Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(417)

Unified Diff: src/s390/simulator-s390.cc

Issue 1725243004: S390: Initial impl of S390 asm, masm, code-stubs,... (Closed) Base URL: https://chromium.googlesource.com/v8/v8.git@master
Patch Set: Updated BUILD.gn + cpu-s390.cc to addr @jochen's comments. Created 4 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: src/s390/simulator-s390.cc
diff --git a/src/s390/simulator-s390.cc b/src/s390/simulator-s390.cc
new file mode 100644
index 0000000000000000000000000000000000000000..deba02fb024096e693f6f13539d46e337391da76
--- /dev/null
+++ b/src/s390/simulator-s390.cc
@@ -0,0 +1,5012 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include <stdarg.h>
+#include <stdlib.h>
+#include <cmath>
+
+#if V8_TARGET_ARCH_S390
+
+#include "src/assembler.h"
+#include "src/base/bits.h"
+#include "src/codegen.h"
+#include "src/disasm.h"
+#include "src/runtime/runtime-utils.h"
+#include "src/s390/constants-s390.h"
+#include "src/s390/frames-s390.h"
+#include "src/s390/simulator-s390.h"
+#if defined(USE_SIMULATOR)
+
+// Only build the simulator if not compiling for real s390 hardware.
+namespace v8 {
+namespace internal {
+
+// This macro provides a platform independent use of sscanf. The reason for
+// SScanF not being implemented in a platform independent way through
+// ::v8::internal::OS in the same way as SNPrintF is that the
+// Windows C Run-Time Library does not provide vsscanf.
+#define SScanF sscanf // NOLINT
+
+// The S390Debugger class is used by the simulator while debugging simulated
+// z/Architecture code.
+class S390Debugger {
+ public:
+ explicit S390Debugger(Simulator* sim) : sim_(sim) {}
+ ~S390Debugger();
+
+ void Stop(Instruction* instr);
+ void Debug();
+
+ private:
+#if V8_TARGET_LITTLE_ENDIAN
+ static const Instr kBreakpointInstr = (0x0000FFB2); // TRAP4 0000
+ static const Instr kNopInstr = (0x00160016); // OR r0, r0 x2
+#else
+ static const Instr kBreakpointInstr = (0xB2FF0000); // TRAP4 0000
+ static const Instr kNopInstr = (0x16001600); // OR r0, r0 x2
+#endif
+
+ Simulator* sim_;
+
+ intptr_t GetRegisterValue(int regnum);
+ double GetRegisterPairDoubleValue(int regnum);
+ double GetFPDoubleRegisterValue(int regnum);
+ float GetFPFloatRegisterValue(int regnum);
+ bool GetValue(const char* desc, intptr_t* value);
+ bool GetFPDoubleValue(const char* desc, double* value);
+
+ // Set or delete a breakpoint. Returns true if successful.
+ bool SetBreakpoint(Instruction* break_pc);
+ bool DeleteBreakpoint(Instruction* break_pc);
+
+ // Undo and redo all breakpoints. This is needed to bracket disassembly and
+ // execution to skip past breakpoints when run from the debugger.
+ void UndoBreakpoints();
+ void RedoBreakpoints();
+};
+
+S390Debugger::~S390Debugger() {}
+
+#ifdef GENERATED_CODE_COVERAGE
+static FILE* coverage_log = NULL;
+
+static void InitializeCoverage() {
+ char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG");
+ if (file_name != NULL) {
+ coverage_log = fopen(file_name, "aw+");
+ }
+}
+
+void S390Debugger::Stop(Instruction* instr) {
+ // Get the stop code.
+ uint32_t code = instr->SvcValue() & kStopCodeMask;
+ // Retrieve the encoded address, which comes just after this stop.
+ char** msg_address =
+ reinterpret_cast<char**>(sim_->get_pc() + sizeof(FourByteInstr));
+ char* msg = *msg_address;
+ DCHECK(msg != NULL);
+
+ // Update this stop description.
+ if (isWatchedStop(code) && !watched_stops_[code].desc) {
+ watched_stops_[code].desc = msg;
+ }
+
+ if (strlen(msg) > 0) {
+ if (coverage_log != NULL) {
+ fprintf(coverage_log, "%s\n", msg);
+ fflush(coverage_log);
+ }
+ // Overwrite the instruction and address with nops.
+ instr->SetInstructionBits(kNopInstr);
+ reinterpret_cast<Instruction*>(msg_address)->SetInstructionBits(kNopInstr);
+ }
+ sim_->set_pc(sim_->get_pc() + sizeof(FourByteInstr) + kPointerSize);
+}
+
+#else // ndef GENERATED_CODE_COVERAGE
+
+static void InitializeCoverage() {}
+
+void S390Debugger::Stop(Instruction* instr) {
+ // Get the stop code.
+ // use of kStopCodeMask not right on PowerPC
+ uint32_t code = instr->SvcValue() & kStopCodeMask;
+ // Retrieve the encoded address, which comes just after this stop.
+ char* msg = *reinterpret_cast<char**>(sim_->get_pc() + sizeof(FourByteInstr));
+ // Update this stop description.
+ if (sim_->isWatchedStop(code) && !sim_->watched_stops_[code].desc) {
+ sim_->watched_stops_[code].desc = msg;
+ }
+ // Print the stop message and code if it is not the default code.
+ if (code != kMaxStopCode) {
+ PrintF("Simulator hit stop %u: %s\n", code, msg);
+ } else {
+ PrintF("Simulator hit %s\n", msg);
+ }
+ sim_->set_pc(sim_->get_pc() + sizeof(FourByteInstr) + kPointerSize);
+ Debug();
+}
+#endif
+
+intptr_t S390Debugger::GetRegisterValue(int regnum) {
+ return sim_->get_register(regnum);
+}
+
+double S390Debugger::GetRegisterPairDoubleValue(int regnum) {
+ return sim_->get_double_from_register_pair(regnum);
+}
+
+double S390Debugger::GetFPDoubleRegisterValue(int regnum) {
+ return sim_->get_double_from_d_register(regnum);
+}
+
+float S390Debugger::GetFPFloatRegisterValue(int regnum) {
+ return sim_->get_float32_from_d_register(regnum);
+}
+
+bool S390Debugger::GetValue(const char* desc, intptr_t* value) {
+ int regnum = Registers::Number(desc);
+ if (regnum != kNoRegister) {
+ *value = GetRegisterValue(regnum);
+ return true;
+ } else {
+ if (strncmp(desc, "0x", 2) == 0) {
+ return SScanF(desc + 2, "%" V8PRIxPTR,
+ reinterpret_cast<uintptr_t*>(value)) == 1;
+ } else {
+ return SScanF(desc, "%" V8PRIuPTR, reinterpret_cast<uintptr_t*>(value)) ==
+ 1;
+ }
+ }
+ return false;
+}
+
+bool S390Debugger::GetFPDoubleValue(const char* desc, double* value) {
+ int regnum = DoubleRegisters::Number(desc);
+ if (regnum != kNoRegister) {
+ *value = sim_->get_double_from_d_register(regnum);
+ return true;
+ }
+ return false;
+}
+
+bool S390Debugger::SetBreakpoint(Instruction* break_pc) {
+ // Check if a breakpoint can be set. If not return without any side-effects.
+ if (sim_->break_pc_ != NULL) {
+ return false;
+ }
+
+ // Set the breakpoint.
+ sim_->break_pc_ = break_pc;
+ sim_->break_instr_ = break_pc->InstructionBits();
+ // Not setting the breakpoint instruction in the code itself. It will be set
+ // when the debugger shell continues.
+ return true;
+}
+
+bool S390Debugger::DeleteBreakpoint(Instruction* break_pc) {
+ if (sim_->break_pc_ != NULL) {
+ sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
+ }
+
+ sim_->break_pc_ = NULL;
+ sim_->break_instr_ = 0;
+ return true;
+}
+
+void S390Debugger::UndoBreakpoints() {
+ if (sim_->break_pc_ != NULL) {
+ sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
+ }
+}
+
+void S390Debugger::RedoBreakpoints() {
+ if (sim_->break_pc_ != NULL) {
+ sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
+ }
+}
+
+void S390Debugger::Debug() {
+ intptr_t last_pc = -1;
+ bool done = false;
+
+#define COMMAND_SIZE 63
+#define ARG_SIZE 255
+
+#define STR(a) #a
+#define XSTR(a) STR(a)
+
+ char cmd[COMMAND_SIZE + 1];
+ char arg1[ARG_SIZE + 1];
+ char arg2[ARG_SIZE + 1];
+ char* argv[3] = {cmd, arg1, arg2};
+
+ // make sure to have a proper terminating character if reaching the limit
+ cmd[COMMAND_SIZE] = 0;
+ arg1[ARG_SIZE] = 0;
+ arg2[ARG_SIZE] = 0;
+
+ // Undo all set breakpoints while running in the debugger shell. This will
+ // make them invisible to all commands.
+ UndoBreakpoints();
+ // Disable tracing while simulating
+ bool trace = ::v8::internal::FLAG_trace_sim;
+ ::v8::internal::FLAG_trace_sim = false;
+
+ while (!done && !sim_->has_bad_pc()) {
+ if (last_pc != sim_->get_pc()) {
+ disasm::NameConverter converter;
+ disasm::Disassembler dasm(converter);
+ // use a reasonably large buffer
+ v8::internal::EmbeddedVector<char, 256> buffer;
+ dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(sim_->get_pc()));
+ PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(), buffer.start());
+ last_pc = sim_->get_pc();
+ }
+ char* line = ReadLine("sim> ");
+ if (line == NULL) {
+ break;
+ } else {
+ char* last_input = sim_->last_debugger_input();
+ if (strcmp(line, "\n") == 0 && last_input != NULL) {
+ line = last_input;
+ } else {
+ // Ownership is transferred to sim_;
+ sim_->set_last_debugger_input(line);
+ }
+ // Use sscanf to parse the individual parts of the command line. At the
+ // moment no command expects more than two parameters.
+ int argc = SScanF(line,
+ "%" XSTR(COMMAND_SIZE) "s "
+ "%" XSTR(ARG_SIZE) "s "
+ "%" XSTR(ARG_SIZE) "s",
+ cmd, arg1, arg2);
+ if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
+ intptr_t value;
+
+ // If at a breakpoint, proceed past it.
+ if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
+ ->InstructionBits() == 0x7d821008) {
+ sim_->set_pc(sim_->get_pc() + sizeof(FourByteInstr));
+ } else {
+ sim_->ExecuteInstruction(
+ reinterpret_cast<Instruction*>(sim_->get_pc()));
+ }
+
+ if (argc == 2 && last_pc != sim_->get_pc() && GetValue(arg1, &value)) {
+ for (int i = 1; (!sim_->has_bad_pc()) && i < value; i++) {
+ disasm::NameConverter converter;
+ disasm::Disassembler dasm(converter);
+ // use a reasonably large buffer
+ v8::internal::EmbeddedVector<char, 256> buffer;
+ dasm.InstructionDecode(buffer,
+ reinterpret_cast<byte*>(sim_->get_pc()));
+ PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(),
+ buffer.start());
+ sim_->ExecuteInstruction(
+ reinterpret_cast<Instruction*>(sim_->get_pc()));
+ }
+ }
+ } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
+ // If at a breakpoint, proceed past it.
+ if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
+ ->InstructionBits() == 0x7d821008) {
+ sim_->set_pc(sim_->get_pc() + sizeof(FourByteInstr));
+ } else {
+ // Execute the one instruction we broke at with breakpoints disabled.
+ sim_->ExecuteInstruction(
+ reinterpret_cast<Instruction*>(sim_->get_pc()));
+ }
+ // Leave the debugger shell.
+ done = true;
+ } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
+ if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) {
+ intptr_t value;
+ double dvalue;
+ if (strcmp(arg1, "all") == 0) {
+ for (int i = 0; i < kNumRegisters; i++) {
+ value = GetRegisterValue(i);
+ PrintF(" %3s: %08" V8PRIxPTR,
+ Register::from_code(i).ToString(), value);
+ if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
+ (i % 2) == 0) {
+ dvalue = GetRegisterPairDoubleValue(i);
+ PrintF(" (%f)\n", dvalue);
+ } else if (i != 0 && !((i + 1) & 3)) {
+ PrintF("\n");
+ }
+ }
+ PrintF(" pc: %08" V8PRIxPTR " cr: %08x\n", sim_->special_reg_pc_,
+ sim_->condition_reg_);
+ } else if (strcmp(arg1, "alld") == 0) {
+ for (int i = 0; i < kNumRegisters; i++) {
+ value = GetRegisterValue(i);
+ PrintF(" %3s: %08" V8PRIxPTR " %11" V8PRIdPTR,
+ Register::from_code(i).ToString(), value, value);
+ if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
+ (i % 2) == 0) {
+ dvalue = GetRegisterPairDoubleValue(i);
+ PrintF(" (%f)\n", dvalue);
+ } else if (!((i + 1) % 2)) {
+ PrintF("\n");
+ }
+ }
+ PrintF(" pc: %08" V8PRIxPTR " cr: %08x\n", sim_->special_reg_pc_,
+ sim_->condition_reg_);
+ } else if (strcmp(arg1, "allf") == 0) {
+ for (int i = 0; i < DoubleRegister::kNumRegisters; i++) {
+ float fvalue = GetFPFloatRegisterValue(i);
+ uint32_t as_words = bit_cast<uint32_t>(fvalue);
+ PrintF("%3s: %f 0x%08x\n",
+ DoubleRegister::from_code(i).ToString(), fvalue, as_words);
+ }
+ } else if (strcmp(arg1, "alld") == 0) {
+ for (int i = 0; i < DoubleRegister::kNumRegisters; i++) {
+ dvalue = GetFPDoubleRegisterValue(i);
+ uint64_t as_words = bit_cast<uint64_t>(dvalue);
+ PrintF("%3s: %f 0x%08x %08x\n",
+ DoubleRegister::from_code(i).ToString(), dvalue,
+ static_cast<uint32_t>(as_words >> 32),
+ static_cast<uint32_t>(as_words & 0xffffffff));
+ }
+ } else if (arg1[0] == 'r' &&
+ (arg1[1] >= '0' && arg1[1] <= '2' &&
+ (arg1[2] == '\0' || (arg1[2] >= '0' && arg1[2] <= '5' &&
+ arg1[3] == '\0')))) {
+ int regnum = strtoul(&arg1[1], 0, 10);
+ if (regnum != kNoRegister) {
+ value = GetRegisterValue(regnum);
+ PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
+ value);
+ } else {
+ PrintF("%s unrecognized\n", arg1);
+ }
+ } else {
+ if (GetValue(arg1, &value)) {
+ PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
+ value);
+ } else if (GetFPDoubleValue(arg1, &dvalue)) {
+ uint64_t as_words = bit_cast<uint64_t>(dvalue);
+ PrintF("%s: %f 0x%08x %08x\n", arg1, dvalue,
+ static_cast<uint32_t>(as_words >> 32),
+ static_cast<uint32_t>(as_words & 0xffffffff));
+ } else {
+ PrintF("%s unrecognized\n", arg1);
+ }
+ }
+ } else {
+ PrintF("print <register>\n");
+ }
+ } else if ((strcmp(cmd, "po") == 0) ||
+ (strcmp(cmd, "printobject") == 0)) {
+ if (argc == 2) {
+ intptr_t value;
+ OFStream os(stdout);
+ if (GetValue(arg1, &value)) {
+ Object* obj = reinterpret_cast<Object*>(value);
+ os << arg1 << ": \n";
+#ifdef DEBUG
+ obj->Print(os);
+ os << "\n";
+#else
+ os << Brief(obj) << "\n";
+#endif
+ } else {
+ os << arg1 << " unrecognized\n";
+ }
+ } else {
+ PrintF("printobject <value>\n");
+ }
+ } else if (strcmp(cmd, "setpc") == 0) {
+ intptr_t value;
+
+ if (!GetValue(arg1, &value)) {
+ PrintF("%s unrecognized\n", arg1);
+ continue;
+ }
+ sim_->set_pc(value);
+ } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
+ intptr_t* cur = NULL;
+ intptr_t* end = NULL;
+ int next_arg = 1;
+
+ if (strcmp(cmd, "stack") == 0) {
+ cur = reinterpret_cast<intptr_t*>(sim_->get_register(Simulator::sp));
+ } else { // "mem"
+ intptr_t value;
+ if (!GetValue(arg1, &value)) {
+ PrintF("%s unrecognized\n", arg1);
+ continue;
+ }
+ cur = reinterpret_cast<intptr_t*>(value);
+ next_arg++;
+ }
+
+ intptr_t words; // likely inaccurate variable name for 64bit
+ if (argc == next_arg) {
+ words = 10;
+ } else {
+ if (!GetValue(argv[next_arg], &words)) {
+ words = 10;
+ }
+ }
+ end = cur + words;
+
+ while (cur < end) {
+ PrintF(" 0x%08" V8PRIxPTR ": 0x%08" V8PRIxPTR " %10" V8PRIdPTR,
+ reinterpret_cast<intptr_t>(cur), *cur, *cur);
+ HeapObject* obj = reinterpret_cast<HeapObject*>(*cur);
+ intptr_t value = *cur;
+ Heap* current_heap = sim_->isolate_->heap();
+ if (((value & 1) == 0) ||
+ current_heap->ContainsSlow(obj->address())) {
+ PrintF("(smi %d)", PlatformSmiTagging::SmiToInt(obj));
+ } else if (current_heap->Contains(obj)) {
+ PrintF(" (");
+ obj->ShortPrint();
+ PrintF(")");
+ }
+ PrintF("\n");
+ cur++;
+ }
+ } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) {
+ disasm::NameConverter converter;
+ disasm::Disassembler dasm(converter);
+ // use a reasonably large buffer
+ v8::internal::EmbeddedVector<char, 256> buffer;
+
+ byte* prev = NULL;
+ byte* cur = NULL;
+ // Default number of instructions to disassemble.
+ int32_t numInstructions = 10;
+
+ if (argc == 1) {
+ cur = reinterpret_cast<byte*>(sim_->get_pc());
+ } else if (argc == 2) {
+ int regnum = Registers::Number(arg1);
+ if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) {
+ // The argument is an address or a register name.
+ intptr_t value;
+ if (GetValue(arg1, &value)) {
+ cur = reinterpret_cast<byte*>(value);
+ }
+ } else {
+ // The argument is the number of instructions.
+ intptr_t value;
+ if (GetValue(arg1, &value)) {
+ cur = reinterpret_cast<byte*>(sim_->get_pc());
+ // Disassemble <arg1> instructions.
+ numInstructions = static_cast<int32_t>(value);
+ }
+ }
+ } else {
+ intptr_t value1;
+ intptr_t value2;
+ if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
+ cur = reinterpret_cast<byte*>(value1);
+ // Disassemble <arg2> instructions.
+ numInstructions = static_cast<int32_t>(value2);
+ }
+ }
+
+ while (numInstructions > 0) {
+ prev = cur;
+ cur += dasm.InstructionDecode(buffer, cur);
+ PrintF(" 0x%08" V8PRIxPTR " %s\n", reinterpret_cast<intptr_t>(prev),
+ buffer.start());
+ numInstructions--;
+ }
+ } else if (strcmp(cmd, "gdb") == 0) {
+ PrintF("relinquishing control to gdb\n");
+ v8::base::OS::DebugBreak();
+ PrintF("regaining control from gdb\n");
+ } else if (strcmp(cmd, "break") == 0) {
+ if (argc == 2) {
+ intptr_t value;
+ if (GetValue(arg1, &value)) {
+ if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
+ PrintF("setting breakpoint failed\n");
+ }
+ } else {
+ PrintF("%s unrecognized\n", arg1);
+ }
+ } else {
+ PrintF("break <address>\n");
+ }
+ } else if (strcmp(cmd, "del") == 0) {
+ if (!DeleteBreakpoint(NULL)) {
+ PrintF("deleting breakpoint failed\n");
+ }
+ } else if (strcmp(cmd, "cr") == 0) {
+ PrintF("Condition reg: %08x\n", sim_->condition_reg_);
+ } else if (strcmp(cmd, "stop") == 0) {
+ intptr_t value;
+ intptr_t stop_pc =
+ sim_->get_pc() - (sizeof(FourByteInstr) + kPointerSize);
+ Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc);
+ Instruction* msg_address =
+ reinterpret_cast<Instruction*>(stop_pc + sizeof(FourByteInstr));
+ if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
+ // Remove the current stop.
+ if (sim_->isStopInstruction(stop_instr)) {
+ stop_instr->SetInstructionBits(kNopInstr);
+ msg_address->SetInstructionBits(kNopInstr);
+ } else {
+ PrintF("Not at debugger stop.\n");
+ }
+ } else if (argc == 3) {
+ // Print information about all/the specified breakpoint(s).
+ if (strcmp(arg1, "info") == 0) {
+ if (strcmp(arg2, "all") == 0) {
+ PrintF("Stop information:\n");
+ for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
+ sim_->PrintStopInfo(i);
+ }
+ } else if (GetValue(arg2, &value)) {
+ sim_->PrintStopInfo(value);
+ } else {
+ PrintF("Unrecognized argument.\n");
+ }
+ } else if (strcmp(arg1, "enable") == 0) {
+ // Enable all/the specified breakpoint(s).
+ if (strcmp(arg2, "all") == 0) {
+ for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
+ sim_->EnableStop(i);
+ }
+ } else if (GetValue(arg2, &value)) {
+ sim_->EnableStop(value);
+ } else {
+ PrintF("Unrecognized argument.\n");
+ }
+ } else if (strcmp(arg1, "disable") == 0) {
+ // Disable all/the specified breakpoint(s).
+ if (strcmp(arg2, "all") == 0) {
+ for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
+ sim_->DisableStop(i);
+ }
+ } else if (GetValue(arg2, &value)) {
+ sim_->DisableStop(value);
+ } else {
+ PrintF("Unrecognized argument.\n");
+ }
+ }
+ } else {
+ PrintF("Wrong usage. Use help command for more information.\n");
+ }
+ } else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) {
+ ::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim;
+ PrintF("Trace of executed instructions is %s\n",
+ ::v8::internal::FLAG_trace_sim ? "on" : "off");
+ } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
+ PrintF("cont\n");
+ PrintF(" continue execution (alias 'c')\n");
+ PrintF("stepi [num instructions]\n");
+ PrintF(" step one/num instruction(s) (alias 'si')\n");
+ PrintF("print <register>\n");
+ PrintF(" print register content (alias 'p')\n");
+ PrintF(" use register name 'all' to display all integer registers\n");
+ PrintF(
+ " use register name 'alld' to display integer registers "
+ "with decimal values\n");
+ PrintF(" use register name 'rN' to display register number 'N'\n");
+ PrintF(" add argument 'fp' to print register pair double values\n");
+ PrintF(
+ " use register name 'allf' to display floating-point "
+ "registers\n");
+ PrintF("printobject <register>\n");
+ PrintF(" print an object from a register (alias 'po')\n");
+ PrintF("cr\n");
+ PrintF(" print condition register\n");
+ PrintF("stack [<num words>]\n");
+ PrintF(" dump stack content, default dump 10 words)\n");
+ PrintF("mem <address> [<num words>]\n");
+ PrintF(" dump memory content, default dump 10 words)\n");
+ PrintF("disasm [<instructions>]\n");
+ PrintF("disasm [<address/register>]\n");
+ PrintF("disasm [[<address/register>] <instructions>]\n");
+ PrintF(" disassemble code, default is 10 instructions\n");
+ PrintF(" from pc (alias 'di')\n");
+ PrintF("gdb\n");
+ PrintF(" enter gdb\n");
+ PrintF("break <address>\n");
+ PrintF(" set a break point on the address\n");
+ PrintF("del\n");
+ PrintF(" delete the breakpoint\n");
+ PrintF("trace (alias 't')\n");
+ PrintF(" toogle the tracing of all executed statements\n");
+ PrintF("stop feature:\n");
+ PrintF(" Description:\n");
+ PrintF(" Stops are debug instructions inserted by\n");
+ PrintF(" the Assembler::stop() function.\n");
+ PrintF(" When hitting a stop, the Simulator will\n");
+ PrintF(" stop and and give control to the S390Debugger.\n");
+ PrintF(" The first %d stop codes are watched:\n",
+ Simulator::kNumOfWatchedStops);
+ PrintF(" - They can be enabled / disabled: the Simulator\n");
+ PrintF(" will / won't stop when hitting them.\n");
+ PrintF(" - The Simulator keeps track of how many times they \n");
+ PrintF(" are met. (See the info command.) Going over a\n");
+ PrintF(" disabled stop still increases its counter. \n");
+ PrintF(" Commands:\n");
+ PrintF(" stop info all/<code> : print infos about number <code>\n");
+ PrintF(" or all stop(s).\n");
+ PrintF(" stop enable/disable all/<code> : enables / disables\n");
+ PrintF(" all or number <code> stop(s)\n");
+ PrintF(" stop unstop\n");
+ PrintF(" ignore the stop instruction at the current location\n");
+ PrintF(" from now on\n");
+ } else {
+ PrintF("Unknown command: %s\n", cmd);
+ }
+ }
+ }
+
+ // Add all the breakpoints back to stop execution and enter the debugger
+ // shell when hit.
