu_out, 0);
|
| + break;
|
| + }
|
| + case NG: {
|
| + alu_out &= mem_val;
|
| + SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
| + break;
|
| + }
|
| + case OG: {
|
| + alu_out |= mem_val;
|
| + SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
| + break;
|
| + }
|
| + case XG: {
|
| + alu_out ^= mem_val;
|
| + SetS390BitWiseConditionCode<uint32_t>(alu_out);
|
| + break;
|
| + }
|
| + case CG: {
|
| + SetS390ConditionCode<int64_t>(alu_out, mem_val);
|
| + break;
|
| + }
|
| + case CLG: {
|
| + SetS390ConditionCode<uint64_t>(alu_out, mem_val);
|
| + break;
|
| + }
|
| + default: {
|
| + DCHECK(false);
|
| + break;
|
| + }
|
| + }
|
| +
|
| + if (op != CG) {
|
| + set_register(r1, alu_out);
|
| + }
|
| + break;
|
| + }
|
| + case ALY:
|
| + case SLY:
|
| + case CLY: {
|
| + RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
|
| + int r1 = rxyInstr->R1Value();
|
| + int x2 = rxyInstr->X2Value();
|
| + int b2 = rxyInstr->B2Value();
|
| + int d2 = rxyInstr->D2Value();
|
| + int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
| + int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
| + uint32_t alu_out = get_low_register<uint32_t>(r1);
|
| + uint32_t mem_val = ReadWU(b2_val + x2_val + d2, instr);
|
| +
|
| + if (op == ALY) {
|
| + alu_out += mem_val;
|
| + set_low_register(r1, alu_out);
|
| + SetS390ConditionCode<uint32_t>(alu_out, 0);
|
| + } else if (op == SLY) {
|
| + alu_out -= mem_val;
|
| + set_low_register(r1, alu_out);
|
| + SetS390ConditionCode<uint32_t>(alu_out, 0);
|
| + } else if (op == CLY) {
|
| + SetS390ConditionCode<uint32_t>(alu_out, mem_val);
|
| + }
|
| + break;
|
| + }
|
| + case AGFI:
|
| + case AFI: {
|
| + // Clobbering Add Word Immediate
|
| + RILInstruction* rilInstr = reinterpret_cast<RILInstruction*>(instr);
|
| + int r1 = rilInstr->R1Value();
|
| + int i2 = rilInstr->I2Value();
|
| + bool isOF = false;
|
| + if (AFI == op) {
|
| + // 32-bit Add (Register + 32-bit Immediate)
|
| + int32_t r1_val = get_low_register<int32_t>(r1);
|
| + isOF = CheckOverflowForIntAdd(r1_val, i2);
|
| + int32_t alu_out = r1_val + i2;
|
| + set_low_register(r1, alu_out);
|
| + SetS390ConditionCode<int32_t>(alu_out, 0);
|
| + } else if (AGFI == op) {
|
| + // 64-bit Add (Register + 32-bit Imm)
|
| + int64_t r1_val = get_register(r1);
|
| + isOF = CheckOverflowForIntAdd(r1_val, i2);
|
| + int64_t alu_out = r1_val + i2;
|
| + set_register(r1, alu_out);
|
| + SetS390ConditionCode<int64_t>(alu_out, 0);
|
| + }
|
| + SetS390OverflowCode(isOF);
|
| + break;
|
| + }
|
| + case ASI: {
|
| + int8_t i2 = static_cast<int8_t>(siyInstr->I2Value());
|
| + int b1 = siyInstr->B1Value();
|
| + intptr_t b1_val = (b1 == 0) ? 0 : get_register(b1);
|
| +
|
| + int d1_val = siyInstr->D1Value();
|
| + intptr_t addr = b1_val + d1_val;
|
| +
|
| + int32_t mem_val = ReadW(addr, instr);
|
| + bool isOF = CheckOverflowForIntAdd(mem_val, i2);
|
| + int32_t alu_out = mem_val + i2;
|
| + SetS390ConditionCode<int32_t>(alu_out, 0);
|
| + SetS390OverflowCode(isOF);
|
| + WriteW(addr, alu_out, instr);
|
| + break;
|
| + }
|
| + case AGSI: {
|
| + int8_t i2 = static_cast<int8_t>(siyInstr->I2Value());
|
| + int b1 = siyInstr->B1Value();
|
| + intptr_t b1_val = (b1 == 0) ? 0 : get_register(b1);
|
| +
|
