| Index: src/s390/simulator-s390.h
|
| diff --git a/src/ppc/simulator-ppc.h b/src/s390/simulator-s390.h
|
| similarity index 73%
|
| copy from src/ppc/simulator-ppc.h
|
| copy to src/s390/simulator-s390.h
|
| index a3b03dc5062880a5d75e30b60e29c01b989534d2..1da49ed279189436bd95824fccdd7260e6e719dd 100644
|
| --- a/src/ppc/simulator-ppc.h
|
| +++ b/src/s390/simulator-s390.h
|
| @@ -2,21 +2,20 @@
|
| // Use of this source code is governed by a BSD-style license that can be
|
| // found in the LICENSE file.
|
|
|
| -
|
| -// Declares a Simulator for PPC instructions if we are not generating a native
|
| -// PPC binary. This Simulator allows us to run and debug PPC code generation on
|
| -// regular desktop machines.
|
| +// Declares a Simulator for S390 instructions if we are not generating a native
|
| +// S390 binary. This Simulator allows us to run and debug S390 code generation
|
| +// on regular desktop machines.
|
| // V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
|
| // which will start execution in the Simulator or forwards to the real entry
|
| -// on a PPC HW platform.
|
| +// on a S390 hardware platform.
|
|
|
| -#ifndef V8_PPC_SIMULATOR_PPC_H_
|
| -#define V8_PPC_SIMULATOR_PPC_H_
|
| +#ifndef V8_S390_SIMULATOR_S390_H_
|
| +#define V8_S390_SIMULATOR_S390_H_
|
|
|
| #include "src/allocation.h"
|
|
|
| #if !defined(USE_SIMULATOR)
|
| -// Running without a simulator on a native ppc platform.
|
| +// Running without a simulator on a native s390 platform.
|
|
|
| namespace v8 {
|
| namespace internal {
|
| @@ -25,9 +24,8 @@ namespace internal {
|
| #define CALL_GENERATED_CODE(isolate, entry, p0, p1, p2, p3, p4) \
|
| (entry(p0, p1, p2, p3, p4))
|
|
|
| -typedef int (*ppc_regexp_matcher)(String*, int, const byte*, const byte*, int*,
|
| - int, Address, int, void*, Isolate*);
|
| -
|
| +typedef int (*s390_regexp_matcher)(String*, int, const byte*, const byte*, int*,
|
| + int, Address, int, void*, Isolate*);
|
|
|
| // Call the generated regexp code directly. The code at the entry address
|
| // should act as a function matching the type ppc_regexp_matcher.
|
| @@ -35,11 +33,11 @@ typedef int (*ppc_regexp_matcher)(String*, int, const byte*, const byte*, int*,
|
| // the return address added by the ExitFrame in native calls.
|
| #define CALL_GENERATED_REGEXP_CODE(isolate, entry, p0, p1, p2, p3, p4, p5, p6, \
|
| p7, p8) \
|
| - (FUNCTION_CAST<ppc_regexp_matcher>(entry)(p0, p1, p2, p3, p4, p5, p6, p7, \
|
| - NULL, p8))
|
| + (FUNCTION_CAST<s390_regexp_matcher>(entry)(p0, p1, p2, p3, p4, p5, p6, p7, \
|
| + NULL, p8))
|
|
|
| // The stack limit beyond which we will throw stack overflow errors in
|
| -// generated code. Because generated code on ppc uses the C stack, we
|
| +// generated code. Because generated code on s390 uses the C stack, we
|
| // just use the C stack limit.
|
| class SimulatorStack : public v8::internal::AllStatic {
|
| public:
|
| @@ -67,7 +65,7 @@ class SimulatorStack : public v8::internal::AllStatic {
|
|
|
| #include "src/assembler.h"
|
| #include "src/hashmap.h"
|
| -#include "src/ppc/constants-ppc.h"
|
| +#include "src/s390/constants-s390.h"
|
|
|
| namespace v8 {
|
| namespace internal {
|
| @@ -98,45 +96,33 @@ class CachePage {
|
| char validity_map_[kValidityMapSize]; // One byte per line.