+ RedoBreakpoints();
+ // Restore tracing
+ ::v8::internal::FLAG_trace_sim = trace;
+
+#undef COMMAND_SIZE
+#undef ARG_SIZE
+
+#undef STR
+#undef XSTR
+}
+
+static bool ICacheMatch(void* one, void* two) {
+ DCHECK((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0);
+ DCHECK((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0);
+ return one == two;
+}
+
+static uint32_t ICacheHash(void* key) {
+ return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
+}
+
+static bool AllOnOnePage(uintptr_t start, int size) {
+ intptr_t start_page = (start & ~CachePage::kPageMask);
+ intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
+ return start_page == end_page;
+}
+
+void Simulator::set_last_debugger_input(char* input) {
+ DeleteArray(last_debugger_input_);
+ last_debugger_input_ = input;
+}
+
+void Simulator::FlushICache(v8::internal::HashMap* i_cache, void* start_addr,
+ size_t size) {
+ intptr_t start = reinterpret_cast<intptr_t>(start_addr);
+ int intra_line = (start & CachePage::kLineMask);
+ start -= intra_line;
+ size += intra_line;
+ size = ((size - 1) | CachePage::kLineMask) + 1;
+ int offset = (start & CachePage::kPageMask);
+ while (!AllOnOnePage(start, size - 1)) {
+ int bytes_to_flush = CachePage::kPageSize - offset;
+ FlushOnePage(i_cache, start, bytes_to_flush);
+ start += bytes_to_flush;
+ size -= bytes_to_flush;
+ DCHECK_EQ(0, static_cast<int>(start & CachePage::kPageMask));
+ offset = 0;
+ }
+ if (size != 0) {
+ FlushOnePage(i_cache, start, size);
+ }
+}
+
+CachePage* Simulator::GetCachePage(v8::internal::HashMap* i_cache, void* page) {
+ v8::internal::HashMap::Entry* entry =
+ i_cache->LookupOrInsert(page, ICacheHash(page));
+ if (entry->value == NULL) {
+ CachePage* new_page = new CachePage();
+ entry->value = new_page;
+ }
+ return reinterpret_cast<CachePage*>(entry->value);
+}
+
+// Flush from start up to and not including start + size.
+void Simulator::FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start,
+ int size) {
+ DCHECK(size <= CachePage::kPageSize);
+ DCHECK(AllOnOnePage(start, size - 1));
+ DCHECK((start & CachePage::kLineMask) == 0);
+ DCHECK((size & CachePage::kLineMask) == 0);
+ void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
+ int offset = (start & CachePage::kPageMask);
+ CachePage* cache_page = GetCachePage(i_cache, page);
+ char* valid_bytemap = cache_page->ValidityByte(offset);
+ memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
+}
+
+void Simulator::CheckICache(v8::internal::HashMap* i_cache,
+ Instruction* instr) {
+ intptr_t address = reinterpret_cast<intptr_t>(instr);
+ void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
+ void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
+ int offset = (address & CachePage::kPageMask);
+ CachePage* cache_page = GetCachePage(i_cache, page);
+ char* cache_valid_byte = cache_page->ValidityByte(offset);
+ bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
+ char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
+ if (cache_hit) {
+ // Check that the data in memory matches the contents of the I-cache.
+ CHECK_EQ(memcmp(reinterpret_cast<void*>(instr),
+ cache_page->CachedData(offset), sizeof(FourByteInstr)),
+ 0);
+ } else {
+ // Cache miss. Load memory into the cache.
+ memcpy(cached_line, line, CachePage::kLineLength);
+ *cache_valid_byte = CachePage::LINE_VALID;
+ }
+}
+
+void Simulator::Initialize(Isolate* isolate) {
+ if (isolate->simulator_initialized()) return;
+ isolate->set_simulator_initialized(true);
+ ::v8::internal::ExternalReference::set_redirector(isolate,
+ &RedirectExternalReference);
+}
+
+Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
+ i_cache_ = isolate_->simulator_i_cache();
+ if (i_cache_ == NULL) {
+ i_cache_ = new v8::internal::HashMap(&ICacheMatch);
+ isolate_->set_simulator_i_cache(i_cache_);
+ }
+ Initialize(isolate);
+// Set up simulator support first. Some of this information is needed to
+// setup the architecture state.
+#if V8_TARGET_ARCH_S390X
+ size_t stack_size = FLAG_sim_stack_size * KB;
+#else
+ size_t stack_size = MB; // allocate 1MB for stack
+#endif
+ stack_size += 2 * stack_protection_size_;
+ stack_ = reinterpret_cast<char*>(malloc(stack_size));
+ pc_modified_ = false;
+ icount_ = 0;
+ break_pc_ = NULL;
+ break_instr_ = 0;
+
+// make sure our register type can hold exactly 4/8 bytes
+#ifdef V8_TARGET_ARCH_S390X
+ DCHECK(sizeof(intptr_t) == 8);
+#else
+ DCHECK(sizeof(intptr_t) == 4);
+#endif
+ // Set up architecture state.
+ // All registers are initialized to zero to start with.
+ for (int i = 0; i < kNumGPRs; i++) {
+ registers_[i] = 0;
+ }
+ condition_reg_ = 0;
+ special_reg_pc_ = 0;
+
+ // Initializing FP registers.
+ for (int i = 0; i < kNumFPRs; i++) {
+ fp_registers_[i] = 0.0;
+ }
+
+ // The sp is initialized to point to the bottom (high address) of the
+ // allocated stack area. To be safe in potential stack underflows we leave
+ // some buffer below.
+ registers_[sp] =
+ reinterpret_cast<intptr_t>(stack_) + stack_size - stack_protection_size_;
+ InitializeCoverage();
+
+ last_debugger_input_ = NULL;
+}
+
+Simulator::~Simulator() { free(stack_); }
+
+// When the generated code calls an external reference we need to catch that in
+// the simulator. The external reference will be a function compiled for the
+// host architecture. We need to call that function instead of trying to
+// execute it with the simulator. We do that by redirecting the external
+// reference to a svc (Supervisor Call) instruction that is handled by
+// the simulator. We write the original destination of the jump just at a known
+// offset from the svc instruction so the simulator knows what to call.
+class Redirection {
+ public:
+ Redirection(Isolate* isolate, void* external_function,
+ ExternalReference::Type type)
+ : external_function_(external_function),
+// we use TRAP4 here (0xBF22)
+#if V8_TARGET_LITTLE_ENDIAN
+ swi_instruction_(0x1000FFB2),
+#else
+ swi_instruction_(0xB2FF0000 | kCallRtRedirected),
+#endif
+ type_(type),
+ next_(NULL) {
+ next_ = isolate->simulator_redirection();
+ Simulator::current(isolate)->FlushICache(
+ isolate->simulator_i_cache(),
+ reinterpret_cast<void*>(&swi_instruction_), sizeof(FourByteInstr));
+ isolate->set_simulator_redirection(this);
+ if (ABI_USES_FUNCTION_DESCRIPTORS) {
+ function_descriptor_[0] = reinterpret_cast<intptr_t>(&swi_instruction_);
+ function_descriptor_[1] = 0;
+ function_descriptor_[2] = 0;
+ }
+ }
+
+ void* address() {
+ if (ABI_USES_FUNCTION_DESCRIPTORS) {
+ return reinterpret_cast<void*>(function_descriptor_);
+ } else {
+ return reinterpret_cast<void*>(&swi_instruction_);
+ }
+ }
+
+ void* external_function() { return external_function_; }
+ ExternalReference::Type type() { return type_; }
+
+ static Redirection* Get(Isolate* isolate, void* external_function,
+ ExternalReference::Type type) {
+ Redirection* current = isolate->simulator_redirection();
+ for (; current != NULL; current = current->next_) {
+ if (current->external_function_ == external_function) {
+ DCHECK_EQ(current->type(), type);
+ return current;
+ }
+ }
+ return new Redirection(isolate, external_function, type);
+ }
+
+ static Redirection* FromSwiInstruction(Instruction* swi_instruction) {
+ char* addr_of_swi = reinterpret_cast<char*>(swi_instruction);
+ char* addr_of_redirection =
+ addr_of_swi - offsetof(Redirection, swi_instruction_);
+ return reinterpret_cast<Redirection*>(addr_of_redirection);
+ }
+
+ static Redirection* FromAddress(void* address) {
+ int delta = ABI_USES_FUNCTION_DESCRIPTORS
+ ? offsetof(Redirection, function_descriptor_)
+ : offsetof(Redirection, swi_instruction_);
+ char* addr_of_redirection = reinterpret_cast<char*>(address) - delta;
+ return reinterpret_cast<Redirection*>(addr_of_redirection);
+ }
+
+ static void* ReverseRedirection(intptr_t reg) {
+ Redirection* redirection = FromAddress(reinterpret_cast<void*>(reg));
+ return redirection->external_function();
+ }
+
+ static void DeleteChain(Redirection* redirection) {
+ while (redirection != nullptr) {
+ Redirection* next = redirection->next_;
+ delete redirection;
+ redirection = next;
+ }
+ }
+
+ private:
+ void* external_function_;
+ uint32_t swi_instruction_;
+ ExternalReference::Type type_;
+ Redirection* next_;
+ intptr_t function_descriptor_[3];
+};
+
+// static
+void Simulator::TearDown(HashMap* i_cache, Redirection* first) {
+ Redirection::DeleteChain(first);
+ if (i_cache != nullptr) {
+ for (HashMap::Entry* entry = i_cache->Start(); entry != nullptr;
+ entry = i_cache->Next(entry)) {
+ delete static_cast<CachePage*>(entry->value);
+ }
+ delete i_cache;
+ }
+}
+
+void* Simulator::RedirectExternalReference(Isolate* isolate,
+ void* external_function,
+ ExternalReference::Type type) {
+ Redirection* redirection = Redirection::Get(isolate, external_function, type);
+ return redirection->address();
+}
+
+// Get the active Simulator for the current thread.
+Simulator* Simulator::current(Isolate* isolate) {
+ v8::internal::Isolate::PerIsolateThreadData* isolate_data =
+ isolate->FindOrAllocatePerThreadDataForThisThread();
+ DCHECK(isolate_data != NULL);
+
+ Simulator* sim = isolate_data->simulator();
+ if (sim == NULL) {
+ // TODO(146): delete the simulator object when a thread/isolate goes away.
+ sim = new Simulator(isolate);
+ isolate_data->set_simulator(sim);
+ }
+ return sim;
+}
+
+// Sets the register in the architecture state.
+void Simulator::set_register(int reg, uint64_t value) {
+ DCHECK((reg >= 0) && (reg < kNumGPRs));
+ registers_[reg] = value;
+}
+
+// Get the register from the architecture state.
+uint64_t Simulator::get_register(int reg) const {
+ DCHECK((reg >= 0) && (reg < kNumGPRs));
+ // Stupid code added to avoid bug in GCC.
+ // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
+ if (reg >= kNumGPRs) return 0;
+ // End stupid code.
+ return registers_[reg];
+}
+
+template <typename T>
+T Simulator::get_low_register(int reg) const {
+ DCHECK((reg >= 0) && (reg < kNumGPRs));
+ // Stupid code added to avoid bug in GCC.
+ // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
+ if (reg >= kNumGPRs) return 0;
+ // End stupid code.
+ return static_cast<T>(registers_[reg] & 0xFFFFFFFF);
+}
+
+template <typename T>
+T Simulator::get_high_register(int reg) const {
+ DCHECK((reg >= 0) && (reg < kNumGPRs));
+ // Stupid code added to avoid bug in GCC.
+ // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
+ if (reg >= kNumGPRs) return 0;
+ // End stupid code.
+ return static_cast<T>(registers_[reg] >> 32);
+}
+
+void Simulator::set_low_register(int reg, uint32_t value) {
+ uint64_t shifted_val = static_cast<uint64_t>(value);
+ uint64_t orig_val = static_cast<uint64_t>(registers_[reg]);
+ uint64_t result = (orig_val >> 32 << 32) | shifted_val;
+ registers_[reg] = result;
+}
+
+void Simulator::set_high_register(int reg, uint32_t value) {
+ uint64_t shifted_val = static_cast<uint64_t>(value) << 32;
+ uint64_t orig_val = static_cast<uint64_t>(registers_[reg]);
+ uint64_t result = (orig_val & 0xFFFFFFFF) | shifted_val;
+ registers_[reg] = result;
+}
+
+double Simulator::get_double_from_register_pair(int reg) {
+ DCHECK((reg >= 0) && (reg < kNumGPRs) && ((reg % 2) == 0));
+
+ double dm_val = 0.0;
+#if 0 && !V8_TARGET_ARCH_S390X // doesn't make sense in 64bit mode
+ // Read the bits from the unsigned integer register_[] array
+ // into the double precision floating point value and return it.
+ char buffer[sizeof(fp_registers_[0])];
+ memcpy(buffer, &registers_[reg], 2 * sizeof(registers_[0]));
+ memcpy(&dm_val, buffer, 2 * sizeof(registers_[0]));
+#endif
+ return (dm_val);
+}
+
+// Raw access to the PC register.
+void Simulator::set_pc(intptr_t value) {
+ pc_modified_ = true;
+ special_reg_pc_ = value;
+}
+
+bool Simulator::has_bad_pc() const {
+ return ((special_reg_pc_ == bad_lr) || (special_reg_pc_ == end_sim_pc));
+}
+
+// Raw access to the PC register without the special adjustment when reading.
+intptr_t Simulator::get_pc() const { return special_reg_pc_; }
+
+// Runtime FP routines take:
+// - two double arguments
+// - one double argument and zero or one integer arguments.
+// All are consructed here from d1, d2 and r2.
+void Simulator::GetFpArgs(double* x, double* y, intptr_t* z) {
+ *x = get_double_from_d_register(0);
+ *y = get_double_from_d_register(2);
+ *z = get_register(2);
+}
+
+// The return value is in d0.
+void Simulator::SetFpResult(const double& result) {
+ set_d_register_from_double(0, result);
+}
+
+void Simulator::TrashCallerSaveRegisters() {
+// We don't trash the registers with the return value.
+#if 0 // A good idea to trash volatile registers, needs to be done
+ registers_[2] = 0x50Bad4U;
+ registers_[3] = 0x50Bad4U;
+ registers_[12] = 0x50Bad4U;
+#endif
+}
+
+uint32_t Simulator::ReadWU(intptr_t addr, Instruction* instr) {
+ uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
+ return *ptr;
+}
+
+int32_t Simulator::ReadW(intptr_t addr, Instruction* instr) {
+ int32_t* ptr = reinterpret_cast<int32_t*>(addr);
+ return *ptr;
+}
+
+void Simulator::WriteW(intptr_t addr, uint32_t value, Instruction* instr) {
+ uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
+ *ptr = value;
+ return;
+}
+
+void Simulator::WriteW(intptr_t addr, int32_t value, Instruction* instr) {
+ int32_t* ptr = reinterpret_cast<int32_t*>(addr);
+ *ptr = value;
+ return;
+}
+
+uint16_t Simulator::ReadHU(intptr_t addr, Instruction* instr) {
+ uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
+ return *ptr;
+}
+
+int16_t Simulator::ReadH(intptr_t addr, Instruction* instr) {
+ int16_t* ptr = reinterpret_cast<int16_t*>(addr);
+ return *ptr;
+}
+
+void Simulator::WriteH(intptr_t addr, uint16_t value, Instruction* instr) {
+ uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
+ *ptr = value;
+ return;
+}
+
+void Simulator::WriteH(intptr_t addr, int16_t value, Instruction* instr) {
+ int16_t* ptr = reinterpret_cast<int16_t*>(addr);
+ *ptr = value;
+ return;
+}
+
+uint8_t Simulator::ReadBU(intptr_t addr) {
+ uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
+ return *ptr;
+}
+
+int8_t Simulator::ReadB(intptr_t addr) {
+ int8_t* ptr = reinterpret_cast<int8_t*>(addr);
+ return *ptr;
+}
+
+void Simulator::WriteB(intptr_t addr, uint8_t value) {
+ uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
+ *ptr = value;
+}
+
+void Simulator::WriteB(intptr_t addr, int8_t value) {
+ int8_t* ptr = reinterpret_cast<int8_t*>(addr);
+ *ptr = value;
+}
+
+int64_t Simulator::ReadDW(intptr_t addr) {
+ int64_t* ptr = reinterpret_cast<int64_t*>(addr);
+ return *ptr;
+}
+
+void Simulator::WriteDW(intptr_t addr, int64_t value) {
+ int64_t* ptr = reinterpret_cast<int64_t*>(addr);
+ *ptr = value;
+ return;
+}
+
+/**
+ * Reads a double value from memory at given address.
+ */
+double Simulator::ReadDouble(intptr_t addr) {
+ double* ptr = reinterpret_cast<double*>(addr);
+ return *ptr;
+}
+
+// Returns the limit of the stack area to enable checking for stack overflows.
+uintptr_t Simulator::StackLimit(uintptr_t c_limit) const {
+ // The simulator uses a separate JS stack. If we have exhausted the C stack,
+ // we also drop down the JS limit to reflect the exhaustion on the JS stack.
+ if (GetCurrentStackPosition() < c_limit) {
+ return reinterpret_cast<uintptr_t>(get_sp());
+ }
+
+ // Otherwise the limit is the JS stack. Leave a safety margin to prevent
+ // overrunning the stack when pushing values.
+ return reinterpret_cast<uintptr_t>(stack_) + stack_protection_size_;
+}
+
+// Unsupported instructions use Format to print an error and stop execution.
+void Simulator::Format(Instruction* instr, const char* format) {
+ PrintF("Simulator found unsupported instruction:\n 0x%08" V8PRIxPTR ": %s\n",
+ reinterpret_cast<intptr_t>(instr), format);
+ UNIMPLEMENTED();
+}
+
+// Calculate C flag value for additions.
+bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) {
+ uint32_t uleft = static_cast<uint32_t>(left);
+ uint32_t uright = static_cast<uint32_t>(right);
+ uint32_t urest = 0xffffffffU - uleft;
+
+ return (uright > urest) ||
+ (carry && (((uright + 1) > urest) || (uright > (urest - 1))));
+}
+
+// Calculate C flag value for subtractions.
+bool Simulator::BorrowFrom(int32_t left, int32_t right) {
+ uint32_t uleft = static_cast<uint32_t>(left);
+ uint32_t uright = static_cast<uint32_t>(right);
+
+ return (uright > uleft);
+}
+
+// Calculate V flag value for additions and subtractions.
+bool Simulator::OverflowFrom(int32_t alu_out, int32_t left, int32_t right,
+ bool addition) {
+ bool overflow;
+ if (addition) {
+ // operands have the same sign
+ overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0))
+ // and operands and result have different sign
+ && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
+ } else {
+ // operands have different signs
+ overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0))
+ // and first operand and result have different signs
+ && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
+ }
+ return overflow;
+}
+
+#if V8_TARGET_ARCH_S390X
+static void decodeObjectPair(ObjectPair* pair, intptr_t* x, intptr_t* y) {
+ *x = reinterpret_cast<intptr_t>(pair->x);
+ *y = reinterpret_cast<intptr_t>(pair->y);
+}
+#else
+static void decodeObjectPair(ObjectPair* pair, intptr_t* x, intptr_t* y) {
+#if V8_TARGET_BIG_ENDIAN
+ *x = static_cast<int32_t>(*pair >> 32);
+ *y = static_cast<int32_t>(*pair);
+#else
+ *x = static_cast<int32_t>(*pair);
+ *y = static_cast<int32_t>(*pair >> 32);
+#endif
+}
+#endif
+
+// Calls into the V8 runtime.
+typedef intptr_t (*SimulatorRuntimeCall)(intptr_t arg0, intptr_t arg1,
+ intptr_t arg2, intptr_t arg3,
+ intptr_t arg4, intptr_t arg5);
+typedef ObjectPair (*SimulatorRuntimePairCall)(intptr_t arg0, intptr_t arg1,
+ intptr_t arg2, intptr_t arg3,
+ intptr_t arg4, intptr_t arg5);
+typedef ObjectTriple (*SimulatorRuntimeTripleCall)(intptr_t arg0, intptr_t arg1,
+ intptr_t arg2, intptr_t arg3,
+ intptr_t arg4,
+ intptr_t arg5);
+
+// These prototypes handle the four types of FP calls.
+typedef int (*SimulatorRuntimeCompareCall)(double darg0, double darg1);
+typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1);
+typedef double (*SimulatorRuntimeFPCall)(double darg0);
+typedef double (*SimulatorRuntimeFPIntCall)(double darg0, intptr_t arg0);
+
+// This signature supports direct call in to API function native callback
+// (refer to InvocationCallback in v8.h).
+typedef void (*SimulatorRuntimeDirectApiCall)(intptr_t arg0);
+typedef void (*SimulatorRuntimeProfilingApiCall)(intptr_t arg0, void* arg1);
+
+// This signature supports direct call to accessor getter callback.
+typedef void (*SimulatorRuntimeDirectGetterCall)(intptr_t arg0, intptr_t arg1);
+typedef void (*SimulatorRuntimeProfilingGetterCall)(intptr_t arg0,
+ intptr_t arg1, void* arg2);
+
+// Software interrupt instructions are used by the simulator to call into the
+// C-based V8 runtime.
+void Simulator::SoftwareInterrupt(Instruction* instr) {
+ int svc = instr->SvcValue();
+ switch (svc) {
+ case kCallRtRedirected: {
+ // Check if stack is aligned. Error if not aligned is reported below to
+ // include information on the function called.
+ bool stack_aligned =
+ (get_register(sp) & (::v8::internal::FLAG_sim_stack_alignment - 1)) ==
+ 0;
+ Redirection* redirection = Redirection::FromSwiInstruction(instr);
+ const int kArgCount = 6;
+ int arg0_regnum = 2;
+ intptr_t result_buffer = 0;
+ bool uses_result_buffer =
+ redirection->type() == ExternalReference::BUILTIN_CALL_TRIPLE ||
+ (redirection->type() == ExternalReference::BUILTIN_CALL_PAIR &&
+ !ABI_RETURNS_OBJECTPAIR_IN_REGS);
+ if (uses_result_buffer) {
+ result_buffer = get_register(r2);
+ arg0_regnum++;
+ }
+ intptr_t arg[kArgCount];
+ for (int i = 0; i < kArgCount - 1; i++) {
+ arg[i] = get_register(arg0_regnum + i);
+ }
+ intptr_t* stack_pointer = reinterpret_cast<intptr_t*>(get_register(sp));
+ arg[5] = stack_pointer[kCalleeRegisterSaveAreaSize / kPointerSize];
+ bool fp_call =
+ (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
+ (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
+ (redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
+ (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);
+
+ // Place the return address on the stack, making the call GC safe.