| + int d1_val = siyInstr->D1Value();
|
| + intptr_t addr = b1_val + d1_val;
|
| +
|
| + int64_t mem_val = ReadDW(addr);
|
| + int isOF = CheckOverflowForIntAdd(mem_val, i2);
|
| + int64_t alu_out = mem_val + i2;
|
| + SetS390ConditionCode<uint64_t>(alu_out, 0);
|
| + SetS390OverflowCode(isOF);
|
| + WriteDW(addr, alu_out);
|
| + break;
|
| + }
|
| + case AGF:
|
| + case SGF:
|
| + case ALG:
|
| + case SLG: {
|
| +#ifndef V8_TARGET_ARCH_S390X
|
| + DCHECK(false);
|
| +#endif
|
| + RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
|
| + int r1 = rxyInstr->R1Value();
|
| + uint64_t r1_val = get_register(rxyInstr->R1Value());
|
| + int b2 = rxyInstr->B2Value();
|
| + int x2 = rxyInstr->X2Value();
|
| + int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
| + int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
| + intptr_t d2_val = rxyInstr->D2Value();
|
| + uint64_t alu_out = r1_val;
|
| + if (op == ALG) {
|
| + uint64_t mem_val =
|
| + static_cast<uint64_t>(ReadDW(b2_val + d2_val + x2_val));
|
| + alu_out += mem_val;
|
| + SetS390ConditionCode<uint64_t>(alu_out, 0);
|
| + } else if (op == SLG) {
|
| + uint64_t mem_val =
|
| + static_cast<uint64_t>(ReadDW(b2_val + d2_val + x2_val));
|
| + alu_out -= mem_val;
|
| + SetS390ConditionCode<uint64_t>(alu_out, 0);
|
| + } else if (op == AGF) {
|
| + uint32_t mem_val = ReadW(b2_val + d2_val + x2_val, instr);
|
| + alu_out += mem_val;
|
| + SetS390ConditionCode<int64_t>(alu_out, 0);
|
| + } else if (op == SGF) {
|
| + uint32_t mem_val = ReadW(b2_val + d2_val + x2_val, instr);
|
| + alu_out -= mem_val;
|
| + SetS390ConditionCode<int64_t>(alu_out, 0);
|
| + } else {
|
| + DCHECK(false);
|
| + }
|
| + set_register(r1, alu_out);
|
| + break;
|
| + }
|
| + case ALGFI:
|
| + case SLGFI: {
|
| +#ifndef V8_TARGET_ARCH_S390X
|
| + // should only be called on 64bit
|
| + DCHECK(false);
|
| +#endif
|
| + RILInstruction* rilInstr = reinterpret_cast<RILInstruction*>(instr);
|
| + int r1 = rilInstr->R1Value();
|
| + uint32_t i2 = rilInstr->I2UnsignedValue();
|
| + uint64_t r1_val = (uint64_t)(get_register(r1));
|
| + uint64_t alu_out;
|
| + if (op == ALGFI)
|
| + alu_out = r1_val + i2;
|
| + else
|
| + alu_out = r1_val - i2;
|
| + set_register(r1, (intptr_t)alu_out);
|
| + SetS390ConditionCode<uint64_t>(alu_out, 0);
|
| + break;
|
| + }
|
| + case MSY:
|
| + case MSG: {
|
| + RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
|
| + int r1 = rxyInstr->R1Value();
|
| + int b2 = rxyInstr->B2Value();
|
| + int x2 = rxyInstr->X2Value();
|
| + int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
|
| + int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
|
| + intptr_t d2_val = rxyInstr->D2Value();
|
| + if (op == MSY) {
|
| + int32_t mem_val = ReadW(b2_val + d2_val + x2_val, instr);
|
| + int32_t r1_val = get_low_register<int32_t>(r1);
|
| + set_low_register(r1, mem_val * r1_val);
|
| + } else if (op == MSG) {
|
| + int64_t mem_val = ReadDW(b2_val + d2_val + x2_val);
|
| + int64_t r1_val = get_register(r1);
|
| + set_register(r1, mem_val * r1_val);
|
| + } else {
|
| + UNREACHABLE();
|
| + }
|
| + break;
|
| + }
|
| + case MSFI:
|
| + case MSGFI: {
|
| + RILInstruction* rilinst = reinterpret_cast<RILInstruction*>(instr);
|
| + int r1 = rilinst->R1Value();
|