+ *reinterpret_cast<intptr_t*>(get_register(sp) +
+ kStackFrameRASlot * kPointerSize) =
+ get_register(r14);
+
+ intptr_t external =
+ reinterpret_cast<intptr_t>(redirection->external_function());
+ if (fp_call) {
+ double dval0, dval1; // one or two double parameters
+ intptr_t ival; // zero or one integer parameters
+ int iresult = 0; // integer return value
+ double dresult = 0; // double return value
+ GetFpArgs(&dval0, &dval1, &ival);
+ if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
+ SimulatorRuntimeCall generic_target =
+ reinterpret_cast<SimulatorRuntimeCall>(external);
+ switch (redirection->type()) {
+ case ExternalReference::BUILTIN_FP_FP_CALL:
+ case ExternalReference::BUILTIN_COMPARE_CALL:
+ PrintF("Call to host function at %p with args %f, %f",
+ FUNCTION_ADDR(generic_target), dval0, dval1);
+ break;
+ case ExternalReference::BUILTIN_FP_CALL:
+ PrintF("Call to host function at %p with arg %f",
+ FUNCTION_ADDR(generic_target), dval0);
+ break;
+ case ExternalReference::BUILTIN_FP_INT_CALL:
+ PrintF("Call to host function at %p with args %f, %" V8PRIdPTR,
+ FUNCTION_ADDR(generic_target), dval0, ival);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ if (!stack_aligned) {
+ PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
+ static_cast<intptr_t>(get_register(sp)));
+ }
+ PrintF("\n");
+ }
+ CHECK(stack_aligned);
+ switch (redirection->type()) {
+ case ExternalReference::BUILTIN_COMPARE_CALL: {
+ SimulatorRuntimeCompareCall target =
+ reinterpret_cast<SimulatorRuntimeCompareCall>(external);
+ iresult = target(dval0, dval1);
+ set_register(r2, iresult);
+ break;
+ }
+ case ExternalReference::BUILTIN_FP_FP_CALL: {
+ SimulatorRuntimeFPFPCall target =
+ reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
+ dresult = target(dval0, dval1);
+ SetFpResult(dresult);
+ break;
+ }
+ case ExternalReference::BUILTIN_FP_CALL: {
+ SimulatorRuntimeFPCall target =
+ reinterpret_cast<SimulatorRuntimeFPCall>(external);
+ dresult = target(dval0);
+ SetFpResult(dresult);
+ break;
+ }
+ case ExternalReference::BUILTIN_FP_INT_CALL: {
+ SimulatorRuntimeFPIntCall target =
+ reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
+ dresult = target(dval0, ival);
+ SetFpResult(dresult);
+ break;
+ }
+ default:
+ UNREACHABLE();
+ break;
+ }
+ if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
+ switch (redirection->type()) {
+ case ExternalReference::BUILTIN_COMPARE_CALL:
+ PrintF("Returned %08x\n", iresult);
+ break;
+ case ExternalReference::BUILTIN_FP_FP_CALL:
+ case ExternalReference::BUILTIN_FP_CALL:
+ case ExternalReference::BUILTIN_FP_INT_CALL:
+ PrintF("Returned %f\n", dresult);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ }
+ } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
+ // See callers of MacroAssembler::CallApiFunctionAndReturn for
+ // explanation of register usage.
+ if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
+ PrintF("Call to host function at %p args %08" V8PRIxPTR,
+ reinterpret_cast<void*>(external), arg[0]);
+ if (!stack_aligned) {
+ PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
+ static_cast<intptr_t>(get_register(sp)));
+ }
+ PrintF("\n");
+ }
+ CHECK(stack_aligned);
+ SimulatorRuntimeDirectApiCall target =
+ reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
+ target(arg[0]);
+ } else if (redirection->type() == ExternalReference::PROFILING_API_CALL) {
+ // See callers of MacroAssembler::CallApiFunctionAndReturn for
+ // explanation of register usage.
+ if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
+ PrintF("Call to host function at %p args %08" V8PRIxPTR
+ " %08" V8PRIxPTR,
+ reinterpret_cast<void*>(external), arg[0], arg[1]);
+ if (!stack_aligned) {
+ PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
+ static_cast<intptr_t>(get_register(sp)));
+ }
+ PrintF("\n");
+ }
+ CHECK(stack_aligned);
+ SimulatorRuntimeProfilingApiCall target =
+ reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external);
+ target(arg[0], Redirection::ReverseRedirection(arg[1]));
+ } else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
+ // See callers of MacroAssembler::CallApiFunctionAndReturn for
+ // explanation of register usage.
+ if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
+ PrintF("Call to host function at %p args %08" V8PRIxPTR
+ " %08" V8PRIxPTR,
+ reinterpret_cast<void*>(external), arg[0], arg[1]);
+ if (!stack_aligned) {
+ PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
+ static_cast<intptr_t>(get_register(sp)));
+ }
+ PrintF("\n");
+ }
+ CHECK(stack_aligned);
+ SimulatorRuntimeDirectGetterCall target =
+ reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
+ if (!ABI_PASSES_HANDLES_IN_REGS) {
+ arg[0] = *(reinterpret_cast<intptr_t*>(arg[0]));
+ }
+ target(arg[0], arg[1]);
+ } else if (redirection->type() ==
+ ExternalReference::PROFILING_GETTER_CALL) {
+ if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
+ PrintF("Call to host function at %p args %08" V8PRIxPTR
+ " %08" V8PRIxPTR " %08" V8PRIxPTR,
+ reinterpret_cast<void*>(external), arg[0], arg[1], arg[2]);
+ if (!stack_aligned) {
+ PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
+ static_cast<intptr_t>(get_register(sp)));
+ }
+ PrintF("\n");
+ }
+ CHECK(stack_aligned);
+ SimulatorRuntimeProfilingGetterCall target =
+ reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external);
+ if (!ABI_PASSES_HANDLES_IN_REGS) {
+ arg[0] = *(reinterpret_cast<intptr_t*>(arg[0]));
+ }
+ target(arg[0], arg[1], Redirection::ReverseRedirection(arg[2]));
+ } else {
+ // builtin call.
+ if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
+ SimulatorRuntimeCall target =
+ reinterpret_cast<SimulatorRuntimeCall>(external);
+ PrintF(
+ "Call to host function at %p,\n"
+ "\t\t\t\targs %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR
+ ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR,
+ FUNCTION_ADDR(target), arg[0], arg[1], arg[2], arg[3], arg[4],
+ arg[5]);
+ if (!stack_aligned) {
+ PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
+ static_cast<intptr_t>(get_register(sp)));
+ }
+ PrintF("\n");
+ }
+ CHECK(stack_aligned);
+ if (redirection->type() == ExternalReference::BUILTIN_CALL_TRIPLE) {
+ SimulatorRuntimeTripleCall target =
+ reinterpret_cast<SimulatorRuntimeTripleCall>(external);
+ ObjectTriple result =
+ target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
+ if (::v8::internal::FLAG_trace_sim) {
+ PrintF("Returned {%08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR
+ "}\n",
+ reinterpret_cast<intptr_t>(result.x),
+ reinterpret_cast<intptr_t>(result.y),
+ reinterpret_cast<intptr_t>(result.z));
+ }
+ memcpy(reinterpret_cast<void*>(result_buffer), &result,
+ sizeof(ObjectTriple));
+ set_register(r2, result_buffer);
+ } else {
+ if (redirection->type() == ExternalReference::BUILTIN_CALL_PAIR) {
+ SimulatorRuntimePairCall target =
+ reinterpret_cast<SimulatorRuntimePairCall>(external);
+ ObjectPair result =
+ target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
+ intptr_t x;
+ intptr_t y;
+ decodeObjectPair(&result, &x, &y);
+ if (::v8::internal::FLAG_trace_sim) {
+ PrintF("Returned {%08" V8PRIxPTR ", %08" V8PRIxPTR "}\n", x, y);
+ }
+ if (ABI_RETURNS_OBJECTPAIR_IN_REGS) {
+ set_register(r2, x);
+ set_register(r3, y);
+ } else {
+ memcpy(reinterpret_cast<void*>(result_buffer), &result,
+ sizeof(ObjectPair));
+ set_register(r2, result_buffer);
+ }
+ } else {
+ DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL);
+ SimulatorRuntimeCall target =
+ reinterpret_cast<SimulatorRuntimeCall>(external);
+ intptr_t result =
+ target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
+ if (::v8::internal::FLAG_trace_sim) {
+ PrintF("Returned %08" V8PRIxPTR "\n", result);
+ }
+ set_register(r2, result);
+ }
+ }
+ // #if !V8_TARGET_ARCH_S390X
+ // DCHECK(redirection->type() ==
+ // ExternalReference::BUILTIN_CALL);
+ // SimulatorRuntimeCall target =
+ // reinterpret_cast<SimulatorRuntimeCall>(external);
+ // int64_t result = target(arg[0], arg[1], arg[2], arg[3],
+ // arg[4],
+ // arg[5]);
+ // int32_t lo_res = static_cast<int32_t>(result);
+ // int32_t hi_res = static_cast<int32_t>(result >> 32);
+ // #if !V8_TARGET_LITTLE_ENDIAN
+ // if (::v8::internal::FLAG_trace_sim) {
+ // PrintF("Returned %08x\n", hi_res);
+ // }
+ // set_register(r2, hi_res);
+ // set_register(r3, lo_res);
+ // #else
+ // if (::v8::internal::FLAG_trace_sim) {
+ // PrintF("Returned %08x\n", lo_res);
+ // }
+ // set_register(r2, lo_res);
+ // set_register(r3, hi_res);
+ // #endif
+ // #else
+ // if (redirection->type() == ExternalReference::BUILTIN_CALL) {
+ // SimulatorRuntimeCall target =
+ // reinterpret_cast<SimulatorRuntimeCall>(external);
+ // intptr_t result = target(arg[0], arg[1], arg[2], arg[3],
+ // arg[4],
+ // arg[5]);
+ // if (::v8::internal::FLAG_trace_sim) {
+ // PrintF("Returned %08" V8PRIxPTR "\n", result);
+ // }
+ // set_register(r2, result);
+ // } else {
+ // DCHECK(redirection->type() ==
+ // ExternalReference::BUILTIN_CALL_PAIR);
+ // SimulatorRuntimePairCall target =
+ // reinterpret_cast<SimulatorRuntimePairCall>(external);
+ // ObjectPair result = target(arg[0], arg[1], arg[2], arg[3],
+ // arg[4], arg[5]);
+ // if (::v8::internal::FLAG_trace_sim) {
+ // PrintF("Returned %08" V8PRIxPTR ", %08" V8PRIxPTR "\n",
+ // result.x, result.y);
+ // }
+ // #if ABI_RETURNS_OBJECTPAIR_IN_REGS
+ // set_register(r2, result.x);
+ // set_register(r3, result.y);
+ // #else
+ // memcpy(reinterpret_cast<void *>(result_buffer), &result,
+ // sizeof(ObjectPair));
+ // #endif
+ // }
+ // #endif
+ }
+ int64_t saved_lr = *reinterpret_cast<intptr_t*>(
+ get_register(sp) + kStackFrameRASlot * kPointerSize);
+#if (!V8_TARGET_ARCH_S390X && V8_HOST_ARCH_S390)
+ // On zLinux-31, the saved_lr might be tagged with a high bit of 1.
+ // Cleanse it before proceeding with simulation.
+ saved_lr &= 0x7FFFFFFF;
+#endif
+ set_pc(saved_lr);
+ break;
+ }
+ case kBreakpoint: {
+ S390Debugger dbg(this);
+ dbg.Debug();
+ break;
+ }
+ // stop uses all codes greater than 1 << 23.
+ default: {
+ if (svc >= (1 << 23)) {
+ uint32_t code = svc & kStopCodeMask;
+ if (isWatchedStop(code)) {
+ IncreaseStopCounter(code);
+ }
+ // Stop if it is enabled, otherwise go on jumping over the stop
+ // and the message address.
+ if (isEnabledStop(code)) {
+ S390Debugger dbg(this);
+ dbg.Stop(instr);
+ } else {
+ set_pc(get_pc() + sizeof(FourByteInstr) + kPointerSize);
+ }
+ } else {
+ // This is not a valid svc code.
+ UNREACHABLE();
+ break;
+ }
+ }
+ }
+}
+
+// Stop helper functions.
+bool Simulator::isStopInstruction(Instruction* instr) {
+ return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode);
+}
+
+bool Simulator::isWatchedStop(uint32_t code) {
+ DCHECK(code <= kMaxStopCode);
+ return code < kNumOfWatchedStops;
+}
+
+bool Simulator::isEnabledStop(uint32_t code) {
+ DCHECK(code <= kMaxStopCode);
+ // Unwatched stops are always enabled.
+ return !isWatchedStop(code) ||
+ !(watched_stops_[code].count & kStopDisabledBit);
+}
+
+void Simulator::EnableStop(uint32_t code) {
+ DCHECK(isWatchedStop(code));
+ if (!isEnabledStop(code)) {
+ watched_stops_[code].count &= ~kStopDisabledBit;
+ }
+}
+
+void Simulator::DisableStop(uint32_t code) {
+ DCHECK(isWatchedStop(code));
+ if (isEnabledStop(code)) {
+ watched_stops_[code].count |= kStopDisabledBit;
+ }
+}
+
+void Simulator::IncreaseStopCounter(uint32_t code) {
+ DCHECK(code <= kMaxStopCode);
+ DCHECK(isWatchedStop(code));
+ if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) {
+ PrintF(
+ "Stop counter for code %i has overflowed.\n"
+ "Enabling this code and reseting the counter to 0.\n",
+ code);
+ watched_stops_[code].count = 0;
+ EnableStop(code);
+ } else {
+ watched_stops_[code].count++;
+ }
+}
+
+// Print a stop status.
+void Simulator::PrintStopInfo(uint32_t code) {
+ DCHECK(code <= kMaxStopCode);
+ if (!isWatchedStop(code)) {
+ PrintF("Stop not watched.");
+ } else {
+ const char* state = isEnabledStop(code) ? "Enabled" : "Disabled";
+ int32_t count = watched_stops_[code].count & ~kStopDisabledBit;
+ // Don't print the state of unused breakpoints.
+ if (count != 0) {
+ if (watched_stops_[code].desc) {
+ PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code,
+ state, count, watched_stops_[code].desc);
+ } else {
+ PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state,
+ count);
+ }
+ }
+ }
+}
+
+// Method for checking overflow on signed addition:
+// Test src1 and src2 have opposite sign,
+// (1) No overflow if they have opposite sign
+// (2) Test the result and one of the operands have opposite sign
+// (a) No overflow if they don't have opposite sign
+// (b) Overflow if opposite
+#define CheckOverflowForIntAdd(src1, src2) \
+ (((src1) ^ (src2)) < 0 ? false : ((((src1) + (src2)) ^ (src1)) < 0))
+
+// Method for checking overflow on signed subtraction:
+#define CheckOverflowForIntSub(src1, src2) \
+ (((src1 - src2) < src1) != (src2 > 0))
+
+// Method for checking overflow on unsigned addtion
+#define CheckOverflowForUIntAdd(src1, src2) \
+ ((src1) + (src2) < (src1) || (src1) + (src2) < (src2))
+
+// Method for checking overflow on unsigned subtraction
+#define CheckOverflowForUIntSub(src1, src2) ((src1) - (src2) > (src1))
+
+// Method for checking overflow on multiplication
+#define CheckOverflowForMul(src1, src2) (((src1) * (src2)) / (src2) != (src1))
+
+// Method for checking overflow on shift right
+#define CheckOverflowForShiftRight(src1, src2) \
+ (((src1) >> (src2)) << (src2) != (src1))
+
+// Method for checking overflow on shift left
+#define CheckOverflowForShiftLeft(src1, src2) \
+ (((src1) << (src2)) >> (src2) != (src1))
+
+// S390 Decode and simulate helpers
+bool Simulator::DecodeTwoByte(Instruction* instr) {
+ Opcode op = instr->S390OpcodeValue();
+
+ switch (op) {
+ // RR format instructions
+ case AR:
+ case SR:
+ case MR:
+ case DR:
+ case OR:
+ case NR:
+ case XR: {
+ RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
+ int r1 = rrinst->R1Value();
+ int r2 = rrinst->R2Value();
+ int32_t r1_val = get_low_register<int32_t>(r1);
+ int32_t r2_val = get_low_register<int32_t>(r2);
+ bool isOF = false;
+ switch (op) {
+ case AR:
+ isOF = CheckOverflowForIntAdd(r1_val, r2_val);
+ r1_val += r2_val;
+ SetS390ConditionCode<int32_t>(r1_val, 0);
+ SetS390OverflowCode(isOF);
+ break;
+ case SR:
+ isOF = CheckOverflowForIntSub(r1_val, r2_val);
+ r1_val -= r2_val;
+ SetS390ConditionCode<int32_t>(r1_val, 0);
+ SetS390OverflowCode(isOF);
+ break;
+ case OR:
+ r1_val |= r2_val;
+ SetS390BitWiseConditionCode<uint32_t>(r1_val);
+ break;
+ case NR:
+ r1_val &= r2_val;
+ SetS390BitWiseConditionCode<uint32_t>(r1_val);
+ break;
+ case XR:
+ r1_val ^= r2_val;
+ SetS390BitWiseConditionCode<uint32_t>(r1_val);
+ break;
+ case MR: {
+ DCHECK(r1 % 2 == 0);
+ r1_val = get_low_register<int32_t>(r1 + 1);
+ int64_t product =
+ static_cast<int64_t>(r1_val) * static_cast<int64_t>(r2_val);
+ int32_t high_bits = product >> 32;
+ r1_val = high_bits;
+ int32_t low_bits = product & 0x00000000FFFFFFFF;
+ set_low_register(r1, high_bits);
+ set_low_register(r1 + 1, low_bits);
+ break;
+ }
+ case DR: {
+ // reg-reg pair should be even-odd pair, assert r1 is an even register
+ DCHECK(r1 % 2 == 0);
+ // leftmost 32 bits of the dividend are in r1
+ // rightmost 32 bits of the dividend are in r1+1
+ // get the signed value from r1
+ int64_t dividend = static_cast<int64_t>(r1_val) << 32;
+ // get unsigned value from r1+1
+ // avoid addition with sign-extended r1+1 value
+ dividend += get_low_register<uint32_t>(r1 + 1);
+ int32_t remainder = dividend % r2_val;
+ int32_t quotient = dividend / r2_val;
+ r1_val = remainder;
+ set_low_register(r1, remainder);
+ set_low_register(r1 + 1, quotient);
+ break; // reg pair
+ }
+ default:
+ UNREACHABLE();
+ break;
+ }
+ set_low_register(r1, r1_val);
+ break;
+ }
+ case LR: {
+ RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
+ int r1 = rrinst->R1Value();
+ int r2 = rrinst->R2Value();
+ set_low_register(r1, get_low_register<int32_t>(r2));
+ break;
+ }
+ case LDR: {
+ RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
+ int r1 = rrinst->R1Value();
+ int r2 = rrinst->R2Value();
+ int64_t r2_val = get_d_register(r2);
+ set_d_register(r1, r2_val);
+ break;
+ }
+ case CR: {
+ RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
+ int r1 = rrinst->R1Value();
+ int r2 = rrinst->R2Value();
+ int32_t r1_val = get_low_register<int32_t>(r1);
+ int32_t r2_val = get_low_register<int32_t>(r2);
+ SetS390ConditionCode<int32_t>(r1_val, r2_val);
+ break;
+ }
+ case CLR: {
+ RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
+ int r1 = rrinst->R1Value();
+ int r2 = rrinst->R2Value();
+ uint32_t r1_val = get_low_register<uint32_t>(r1);
+ uint32_t r2_val = get_low_register<uint32_t>(r2);
+ SetS390ConditionCode<uint32_t>(r1_val, r2_val);
+ break;
+ }
+ case BCR: {
+ RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
+ int r1 = rrinst->R1Value();
+ int r2 = rrinst->R2Value();
+ if (TestConditionCode(Condition(r1))) {
+ intptr_t r2_val = get_register(r2);
+#if (!V8_TARGET_ARCH_S390X && V8_HOST_ARCH_S390)
+ // On 31-bit, the top most bit may be 0 or 1, but is ignored by the
+ // hardware. Cleanse the top bit before jumping to it, unless it's one
+ // of the special PCs
+ if (r2_val != bad_lr && r2_val != end_sim_pc) r2_val &= 0x7FFFFFFF;
+#endif
+ set_pc(r2_val);
+ }
+ break;
+ }
+ case LTR: {
+ RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
+ int r1 = rrinst->R1Value();
+ int r2 = rrinst->R2Value();
+ int32_t r2_val = get_low_register<int32_t>(r2);
+ SetS390ConditionCode<int32_t>(r2_val, 0);
+ set_low_register(r1, r2_val);
+ break;
+ }
+ case ALR:
+ case SLR: {
+ RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
+ int r1 = rrinst->R1Value();
+ int r2 = rrinst->R2Value();
+ uint32_t r1_val = get_low_register<uint32_t>(r1);
+ uint32_t r2_val = get_low_register<uint32_t>(r2);
+ uint32_t alu_out = 0;
+ bool isOF = false;
+ if (ALR == op) {
+ alu_out = r1_val + r2_val;
+ isOF = CheckOverflowForUIntAdd(r1_val, r2_val);
+ } else if (SLR == op) {
+ alu_out = r1_val - r2_val;
+ isOF = CheckOverflowForUIntSub(r1_val, r2_val);
+ } else {
+ UNREACHABLE();
+ }
+ set_low_register(r1, alu_out);
+ SetS390ConditionCode<uint32_t>(alu_out, 0);
+ SetS390OverflowCode(isOF);
+ break;
+ }
+ case LNR: {
+ // Load Negative (32)
+ RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
+ int r1 = rrinst->R1Value();
+ int r2 = rrinst->R2Value();
+ int32_t r2_val = get_low_register<int32_t>(r2);
+ r2_val = (r2_val >= 0) ? -r2_val : r2_val; // If pos, then negate it.
+ set_low_register(r1, r2_val);
+ condition_reg_ = (r2_val == 0) ? CC_EQ : CC_LT; // CC0 - result is zero
+ // CC1 - result is negative
+ break;
+ }
+ case BASR: {
+ RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
+ int r1 = rrinst->R1Value();
+ int r2 = rrinst->R2Value();
+ intptr_t link_addr = get_pc() + 2;
+ // If R2 is zero, the BASR does not branch.
+ int64_t r2_val = (r2 == 0) ? link_addr : get_register(r2);
+#if (!V8_TARGET_ARCH_S390X && V8_HOST_ARCH_S390)
+ // On 31-bit, the top most bit may be 0 or 1, which can cause issues
+ // for stackwalker. The top bit should either be cleanse before being
+ // pushed onto the stack, or during stack walking when dereferenced.
+ // For simulator, we'll take the worst case scenario and always tag
+ // the high bit, to flush out more problems.
+ link_addr |= 0x80000000;
+#endif
+ set_register(r1, link_addr);
+ set_pc(r2_val);
+ break;
+ }
+ case LCR: {
+ RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr);
+ int r1 = rrinst->R1Value();
+ int r2 = rrinst->R2Value();
+ int32_t r2_val = get_low_register<int32_t>(r2);
+ int32_t original_r2_val = r2_val;
+ r2_val = ~r2_val;
+ r2_val = r2_val + 1;
+ set_low_register(r1, r2_val);
+ SetS390ConditionCode<int32_t>(r2_val, 0);
+ // Checks for overflow where r2_val = -2147483648.
+ // Cannot do int comparison due to GCC 4.8 bug on x86.
+ // Detect INT_MIN alternatively, as it is the only value where both
+ // original and result are negative due to overflow.
+ if (r2_val < 0 && original_r2_val < 0) {
+ SetS390OverflowCode(true);
+ }
+ break;
+ }
+ case BKPT: {
+ set_pc(get_pc() + 2);
+ S390Debugger dbg(this);
+ dbg.Debug();
+ break;
+ }
+ default:
+ UNREACHABLE();
+ return false;
+ break;
+ }
+ return true;
+}
+
+// Decode routine for four-byte instructions
+bool Simulator::DecodeFourByte(Instruction* instr) {
+ Opcode op = instr->S390OpcodeValue();
+
+ // Pre-cast instruction to various types
+ RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr);
+ SIInstruction* siInstr = reinterpret_cast<SIInstruction*>(instr);
+
+ switch (op) {
+ case POPCNT_Z: {
+ int r1 = rreInst->R1Value();
+ int r2 = rreInst->R2Value();
+ int64_t r2_val = get_register(r2);
+ int64_t r1_val = 0;
+
+ uint8_t* r2_val_ptr = reinterpret_cast<uint8_t*>(&r2_val);
+ uint8_t* r1_val_ptr = reinterpret_cast<uint8_t*>(&r1_val);
+ for (int i = 0; i < 8; i++) {
+ uint32_t x = static_cast<uint32_t>(r2_val_ptr[i]);
+#if defined(__GNUC__)
+ r1_val_ptr[i] = __builtin_popcount(x);
+#else
+#error unsupport __builtin_popcount
+#endif
+ }
+
+ set_register(r1, static_cast<uint64_t>(r1_val));
+ break;
+ }
+ case LLGFR: {
+ int r1 = rreInst->R1Value();
+ int r2 = rreInst->R2Value();
+ int32_t r2_val = get_low_register<int32_t>(r2);
+ uint64_t r2_finalval =
+ (static_cast<uint64_t>(r2_val) & 0x00000000ffffffff);
+ set_register(r1, r2_finalval);
+ break;
+ }
+ case EX: {
+ RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
+ int r1 = rxinst->R1Value();
+ int b2 = rxinst->B2Value();
+ int x2 = rxinst->X2Value();
+ int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+ int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+ intptr_t d2_val = rxinst->D2Value();
+ int32_t r1_val = get_low_register<int32_t>(r1);
+
+ SixByteInstr the_instr = Instruction::InstructionBits(
+ reinterpret_cast<const byte*>(b2_val + x2_val + d2_val));
+ int length = Instruction::InstructionLength(
+ reinterpret_cast<const byte*>(b2_val + x2_val + d2_val));
+
+ char new_instr_buf[8];
+ char* addr = reinterpret_cast<char*>(&new_instr_buf[0]);
+ the_instr |= static_cast<SixByteInstr>(r1_val & 0xff)
+ << (8 * length - 16);
+ Instruction::SetInstructionBits<SixByteInstr>(
+ reinterpret_cast<byte*>(addr), static_cast<SixByteInstr>(the_instr));
+ ExecuteInstruction(reinterpret_cast<Instruction*>(addr), false);
+ break;
+ }
+ case LGR: {
+ // Load Register (64)
+ int r1 = rreInst->R1Value();
+ int r2 = rreInst->R2Value();
+ set_register(r1, get_register(r2));
+ break;
+ }
+ case LDGR: {
+ // Load FPR from GPR (L <- 64)
+ uint64_t int_val = get_register(rreInst->R2Value());
+ // double double_val = bit_cast<double, uint64_t>(int_val);
+ // set_d_register_from_double(rreInst->R1Value(), double_val);
+ set_d_register(rreInst->R1Value(), int_val);
+ break;
+ }
+ case LGDR: {
+ // Load GPR from FPR (64 <- L)
+ int64_t double_val = get_d_register(rreInst->R2Value());
+ set_register(rreInst->R1Value(), double_val);
+ break;
+ }
+ case LTGR: {
+ // Load Register (64)
+ int r1 = rreInst->R1Value();
+ int r2 = rreInst->R2Value();
+ int64_t r2_val = get_register(r2);
+ SetS390ConditionCode<int64_t>(r2_val, 0);
+ set_register(r1, get_register(r2));
+ break;
+ }
+ case LZDR: {
+ int r1 = rreInst->R1Value();
+ set_d_register_from_double(r1, 0.0);
+ break;
+ }
+ case LTEBR: {
+ RREInstruction* rreinst = reinterpret_cast<RREInstruction*>(instr);
+ int r1 = rreinst->R1Value();
+ int r2 = rreinst->R2Value();
+ int64_t r2_val = get_d_register(r2);
+ float fr2_val = get_float32_from_d_register(r2);
+ SetS390ConditionCode<float>(fr2_val, 0.0);
+ set_d_register(r1, r2_val);
+ break;
+ }
+ case LTDBR: {
+ RREInstruction* rreinst = reinterpret_cast<RREInstruction*>(instr);
+ int r1 = rreinst->R1Value();
+ int r2 = rreinst->R2Value();
+ int64_t r2_val = get_d_register(r2);
+ SetS390ConditionCode<double>(bit_cast<double, int64_t>(r2_val), 0.0);
+ set_d_register(r1, r2_val);
+ break;
+ }
+ case CGR: {
+ // Compare (64)
+ int64_t r1_val = get_register(rreInst->R1Value());
+ int64_t r2_val = get_register(rreInst->R2Value());
+ SetS390ConditionCode<int64_t>(r1_val, r2_val);
+ break;
+ }
+ case CLGR: {
+ // Compare Logical (64)
+ uint64_t r1_val = static_cast<uint64_t>(get_register(rreInst->R1Value()));
+ uint64_t r2_val = static_cast<uint64_t>(get_register(rreInst->R2Value()));
+ SetS390ConditionCode<uint64_t>(r1_val, r2_val);
+ break;
+ }
+ case LH: {
+ // Load Halfword
+ RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
+ int r1 = rxinst->R1Value();
+ int x2 = rxinst->X2Value();
+ int b2 = rxinst->B2Value();
+
+ int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+ int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+ intptr_t d2_val = rxinst->D2Value();
+ intptr_t mem_addr = x2_val + b2_val + d2_val;
+
+ int32_t result = static_cast<int32_t>(ReadH(mem_addr, instr));
+ set_low_register(r1, result);
+ break;
+ }
+ case LHI: {
+ RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
+ int r1 = riinst->R1Value();
+ int i = riinst->I2Value();
+ set_low_register(r1, i);
+ break;
+ }
+ case LGHI: {
+ RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
+ int r1 = riinst->R1Value();
+ int64_t i = riinst->I2Value();
+ set_register(r1, i);
+ break;
+ }
+ case CHI: {
+ RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
+ int r1 = riinst->R1Value();
+ int16_t i = riinst->I2Value();
+ int32_t r1_val = get_low_register<int32_t>(r1);
+ SetS390ConditionCode<int32_t>(r1_val, i);
+ break;
+ }
+ case CGHI: {
+ RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
+ int r1 = riinst->R1Value();
+ int64_t i = static_cast<int64_t>(riinst->I2Value());
+ int64_t r1_val = get_register(r1);
+ SetS390ConditionCode<int64_t>(r1_val, i);
+ break;
+ }
+ case BRAS: {
+ // Branch Relative and Save
+ RILInstruction* rilInstr = reinterpret_cast<RILInstruction*>(instr);
+ int r1 = rilInstr->R1Value();
+ intptr_t d2 = rilInstr->I2Value();
+ intptr_t pc = get_pc();
+ // Set PC of next instruction to register
+ set_register(r1, pc + sizeof(FourByteInstr));
+ // Update PC to branch target
+ set_pc(pc + d2 * 2);
+ break;
+ }
+ case BRC: {
+ // Branch Relative on Condition
+ RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
+ int m1 = riinst->M1Value();
+ if (TestConditionCode((Condition)m1)) {
+ intptr_t offset = riinst->I2Value() * 2;
+ set_pc(get_pc() + offset);
+ }
+ break;
+ }
+ case BRCT:
+ case BRCTG: {
+ // Branch On Count (32/64).
+ RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
+ int r1 = riinst->R1Value();
+ int64_t value =
+ (op == BRCT) ? get_low_register<int32_t>(r1) : get_register(r1);
+ if (BRCT == op)
+ set_low_register(r1, --value);
+ else
+ set_register(r1, --value);
+ // Branch if value != 0
+ if (value != 0) {
+ intptr_t offset = riinst->I2Value() * 2;
+ set_pc(get_pc() + offset);
+ }
+ break;
+ }
+ case BXH: {
+ RSInstruction* rsinst = reinterpret_cast<RSInstruction*>(instr);
+ int r1 = rsinst->R1Value();
+ int r3 = rsinst->R3Value();
+ int b2 = rsinst->B2Value();
+ int d2 = rsinst->D2Value();
+
+ // r1_val is the first operand, r3_val is the increment
+ int32_t r1_val = r1 == 0 ? 0 : get_register(r1);
+ int32_t r3_val = r2 == 0 ? 0 : get_register(r3);
+ intptr_t b2_val = b2 == 0 ? 0 : get_register(b2);
+ intptr_t branch_address = b2_val + d2;
+ // increment r1_val
+ r1_val += r3_val;
+
+ // if the increment is even, then it designates a pair of registers
+ // and the contents of the even and odd registers of the pair are used as
+ // the increment and compare value respectively. If the increment is odd,
+ // the increment itself is used as both the increment and compare value
+ int32_t compare_val = r3 % 2 == 0 ? get_register(r3 + 1) : r3_val;
+ if (r1_val > compare_val) {
+ // branch to address if r1_val is greater than compare value
+ set_pc(branch_address);
+ }
+
+ // update contents of register in r1 with the new incremented value
+ set_register(r1, r1_val);
+ break;
+ }
+ case IIHH:
+ case IIHL:
+ case IILH:
+ case IILL: {
+ UNIMPLEMENTED();
+ break;
+ }
+ case STM:
+ case LM: {
+ // Store Multiple 32-bits.
+ RSInstruction* rsinstr = reinterpret_cast<RSInstruction*>(instr);
+ int r1 = rsinstr->R1Value();
+ int r3 = rsinstr->R3Value();
+ int rb = rsinstr->B2Value();
+ int offset = rsinstr->D2Value();
+
+ // Regs roll around if r3 is less than r1.
+ // Artifically increase r3 by 16 so we can calculate
+ // the number of regs stored properly.
+ if (r3 < r1) r3 += 16;
+
+ int32_t rb_val = (rb == 0) ? 0 : get_low_register<int32_t>(rb);
+
+ // Store each register in ascending order.
+ for (int i = 0; i <= r3 - r1; i++) {
+ if (op == STM) {
+ int32_t value = get_low_register<int32_t>((r1 + i) % 16);
+ WriteW(rb_val + offset + 4 * i, value, instr);
+ } else if (op == LM) {
+ int32_t value = ReadW(rb_val + offset + 4 * i, instr);
+ set_low_register((r1 + i) % 16, value);
+ }
+ }
+ break;
+ }
+ case SLL:
+ case SRL: {
+ RSInstruction* rsInstr = reinterpret_cast<RSInstruction*>(instr);
+ int r1 = rsInstr->R1Value();
+ int b2 = rsInstr->B2Value();
+ intptr_t d2 = rsInstr->D2Value();
+ // only takes rightmost 6bits
+ int64_t b2_val = b2 == 0 ? 0 : get_register(b2);
+ int shiftBits = (b2_val + d2) & 0x3F;
+ uint32_t r1_val = get_low_register<uint32_t>(r1);
+ uint32_t alu_out = 0;
+ if (SLL == op) {
+ alu_out = r1_val << shiftBits;
+ } else if (SRL == op) {
+ alu_out = r1_val >> shiftBits;
+ } else {
+ UNREACHABLE();
+ }
+ set_low_register(r1, alu_out);
+ break;
+ }
+ case SLA:
+ case SRA: {
+ RSInstruction* rsInstr = reinterpret_cast<RSInstruction*>(instr);
+ int r1 = rsInstr->R1Value();
+ int b2 = rsInstr->B2Value();
+ intptr_t d2 = rsInstr->D2Value();
+ // only takes rightmost 6bits
+ int64_t b2_val = b2 == 0 ? 0 : get_register(b2);
+ int shiftBits = (b2_val + d2) & 0x3F;
+ int32_t r1_val = get_low_register<int32_t>(r1);
+ int32_t alu_out = 0;
+ bool isOF = false;
+ if (op == SLA) {
+ isOF = CheckOverflowForShiftLeft(r1_val, shiftBits);
+ alu_out = r1_val << shiftBits;
+ } else if (op == SRA) {
+ alu_out = r1_val >> shiftBits;
+ }
+ set_low_register(r1, alu_out);
+ SetS390ConditionCode<int32_t>(alu_out, 0);
+ SetS390OverflowCode(isOF);
+ break;
+ }
+ case LLHR: {
+ UNIMPLEMENTED();
+ break;
+ }
+ case LLGHR: {
+ UNIMPLEMENTED();
+ break;
+ }
+ case L:
+ case LA:
+ case LD:
+ case LE: {
+ RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
+ int b2 = rxinst->B2Value();
+ int x2 = rxinst->X2Value();
+ int32_t r1 = rxinst->R1Value();
+ int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+ int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+ intptr_t d2_val = rxinst->D2Value();
+ intptr_t addr = b2_val + x2_val + d2_val;
+ if (op == L) {
+ int32_t mem_val = ReadW(addr, instr);
+ set_low_register(r1, mem_val);
+ } else if (op == LA) {
+ set_register(r1, addr);
+ } else if (op == LD) {
+ int64_t dbl_val = *reinterpret_cast<int64_t*>(addr);
+ set_d_register(r1, dbl_val);
+ } else if (op == LE) {
+ float float_val = *reinterpret_cast<float*>(addr);
+ set_d_register_from_float32(r1, float_val);
+ }
+ break;
+ }
+ case C:
+ case CL: {
+ RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
+ int b2 = rxinst->B2Value();
+ int x2 = rxinst->X2Value();
+ int32_t r1_val = get_low_register<int32_t>(rxinst->R1Value());
+ int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+ int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+ intptr_t d2_val = rxinst->D2Value();
+ intptr_t addr = b2_val + x2_val + d2_val;
+ int32_t mem_val = ReadW(addr, instr);
+ if (C == op)
+ SetS390ConditionCode<int32_t>(r1_val, mem_val);
+ else if (CL == op)
+ SetS390ConditionCode<uint32_t>(r1_val, mem_val);
+ break;
+ }
+ case CLI: {
+ // Compare Immediate (Mem - Imm) (8)
+ int b1 = siInstr->B1Value();
+ int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
+ intptr_t d1_val = siInstr->D1Value();
+ intptr_t addr = b1_val + d1_val;
+ uint8_t mem_val = ReadB(addr);
+ uint8_t imm_val = siInstr->I2Value();
+ SetS390ConditionCode<uint8_t>(mem_val, imm_val);
+ break;
+ }
+ case TM: {
+ // Test Under Mask (Mem - Imm) (8)
+ int b1 = siInstr->B1Value();
+ int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
+ intptr_t d1_val = siInstr->D1Value();
+ intptr_t addr = b1_val + d1_val;
+ uint8_t mem_val = ReadB(addr);
+ uint8_t imm_val = siInstr->I2Value();
+ uint8_t selected_bits = mem_val & imm_val;
+ // CC0: Selected bits are zero
+ // CC1: Selected bits mixed zeros and ones
+ // CC3: Selected bits all ones
+ if (0 == selected_bits) {
+ condition_reg_ = CC_EQ; // CC0
+ } else if (selected_bits == imm_val) {
+ condition_reg_ = 0x1; // CC3
+ } else {
+ condition_reg_ = 0x4; // CC1
+ }
+ break;
+ }
+ case ST:
+ case STE:
+ case STD: {
+ RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
+ int b2 = rxinst->B2Value();
+ int x2 = rxinst->X2Value();
+ int32_t r1_val = get_low_register<int32_t>(rxinst->R1Value());
+ int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+ int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+ intptr_t d2_val = rxinst->D2Value();
+ intptr_t addr = b2_val + x2_val + d2_val;
+ if (op == ST) {
+ WriteW(addr, r1_val, instr);
+ } else if (op == STD) {
+ int64_t frs_val = get_d_register(rxinst->R1Value());
+ WriteDW(addr, frs_val);
+ } else if (op == STE) {
+ int64_t frs_val = get_d_register(rxinst->R1Value()) >> 32;
+ WriteW(addr, static_cast<int32_t>(frs_val), instr);
+ }
+ break;
+ }
+ case LTGFR:
+ case LGFR: {
+ // Load and Test Register (64 <- 32) (Sign Extends 32-bit val)
+ // Load Register (64 <- 32) (Sign Extends 32-bit val)
+ RREInstruction* rreInstr = reinterpret_cast<RREInstruction*>(instr);
+ int r1 = rreInstr->R1Value();
+ int r2 = rreInstr->R2Value();
+ int32_t r2_val = get_low_register<int32_t>(r2);
+ int64_t result = static_cast<int64_t>(r2_val);
+ set_register(r1, result);
+
+ if (LTGFR == op) SetS390ConditionCode<int64_t>(result, 0);
+ break;
+ }
+ case LNGR: {
+ // Load Negative (64)
+ int r1 = rreInst->R1Value();
+ int r2 = rreInst->R2Value();
+ int64_t r2_val = get_register(r2);
+ r2_val = (r2_val >= 0) ? -r2_val : r2_val; // If pos, then negate it.
+ set_register(r1, r2_val);
+ condition_reg_ = (r2_val == 0) ? CC_EQ : CC_LT; // CC0 - result is zero
+ // CC1 - result is negative
+ break;
+ }
+ case TRAP4: {
+ // whack the space of the caller allocated stack
+ int64_t sp_addr = get_register(sp);
+ for (int i = 0; i < kCalleeRegisterSaveAreaSize / kPointerSize; ++i) {
+ // we dont want to whack the RA (r14)
+ if (i != 14) (reinterpret_cast<intptr_t*>(sp_addr))[i] = 0xdeadbabe;
+ }
+ SoftwareInterrupt(instr);
+ break;
+ }
+ case STC: {
+ // Store Character/Byte
+ RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
+ int b2 = rxinst->B2Value();
+ int x2 = rxinst->X2Value();
+ uint8_t r1_val = get_low_register<int32_t>(rxinst->R1Value());
+ int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+ int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+ intptr_t d2_val = rxinst->D2Value();
+ intptr_t mem_addr = b2_val + x2_val + d2_val;
+ WriteB(mem_addr, r1_val);
+ break;
+ }
+ case STH: {
+ RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
+ int b2 = rxinst->B2Value();
+ int x2 = rxinst->X2Value();
+ int16_t r1_val = get_low_register<int32_t>(rxinst->R1Value());
+ int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+ int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+ intptr_t d2_val = rxinst->D2Value();
+ intptr_t mem_addr = b2_val + x2_val + d2_val;
+ WriteH(mem_addr, r1_val, instr);
+ break;
+ }
+#if V8_TARGET_ARCH_S390X
+ case LCGR: {
+ int r1 = rreInst->R1Value();
+ int r2 = rreInst->R2Value();
+ int64_t r2_val = get_register(r2);
+ r2_val = ~r2_val;
+ r2_val = r2_val + 1;
+ set_register(r1, r2_val);
+ SetS390ConditionCode<int64_t>(r2_val, 0);
+ // if the input is INT_MIN, loading its compliment would be overflowing
+ if (r2_val < 0 && (r2_val + 1) > 0) {
+ SetS390OverflowCode(true);
+ }
+ break;
+ }
+#endif
+ case SRDA: {
+ RSInstruction* rsInstr = reinterpret_cast<RSInstruction*>(instr);
+ int r1 = rsInstr->R1Value();
+ DCHECK(r1 % 2 == 0); // must be a reg pair
+ int b2 = rsInstr->B2Value();
+ intptr_t d2 = rsInstr->D2Value();
+ // only takes rightmost 6bits
+ int64_t b2_val = b2 == 0 ? 0 : get_register(b2);
+ int shiftBits = (b2_val + d2) & 0x3F;
+ int64_t opnd1 = static_cast<int64_t>(get_low_register<int32_t>(r1)) << 32;
+ int64_t opnd2 = static_cast<uint64_t>(get_low_register<uint32_t>(r1 + 1));
+ int64_t r1_val = opnd1 + opnd2;
+ int64_t alu_out = r1_val >> shiftBits;
+ set_low_register(r1, alu_out >> 32);
+ set_low_register(r1 + 1, alu_out & 0x00000000FFFFFFFF);
+ SetS390ConditionCode<int32_t>(alu_out, 0);
+ break;
+ }
+ case SRDL: {
+ RSInstruction* rsInstr = reinterpret_cast<RSInstruction*>(instr);
+ int r1 = rsInstr->R1Value();
+ DCHECK(r1 % 2 == 0); // must be a reg pair
+ int b2 = rsInstr->B2Value();
+ intptr_t d2 = rsInstr->D2Value();
+ // only takes rightmost 6bits
+ int64_t b2_val = b2 == 0 ? 0 : get_register(b2);
+ int shiftBits = (b2_val + d2) & 0x3F;
+ uint64_t opnd1 = static_cast<uint64_t>(get_low_register<uint32_t>(r1))
+ << 32;
+ uint64_t opnd2 =
+ static_cast<uint64_t>(get_low_register<uint32_t>(r1 + 1));
+ uint64_t r1_val = opnd1 | opnd2;
+ uint64_t alu_out = r1_val >> shiftBits;
+ set_low_register(r1, alu_out >> 32);
+ set_low_register(r1 + 1, alu_out & 0x00000000FFFFFFFF);
+ SetS390ConditionCode<int32_t>(alu_out, 0);
+ break;
+ }
+ default: { return DecodeFourByteArithmetic(instr); }
+ }
+ return true;
+}
+
+/**
+ * Decodes and simulates four byte arithmetic instructions
+ */
+bool Simulator::DecodeFourByteArithmetic(Instruction* instr) {
+ Opcode op = instr->S390OpcodeValue();
+
+ // Pre-cast instruction to various types
+ RRFInstruction* rrfInst = reinterpret_cast<RRFInstruction*>(instr);
+ RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr);
+
+ switch (op) {
+ case AGR:
+ case SGR:
+ case OGR:
+ case NGR:
+ case XGR: {
+ int r1 = rreInst->R1Value();
+ int r2 = rreInst->R2Value();
+ int64_t r1_val = get_register(r1);
+ int64_t r2_val = get_register(r2);
+ bool isOF = false;
+ switch (op) {
+ case AGR:
+ isOF = CheckOverflowForIntAdd(r1_val, r2_val);
+ r1_val += r2_val;
+ SetS390ConditionCode<int64_t>(r1_val, 0);
+ SetS390OverflowCode(isOF);
+ break;
+ case SGR:
+ isOF = CheckOverflowForIntSub(r1_val, r2_val);
+ r1_val -= r2_val;
+ SetS390ConditionCode<int64_t>(r1_val, 0);
+ SetS390OverflowCode(isOF);
+ break;
+ case OGR:
+ r1_val |= r2_val;
+ SetS390BitWiseConditionCode<uint64_t>(r1_val);
+ break;
+ case NGR:
+ r1_val &= r2_val;
+ SetS390BitWiseConditionCode<uint64_t>(r1_val);
+ break;
+ case XGR:
+ r1_val ^= r2_val;
+ SetS390BitWiseConditionCode<uint64_t>(r1_val);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ set_register(r1, r1_val);
+ break;
+ }
+ case AGFR: {
+ // Add Register (64 <- 32) (Sign Extends 32-bit val)
+ int r1 = rreInst->R1Value();
+ int r2 = rreInst->R2Value();
+ int64_t r1_val = get_register(r1);
+ int64_t r2_val = static_cast<int64_t>(get_low_register<int32_t>(r2));
+ bool isOF = CheckOverflowForIntAdd(r1_val, r2_val);
+ r1_val += r2_val;
+ SetS390ConditionCode<int64_t>(r1_val, 0);
+ SetS390OverflowCode(isOF);
+ set_register(r1, r1_val);
+ break;
+ }
+ case SGFR: {
+ // Sub Reg (64 <- 32)
+ int r1 = rreInst->R1Value();
+ int r2 = rreInst->R2Value();
+ int64_t r1_val = get_register(r1);
+ int64_t r2_val = static_cast<int64_t>(get_low_register<int32_t>(r2));
+ bool isOF = false;
+ isOF = CheckOverflowForIntSub(r1_val, r2_val);
+ r1_val -= r2_val;
+ SetS390ConditionCode<int64_t>(r1_val, 0);
+ SetS390OverflowCode(isOF);
+ set_register(r1, r1_val);
+ break;
+ }
+ case ARK:
+ case SRK:
+ case NRK:
+ case ORK:
+ case XRK: {
+ // 32-bit Non-clobbering arithmetics / bitwise ops
+ int r1 = rrfInst->R1Value();
+ int r2 = rrfInst->R2Value();
+ int r3 = rrfInst->R3Value();
+ int32_t r2_val = get_low_register<int32_t>(r2);
+ int32_t r3_val = get_low_register<int32_t>(r3);
+ if (ARK == op) {
+ bool isOF = CheckOverflowForIntAdd(r2_val, r3_val);
+ SetS390ConditionCode<int32_t>(r2_val + r3_val, 0);
+ SetS390OverflowCode(isOF);
+ set_low_register(r1, r2_val + r3_val);
+ } else if (SRK == op) {
+ bool isOF = CheckOverflowForIntSub(r2_val, r3_val);
+ SetS390ConditionCode<int32_t>(r2_val - r3_val, 0);
+ SetS390OverflowCode(isOF);
+ set_low_register(r1, r2_val - r3_val);
+ } else {
+ // Assume bitwise operation here
+ uint32_t bitwise_result = 0;
+ if (NRK == op) {
+ bitwise_result = r2_val & r3_val;
+ } else if (ORK == op) {
+ bitwise_result = r2_val | r3_val;
+ } else if (XRK == op) {
+ bitwise_result = r2_val ^ r3_val;
+ }
+ SetS390BitWiseConditionCode<uint32_t>(bitwise_result);
+ set_low_register(r1, bitwise_result);
+ }
+ break;
+ }
+ case ALRK:
+ case SLRK: {
+ // 32-bit Non-clobbering unsigned arithmetics
+ int r1 = rrfInst->R1Value();
+ int r2 = rrfInst->R2Value();
+ int r3 = rrfInst->R3Value();
+ uint32_t r2_val = get_low_register<uint32_t>(r2);
+ uint32_t r3_val = get_low_register<uint32_t>(r3);
+ if (ALRK == op) {
+ bool isOF = CheckOverflowForUIntAdd(r2_val, r3_val);
+ SetS390ConditionCode<uint32_t>(r2_val + r3_val, 0);
+ SetS390OverflowCode(isOF);
+ set_low_register(r1, r2_val + r3_val);
+ } else if (SLRK == op) {
+ bool isOF = CheckOverflowForUIntSub(r2_val, r3_val);
+ SetS390ConditionCode<uint32_t>(r2_val - r3_val, 0);
+ SetS390OverflowCode(isOF);
+ set_low_register(r1, r2_val - r3_val);
+ }
+ break;
+ }
+ case AGRK:
+ case SGRK:
+ case NGRK:
+ case OGRK:
+ case XGRK: {
+ // 64-bit Non-clobbering arithmetics / bitwise ops.