| + int32_t i2 = rilinst->I2Value();
|
| + if (op == MSFI) {
|
| + int32_t alu_out = get_low_register<int32_t>(r1);
|
| + alu_out = alu_out * i2;
|
| + set_low_register(r1, alu_out);
|
| + } else if (op == MSGFI) {
|
| + int64_t alu_out = get_register(r1);
|
| + alu_out = alu_out * i2;
|
| + set_register(r1, alu_out);
|
| + } else {
|
| + UNREACHABLE();
|
| + }
|
| + break;
|
| + }
|
| + default:
|
| + UNREACHABLE();
|
| + return false;
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +int16_t Simulator::ByteReverse(int16_t hword) {
|
| + return (hword << 8) | ((hword >> 8) & 0x00ff);
|
| +}
|
| +
|
| +int32_t Simulator::ByteReverse(int32_t word) {
|
| + int32_t result = word << 24;
|
| + result |= (word << 8) & 0x00ff0000;
|
| + result |= (word >> 8) & 0x0000ff00;
|
| + result |= (word >> 24) & 0x00000ff;
|
| + return result;
|
| +}
|
| +
|
| +// Executes the current instruction.
|
| +void Simulator::ExecuteInstruction(Instruction* instr, bool auto_incr_pc) {
|
| + if (v8::internal::FLAG_check_icache) {
|
| + CheckICache(isolate_->simulator_i_cache(), instr);
|
| + }
|
| + pc_modified_ = false;
|
| + if (::v8::internal::FLAG_trace_sim) {
|
| + disasm::NameConverter converter;
|
| + disasm::Disassembler dasm(converter);
|
| + // use a reasonably large buffer
|
| + v8::internal::EmbeddedVector<char, 256> buffer;
|
| + dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr));
|
| +#ifdef V8_TARGET_ARCH_S390X
|
| + PrintF("%05ld %08" V8PRIxPTR " %s\n", icount_,
|
| + reinterpret_cast<intptr_t>(instr), buffer.start());
|
| +#else
|
| + PrintF("%05lld %08" V8PRIxPTR " %s\n", icount_,
|
| + reinterpret_cast<intptr_t>(instr), buffer.start());
|
| +#endif
|
| + // Flush stdout to prevent incomplete file output during abnormal exits
|
| + // This is caused by the output being buffered before being written to file
|
| + fflush(stdout);
|
| + }
|
| +
|
| + // Try to simulate as S390 Instruction first.
|
| + bool processed = true;
|
| +
|
| + int instrLength = instr->InstructionLength();
|
| + if (instrLength == 2)
|
| + processed = DecodeTwoByte(instr);
|
| + else if (instrLength == 4)
|
| + processed = DecodeFourByte(instr);
|
| + else if (instrLength == 6)
|
| + processed = DecodeSixByte(instr);
|
| +
|
| + if (processed) {
|
| + if (!pc_modified_ && auto_incr_pc) {
|
| + set_pc(reinterpret_cast<intptr_t>(instr) + instrLength);
|
| + }
|
| + return;
|
| + }
|
| +}
|
| +
|
| +void Simulator::DebugStart() {
|
| + S390Debugger dbg(this);
|
| + dbg.Debug();
|
| +}
|
| +
|
| +void Simulator::Execute() {
|
| + // Get the PC to simulate. Cannot use the accessor here as we need the
|
| + // raw PC value and not the one used as input to arithmetic instructions.
|
| + intptr_t program_counter = get_pc();
|
| +
|
| + if (::v8::internal::FLAG_stop_sim_at == 0) {
|
| + // Fast version of the dispatch loop without checking whether the simulator
|
| + // should be stopping at a particular executed instruction.
|
| + while (program_counter != end_sim_pc) {
|
| + Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
|
| + icount_++;
|
| + ExecuteInstruction(instr);
|
| + program_counter = get_pc();
|
| + }
|
| + } else {
|
| + // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
|
| + // we reach the particular instuction count.
|
| + while (program_counter != end_sim_pc) {
|
| + Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
|
| + icount_++;
|
| + if (icount_ == ::v8::internal::FLAG_stop_sim_at) {
|
| + S390Debugger dbg(this);
|
| + dbg.Debug();
|
| + } else {
|
| + ExecuteInstruction(instr);
|
| + }
|
| + program_counter = get_pc();
|
| + }
|
| + }
|
| +}
|
| +
|
| +void Simulator::CallInternal(byte* entry, int reg_arg_count) {
|
| + // Prepare to execute the code at entry
|
| + if (ABI_USES_FUNCTION_DESCRIPTORS) {
|
| + // entry is the function descriptor
|
| + set_pc(*(reinterpret_cast<intptr_t*>(entry)));
|
| + } else {
|
| + // entry is the instruction address
|
| + set_pc(reinterpret_cast<intptr_t>(entry));
|
| + }
|
| + // Remember the values of non-volatile registers.
|
| + int64_t r6_val = get_register(r6);
|
| + int64_t r7_val = get_register(r7);
|
| + int64_t r8_val = get_register(r8);
|
| + int64_t r9_val = get_register(r9);
|
| + int64_t r10_val = get_register(r10);
|
| + int64_t r11_val = get_register(r11);
|
| + int64_t r12_val = get_register(r12);
|
| + int64_t r13_val = get_register(r13);
|
| +
|
| + if (ABI_CALL_VIA_IP) {
|
| + // Put target address in ip (for JS prologue).
|
| + set_register(ip, get_pc());
|
| + }
|
| +
|
| + // Put down marker for end of simulation. The simulator will stop simulation
|
| + // when the PC reaches this value. By saving the "end simulation" value into
|
| + // the LR the simulation stops when returning to this call point.
|
| + registers_[14] = end_sim_pc;
|
| +
|
| + // Set up the non-volatile registers with a known value. To be able to check
|
| + // that they are preserved properly across JS execution.
|
| + intptr_t callee_saved_value = icount_;
|
| + if (reg_arg_count < 5) {
|
| + set_register(r6, callee_saved_value + 6);
|
| + }
|
| + set_register(r7, callee_saved_value + 7);
|
| + set_register(r8, callee_saved_value + 8);
|
| + set_register(r9, callee_saved_value + 9);
|
| + set_register(r10, callee_saved_value + 10);
|
| + set_register(r11, callee_saved_value + 11);
|
| + set_register(r12, callee_saved_value + 12);
|
| + set_register(r13, callee_saved_value + 13);
|
| +
|
| + // Start the simulation
|
| + Execute();
|
| +
|
| +// Check that the non-volatile registers have been preserved.
|
| +#ifndef V8_TARGET_ARCH_S390X
|
| + if (reg_arg_count < 5) {
|
| + DCHECK_EQ(callee_saved_value + 6, get_low_register<int32_t>(r6));
|
| + }
|
| + DCHECK_EQ(callee_saved_value + 7, get_low_register<int32_t>(r7));
|
| + DCHECK_EQ(callee_saved_value + 8, get_low_register<int32_t>(r8));
|
| + DCHECK_EQ(callee_saved_value + 9, get_low_register<int32_t>(r9));
|
| + DCHECK_EQ(callee_saved_value + 10, get_low_register<int32_t>(r10));
|
| + DCHECK_EQ(callee_saved_value + 11, get_low_register<int32_t>(r11));
|
| + DCHECK_EQ(callee_saved_value + 12, get_low_register<int32_t>(r12));
|
| + DCHECK_EQ(callee_saved_value + 13, get_low_register<int32_t>(r13));
|
| +#else
|
| + if (reg_arg_count < 5) {
|
| + DCHECK_EQ(callee_saved_value + 6, get_register(r6));
|
| + }
|
| + DCHECK_EQ(callee_saved_value + 7, get_register(r7));
|
| + DCHECK_EQ(callee_saved_value + 8, get_register(r8));
|
| + DCHECK_EQ(callee_saved_value + 9, get_register(r9));
|
| + DCHECK_EQ(callee_saved_value + 10, get_register(r10));
|
| + DCHECK_EQ(callee_saved_value + 11, get_register(r11));
|
| + DCHECK_EQ(callee_saved_value + 12, get_register(r12));
|
| + DCHECK_EQ(callee_saved_value + 13, get_register(r13));
|
| +#endif
|
| +
|
| + // Restore non-volatile registers with the original value.