+ int r1 = rrfInst->R1Value();
+ int r2 = rrfInst->R2Value();
+ int r3 = rrfInst->R3Value();
+ int64_t r2_val = get_register(r2);
+ int64_t r3_val = get_register(r3);
+ if (AGRK == op) {
+ bool isOF = CheckOverflowForIntAdd(r2_val, r3_val);
+ SetS390ConditionCode<int64_t>(r2_val + r3_val, 0);
+ SetS390OverflowCode(isOF);
+ set_register(r1, r2_val + r3_val);
+ } else if (SGRK == op) {
+ bool isOF = CheckOverflowForIntSub(r2_val, r3_val);
+ SetS390ConditionCode<int64_t>(r2_val - r3_val, 0);
+ SetS390OverflowCode(isOF);
+ set_register(r1, r2_val - r3_val);
+ } else {
+ // Assume bitwise operation here
+ uint64_t bitwise_result = 0;
+ if (NGRK == op) {
+ bitwise_result = r2_val & r3_val;
+ } else if (OGRK == op) {
+ bitwise_result = r2_val | r3_val;
+ } else if (XGRK == op) {
+ bitwise_result = r2_val ^ r3_val;
+ }
+ SetS390BitWiseConditionCode<uint64_t>(bitwise_result);
+ set_register(r1, bitwise_result);
+ }
+ break;
+ }
+ case ALGRK:
+ case SLGRK: {
+ // 64-bit Non-clobbering unsigned arithmetics
+ int r1 = rrfInst->R1Value();
+ int r2 = rrfInst->R2Value();
+ int r3 = rrfInst->R3Value();
+ uint64_t r2_val = get_register(r2);
+ uint64_t r3_val = get_register(r3);
+ if (ALGRK == op) {
+ bool isOF = CheckOverflowForUIntAdd(r2_val, r3_val);
+ SetS390ConditionCode<uint64_t>(r2_val + r3_val, 0);
+ SetS390OverflowCode(isOF);
+ set_register(r1, r2_val + r3_val);
+ } else if (SLGRK == op) {
+ bool isOF = CheckOverflowForUIntSub(r2_val, r3_val);
+ SetS390ConditionCode<uint64_t>(r2_val - r3_val, 0);
+ SetS390OverflowCode(isOF);
+ set_register(r1, r2_val - r3_val);
+ }
+ break;
+ }
+ case AHI:
+ case MHI: {
+ RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
+ int r1 = riinst->R1Value();
+ int i = riinst->I2Value();
+ int32_t r1_val = get_low_register<int32_t>(r1);
+ bool isOF = false;
+ switch (op) {
+ case AHI:
+ isOF = CheckOverflowForIntAdd(r1_val, i);
+ r1_val += i;
+ break;
+ case MHI:
+ isOF = CheckOverflowForMul(r1_val, i);
+ r1_val *= i;
+ break; // no overflow indication is given
+ default:
+ break;
+ }
+ set_low_register(r1, r1_val);
+ SetS390ConditionCode<int32_t>(r1_val, 0);
+ SetS390OverflowCode(isOF);
+ break;
+ }
+ case AGHI:
+ case MGHI: {
+ RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
+ int r1 = riinst->R1Value();
+ int64_t i = static_cast<int64_t>(riinst->I2Value());
+ int64_t r1_val = get_register(r1);
+ bool isOF = false;
+ switch (op) {
+ case AGHI:
+ isOF = CheckOverflowForIntAdd(r1_val, i);
+ r1_val += i;
+ break;
+ case MGHI:
+ isOF = CheckOverflowForMul(r1_val, i);
+ r1_val *= i;
+ break; // no overflow indication is given
+ default:
+ break;
+ }
+ set_register(r1, r1_val);
+ SetS390ConditionCode<int32_t>(r1_val, 0);
+ SetS390OverflowCode(isOF);
+ break;
+ }
+ case MLR: {
+ RREInstruction* rreinst = reinterpret_cast<RREInstruction*>(instr);
+ int r1 = rreinst->R1Value();
+ int r2 = rreinst->R2Value();
+ DCHECK(r1 % 2 == 0);
+
+ uint32_t r1_val = get_low_register<uint32_t>(r1 + 1);
+ uint32_t r2_val = get_low_register<uint32_t>(r2);
+ uint64_t product =
+ static_cast<uint64_t>(r1_val) * static_cast<uint64_t>(r2_val);
+ int32_t high_bits = product >> 32;
+ int32_t low_bits = product & 0x00000000FFFFFFFF;
+ set_low_register(r1, high_bits);
+ set_low_register(r1 + 1, low_bits);
+ break;
+ }
+ case DLGR: {
+#ifdef V8_TARGET_ARCH_S390X
+ RREInstruction* rreinst = reinterpret_cast<RREInstruction*>(instr);
+ int r1 = rreinst->R1Value();
+ int r2 = rreinst->R2Value();
+ uint64_t r1_val = static_cast<uint64_t>(r1);
+ uint64_t r2_val = static_cast<uint64_t>(r2);
+ DCHECK(r1 % 2 == 0);
+ unsigned __int128 dividend = static_cast<unsigned __int128>(r1_val) << 64;
+ dividend += static_cast<uint64_t>(r1 + 1);
+ uint64_t remainder = dividend % r2_val;
+ uint64_t quotient = dividend / r2_val;
+ r1_val = remainder;
+ set_register(r1, remainder);
+ set_register(r1 + 1, quotient);
+#else
+ UNREACHABLE();
+#endif
+ break;
+ }
+ case DLR: {
+ RREInstruction* rreinst = reinterpret_cast<RREInstruction*>(instr);
+ int r1 = rreinst->R1Value();
+ int r2 = rreinst->R2Value();
+ uint32_t r1_val = get_low_register<uint32_t>(r1);
+ uint32_t r2_val = get_low_register<uint32_t>(r2);
+ DCHECK(r1 % 2 == 0);
+ uint64_t dividend = static_cast<uint64_t>(r1_val) << 32;
+ dividend += get_low_register<uint32_t>(r1 + 1);
+ uint32_t remainder = dividend % r2_val;
+ uint32_t quotient = dividend / r2_val;
+ r1_val = remainder;
+ set_low_register(r1, remainder);
+ set_low_register(r1 + 1, quotient);
+ break;
+ }
+ case A:
+ case S:
+ case M:
+ case D:
+ case O:
+ case N:
+ case X: {
+ // 32-bit Reg-Mem instructions
+ RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
+ int b2 = rxinst->B2Value();
+ int x2 = rxinst->X2Value();
+ int32_t r1_val = get_low_register<int32_t>(rxinst->R1Value());
+ int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+ int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+ intptr_t d2_val = rxinst->D2Value();
+ int32_t mem_val = ReadW(b2_val + x2_val + d2_val, instr);
+ int32_t alu_out = 0;
+ bool isOF = false;
+ switch (op) {
+ case A:
+ isOF = CheckOverflowForIntAdd(r1_val, mem_val);
+ alu_out = r1_val + mem_val;
+ SetS390ConditionCode<int32_t>(alu_out, 0);
+ SetS390OverflowCode(isOF);
+ break;
+ case S:
+ isOF = CheckOverflowForIntSub(r1_val, mem_val);
+ alu_out = r1_val - mem_val;
+ SetS390ConditionCode<int32_t>(alu_out, 0);
+ SetS390OverflowCode(isOF);
+ break;
+ case M:
+ case D:
+ UNIMPLEMENTED();
+ break;
+ case O:
+ alu_out = r1_val | mem_val;
+ SetS390BitWiseConditionCode<uint32_t>(alu_out);
+ break;
+ case N:
+ alu_out = r1_val & mem_val;
+ SetS390BitWiseConditionCode<uint32_t>(alu_out);
+ break;
+ case X:
+ alu_out = r1_val ^ mem_val;
+ SetS390BitWiseConditionCode<uint32_t>(alu_out);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ set_low_register(r1, alu_out);
+ break;
+ }
+ case OILL:
+ case OIHL: {
+ RIInstruction* riInst = reinterpret_cast<RIInstruction*>(instr);
+ int r1 = riInst->R1Value();
+ int i = riInst->I2Value();
+ int32_t r1_val = get_low_register<int32_t>(r1);
+ if (OILL == op) {
+ // CC is set based on the 16 bits that are AND'd
+ SetS390BitWiseConditionCode<uint16_t>(r1_val | i);
+ } else if (OILH == op) {
+ // CC is set based on the 16 bits that are AND'd
+ SetS390BitWiseConditionCode<uint16_t>((r1_val >> 16) | i);
+ i = i << 16;
+ } else {
+ UNIMPLEMENTED();
+ }
+ set_low_register(r1, r1_val | i);
+ break;
+ }
+ case NILL:
+ case NILH: {
+ RIInstruction* riInst = reinterpret_cast<RIInstruction*>(instr);
+ int r1 = riInst->R1Value();
+ int i = riInst->I2Value();
+ int32_t r1_val = get_low_register<int32_t>(r1);
+ if (NILL == op) {
+ // CC is set based on the 16 bits that are AND'd
+ SetS390BitWiseConditionCode<uint16_t>(r1_val & i);
+ i |= 0xFFFF0000;
+ } else if (NILH == op) {
+ // CC is set based on the 16 bits that are AND'd
+ SetS390BitWiseConditionCode<uint16_t>((r1_val >> 16) & i);
+ i = (i << 16) | 0x0000FFFF;
+ } else {
+ UNIMPLEMENTED();
+ }
+ set_low_register(r1, r1_val & i);
+ break;
+ }
+ case AH:
+ case SH:
+ case MH: {
+ RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
+ int b2 = rxinst->B2Value();
+ int x2 = rxinst->X2Value();
+ int32_t r1_val = get_low_register<int32_t>(rxinst->R1Value());
+ int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+ int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+ intptr_t d2_val = rxinst->D2Value();
+ intptr_t addr = b2_val + x2_val + d2_val;
+ int16_t mem_val = ReadH(addr, instr);
+ int32_t alu_out = 0;
+ bool isOF = false;
+ if (AH == op) {
+ isOF = CheckOverflowForIntAdd(r1_val, mem_val);
+ alu_out = r1_val + mem_val;
+ } else if (SH == op) {
+ isOF = CheckOverflowForIntSub(r1_val, mem_val);
+ alu_out = r1_val - mem_val;
+ } else if (MH == op) {
+ alu_out = r1_val * mem_val;
+ } else {
+ UNREACHABLE();
+ }
+ set_low_register(r1, alu_out);
+ if (MH != op) { // MH does not change condition code
+ SetS390ConditionCode<int32_t>(alu_out, 0);
+ SetS390OverflowCode(isOF);
+ }
+ break;
+ }
+ case DSGR: {
+ RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr);
+ int r1 = rreInst->R1Value();
+ int r2 = rreInst->R2Value();
+
+ DCHECK(r1 % 2 == 0);
+
+ int64_t dividend = get_register(r1 + 1);
+ int64_t divisor = get_register(r2);
+ set_register(r1, dividend % divisor);
+ set_register(r1 + 1, dividend / divisor);
+
+ break;
+ }
+ case FLOGR: {
+ RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr);
+ int r1 = rreInst->R1Value();
+ int r2 = rreInst->R2Value();
+
+ DCHECK(r1 % 2 == 0);
+
+ int64_t r2_val = get_register(r2);
+
+ int i = 0;
+ for (; i < 64; i++) {
+ if (r2_val < 0) break;
+ r2_val <<= 1;
+ }
+
+ r2_val = get_register(r2);
+
+ int64_t mask = ~(1 << (63 - i));
+ set_register(r1, i);
+ set_register(r1 + 1, r2_val & mask);
+
+ break;
+ }
+ case MSR:
+ case MSGR: { // they do not set overflow code
+ RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr);
+ int r1 = rreInst->R1Value();
+ int r2 = rreInst->R2Value();
+ if (op == MSR) {
+ int32_t r1_val = get_low_register<int32_t>(r1);
+ int32_t r2_val = get_low_register<int32_t>(r2);
+ set_low_register(r1, r1_val * r2_val);
+ } else if (op == MSGR) {
+ int64_t r1_val = get_register(r1);
+ int64_t r2_val = get_register(r2);
+ set_register(r1, r1_val * r2_val);
+ } else {
+ UNREACHABLE();
+ }
+ break;
+ }
+ case MS: {
+ RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr);
+ int r1 = rxinst->R1Value();
+ int b2 = rxinst->B2Value();
+ int x2 = rxinst->X2Value();
+ int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+ int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+ intptr_t d2_val = rxinst->D2Value();
+ int32_t mem_val = ReadW(b2_val + x2_val + d2_val, instr);
+ int32_t r1_val = get_low_register<int32_t>(r1);
+ set_low_register(r1, r1_val * mem_val);
+ break;
+ }
+ case LGBR:
+ case LBR: {
+ RREInstruction* rrinst = reinterpret_cast<RREInstruction*>(instr);
+ int r1 = rrinst->R1Value();
+ int r2 = rrinst->R2Value();
+#ifdef V8_TARGET_ARCH_S390X
+ int64_t r2_val = get_low_register<int64_t>(r2);
+ r2_val <<= 56;
+ r2_val >>= 56;
+ set_register(r1, r2_val);
+#else
+ int32_t r2_val = get_low_register<int32_t>(r2);
+ r2_val <<= 24;
+ r2_val >>= 24;
+ set_low_register(r1, r2_val);
+#endif
+ break;
+ }
+ case LGHR:
+ case LHR: {
+ RREInstruction* rrinst = reinterpret_cast<RREInstruction*>(instr);
+ int r1 = rrinst->R1Value();
+ int r2 = rrinst->R2Value();
+#ifdef V8_TARGET_ARCH_S390X
+ int64_t r2_val = get_low_register<int64_t>(r2);
+ r2_val <<= 48;
+ r2_val >>= 48;
+ set_register(r1, r2_val);
+#else
+ int32_t r2_val = get_low_register<int32_t>(r2);
+ r2_val <<= 16;
+ r2_val >>= 16;
+ set_low_register(r1, r2_val);
+#endif
+ break;
+ }
+ default: { return DecodeFourByteFloatingPoint(instr); }
+ }
+ return true;
+}
+
+void Simulator::DecodeFourByteFloatingPointIntConversion(Instruction* instr) {
+ Opcode op = instr->S390OpcodeValue();
+ switch (op) {
+ case CDLFBR:
+ case CDLGBR:
+ case CELGBR:
+ case CLFDBR:
+ case CLGDBR:
+ case CELFBR:
+ case CLGEBR: {
+ RREInstruction* rreInstr = reinterpret_cast<RREInstruction*>(instr);
+ int r1 = rreInstr->R1Value();
+ int r2 = rreInstr->R2Value();
+ if (op == CDLFBR) {
+ uint32_t r2_val = get_low_register<uint32_t>(r2);
+ double r1_val = static_cast<double>(r2_val);
+ set_d_register_from_double(r1, r1_val);
+ } else if (op == CELFBR) {
+ uint32_t r2_val = get_low_register<uint32_t>(r2);
+ float r1_val = static_cast<float>(r2_val);
+ set_d_register_from_float32(r1, r1_val);
+ } else if (op == CDLGBR) {
+ uint64_t r2_val = get_register(r2);
+ double r1_val = static_cast<double>(r2_val);
+ set_d_register_from_double(r1, r1_val);
+ } else if (op == CELGBR) {
+ uint64_t r2_val = get_register(r2);
+ float r1_val = static_cast<float>(r2_val);
+ set_d_register_from_float32(r1, r1_val);
+ } else if (op == CLFDBR) {
+ double r2_val = get_double_from_d_register(r2);
+ uint32_t r1_val = static_cast<uint32_t>(r2_val);
+ set_low_register(r1, r1_val);
+ SetS390ConditionCode<double>(r2_val, 0);
+ } else if (op == CLGDBR) {
+ double r2_val = get_double_from_d_register(r2);
+ uint64_t r1_val = static_cast<uint64_t>(r2_val);
+ set_register(r1, r1_val);
+ SetS390ConditionCode<double>(r2_val, 0);
+ } else if (op == CLGEBR) {
+ float r2_val = get_float32_from_d_register(r2);
+ uint64_t r1_val = static_cast<uint64_t>(r2_val);
+ set_register(r1, r1_val);
+ SetS390ConditionCode<double>(r2_val, 0);
+ }
+ break;
+ }
+ default:
+ UNREACHABLE();
+ }
+}
+
+void Simulator::DecodeFourByteFloatingPointRound(Instruction* instr) {
+ Opcode op = instr->S390OpcodeValue();
+ RREInstruction* rreInstr = reinterpret_cast<RREInstruction*>(instr);
+ int r1 = rreInstr->R1Value();
+ int r2 = rreInstr->R2Value();
+ double r2_val = get_double_from_d_register(r2);
+ float r2_fval = get_float32_from_d_register(r2);
+
+ switch (op) {
+ case CFDBR: {
+ int mask_val = rreInstr->M3Value();
+ int32_t r1_val = 0;
+
+ if (r2_val == 0.0)
+ condition_reg_ = 8;
+ else if (r2_val < 0.0)
+ condition_reg_ = 4;
+ else if (r2_val > 0.0)
+ condition_reg_ = 2;
+ else
+ condition_reg_ = 1;
+
+ switch (mask_val) {
+ case CURRENT_ROUNDING_MODE:
+ case ROUND_TO_PREPARE_FOR_SHORTER_PRECISION: {
+ r1_val = static_cast<int32_t>(r2_val);
+ break;
+ }
+ case ROUND_TO_NEAREST_WITH_TIES_AWAY_FROM_0: {
+ double ceil_val = std::ceil(r2_val);
+ double floor_val = std::floor(r2_val);
+ double sub_val1 = std::fabs(r2_val - floor_val);
+ double sub_val2 = std::fabs(r2_val - ceil_val);
+ if (sub_val1 > sub_val2) {
+ r1_val = static_cast<int32_t>(ceil_val);
+ } else if (sub_val1 < sub_val2) {
+ r1_val = static_cast<int32_t>(floor_val);
+ } else { // round away from zero:
+ if (r2_val > 0.0) {
+ r1_val = static_cast<int32_t>(ceil_val);
+ } else {
+ r1_val = static_cast<int32_t>(floor_val);
+ }
+ }
+ break;
+ }
+ case ROUND_TO_NEAREST_WITH_TIES_TO_EVEN: {
+ double ceil_val = std::ceil(r2_val);
+ double floor_val = std::floor(r2_val);
+ double sub_val1 = std::fabs(r2_val - floor_val);
+ double sub_val2 = std::fabs(r2_val - ceil_val);
+ if (sub_val1 > sub_val2) {
+ r1_val = static_cast<int32_t>(ceil_val);
+ } else if (sub_val1 < sub_val2) {
+ r1_val = static_cast<int32_t>(floor_val);
+ } else { // check which one is even:
+ int32_t c_v = static_cast<int32_t>(ceil_val);
+ int32_t f_v = static_cast<int32_t>(floor_val);
+ if (f_v % 2 == 0)
+ r1_val = f_v;
+ else
+ r1_val = c_v;
+ }
+ break;
+ }
+ case ROUND_TOWARD_0: {
+ // check for overflow, cast r2_val to 64bit integer
+ // then check value within the range of INT_MIN and INT_MAX
+ // and set condition code accordingly
+ int64_t temp = static_cast<int64_t>(r2_val);
+ if (temp < INT_MIN || temp > INT_MAX) {
+ condition_reg_ = CC_OF;
+ }
+ r1_val = static_cast<int32_t>(r2_val);
+ break;
+ }
+ case ROUND_TOWARD_PLUS_INFINITE: {
+ r1_val = static_cast<int32_t>(std::ceil(r2_val));
+ break;
+ }
+ case ROUND_TOWARD_MINUS_INFINITE: {
+ // check for overflow, cast r2_val to 64bit integer
+ // then check value within the range of INT_MIN and INT_MAX
+ // and set condition code accordingly
+ int64_t temp = static_cast<int64_t>(std::floor(r2_val));
+ if (temp < INT_MIN || temp > INT_MAX) {
+ condition_reg_ = CC_OF;
+ }
+ r1_val = static_cast<int32_t>(std::floor(r2_val));
+ break;
+ }
+ default:
+ UNREACHABLE();
+ }
+ set_low_register(r1, r1_val);
+ break;
+ }
+ case CGDBR: {
+ int mask_val = rreInstr->M3Value();
+ int64_t r1_val = 0;
+
+ if (r2_val == 0.0)
+ condition_reg_ = 8;
+ else if (r2_val < 0.0)
+ condition_reg_ = 4;
+ else if (r2_val > 0.0)
+ condition_reg_ = 2;
+ else
+ condition_reg_ = 1;
+
+ switch (mask_val) {
+ case CURRENT_ROUNDING_MODE:
+ case ROUND_TO_NEAREST_WITH_TIES_AWAY_FROM_0:
+ case ROUND_TO_PREPARE_FOR_SHORTER_PRECISION: {
+ UNIMPLEMENTED();
+ break;
+ }
+ case ROUND_TO_NEAREST_WITH_TIES_TO_EVEN: {
+ double ceil_val = std::ceil(r2_val);
+ double floor_val = std::floor(r2_val);
+ if (std::abs(r2_val - floor_val) > std::abs(r2_val - ceil_val)) {
+ r1_val = static_cast<int64_t>(ceil_val);
+ } else if (std::abs(r2_val - floor_val) <
+ std::abs(r2_val - ceil_val)) {
+ r1_val = static_cast<int64_t>(floor_val);
+ } else { // check which one is even:
+ int64_t c_v = static_cast<int64_t>(ceil_val);
+ int64_t f_v = static_cast<int64_t>(floor_val);
+ if (f_v % 2 == 0)
+ r1_val = f_v;
+ else
+ r1_val = c_v;
+ }
+ break;
+ }
+ case ROUND_TOWARD_0: {
+ r1_val = static_cast<int64_t>(r2_val);
+ break;
+ }
+ case ROUND_TOWARD_PLUS_INFINITE: {
+ r1_val = static_cast<int64_t>(std::ceil(r2_val));
+ break;
+ }
+ case ROUND_TOWARD_MINUS_INFINITE: {
+ r1_val = static_cast<int64_t>(std::floor(r2_val));
+ break;
+ }
+ default:
+ UNREACHABLE();
+ }
+ set_register(r1, r1_val);
+ break;
+ }
+ case CGEBR: {
+ int mask_val = rreInstr->M3Value();
+ int64_t r1_val = 0;
+
+ if (r2_fval == 0.0)
+ condition_reg_ = 8;
+ else if (r2_fval < 0.0)
+ condition_reg_ = 4;
+ else if (r2_fval > 0.0)
+ condition_reg_ = 2;
+ else
+ condition_reg_ = 1;
+
+ switch (mask_val) {
+ case CURRENT_ROUNDING_MODE:
+ case ROUND_TO_NEAREST_WITH_TIES_AWAY_FROM_0:
+ case ROUND_TO_PREPARE_FOR_SHORTER_PRECISION: {
+ UNIMPLEMENTED();
+ break;
+ }
+ case ROUND_TO_NEAREST_WITH_TIES_TO_EVEN: {
+ float ceil_val = std::ceil(r2_fval);
+ float floor_val = std::floor(r2_fval);
+ if (std::abs(r2_fval - floor_val) > std::abs(r2_fval - ceil_val)) {