|
| + set_register(r6, r6_val);
|
| + set_register(r7, r7_val);
|
| + set_register(r8, r8_val);
|
| + set_register(r9, r9_val);
|
| + set_register(r10, r10_val);
|
| + set_register(r11, r11_val);
|
| + set_register(r12, r12_val);
|
| + set_register(r13, r13_val);
|
| +}
|
| +
|
| +intptr_t Simulator::Call(byte* entry, int argument_count, ...) {
|
| + // Remember the values of non-volatile registers.
|
| + int64_t r6_val = get_register(r6);
|
| + int64_t r7_val = get_register(r7);
|
| + int64_t r8_val = get_register(r8);
|
| + int64_t r9_val = get_register(r9);
|
| + int64_t r10_val = get_register(r10);
|
| + int64_t r11_val = get_register(r11);
|
| + int64_t r12_val = get_register(r12);
|
| + int64_t r13_val = get_register(r13);
|
| +
|
| + va_list parameters;
|
| + va_start(parameters, argument_count);
|
| + // Set up arguments
|
| +
|
| + // First 5 arguments passed in registers r2-r6.
|
| + int reg_arg_count = (argument_count > 5) ? 5 : argument_count;
|
| + int stack_arg_count = argument_count - reg_arg_count;
|
| + for (int i = 0; i < reg_arg_count; i++) {
|
| + intptr_t value = va_arg(parameters, intptr_t);
|
| + set_register(i + 2, value);
|
| + }
|
| +
|
| + // Remaining arguments passed on stack.
|
| + int64_t original_stack = get_register(sp);
|
| + // Compute position of stack on entry to generated code.
|
| + intptr_t entry_stack =
|
| + (original_stack -
|
| + (kCalleeRegisterSaveAreaSize + stack_arg_count * sizeof(intptr_t)));
|
| + if (base::OS::ActivationFrameAlignment() != 0) {
|
| + entry_stack &= -base::OS::ActivationFrameAlignment();
|
| + }
|
| +
|
| + // Store remaining arguments on stack, from low to high memory.
|
| + intptr_t* stack_argument =
|
| + reinterpret_cast<intptr_t*>(entry_stack + kCalleeRegisterSaveAreaSize);
|
| + for (int i = 0; i < stack_arg_count; i++) {
|
| + intptr_t value = va_arg(parameters, intptr_t);
|
| + stack_argument[i] = value;
|
| + }
|
| + va_end(parameters);
|
| + set_register(sp, entry_stack);
|
| +
|
| +// Prepare to execute the code at entry
|
| +#if ABI_USES_FUNCTION_DESCRIPTORS
|
| + // entry is the function descriptor
|
| + set_pc(*(reinterpret_cast<intptr_t*>(entry)));
|
| +#else
|
| + // entry is the instruction address
|
| + set_pc(reinterpret_cast<intptr_t>(entry));
|
| +#endif
|
| +
|
| + // Put target address in ip (for JS prologue).
|
| + set_register(r12, get_pc());
|
| +
|
| + // Put down marker for end of simulation. The simulator will stop simulation
|
| + // when the PC reaches this value. By saving the "end simulation" value into
|
| + // the LR the simulation stops when returning to this call point.
|
| + registers_[14] = end_sim_pc;
|
| +
|
| + // Set up the non-volatile registers with a known value. To be able to check
|
| + // that they are preserved properly across JS execution.
|
| + intptr_t callee_saved_value = icount_;
|
| + if (reg_arg_count < 5) {
|
| + set_register(r6, callee_saved_value + 6);
|
| + }
|
| + set_register(r7, callee_saved_value + 7);
|
| + set_register(r8, callee_saved_value + 8);
|
| + set_register(r9, callee_saved_value + 9);
|
| + set_register(r10, callee_saved_value + 10);
|
| + set_register(r11, callee_saved_value + 11);
|
| + set_register(r12, callee_saved_value + 12);
|
| + set_register(r13, callee_saved_value + 13);
|
| +
|
| + // Start the simulation
|
| + Execute();
|
| +
|
| +// Check that the non-volatile registers have been preserved.
|
| +#ifndef V8_TARGET_ARCH_S390X
|
| + if (reg_arg_count < 5) {
|
| + DCHECK_EQ(callee_saved_value + 6, get_low_register<int32_t>(r6));
|
| + }
|
| + DCHECK_EQ(callee_saved_value + 7, get_low_register<int32_t>(r7));
|
| + DCHECK_EQ(callee_saved_value + 8, get_low_register<int32_t>(r8));
|
| + DCHECK_EQ(callee_saved_value + 9, get_low_register<int32_t>(r9));
|
| + DCHECK_EQ(callee_saved_value + 10, get_low_register<int32_t>(r10));
|
| + DCHECK_EQ(callee_saved_value + 11, get_low_register<int32_t>(r11));
|
| + DCHECK_EQ(callee_saved_value + 12, get_low_register<int32_t>(r12));
|
| + DCHECK_EQ(callee_saved_value + 13, get_low_register<int32_t>(r13));
|
| +#else
|
| + if (reg_arg_count < 5) {
|
| + DCHECK_EQ(callee_saved_value + 6, get_register(r6));
|
| + }
|
| + DCHECK_EQ(callee_saved_value + 7, get_register(r7));
|
| + DCHECK_EQ(callee_saved_value + 8, get_register(r8));
|
| + DCHECK_EQ(callee_saved_value + 9, get_register(r9));
|
| + DCHECK_EQ(callee_saved_value + 10, get_register(r10));
|
| + DCHECK_EQ(callee_saved_value + 11, get_register(r11));
|
| + DCHECK_EQ(callee_saved_value + 12, get_register(r12));
|
| + DCHECK_EQ(callee_saved_value + 13, get_register(r13));
|
| +#endif
|
| +
|
| + // Restore non-volatile registers with the original value.
|
| + set_register(r6, r6_val);
|
| + set_register(r7, r7_val);
|
| + set_register(r8, r8_val);
|
| + set_register(r9, r9_val);
|
| + set_register(r10, r10_val);
|
| + set_register(r11, r11_val);
|
| + set_register(r12, r12_val);
|
| + set_register(r13, r13_val);
|
| +// Pop stack passed arguments.
|
| +
|
| +#ifndef V8_TARGET_ARCH_S390X
|
| + DCHECK_EQ(entry_stack, get_low_register<int32_t>(sp));
|
| +#else
|
| + DCHECK_EQ(entry_stack, get_register(sp));
|
| +#endif
|
| + set_register(sp, original_stack);
|
| +
|
| + // Return value register
|
| + intptr_t result = get_register(r2);
|
| + return result;
|
| +}
|
| +
|
| +void Simulator::CallFP(byte* entry, double d0, double d1) {
|
| + set_d_register_from_double(0, d0);
|
| + set_d_register_from_double(1, d1);
|
| + CallInternal(entry);
|
| +}
|
| +
|
| +int32_t Simulator::CallFPReturnsInt(byte* entry, double d0, double d1) {
|
| + CallFP(entry, d0, d1);
|
| + int32_t result = get_register(r2);
|
| + return result;
|
| +}
|
| +
|
| +double Simulator::CallFPReturnsDouble(byte* entry, double d0, double d1) {
|
| + CallFP(entry, d0, d1);
|
| + return get_double_from_d_register(0);
|
| +}
|
| +
|
| +uintptr_t Simulator::PushAddress(uintptr_t address) {
|
| + uintptr_t new_sp = get_register(sp) - sizeof(uintptr_t);
|
| + uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
|
| + *stack_slot = address;
|
| + set_register(sp, new_sp);
|
| + return new_sp;
|
| +}
|
| +
|
| +uintptr_t Simulator::PopAddress() {
|
| + uintptr_t current_sp = get_register(sp);
|
| + uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
|
| + uintptr_t address = *stack_slot;
|
| + set_register(sp, current_sp + sizeof(uintptr_t));
|
| + return address;
|
| +}
|
| +
|
| +} // namespace internal
|
| +} // namespace v8
|
| +
|
| +#endif // USE_SIMULATOR
|
| +#endif // V8_TARGET_ARCH_S390
|
|
|