+ r1_val = static_cast<int64_t>(ceil_val);
+ } else if (std::abs(r2_fval - floor_val) <
+ std::abs(r2_fval - ceil_val)) {
+ r1_val = static_cast<int64_t>(floor_val);
+ } else { // check which one is even:
+ int64_t c_v = static_cast<int64_t>(ceil_val);
+ int64_t f_v = static_cast<int64_t>(floor_val);
+ if (f_v % 2 == 0)
+ r1_val = f_v;
+ else
+ r1_val = c_v;
+ }
+ break;
+ }
+ case ROUND_TOWARD_0: {
+ r1_val = static_cast<int64_t>(r2_fval);
+ break;
+ }
+ case ROUND_TOWARD_PLUS_INFINITE: {
+ r1_val = static_cast<int64_t>(std::ceil(r2_fval));
+ break;
+ }
+ case ROUND_TOWARD_MINUS_INFINITE: {
+ r1_val = static_cast<int64_t>(std::floor(r2_fval));
+ break;
+ }
+ default:
+ UNREACHABLE();
+ }
+ set_register(r1, r1_val);
+ break;
+ }
+ case CFEBR: {
+ int mask_val = rreInstr->M3Value();
+ int32_t r1_val = 0;
+
+ if (r2_fval == 0.0)
+ condition_reg_ = 8;
+ else if (r2_fval < 0.0)
+ condition_reg_ = 4;
+ else if (r2_fval > 0.0)
+ condition_reg_ = 2;
+ else
+ condition_reg_ = 1;
+
+ switch (mask_val) {
+ case CURRENT_ROUNDING_MODE:
+ case ROUND_TO_PREPARE_FOR_SHORTER_PRECISION: {
+ r1_val = static_cast<int32_t>(r2_fval);
+ break;
+ }
+ case ROUND_TO_NEAREST_WITH_TIES_AWAY_FROM_0: {
+ float ceil_val = std::ceil(r2_fval);
+ float floor_val = std::floor(r2_fval);
+ float sub_val1 = std::fabs(r2_fval - floor_val);
+ float sub_val2 = std::fabs(r2_fval - ceil_val);
+ if (sub_val1 > sub_val2) {
+ r1_val = static_cast<int32_t>(ceil_val);
+ } else if (sub_val1 < sub_val2) {
+ r1_val = static_cast<int32_t>(floor_val);
+ } else { // round away from zero:
+ if (r2_fval > 0.0) {
+ r1_val = static_cast<int32_t>(ceil_val);
+ } else {
+ r1_val = static_cast<int32_t>(floor_val);
+ }
+ }
+ break;
+ }
+ case ROUND_TO_NEAREST_WITH_TIES_TO_EVEN: {
+ float ceil_val = std::ceil(r2_fval);
+ float floor_val = std::floor(r2_fval);
+ float sub_val1 = std::fabs(r2_fval - floor_val);
+ float sub_val2 = std::fabs(r2_fval - ceil_val);
+ if (sub_val1 > sub_val2) {
+ r1_val = static_cast<int32_t>(ceil_val);
+ } else if (sub_val1 < sub_val2) {
+ r1_val = static_cast<int32_t>(floor_val);
+ } else { // check which one is even:
+ int32_t c_v = static_cast<int32_t>(ceil_val);
+ int32_t f_v = static_cast<int32_t>(floor_val);
+ if (f_v % 2 == 0)
+ r1_val = f_v;
+ else
+ r1_val = c_v;
+ }
+ break;
+ }
+ case ROUND_TOWARD_0: {
+ // check for overflow, cast r2_fval to 64bit integer
+ // then check value within the range of INT_MIN and INT_MAX
+ // and set condition code accordingly
+ int64_t temp = static_cast<int64_t>(r2_fval);
+ if (temp < INT_MIN || temp > INT_MAX) {
+ condition_reg_ = CC_OF;
+ }
+ r1_val = static_cast<int32_t>(r2_fval);
+ break;
+ }
+ case ROUND_TOWARD_PLUS_INFINITE: {
+ r1_val = static_cast<int32_t>(std::ceil(r2_fval));
+ break;
+ }
+ case ROUND_TOWARD_MINUS_INFINITE: {
+ // check for overflow, cast r2_fval to 64bit integer
+ // then check value within the range of INT_MIN and INT_MAX
+ // and set condition code accordingly
+ int64_t temp = static_cast<int64_t>(std::floor(r2_fval));
+ if (temp < INT_MIN || temp > INT_MAX) {
+ condition_reg_ = CC_OF;
+ }
+ r1_val = static_cast<int32_t>(std::floor(r2_fval));
+ break;
+ }
+ default:
+ UNREACHABLE();
+ }
+ set_low_register(r1, r1_val);
+
+ break;
+ }
+ default:
+ UNREACHABLE();
+ }
+}
+
+/**
+ * Decodes and simulates four byte floating point instructions
+ */
+bool Simulator::DecodeFourByteFloatingPoint(Instruction* instr) {
+ Opcode op = instr->S390OpcodeValue();
+
+ switch (op) {
+ case ADBR:
+ case AEBR:
+ case SDBR:
+ case SEBR:
+ case MDBR:
+ case MEEBR:
+ case MADBR:
+ case DDBR:
+ case DEBR:
+ case CDBR:
+ case CEBR:
+ case CDFBR:
+ case CDGBR:
+ case CEGBR:
+ case CGEBR:
+ case CFDBR:
+ case CGDBR:
+ case SQDBR:
+ case SQEBR:
+ case CFEBR:
+ case CEFBR:
+ case LCDBR:
+ case LPDBR:
+ case LPEBR: {
+ RREInstruction* rreInstr = reinterpret_cast<RREInstruction*>(instr);
+ int r1 = rreInstr->R1Value();
+ int r2 = rreInstr->R2Value();
+ double r1_val = get_double_from_d_register(r1);
+ double r2_val = get_double_from_d_register(r2);
+ float fr1_val = get_float32_from_d_register(r1);
+ float fr2_val = get_float32_from_d_register(r2);
+ if (op == ADBR) {
+ r1_val += r2_val;
+ set_d_register_from_double(r1, r1_val);
+ SetS390ConditionCode<double>(r1_val, 0);
+ } else if (op == AEBR) {
+ fr1_val += fr2_val;
+ set_d_register_from_float32(r1, fr1_val);
+ SetS390ConditionCode<float>(fr1_val, 0);
+ } else if (op == SDBR) {
+ r1_val -= r2_val;
+ set_d_register_from_double(r1, r1_val);
+ SetS390ConditionCode<double>(r1_val, 0);
+ } else if (op == SEBR) {
+ fr1_val -= fr2_val;
+ set_d_register_from_float32(r1, fr1_val);
+ SetS390ConditionCode<float>(fr1_val, 0);
+ } else if (op == MDBR) {
+ r1_val *= r2_val;
+ set_d_register_from_double(r1, r1_val);
+ SetS390ConditionCode<double>(r1_val, 0);
+ } else if (op == MEEBR) {
+ fr1_val *= fr2_val;
+ set_d_register_from_float32(r1, fr1_val);
+ SetS390ConditionCode<float>(fr1_val, 0);
+ } else if (op == MADBR) {
+ RRDInstruction* rrdInstr = reinterpret_cast<RRDInstruction*>(instr);
+ int r1 = rrdInstr->R1Value();
+ int r2 = rrdInstr->R2Value();
+ int r3 = rrdInstr->R3Value();
+ double r1_val = get_double_from_d_register(r1);
+ double r2_val = get_double_from_d_register(r2);
+ double r3_val = get_double_from_d_register(r3);
+ r1_val += r2_val * r3_val;
+ set_d_register_from_double(r1, r1_val);
+ SetS390ConditionCode<double>(r1_val, 0);
+ } else if (op == DDBR) {
+ r1_val /= r2_val;
+ set_d_register_from_double(r1, r1_val);
+ SetS390ConditionCode<double>(r1_val, 0);
+ } else if (op == DEBR) {
+ fr1_val /= fr2_val;
+ set_d_register_from_float32(r1, fr1_val);
+ SetS390ConditionCode<float>(fr1_val, 0);
+ } else if (op == CDBR) {
+ if (isNaN(r1_val) || isNaN(r2_val)) {
+ condition_reg_ = CC_OF;
+ } else {
+ SetS390ConditionCode<double>(r1_val, r2_val);
+ }
+ } else if (op == CEBR) {
+ if (isNaN(r1_val) || isNaN(r2_val)) {
+ condition_reg_ = CC_OF;
+ } else {
+ SetS390ConditionCode<float>(r1_val, r2_val);
+ }
+ } else if (op == CDGBR) {
+ int64_t r2_val = get_register(r2);
+ double r1_val = static_cast<double>(r2_val);
+ set_d_register_from_double(r1, r1_val);
+ } else if (op == CEGBR) {
+ int64_t fr2_val = get_register(r2);
+ float fr1_val = static_cast<float>(fr2_val);
+ set_d_register_from_float32(r1, fr1_val);
+ } else if (op == CDFBR) {
+ int32_t r2_val = get_low_register<int32_t>(r2);
+ double r1_val = static_cast<double>(r2_val);
+ set_d_register_from_double(r1, r1_val);
+ } else if (op == CEFBR) {
+ int32_t fr2_val = get_low_register<int32_t>(r2);
+ float fr1_val = static_cast<float>(fr2_val);
+ set_d_register_from_float32(r1, fr1_val);
+ } else if (op == CFDBR) {
+ DecodeFourByteFloatingPointRound(instr);
+ } else if (op == CGDBR) {
+ DecodeFourByteFloatingPointRound(instr);
+ } else if (op == CGEBR) {
+ DecodeFourByteFloatingPointRound(instr);
+ } else if (op == SQDBR) {
+ r1_val = std::sqrt(r2_val);
+ set_d_register_from_double(r1, r1_val);
+ } else if (op == SQEBR) {
+ r1_val = std::sqrt(r2_val);
+ set_d_register_from_float32(r1, r1_val);
+ } else if (op == CFEBR) {
+ DecodeFourByteFloatingPointRound(instr);
+ } else if (op == LCDBR) {
+ r1_val = -r2_val;
+ set_d_register_from_double(r1, r1_val);
+ if (r2_val != r2_val) { // input is NaN
+ condition_reg_ = CC_OF;
+ } else if (r2_val == 0) {
+ condition_reg_ = CC_EQ;
+ } else if (r2_val < 0) {
+ condition_reg_ = CC_LT;
+ } else if (r2_val > 0) {
+ condition_reg_ = CC_GT;
+ }
+ } else if (op == LPDBR) {
+ r1_val = std::fabs(r2_val);
+ set_d_register_from_double(r1, r1_val);
+ if (r2_val != r2_val) { // input is NaN
+ condition_reg_ = CC_OF;
+ } else if (r2_val == 0) {
+ condition_reg_ = CC_EQ;
+ } else {
+ condition_reg_ = CC_GT;
+ }
+ } else if (op == LPEBR) {
+ fr1_val = std::fabs(fr2_val);
+ set_d_register_from_float32(r1, fr1_val);
+ if (fr2_val != fr2_val) { // input is NaN
+ condition_reg_ = CC_OF;
+ } else if (fr2_val == 0) {
+ condition_reg_ = CC_EQ;
+ } else {
+ condition_reg_ = CC_GT;
+ }
+ } else {
+ UNREACHABLE();
+ }
+ break;
+ }
+ case CDLFBR:
+ case CDLGBR:
+ case CELGBR:
+ case CLFDBR:
+ case CELFBR:
+ case CLGDBR:
+ case CLGEBR: {
+ DecodeFourByteFloatingPointIntConversion(instr);
+ break;
+ }
+ case TMLL: {
+ RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr);
+ int r1 = riinst->R1Value();
+ int mask = riinst->I2Value() & 0x0000FFFF;
+ if (mask == 0) {
+ condition_reg_ = 0x0;
+ break;
+ }
+ uint32_t r1_val = get_low_register<uint32_t>(r1);
+ r1_val = r1_val & 0x0000FFFF; // uses only the last 16bits
+
+ // Test if all selected bits are Zero
+ bool allSelectedBitsAreZeros = true;
+ for (int i = 0; i < 15; i++) {
+ if (mask & (1 << i)) {
+ if (r1_val & (1 << i)) {
+ allSelectedBitsAreZeros = false;
+ break;
+ }
+ }
+ }
+ if (allSelectedBitsAreZeros) {
+ condition_reg_ = 0x8;
+ break; // Done!
+ }
+
+ // Test if all selected bits are one
+ bool allSelectedBitsAreOnes = true;
+ for (int i = 0; i < 15; i++) {
+ if (mask & (1 << i)) {
+ if (!(r1_val & (1 << i))) {
+ allSelectedBitsAreOnes = false;
+ break;
+ }
+ }
+ }
+ if (allSelectedBitsAreOnes) {
+ condition_reg_ = 0x1;
+ break; // Done!
+ }
+
+ // Now we know selected bits mixed zeros and ones
+ // Test if the leftmost bit is zero or one
+ for (int i = 14; i >= 0; i--) {
+ if (mask & (1 << i)) {
+ if (r1_val & (1 << i)) {
+ // leftmost bit is one
+ condition_reg_ = 0x2;
+ } else {
+ // leftmost bit is zero
+ condition_reg_ = 0x4;
+ }
+ break; // Done!
+ }
+ }
+ break;
+ }
+ case LEDBR: {
+ RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr);
+ int r1 = rreInst->R1Value();
+ int r2 = rreInst->R2Value();
+ double r2_val = get_double_from_d_register(r2);
+ set_d_register_from_float32(r1, static_cast<float>(r2_val));
+ break;
+ }
+ case FIDBRA: {
+ RRFInstruction* rrfInst = reinterpret_cast<RRFInstruction*>(instr);
+ int r1 = rrfInst->R1Value();
+ int r2 = rrfInst->R2Value();
+ int m3 = rrfInst->M3Value();
+ double r2_val = get_double_from_d_register(r2);
+ DCHECK(rrfInst->M4Value() == 0);
+ switch (m3) {
+ case Assembler::FIDBRA_ROUND_TO_NEAREST_AWAY_FROM_0:
+ set_d_register_from_double(r1, round(r2_val));
+ break;
+ case Assembler::FIDBRA_ROUND_TOWARD_0:
+ set_d_register_from_double(r1, trunc(r2_val));
+ break;
+ case Assembler::FIDBRA_ROUND_TOWARD_POS_INF:
+ set_d_register_from_double(r1, std::ceil(r2_val));
+ break;
+ case Assembler::FIDBRA_ROUND_TOWARD_NEG_INF:
+ set_d_register_from_double(r1, std::floor(r2_val));
+ break;
+ default:
+ UNIMPLEMENTED();
+ break;
+ }
+ break;
+ }
+ case FIEBRA: {
+ RRFInstruction* rrfInst = reinterpret_cast<RRFInstruction*>(instr);
+ int r1 = rrfInst->R1Value();
+ int r2 = rrfInst->R2Value();
+ int m3 = rrfInst->M3Value();
+ float r2_val = get_float32_from_d_register(r2);
+ DCHECK(rrfInst->M4Value() == 0);
+ switch (m3) {
+ case Assembler::FIDBRA_ROUND_TO_NEAREST_AWAY_FROM_0:
+ set_d_register_from_float32(r1, round(r2_val));
+ break;
+ case Assembler::FIDBRA_ROUND_TOWARD_0:
+ set_d_register_from_float32(r1, trunc(r2_val));
+ break;
+ case Assembler::FIDBRA_ROUND_TOWARD_POS_INF:
+ set_d_register_from_float32(r1, std::ceil(r2_val));
+ break;
+ case Assembler::FIDBRA_ROUND_TOWARD_NEG_INF:
+ set_d_register_from_float32(r1, std::floor(r2_val));
+ break;
+ default:
+ UNIMPLEMENTED();
+ break;
+ }
+ break;
+ }
+ case MSDBR: {
+ UNIMPLEMENTED();
+ break;
+ }
+ case LDEBR: {
+ RREInstruction* rreInstr = reinterpret_cast<RREInstruction*>(instr);
+ int r1 = rreInstr->R1Value();
+ int r2 = rreInstr->R2Value();
+ float fp_val = get_float32_from_d_register(r2);
+ double db_val = static_cast<double>(fp_val);
+ set_d_register_from_double(r1, db_val);
+ break;
+ }
+ default: {
+ UNREACHABLE();
+ return false;
+ }
+ }
+ return true;
+}
+
+// Decode routine for six-byte instructions
+bool Simulator::DecodeSixByte(Instruction* instr) {
+ Opcode op = instr->S390OpcodeValue();
+
+ // Pre-cast instruction to various types
+ RIEInstruction* rieInstr = reinterpret_cast<RIEInstruction*>(instr);
+ RILInstruction* rilInstr = reinterpret_cast<RILInstruction*>(instr);
+ RSYInstruction* rsyInstr = reinterpret_cast<RSYInstruction*>(instr);
+ RXEInstruction* rxeInstr = reinterpret_cast<RXEInstruction*>(instr);
+ RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
+ SIYInstruction* siyInstr = reinterpret_cast<SIYInstruction*>(instr);
+ SILInstruction* silInstr = reinterpret_cast<SILInstruction*>(instr);
+ SSInstruction* ssInstr = reinterpret_cast<SSInstruction*>(instr);
+
+ switch (op) {
+ case CLIY: {
+ // Compare Immediate (Mem - Imm) (8)
+ int b1 = siyInstr->B1Value();
+ int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
+ intptr_t d1_val = siyInstr->D1Value();
+ intptr_t addr = b1_val + d1_val;
+ uint8_t mem_val = ReadB(addr);
+ uint8_t imm_val = siyInstr->I2Value();
+ SetS390ConditionCode<uint8_t>(mem_val, imm_val);
+ break;
+ }
+ case TMY: {
+ // Test Under Mask (Mem - Imm) (8)
+ int b1 = siyInstr->B1Value();
+ int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
+ intptr_t d1_val = siyInstr->D1Value();
+ intptr_t addr = b1_val + d1_val;
+ uint8_t mem_val = ReadB(addr);
+ uint8_t imm_val = siyInstr->I2Value();
+ uint8_t selected_bits = mem_val & imm_val;
+ // CC0: Selected bits are zero
+ // CC1: Selected bits mixed zeros and ones
+ // CC3: Selected bits all ones
+ if (0 == selected_bits) {
+ condition_reg_ = CC_EQ; // CC0
+ } else if (selected_bits == imm_val) {
+ condition_reg_ = 0x1; // CC3
+ } else {
+ condition_reg_ = 0x4; // CC1
+ }
+ break;
+ }
+ case LDEB: {
+ // Load Float
+ int r1 = rxeInstr->R1Value();
+ int rb = rxeInstr->B2Value();
+ int rx = rxeInstr->X2Value();
+ int offset = rxeInstr->D2Value();
+ int64_t rb_val = (rb == 0) ? 0 : get_register(rb);
+ int64_t rx_val = (rx == 0) ? 0 : get_register(rx);
+ double ret = static_cast<double>(
+ *reinterpret_cast<float*>(rx_val + rb_val + offset));
+ set_d_register_from_double(r1, ret);
+ break;
+ }
+ case LAY: {
+ // Load Address
+ int r1 = rxyInstr->R1Value();
+ int rb = rxyInstr->B2Value();
+ int rx = rxyInstr->X2Value();
+ int offset = rxyInstr->D2Value();
+ int64_t rb_val = (rb == 0) ? 0 : get_register(rb);
+ int64_t rx_val = (rx == 0) ? 0 : get_register(rx);
+ set_register(r1, rx_val + rb_val + offset);
+ break;
+ }
+ case LARL: {
+ // Load Addresss Relative Long
+ int r1 = rilInstr->R1Value();
+ intptr_t offset = rilInstr->I2Value() * 2;
+ set_register(r1, get_pc() + offset);
+ break;
+ }
+ case LLILF: {
+ // Load Logical into lower 32-bits (zero extend upper 32-bits)
+ int r1 = rilInstr->R1Value();
+ uint64_t imm = static_cast<uint64_t>(rilInstr->I2UnsignedValue());
+ set_register(r1, imm);
+ break;
+ }
+ case LLIHF: {
+ // Load Logical Immediate into high word
+ int r1 = rilInstr->R1Value();
+ uint64_t imm = static_cast<uint64_t>(rilInstr->I2UnsignedValue());
+ set_register(r1, imm << 32);
+ break;
+ }
+ case OILF:
+ case NILF:
+ case IILF: {
+ // Bitwise Op on lower 32-bits
+ int r1 = rilInstr->R1Value();
+ uint32_t imm = rilInstr->I2UnsignedValue();
+ uint32_t alu_out = get_low_register<uint32_t>(r1);
+ if (NILF == op) {
+ alu_out &= imm;
+ SetS390BitWiseConditionCode<uint32_t>(alu_out);
+ } else if (OILF == op) {
+ alu_out |= imm;
+ SetS390BitWiseConditionCode<uint32_t>(alu_out);
+ } else if (op == IILF) {
+ alu_out = imm;
+ } else {
+ DCHECK(false);
+ }
+ set_low_register(r1, alu_out);
+ break;
+ }
+ case OIHF:
+ case NIHF:
+ case IIHF: {
+ // Bitwise Op on upper 32-bits
+ int r1 = rilInstr->R1Value();
+ uint32_t imm = rilInstr->I2Value();
+ uint32_t alu_out = get_high_register<uint32_t>(r1);
+ if (op == NIHF) {
+ alu_out &= imm;
+ SetS390BitWiseConditionCode<uint32_t>(alu_out);
+ } else if (op == OIHF) {
+ alu_out |= imm;
+ SetS390BitWiseConditionCode<uint32_t>(alu_out);
+ } else if (op == IIHF) {
+ alu_out = imm;
+ } else {
+ DCHECK(false);
+ }
+ set_high_register(r1, alu_out);
+ break;
+ }
+ case CLFI: {
+ // Compare Logical with Immediate (32)
+ int r1 = rilInstr->R1Value();
+ uint32_t imm = rilInstr->I2UnsignedValue();
+ SetS390ConditionCode<uint32_t>(get_low_register<uint32_t>(r1), imm);
+ break;
+ }
+ case CFI: {
+ // Compare with Immediate (32)
+ int r1 = rilInstr->R1Value();
+ int32_t imm = rilInstr->I2Value();
+ SetS390ConditionCode<int32_t>(get_low_register<int32_t>(r1), imm);
+ break;
+ }
+ case CLGFI: {
+ // Compare Logical with Immediate (64)
+ int r1 = rilInstr->R1Value();
+ uint64_t imm = static_cast<uint64_t>(rilInstr->I2UnsignedValue());
+ SetS390ConditionCode<uint64_t>(get_register(r1), imm);
+ break;
+ }
+ case CGFI: {
+ // Compare with Immediate (64)
+ int r1 = rilInstr->R1Value();
+ int64_t imm = static_cast<int64_t>(rilInstr->I2Value());
+ SetS390ConditionCode<int64_t>(get_register(r1), imm);
+ break;
+ }
+ case BRASL: {
+ // Branch and Save Relative Long
+ int r1 = rilInstr->R1Value();
+ intptr_t d2 = rilInstr->I2Value();
+ intptr_t pc = get_pc();
+ set_register(r1, pc + 6); // save next instruction to register
+ set_pc(pc + d2 * 2); // update register
+ break;
+ }
+ case BRCL: {
+ // Branch on Condition Relative Long
+ Condition m1 = (Condition)rilInstr->R1Value();
+ if (TestConditionCode((Condition)m1)) {
+ intptr_t offset = rilInstr->I2Value() * 2;
+ set_pc(get_pc() + offset);
+ }
+ break;
+ }
+ case LMG:
+ case STMG: {
+ // Store Multiple 64-bits.
+ int r1 = rsyInstr->R1Value();
+ int r3 = rsyInstr->R3Value();
+ int rb = rsyInstr->B2Value();
+ int offset = rsyInstr->D2Value();
+
+ // Regs roll around if r3 is less than r1.
+ // Artifically increase r3 by 16 so we can calculate
+ // the number of regs stored properly.
+ if (r3 < r1) r3 += 16;
+
+ int64_t rb_val = (rb == 0) ? 0 : get_register(rb);
+
+ // Store each register in ascending order.
+ for (int i = 0; i <= r3 - r1; i++) {
+ if (op == LMG) {
+ int64_t value = ReadDW(rb_val + offset + 8 * i);
+ set_register((r1 + i) % 16, value);
+ } else if (op == STMG) {
+ int64_t value = get_register((r1 + i) % 16);
+ WriteDW(rb_val + offset + 8 * i, value);
+ } else {
+ DCHECK(false);
+ }
+ }
+ break;
+ }
+ case SLLK:
+ case RLL:
+ case SRLK: {
+ // For SLLK/SRLL, the 32-bit third operand is shifted the number
+ // of bits specified by the second-operand address, and the result is
+ // placed at the first-operand location. Except for when the R1 and R3
+ // fields designate the same register, the third operand remains
+ // unchanged in general register R3.
+ int r1 = rsyInstr->R1Value();
+ int r3 = rsyInstr->R3Value();
+ int b2 = rsyInstr->B2Value();
+ intptr_t d2 = rsyInstr->D2Value();
+ // only takes rightmost 6 bits
+ int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+ int shiftBits = (b2_val + d2) & 0x3F;
+ // unsigned
+ uint32_t r3_val = get_low_register<uint32_t>(r3);
+ uint32_t alu_out = 0;
+ if (SLLK == op) {
+ alu_out = r3_val << shiftBits;
+ } else if (SRLK == op) {
+ alu_out = r3_val >> shiftBits;
+ } else if (RLL == op) {
+ uint32_t rotateBits = r3_val >> (32 - shiftBits);
+ alu_out = (r3_val << shiftBits) | (rotateBits);
+ } else {
+ UNREACHABLE();
+ }
+ set_low_register(r1, alu_out);
+ break;
+ }
+ case SLLG:
+ case SRLG: {
+ // For SLLG/SRLG, the 64-bit third operand is shifted the number
+ // of bits specified by the second-operand address, and the result is
+ // placed at the first-operand location. Except for when the R1 and R3
+ // fields designate the same register, the third operand remains
+ // unchanged in general register R3.
+ int r1 = rsyInstr->R1Value();
+ int r3 = rsyInstr->R3Value();
+ int b2 = rsyInstr->B2Value();
+ intptr_t d2 = rsyInstr->D2Value();
+ // only takes rightmost 6 bits
+ int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+ int shiftBits = (b2_val + d2) & 0x3F;
+ // unsigned
+ uint64_t r3_val = get_register(r3);
+ uint64_t alu_out = 0;
+ if (op == SLLG) {
+ alu_out = r3_val << shiftBits;
+ } else if (op == SRLG) {
+ alu_out = r3_val >> shiftBits;
+ } else {
+ UNREACHABLE();
+ }
+ set_register(r1, alu_out);
+ break;
+ }
+ case SLAK:
+ case SRAK: {
+ // 32-bit non-clobbering shift-left/right arithmetic
+ int r1 = rsyInstr->R1Value();
+ int r3 = rsyInstr->R3Value();
+ int b2 = rsyInstr->B2Value();
+ intptr_t d2 = rsyInstr->D2Value();
+ // only takes rightmost 6 bits
+ int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+ int shiftBits = (b2_val + d2) & 0x3F;
+ int32_t r3_val = get_low_register<int32_t>(r3);
+ int32_t alu_out = 0;
+ bool isOF = false;
+ if (op == SLAK) {
+ isOF = CheckOverflowForShiftLeft(r3_val, shiftBits);
+ alu_out = r3_val << shiftBits;
+ } else if (op == SRAK) {
+ alu_out = r3_val >> shiftBits;
+ }
+ set_low_register(r1, alu_out);
+ SetS390ConditionCode<int32_t>(alu_out, 0);
+ SetS390OverflowCode(isOF);
+ break;
+ }
+ case SLAG:
+ case SRAG: {
+ // 64-bit non-clobbering shift-left/right arithmetic
+ int r1 = rsyInstr->R1Value();
+ int r3 = rsyInstr->R3Value();
+ int b2 = rsyInstr->B2Value();
+ intptr_t d2 = rsyInstr->D2Value();
+ // only takes rightmost 6 bits
+ int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+ int shiftBits = (b2_val + d2) & 0x3F;
+ int64_t r3_val = get_register(r3);
+ intptr_t alu_out = 0;
+ bool isOF = false;
+ if (op == SLAG) {
+ isOF = CheckOverflowForShiftLeft(r3_val, shiftBits);
+ alu_out = r3_val << shiftBits;
+ } else if (op == SRAG) {
+ alu_out = r3_val >> shiftBits;
+ }
+ set_register(r1, alu_out);
+ SetS390ConditionCode<intptr_t>(alu_out, 0);
+ SetS390OverflowCode(isOF);
+ break;
+ }
+ case LMY:
+ case STMY: {
+ RSYInstruction* rsyInstr = reinterpret_cast<RSYInstruction*>(instr);
+ // Load/Store Multiple (32)
+ int r1 = rsyInstr->R1Value();
+ int r3 = rsyInstr->R3Value();
+ int b2 = rsyInstr->B2Value();
+ int offset = rsyInstr->D2Value();
+
+ // Regs roll around if r3 is less than r1.
+ // Artifically increase r3 by 16 so we can calculate
+ // the number of regs stored properly.
+ if (r3 < r1) r3 += 16;
+
+ int32_t b2_val = (b2 == 0) ? 0 : get_low_register<int32_t>(b2);
+
+ // Store each register in ascending order.
+ for (int i = 0; i <= r3 - r1; i++) {
+ if (op == LMY) {
+ int32_t value = ReadW(b2_val + offset + 4 * i, instr);
+ set_low_register((r1 + i) % 16, value);
+ } else {
+ int32_t value = get_low_register<int32_t>((r1 + i) % 16);
+ WriteW(b2_val + offset + 4 * i, value, instr);
+ }
+ }
+ break;
+ }
+ case LT:
+ case LTG: {
+ // Load and Test (32/64)
+ int r1 = rxyInstr->R1Value();
+ int x2 = rxyInstr->X2Value();
+ int b2 = rxyInstr->B2Value();
+ int d2 = rxyInstr->D2Value();
+
+ int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+ int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+ intptr_t addr = x2_val + b2_val + d2;
+
+ if (op == LT) {
+ int32_t value = ReadW(addr, instr);
+ set_low_register(r1, value);
+ SetS390ConditionCode<int32_t>(value, 0);
+ } else if (op == LTG) {
+ int64_t value = ReadDW(addr);
+ set_register(r1, value);
+ SetS390ConditionCode<int64_t>(value, 0);
+ }
+ break;
+ }
+ case LY:
+ case LB:
+ case LGB:
+ case LG:
+ case LGF:
+ case LGH:
+ case LLGF:
+ case STG:
+ case STY:
+ case STCY:
+ case STHY:
+ case STEY:
+ case LDY:
+ case LHY:
+ case STDY:
+ case LEY: {
+ // Miscellaneous Loads and Stores
+ int r1 = rxyInstr->R1Value();
+ int x2 = rxyInstr->X2Value();
+ int b2 = rxyInstr->B2Value();
+ int d2 = rxyInstr->D2Value();
+ int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+ int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+ intptr_t addr = x2_val + b2_val + d2;
+ if (op == LY) {
+ uint32_t mem_val = ReadWU(addr, instr);
+ set_low_register(r1, mem_val);
+ } else if (op == LB) {
+ int32_t mem_val = ReadB(addr);
+ set_low_register(r1, mem_val);
+ } else if (op == LGB) {
+ int64_t mem_val = ReadB(addr);
+ set_register(r1, mem_val);
+ } else if (op == LG) {
+ int64_t mem_val = ReadDW(addr);
+ set_register(r1, mem_val);
+ } else if (op == LGF) {
+ int64_t mem_val = static_cast<int64_t>(ReadW(addr, instr));
+ set_register(r1, mem_val);
+ } else if (op == LGH) {
+ int64_t mem_val = static_cast<int64_t>(ReadH(addr, instr));
+ set_register(r1, mem_val);
+ } else if (op == LLGF) {
+ // int r1 = rreInst->R1Value();
+ // int r2 = rreInst->R2Value();
+ // int32_t r2_val = get_low_register<int32_t>(r2);
+ // uint64_t r2_finalval = (static_cast<uint64_t>(r2_val)
+ // & 0x00000000ffffffff);
+ // set_register(r1, r2_finalval);
+ // break;
+ uint64_t mem_val = static_cast<uint64_t>(ReadWU(addr, instr));
+ set_register(r1, mem_val);
+ } else if (op == LDY) {
+ uint64_t dbl_val = *reinterpret_cast<uint64_t*>(addr);
+ set_d_register(r1, dbl_val);
+ } else if (op == STEY) {
+ int64_t frs_val = get_d_register(r1) >> 32;
+ WriteW(addr, static_cast<int32_t>(frs_val), instr);
+ } else if (op == LEY) {
+ float float_val = *reinterpret_cast<float*>(addr);
+ set_d_register_from_float32(r1, float_val);
+ } else if (op == STY) {
+ uint32_t value = get_low_register<uint32_t>(r1);
+ WriteW(addr, value, instr);
+ } else if (op == STG) {
+ uint64_t value = get_register(r1);
+ WriteDW(addr, value);
+ } else if (op == STDY) {
+ int64_t frs_val = get_d_register(r1);
+ WriteDW(addr, frs_val);
+ } else if (op == STCY) {
+ uint8_t value = get_low_register<uint32_t>(r1);
+ WriteB(addr, value);
+ } else if (op == STHY) {
+ uint16_t value = get_low_register<uint32_t>(r1);
+ WriteH(addr, value, instr);
+ } else if (op == LHY) {
+ int32_t result = static_cast<int32_t>(ReadH(addr, instr));
+ set_low_register(r1, result);
+ }
+ break;
+ }
+ case MVC: {
+ // Move Character
+ int b1 = ssInstr->B1Value();
+ intptr_t d1 = ssInstr->D1Value();
+ int b2 = ssInstr->B2Value();
+ intptr_t d2 = ssInstr->D2Value();
+ int length = ssInstr->Length();
+ int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
+ int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+ intptr_t src_addr = b2_val + d2;
+ intptr_t dst_addr = b1_val + d1;
+ // remember that the length is the actual length - 1
+ for (int i = 0; i < length + 1; ++i) {
+ WriteB(dst_addr++, ReadB(src_addr++));
+ }
+ break;
+ }
+ case MVHI: {
+ // Move Integer (32)
+ int b1 = silInstr->B1Value();
+ intptr_t d1 = silInstr->D1Value();
+ int16_t i2 = silInstr->I2Value();
+ int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
+ intptr_t src_addr = b1_val + d1;
+ WriteW(src_addr, i2, instr);
+ break;
+ }
+ case MVGHI: {
+ // Move Integer (64)
+ int b1 = silInstr->B1Value();
+ intptr_t d1 = silInstr->D1Value();
+ int16_t i2 = silInstr->I2Value();
+ int64_t b1_val = (b1 == 0) ? 0 : get_register(b1);
+ intptr_t src_addr = b1_val + d1;
+ WriteDW(src_addr, i2);
+ break;
+ }
+ case LLH:
+ case LLGH: {
+ // Load Logical Halfworld
+ int r1 = rxyInstr->R1Value();
+ int b2 = rxyInstr->B2Value();
+ int x2 = rxyInstr->X2Value();
+ int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+ int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+ intptr_t d2_val = rxyInstr->D2Value();
+ uint16_t mem_val = ReadHU(b2_val + d2_val + x2_val, instr);
+ if (op == LLH) {
+ set_low_register(r1, mem_val);
+ } else if (op == LLGH) {
+ set_register(r1, mem_val);
+ } else {
+ UNREACHABLE();
+ }
+ break;
+ }
+ case LLC:
+ case LLGC: {
+ // Load Logical Character - loads a byte and zero extends.
+ int r1 = rxyInstr->R1Value();
+ int b2 = rxyInstr->B2Value();
+ int x2 = rxyInstr->X2Value();
+ int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+ int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+ intptr_t d2_val = rxyInstr->D2Value();
+ uint8_t mem_val = ReadBU(b2_val + d2_val + x2_val);
+ if (op == LLC) {
+ set_low_register(r1, static_cast<uint32_t>(mem_val));
+ } else if (op == LLGC) {
+ set_register(r1, static_cast<uint64_t>(mem_val));
+ } else {
+ UNREACHABLE();
+ }
+ break;
+ }
+ case XIHF:
+ case XILF: {
+ int r1 = rilInstr->R1Value();
+ uint32_t imm = rilInstr->I2UnsignedValue();
+ uint32_t alu_out = 0;
+ if (op == XILF) {
+ alu_out = get_low_register<uint32_t>(r1);
+ alu_out = alu_out ^ imm;
+ set_low_register(r1, alu_out);
+ } else if (op == XIHF) {
+ alu_out = get_high_register<uint32_t>(r1);
+ alu_out = alu_out ^ imm;
+ set_high_register(r1, alu_out);
+ } else {
+ UNREACHABLE();
+ }
+ SetS390BitWiseConditionCode<uint32_t>(alu_out);
+ break;
+ }
+ case RISBG: {
+ // Rotate then insert selected bits
+ int r1 = rieInstr->R1Value();
+ int r2 = rieInstr->R2Value();
+ // Starting Bit Position is Bits 2-7 of I3 field
+ uint32_t start_bit = rieInstr->I3Value() & 0x3F;
+ // Ending Bit Position is Bits 2-7 of I4 field
+ uint32_t end_bit = rieInstr->I4Value() & 0x3F;
+ // Shift Amount is Bits 2-7 of I5 field
+ uint32_t shift_amount = rieInstr->I5Value() & 0x3F;
+ // Zero out Remaining (unslected) bits if Bit 0 of I4 is 1.
+ bool zero_remaining = (0 != (rieInstr->I4Value() & 0x80));
+
+ uint64_t src_val = get_register(r2);
+
+ // Rotate Left by Shift Amount first
+ uint64_t rotated_val =
+ (src_val << shift_amount) | (src_val >> (64 - shift_amount));
+ int32_t width = end_bit - start_bit + 1;
+
+ uint64_t selection_mask = 0;
+ if (width < 64) {
+ selection_mask = (static_cast<uint64_t>(1) << width) - 1;
+ } else {
+ selection_mask = static_cast<uint64_t>(static_cast<int64_t>(-1));
+ }
+ selection_mask = selection_mask << (63 - end_bit);
+
+ uint64_t selected_val = rotated_val & selection_mask;
+
+ if (!zero_remaining) {
+ // Merged the unselected bits from the original value
+ selected_val = (src_val & ~selection_mask) | selected_val;
+ }
+
+ // Condition code is set by treating result as 64-bit signed int
+ SetS390ConditionCode<int64_t>(selected_val, 0);
+ set_register(r1, selected_val);
+ break;
+ }
+ default:
+ return DecodeSixByteArithmetic(instr);
+ }
+ return true;
+}
+
+/**
+ * Decodes and simulates six byte arithmetic instructions
+ */
+bool Simulator::DecodeSixByteArithmetic(Instruction* instr) {
+ Opcode op = instr->S390OpcodeValue();
+
+ // Pre-cast instruction to various types
+ SIYInstruction* siyInstr = reinterpret_cast<SIYInstruction*>(instr);
+
+ switch (op) {
+ case CDB:
+ case ADB:
+ case SDB:
+ case MDB:
+ case DDB:
+ case SQDB: {
+ RXEInstruction* rxeInstr = reinterpret_cast<RXEInstruction*>(instr);
+ int b2 = rxeInstr->B2Value();
+ int x2 = rxeInstr->X2Value();
+ int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+ int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+ intptr_t d2_val = rxeInstr->D2Value();
+ double r1_val = get_double_from_d_register(rxeInstr->R1Value());
+ double dbl_val = ReadDouble(b2_val + x2_val + d2_val);
+
+ switch (op) {
+ case CDB:
+ SetS390ConditionCode<double>(r1_val, dbl_val);
+ break;
+ case ADB:
+ r1_val += dbl_val;
+ set_d_register_from_double(r1, r1_val);
+ SetS390ConditionCode<double>(r1_val, 0);
+ break;
+ case SDB:
+ r1_val -= dbl_val;
+ set_d_register_from_double(r1, r1_val);
+ SetS390ConditionCode<double>(r1_val, 0);
+ break;
+ case MDB:
+ r1_val *= dbl_val;
+ set_d_register_from_double(r1, r1_val);
+ SetS390ConditionCode<double>(r1_val, 0);
+ break;
+ case DDB:
+ r1_val /= dbl_val;
+ set_d_register_from_double(r1, r1_val);
+ SetS390ConditionCode<double>(r1_val, 0);
+ break;
+ case SQDB:
+ r1_val = std::sqrt(dbl_val);
+ set_d_register_from_double(r1, r1_val);
+ default:
+ UNREACHABLE();
+ break;
+ }
+ break;
+ }
+ case LRV:
+ case LRVH:
+ case STRV:
+ case STRVH: {
+ RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
+ int r1 = rxyInstr->R1Value();
+ int x2 = rxyInstr->X2Value();
+ int b2 = rxyInstr->B2Value();
+ int d2 = rxyInstr->D2Value();
+ int32_t r1_val = get_low_register<int32_t>(r1);
+ int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+ int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+ intptr_t mem_addr = b2_val + x2_val + d2;
+
+ if (op == LRVH) {
+ int16_t mem_val = ReadH(mem_addr, instr);
+ int32_t result = ByteReverse(mem_val) & 0x0000ffff;
+ result |= r1_val & 0xffff0000;
+ set_low_register(r1, result);
+ } else if (op == LRV) {
+ int32_t mem_val = ReadW(mem_addr, instr);
+ set_low_register(r1, ByteReverse(mem_val));
+ } else if (op == STRVH) {
+ int16_t result = static_cast<int16_t>(r1_val >> 16);
+ WriteH(mem_addr, ByteReverse(result), instr);
+ } else if (op == STRV) {
+ WriteW(mem_addr, ByteReverse(r1_val), instr);
+ }
+
+ break;
+ }
+ case AHIK:
+ case AGHIK: {
+ // Non-clobbering Add Halfword Immediate
+ RIEInstruction* rieInst = reinterpret_cast<RIEInstruction*>(instr);
+ int r1 = rieInst->R1Value();
+ int r2 = rieInst->R2Value();
+ bool isOF = false;
+ if (AHIK == op) {
+ // 32-bit Add
+ int32_t r2_val = get_low_register<int32_t>(r2);
+ int32_t imm = rieInst->I6Value();
+ isOF = CheckOverflowForIntAdd(r2_val, imm);
+ set_low_register(r1, r2_val + imm);
+ SetS390ConditionCode<int32_t>(r2_val + imm, 0);
+ } else if (AGHIK == op) {
+ // 64-bit Add
+ int64_t r2_val = get_register(r2);
+ int64_t imm = static_cast<int64_t>(rieInst->I6Value());
+ isOF = CheckOverflowForIntAdd(r2_val, imm);
+ set_register(r1, r2_val + imm);
+ SetS390ConditionCode<int64_t>(r2_val + imm, 0);
+ }
+ SetS390OverflowCode(isOF);
+ break;
+ }
+ case ALFI:
+ case SLFI: {
+ RILInstruction* rilInstr = reinterpret_cast<RILInstruction*>(instr);
+ int r1 = rilInstr->R1Value();
+ uint32_t imm = rilInstr->I2UnsignedValue();
+ uint32_t alu_out = get_low_register<uint32_t>(r1);
+ if (op == ALFI) {
+ alu_out += imm;
+ } else if (op == SLFI) {
+ alu_out -= imm;
+ }
+ SetS390ConditionCode<uint32_t>(alu_out, 0);
+ set_low_register(r1, alu_out);
+ break;
+ }
+ case ML: {
+ UNIMPLEMENTED();
+ break;
+ }
+ case AY:
+ case SY:
+ case NY:
+ case OY:
+ case XY:
+ case CY: {
+ RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
+ int r1 = rxyInstr->R1Value();
+ int x2 = rxyInstr->X2Value();
+ int b2 = rxyInstr->B2Value();
+ int d2 = rxyInstr->D2Value();
+ int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+ int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+ int32_t alu_out = get_low_register<int32_t>(r1);
+ int32_t mem_val = ReadW(b2_val + x2_val + d2, instr);
+ bool isOF = false;
+ if (op == AY) {
+ isOF = CheckOverflowForIntAdd(alu_out, mem_val);
+ alu_out += mem_val;
+ SetS390ConditionCode<int32_t>(alu_out, 0);
+ SetS390OverflowCode(isOF);
+ } else if (op == SY) {
+ isOF = CheckOverflowForIntSub(alu_out, mem_val);
+ alu_out -= mem_val;
+ SetS390ConditionCode<int32_t>(alu_out, 0);
+ SetS390OverflowCode(isOF);
+ } else if (op == NY) {
+ alu_out &= mem_val;
+ SetS390BitWiseConditionCode<uint32_t>(alu_out);
+ } else if (op == OY) {
+ alu_out |= mem_val;
+ SetS390BitWiseConditionCode<uint32_t>(alu_out);
+ } else if (op == XY) {
+ alu_out ^= mem_val;
+ SetS390BitWiseConditionCode<uint32_t>(alu_out);
+ } else if (op == CY) {
+ SetS390ConditionCode<int32_t>(alu_out, mem_val);
+ }
+ if (op != CY) {
+ set_low_register(r1, alu_out);
+ }
+ break;
+ }
+ case AHY:
+ case SHY: {
+ RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
+ int32_t r1_val = get_low_register<int32_t>(rxyInstr->R1Value());
+ int b2 = rxyInstr->B2Value();
+ int x2 = rxyInstr->X2Value();
+ int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+ int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+ intptr_t d2_val = rxyInstr->D2Value();
+ int16_t mem_val = ReadH(b2_val + d2_val + x2_val, instr);
+ int32_t alu_out = 0;
+ bool isOF = false;
+ switch (op) {
+ case AHY:
+ alu_out = r1_val + mem_val;
+ isOF = CheckOverflowForIntAdd(r1_val, mem_val);
+ break;
+ case SHY:
+ alu_out = r1_val - mem_val;
+ isOF = CheckOverflowForIntSub(r1_val, mem_val);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ set_low_register(r1, alu_out);
+ SetS390ConditionCode<int32_t>(alu_out, 0);
+ SetS390OverflowCode(isOF);
+ break;
+ }
+ case AG:
+ case SG:
+ case NG:
+ case OG:
+ case XG:
+ case CG:
+ case CLG: {
+ RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
+ int r1 = rxyInstr->R1Value();
+ int x2 = rxyInstr->X2Value();
+ int b2 = rxyInstr->B2Value();
+ int d2 = rxyInstr->D2Value();
+ int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+ int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+ int64_t alu_out = get_register(r1);
+ int64_t mem_val = ReadDW(b2_val + x2_val + d2);
+
+ switch (op) {
+ case AG: {
+ alu_out += mem_val;
+ SetS390ConditionCode<int32_t>(alu_out, 0);
+ break;
+ }
+ case SG: {
+ alu_out -= mem_val;
+ SetS390ConditionCode<int32_t>(alu_out, 0);
+ break;
+ }
+ case NG: {
+ alu_out &= mem_val;
+ SetS390BitWiseConditionCode<uint32_t>(alu_out);
+ break;
+ }
+ case OG: {
+ alu_out |= mem_val;
+ SetS390BitWiseConditionCode<uint32_t>(alu_out);
+ break;
+ }
+ case XG: {
+ alu_out ^= mem_val;
+ SetS390BitWiseConditionCode<uint32_t>(alu_out);
+ break;
+ }
+ case CG: {
+ SetS390ConditionCode<int64_t>(alu_out, mem_val);
+ break;
+ }
+ case CLG: {
+ SetS390ConditionCode<uint64_t>(alu_out, mem_val);
+ break;
+ }
+ default: {
+ DCHECK(false);
+ break;
+ }
+ }
+
+ if (op != CG) {
+ set_register(r1, alu_out);
+ }
+ break;
+ }
+ case ALY:
+ case SLY:
+ case CLY: {
+ RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
+ int r1 = rxyInstr->R1Value();
+ int x2 = rxyInstr->X2Value();
+ int b2 = rxyInstr->B2Value();
+ int d2 = rxyInstr->D2Value();
+ int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+ int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+ uint32_t alu_out = get_low_register<uint32_t>(r1);
+ uint32_t mem_val = ReadWU(b2_val + x2_val + d2, instr);
+
+ if (op == ALY) {
+ alu_out += mem_val;
+ set_low_register(r1, alu_out);
+ SetS390ConditionCode<uint32_t>(alu_out, 0);
+ } else if (op == SLY) {
+ alu_out -= mem_val;
+ set_low_register(r1, alu_out);
+ SetS390ConditionCode<uint32_t>(alu_out, 0);
+ } else if (op == CLY) {
+ SetS390ConditionCode<uint32_t>(alu_out, mem_val);
+ }
+ break;
+ }
+ case AGFI:
+ case AFI: {
+ // Clobbering Add Word Immediate
+ RILInstruction* rilInstr = reinterpret_cast<RILInstruction*>(instr);
+ int r1 = rilInstr->R1Value();
+ int i2 = rilInstr->I2Value();
+ bool isOF = false;
+ if (AFI == op) {
+ // 32-bit Add (Register + 32-bit Immediate)
+ int32_t r1_val = get_low_register<int32_t>(r1);
+ isOF = CheckOverflowForIntAdd(r1_val, i2);
+ int32_t alu_out = r1_val + i2;
+ set_low_register(r1, alu_out);
+ SetS390ConditionCode<int32_t>(alu_out, 0);
+ } else if (AGFI == op) {
+ // 64-bit Add (Register + 32-bit Imm)
+ int64_t r1_val = get_register(r1);
+ isOF = CheckOverflowForIntAdd(r1_val, i2);
+ int64_t alu_out = r1_val + i2;
+ set_register(r1, alu_out);
+ SetS390ConditionCode<int64_t>(alu_out, 0);
+ }
+ SetS390OverflowCode(isOF);
+ break;
+ }
+ case ASI: {
+ int8_t i2 = static_cast<int8_t>(siyInstr->I2Value());
+ int b1 = siyInstr->B1Value();
+ intptr_t b1_val = (b1 == 0) ? 0 : get_register(b1);
+
+ int d1_val = siyInstr->D1Value();
+ intptr_t addr = b1_val + d1_val;
+
+ int32_t mem_val = ReadW(addr, instr);
+ bool isOF = CheckOverflowForIntAdd(mem_val, i2);
+ int32_t alu_out = mem_val + i2;
+ SetS390ConditionCode<int32_t>(alu_out, 0);
+ SetS390OverflowCode(isOF);
+ WriteW(addr, alu_out, instr);
+ break;
+ }
+ case AGSI: {
+ int8_t i2 = static_cast<int8_t>(siyInstr->I2Value());
+ int b1 = siyInstr->B1Value();
+ intptr_t b1_val = (b1 == 0) ? 0 : get_register(b1);
+
+ int d1_val = siyInstr->D1Value();
+ intptr_t addr = b1_val + d1_val;
+
+ int64_t mem_val = ReadDW(addr);
+ int isOF = CheckOverflowForIntAdd(mem_val, i2);
+ int64_t alu_out = mem_val + i2;
+ SetS390ConditionCode<uint64_t>(alu_out, 0);
+ SetS390OverflowCode(isOF);
+ WriteDW(addr, alu_out);
+ break;
+ }
+ case AGF:
+ case SGF:
+ case ALG:
+ case SLG: {
+#ifndef V8_TARGET_ARCH_S390X
+ DCHECK(false);
+#endif
+ RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
+ int r1 = rxyInstr->R1Value();
+ uint64_t r1_val = get_register(rxyInstr->R1Value());
+ int b2 = rxyInstr->B2Value();
+ int x2 = rxyInstr->X2Value();
+ int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+ int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+ intptr_t d2_val = rxyInstr->D2Value();
+ uint64_t alu_out = r1_val;
+ if (op == ALG) {
+ uint64_t mem_val =
+ static_cast<uint64_t>(ReadDW(b2_val + d2_val + x2_val));
+ alu_out += mem_val;
+ SetS390ConditionCode<uint64_t>(alu_out, 0);
+ } else if (op == SLG) {
+ uint64_t mem_val =
+ static_cast<uint64_t>(ReadDW(b2_val + d2_val + x2_val));
+ alu_out -= mem_val;
+ SetS390ConditionCode<uint64_t>(alu_out, 0);
+ } else if (op == AGF) {
+ uint32_t mem_val = ReadW(b2_val + d2_val + x2_val, instr);
+ alu_out += mem_val;
+ SetS390ConditionCode<int64_t>(alu_out, 0);
+ } else if (op == SGF) {
+ uint32_t mem_val = ReadW(b2_val + d2_val + x2_val, instr);
+ alu_out -= mem_val;
+ SetS390ConditionCode<int64_t>(alu_out, 0);
+ } else {
+ DCHECK(false);
+ }
+ set_register(r1, alu_out);
+ break;
+ }
+ case ALGFI:
+ case SLGFI: {
+#ifndef V8_TARGET_ARCH_S390X
+ // should only be called on 64bit
+ DCHECK(false);
+#endif
+ RILInstruction* rilInstr = reinterpret_cast<RILInstruction*>(instr);
+ int r1 = rilInstr->R1Value();
+ uint32_t i2 = rilInstr->I2UnsignedValue();
+ uint64_t r1_val = (uint64_t)(get_register(r1));
+ uint64_t alu_out;
+ if (op == ALGFI)
+ alu_out = r1_val + i2;
+ else
+ alu_out = r1_val - i2;
+ set_register(r1, (intptr_t)alu_out);
+ SetS390ConditionCode<uint64_t>(alu_out, 0);
+ break;
+ }
+ case MSY:
+ case MSG: {
+ RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr);
+ int r1 = rxyInstr->R1Value();
+ int b2 = rxyInstr->B2Value();
+ int x2 = rxyInstr->X2Value();
+ int64_t b2_val = (b2 == 0) ? 0 : get_register(b2);
+ int64_t x2_val = (x2 == 0) ? 0 : get_register(x2);
+ intptr_t d2_val = rxyInstr->D2Value();
+ if (op == MSY) {
+ int32_t mem_val = ReadW(b2_val + d2_val + x2_val, instr);
+ int32_t r1_val = get_low_register<int32_t>(r1);
+ set_low_register(r1, mem_val * r1_val);
+ } else if (op == MSG) {
+ int64_t mem_val = ReadDW(b2_val + d2_val + x2_val);
+ int64_t r1_val = get_register(r1);
+ set_register(r1, mem_val * r1_val);
+ } else {
+ UNREACHABLE();
+ }
+ break;
+ }
+ case MSFI:
+ case MSGFI: {
+ RILInstruction* rilinst = reinterpret_cast<RILInstruction*>(instr);
+ int r1 = rilinst->R1Value();
+ int32_t i2 = rilinst->I2Value();
+ if (op == MSFI) {
+ int32_t alu_out = get_low_register<int32_t>(r1);
+ alu_out = alu_out * i2;
+ set_low_register(r1, alu_out);
+ } else if (op == MSGFI) {
+ int64_t alu_out = get_register(r1);
+ alu_out = alu_out * i2;
+ set_register(r1, alu_out);
+ } else {
+ UNREACHABLE();
+ }
+ break;
+ }
+ default:
+ UNREACHABLE();
+ return false;
+ }
+ return true;
+}
+
+int16_t Simulator::ByteReverse(int16_t hword) {
+ return (hword << 8) | ((hword >> 8) & 0x00ff);
+}
+
+int32_t Simulator::ByteReverse(int32_t word) {
+ int32_t result = word << 24;
+ result |= (word << 8) & 0x00ff0000;
+ result |= (word >> 8) & 0x0000ff00;
+ result |= (word >> 24) & 0x00000ff;
+ return result;
+}
+
+// Executes the current instruction.
+void Simulator::ExecuteInstruction(Instruction* instr, bool auto_incr_pc) {
+ if (v8::internal::FLAG_check_icache) {
+ CheckICache(isolate_->simulator_i_cache(), instr);
+ }
+ pc_modified_ = false;
+ if (::v8::internal::FLAG_trace_sim) {
+ disasm::NameConverter converter;
+ disasm::Disassembler dasm(converter);
+ // use a reasonably large buffer
+ v8::internal::EmbeddedVector<char, 256> buffer;
+ dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr));
+#ifdef V8_TARGET_ARCH_S390X
+ PrintF("%05ld %08" V8PRIxPTR " %s\n", icount_,
+ reinterpret_cast<intptr_t>(instr), buffer.start());
+#else
+ PrintF("%05lld %08" V8PRIxPTR " %s\n", icount_,
+ reinterpret_cast<intptr_t>(instr), buffer.start());
+#endif
+ // Flush stdout to prevent incomplete file output during abnormal exits
+ // This is caused by the output being buffered before being written to file
+ fflush(stdout);
+ }
+
+ // Try to simulate as S390 Instruction first.
+ bool processed = true;
+
+ int instrLength = instr->InstructionLength();
+ if (instrLength == 2)
+ processed = DecodeTwoByte(instr);
+ else if (instrLength == 4)
+ processed = DecodeFourByte(instr);
+ else if (instrLength == 6)
+ processed = DecodeSixByte(instr);
+
+ if (processed) {
+ if (!pc_modified_ && auto_incr_pc) {
+ set_pc(reinterpret_cast<intptr_t>(instr) + instrLength);
+ }
+ return;
+ }
+}
+
+void Simulator::DebugStart() {
+ S390Debugger dbg(this);
+ dbg.Debug();
+}
+
+void Simulator::Execute() {
+ // Get the PC to simulate. Cannot use the accessor here as we need the
+ // raw PC value and not the one used as input to arithmetic instructions.
+ intptr_t program_counter = get_pc();
+
+ if (::v8::internal::FLAG_stop_sim_at == 0) {
+ // Fast version of the dispatch loop without checking whether the simulator
+ // should be stopping at a particular executed instruction.
+ while (program_counter != end_sim_pc) {
+ Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
+ icount_++;
+ ExecuteInstruction(instr);
+ program_counter = get_pc();
+ }
+ } else {
+ // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
+ // we reach the particular instuction count.
+ while (program_counter != end_sim_pc) {
+ Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
+ icount_++;
+ if (icount_ == ::v8::internal::FLAG_stop_sim_at) {
+ S390Debugger dbg(this);
+ dbg.Debug();
+ } else {
+ ExecuteInstruction(instr);
+ }
+ program_counter = get_pc();
+ }
+ }
+}
+
+void Simulator::CallInternal(byte* entry, int reg_arg_count) {
+ // Prepare to execute the code at entry
+ if (ABI_USES_FUNCTION_DESCRIPTORS) {
+ // entry is the function descriptor
+ set_pc(*(reinterpret_cast<intptr_t*>(entry)));
+ } else {
+ // entry is the instruction address
+ set_pc(reinterpret_cast<intptr_t>(entry));
+ }
+ // Remember the values of non-volatile registers.
+ int64_t r6_val = get_register(r6);
+ int64_t r7_val = get_register(r7);
+ int64_t r8_val = get_register(r8);
+ int64_t r9_val = get_register(r9);
+ int64_t r10_val = get_register(r10);
+ int64_t r11_val = get_register(r11);
+ int64_t r12_val = get_register(r12);
+ int64_t r13_val = get_register(r13);
+
+ if (ABI_CALL_VIA_IP) {
+ // Put target address in ip (for JS prologue).
+ set_register(ip, get_pc());
+ }
+
+ // Put down marker for end of simulation. The simulator will stop simulation
+ // when the PC reaches this value. By saving the "end simulation" value into
+ // the LR the simulation stops when returning to this call point.
+ registers_[14] = end_sim_pc;
+
+ // Set up the non-volatile registers with a known value. To be able to check
+ // that they are preserved properly across JS execution.
+ intptr_t callee_saved_value = icount_;
+ if (reg_arg_count < 5) {
+ set_register(r6, callee_saved_value + 6);
+ }
+ set_register(r7, callee_saved_value + 7);
+ set_register(r8, callee_saved_value + 8);
+ set_register(r9, callee_saved_value + 9);
+ set_register(r10, callee_saved_value + 10);
+ set_register(r11, callee_saved_value + 11);
+ set_register(r12, callee_saved_value + 12);
+ set_register(r13, callee_saved_value + 13);
+
+ // Start the simulation
+ Execute();
+
+// Check that the non-volatile registers have been preserved.
+#ifndef V8_TARGET_ARCH_S390X
+ if (reg_arg_count < 5) {
+ DCHECK_EQ(callee_saved_value + 6, get_low_register<int32_t>(r6));
+ }
+ DCHECK_EQ(callee_saved_value + 7, get_low_register<int32_t>(r7));
+ DCHECK_EQ(callee_saved_value + 8, get_low_register<int32_t>(r8));
+ DCHECK_EQ(callee_saved_value + 9, get_low_register<int32_t>(r9));
+ DCHECK_EQ(callee_saved_value + 10, get_low_register<int32_t>(r10));
+ DCHECK_EQ(callee_saved_value + 11, get_low_register<int32_t>(r11));
+ DCHECK_EQ(callee_saved_value + 12, get_low_register<int32_t>(r12));
+ DCHECK_EQ(callee_saved_value + 13, get_low_register<int32_t>(r13));
+#else
+ if (reg_arg_count < 5) {
+ DCHECK_EQ(callee_saved_value + 6, get_register(r6));
+ }
+ DCHECK_EQ(callee_saved_value + 7, get_register(r7));
+ DCHECK_EQ(callee_saved_value + 8, get_register(r8));
+ DCHECK_EQ(callee_saved_value + 9, get_register(r9));
+ DCHECK_EQ(callee_saved_value + 10, get_register(r10));
+ DCHECK_EQ(callee_saved_value + 11, get_register(r11));
+ DCHECK_EQ(callee_saved_value + 12, get_register(r12));
+ DCHECK_EQ(callee_saved_value + 13, get_register(r13));
+#endif
+
+ // Restore non-volatile registers with the original value.
+ set_register(r6, r6_val);
+ set_register(r7, r7_val);
+ set_register(r8, r8_val);
+ set_register(r9, r9_val);
+ set_register(r10, r10_val);
+ set_register(r11, r11_val);
+ set_register(r12, r12_val);
+ set_register(r13, r13_val);
+}
+
+intptr_t Simulator::Call(byte* entry, int argument_count, ...) {
+ // Remember the values of non-volatile registers.
+ int64_t r6_val = get_register(r6);
+ int64_t r7_val = get_register(r7);
+ int64_t r8_val = get_register(r8);
+ int64_t r9_val = get_register(r9);
+ int64_t r10_val = get_register(r10);
+ int64_t r11_val = get_register(r11);
+ int64_t r12_val = get_register(r12);
+ int64_t r13_val = get_register(r13);
+
+ va_list parameters;
+ va_start(parameters, argument_count);
+ // Set up arguments
+
+ // First 5 arguments passed in registers r2-r6.
+ int reg_arg_count = (argument_count > 5) ? 5 : argument_count;
+ int stack_arg_count = argument_count - reg_arg_count;
+ for (int i = 0; i < reg_arg_count; i++) {
+ intptr_t value = va_arg(parameters, intptr_t);
+ set_register(i + 2, value);
+ }
+
+ // Remaining arguments passed on stack.
+ int64_t original_stack = get_register(sp);
+ // Compute position of stack on entry to generated code.
+ intptr_t entry_stack =
+ (original_stack -
+ (kCalleeRegisterSaveAreaSize + stack_arg_count * sizeof(intptr_t)));
+ if (base::OS::ActivationFrameAlignment() != 0) {
+ entry_stack &= -base::OS::ActivationFrameAlignment();
+ }
+
+ // Store remaining arguments on stack, from low to high memory.
+ intptr_t* stack_argument =
+ reinterpret_cast<intptr_t*>(entry_stack + kCalleeRegisterSaveAreaSize);
+ for (int i = 0; i < stack_arg_count; i++) {
+ intptr_t value = va_arg(parameters, intptr_t);
+ stack_argument[i] = value;
+ }
+ va_end(parameters);
+ set_register(sp, entry_stack);
+
+// Prepare to execute the code at entry
+#if ABI_USES_FUNCTION_DESCRIPTORS
+ // entry is the function descriptor
+ set_pc(*(reinterpret_cast<intptr_t*>(entry)));
+#else
+ // entry is the instruction address
+ set_pc(reinterpret_cast<intptr_t>(entry));
+#endif
+
+ // Put target address in ip (for JS prologue).
+ set_register(r12, get_pc());
+
+ // Put down marker for end of simulation. The simulator will stop simulation
+ // when the PC reaches this value. By saving the "end simulation" value into
+ // the LR the simulation stops when returning to this call point.
+ registers_[14] = end_sim_pc;
+
+ // Set up the non-volatile registers with a known value. To be able to check
+ // that they are preserved properly across JS execution.
+ intptr_t callee_saved_value = icount_;
+ if (reg_arg_count < 5) {
+ set_register(r6, callee_saved_value + 6);
+ }
+ set_register(r7, callee_saved_value + 7);
+ set_register(r8, callee_saved_value + 8);
+ set_register(r9, callee_saved_value + 9);
+ set_register(r10, callee_saved_value + 10);
+ set_register(r11, callee_saved_value + 11);
+ set_register(r12, callee_saved_value + 12);
+ set_register(r13, callee_saved_value + 13);
+
+ // Start the simulation
+ Execute();
+
+// Check that the non-volatile registers have been preserved.
+#ifndef V8_TARGET_ARCH_S390X
+ if (reg_arg_count < 5) {
+ DCHECK_EQ(callee_saved_value + 6, get_low_register<int32_t>(r6));
+ }
+ DCHECK_EQ(callee_saved_value + 7, get_low_register<int32_t>(r7));
+ DCHECK_EQ(callee_saved_value + 8, get_low_register<int32_t>(r8));
+ DCHECK_EQ(callee_saved_value + 9, get_low_register<int32_t>(r9));
+ DCHECK_EQ(callee_saved_value + 10, get_low_register<int32_t>(r10));
+ DCHECK_EQ(callee_saved_value + 11, get_low_register<int32_t>(r11));
+ DCHECK_EQ(callee_saved_value + 12, get_low_register<int32_t>(r12));
+ DCHECK_EQ(callee_saved_value + 13, get_low_register<int32_t>(r13));
+#else
+ if (reg_arg_count < 5) {
+ DCHECK_EQ(callee_saved_value + 6, get_register(r6));
+ }
+ DCHECK_EQ(callee_saved_value + 7, get_register(r7));
+ DCHECK_EQ(callee_saved_value + 8, get_register(r8));
+ DCHECK_EQ(callee_saved_value + 9, get_register(r9));
+ DCHECK_EQ(callee_saved_value + 10, get_register(r10));
+ DCHECK_EQ(callee_saved_value + 11, get_register(r11));
+ DCHECK_EQ(callee_saved_value + 12, get_register(r12));
+ DCHECK_EQ(callee_saved_value + 13, get_register(r13));
+#endif
+
+ // Restore non-volatile registers with the original value.
+ set_register(r6, r6_val);
+ set_register(r7, r7_val);
+ set_register(r8, r8_val);
+ set_register(r9, r9_val);
+ set_register(r10, r10_val);
+ set_register(r11, r11_val);
+ set_register(r12, r12_val);
+ set_register(r13, r13_val);
+// Pop stack passed arguments.
+
+#ifndef V8_TARGET_ARCH_S390X
+ DCHECK_EQ(entry_stack, get_low_register<int32_t>(sp));
+#else
+ DCHECK_EQ(entry_stack, get_register(sp));
+#endif
+ set_register(sp, original_stack);
+
+ // Return value register
+ intptr_t result = get_register(r2);
+ return result;
+}
+
+void Simulator::CallFP(byte* entry, double d0, double d1) {
+ set_d_register_from_double(0, d0);
+ set_d_register_from_double(1, d1);
+ CallInternal(entry);
+}
+
+int32_t Simulator::CallFPReturnsInt(byte* entry, double d0, double d1) {
+ CallFP(entry, d0, d1);
+ int32_t result = get_register(r2);
+ return result;
+}
+
+double Simulator::CallFPReturnsDouble(byte* entry, double d0, double d1) {
+ CallFP(entry, d0, d1);
+ return get_double_from_d_register(0);
+}
+
+uintptr_t Simulator::PushAddress(uintptr_t address) {
+ uintptr_t new_sp = get_register(sp) - sizeof(uintptr_t);
+ uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
+ *stack_slot = address;
+ set_register(sp, new_sp);
+ return new_sp;
+}
+
+uintptr_t Simulator::PopAddress() {
+ uintptr_t current_sp = get_register(sp);
+ uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
+ uintptr_t address = *stack_slot;
+ set_register(sp, current_sp + sizeof(uintptr_t));
+ return address;
+}
+
+} // namespace internal
+} // namespace v8
+
+#endif // USE_SIMULATOR
+#endif // V8_TARGET_ARCH_S390
« src/s390/assembler-s390.h ('K') | « src/s390/simulator-s390.h ('k') | tools/gyp/v8.gyp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698