|
| };
|
|
|
| -
|
| class Simulator {
|
| public:
|
| - friend class PPCDebugger;
|
| + friend class S390Debugger;
|
| enum Register {
|
| no_reg = -1,
|
| r0 = 0,
|
| - sp,
|
| - r2,
|
| - r3,
|
| - r4,
|
| - r5,
|
| - r6,
|
| - r7,
|
| - r8,
|
| - r9,
|
| - r10,
|
| - r11,
|
| - r12,
|
| - r13,
|
| - r14,
|
| - r15,
|
| - r16,
|
| - r17,
|
| - r18,
|
| - r19,
|
| - r20,
|
| - r21,
|
| - r22,
|
| - r23,
|
| - r24,
|
| - r25,
|
| - r26,
|
| - r27,
|
| - r28,
|
| - r29,
|
| - r30,
|
| - fp,
|
| - kNumGPRs = 32,
|
| + r1 = 1,
|
| + r2 = 2,
|
| + r3 = 3,
|
| + r4 = 4,
|
| + r5 = 5,
|
| + r6 = 6,
|
| + r7 = 7,
|
| + r8 = 8,
|
| + r9 = 9,
|
| + r10 = 10,
|
| + r11 = 11,
|
| + r12 = 12,
|
| + r13 = 13,
|
| + r14 = 14,
|
| + r15 = 15,
|
| + fp = r11,
|
| + ip = r12,
|
| + cp = r13,
|
| + ra = r14,
|
| + sp = r15, // name aliases
|
| + kNumGPRs = 16,
|
| d0 = 0,
|
| d1,
|
| d2,
|
| @@ -153,23 +139,7 @@ class Simulator {
|
| d13,
|
| d14,
|
| d15,
|
| - d16,
|
| - d17,
|
| - d18,
|
| - d19,
|
| - d20,
|
| - d21,
|
| - d22,
|
| - d23,
|
| - d24,
|
| - d25,
|
| - d26,
|
| - d27,
|
| - d28,
|
| - d29,
|
| - d30,
|
| - d31,
|
| - kNumFPRs = 32
|
| + kNumFPRs = 16
|
| };
|
|
|
| explicit Simulator(Isolate* isolate);
|
| @@ -180,13 +150,21 @@ class Simulator {
|
| static Simulator* current(v8::internal::Isolate* isolate);
|
|
|
| // Accessors for register state.
|
| - void set_register(int reg, intptr_t value);
|
| - intptr_t get_register(int reg) const;
|
| + void set_register(int reg, uint64_t value);
|
| + uint64_t get_register(int reg) const;
|
| + template <typename T>
|
| + T get_low_register(int reg) const;
|
| + template <typename T>
|
| + T get_high_register(int reg) const;
|
| + void set_low_register(int reg, uint32_t value);
|
| + void set_high_register(int reg, uint32_t value);
|
| +
|
| double get_double_from_register_pair(int reg);
|
| void set_d_register_from_double(int dreg, const double dbl) {
|
| DCHECK(dreg >= 0 && dreg < kNumFPRs);
|
| *bit_cast<double*>(&fp_registers_[dreg]) = dbl;
|
| }
|
| +
|
| double get_double_from_d_register(int dreg) {
|
| DCHECK(dreg >= 0 && dreg < kNumFPRs);
|
| return *bit_cast<double*>(&fp_registers_[dreg]);
|
| @@ -200,6 +178,22 @@ class Simulator {
|
| return fp_registers_[dreg];
|
| }
|
|
|
| + void set_d_register_from_float32(int dreg, const float f) {
|
| + DCHECK(dreg >= 0 && dreg < kNumFPRs);
|
| +
|
| + int32_t f_int = *bit_cast<int32_t*>(&f);
|
| + int64_t finalval = static_cast<int64_t>(f_int) << 32;
|
| + set_d_register(dreg, finalval);
|
| + }
|
| +
|
| + float get_float32_from_d_register(int dreg) {
|
| + DCHECK(dreg >= 0 && dreg < kNumFPRs);
|
| +
|
| + int64_t regval = get_d_register(dreg) >> 32;
|
| + int32_t regval32 = static_cast<int32_t>(regval);
|
| + return *bit_cast<float*>(®val32);
|
| + }
|
| +
|
| // Special case of set_register and get_register to access the raw PC value.
|
| void set_pc(intptr_t value);
|
| intptr_t get_pc() const;
|
| @@ -211,7 +205,7 @@ class Simulator {
|
| // Accessor to the internal simulator stack area.
|
| uintptr_t StackLimit(uintptr_t c_limit) const;
|
|
|
| - // Executes PPC instructions until the PC reaches end_sim_pc.
|
| + // Executes S390 instructions until the PC reaches end_sim_pc.
|
| void Execute();
|
|
|
| // Call on program start.
|
| @@ -258,8 +252,6 @@ class Simulator {
|
| end_sim_pc = -2
|
| };
|
|
|
| - enum BCType { BC_OFFSET, BC_LINK_REG, BC_CTR_REG };
|
| -
|
| // Unsupported instructions use Format to print an error and stop execution.
|
| void Format(Instruction* instr, const char* format);
|
|
|
| @@ -287,6 +279,10 @@ class Simulator {
|
| inline void IncreaseStopCounter(uint32_t bkpt_code);
|
| void PrintStopInfo(uint32_t code);
|
|
|
| + // Byte Reverse
|
| + inline int16_t ByteReverse(int16_t hword);
|
| + inline int32_t ByteReverse(int32_t word);
|
| +
|
| // Read and write memory.
|
| inline uint8_t ReadBU(intptr_t addr);
|
| inline int8_t ReadB(intptr_t addr);
|
| @@ -304,30 +300,69 @@ class Simulator {
|
| inline void WriteW(intptr_t addr, uint32_t value, Instruction* instr);
|
| inline void WriteW(intptr_t addr, int32_t value, Instruction* instr);
|
|
|
| - intptr_t* ReadDW(intptr_t addr);
|
| - void WriteDW(intptr_t addr, int64_t value);
|
| + inline int64_t ReadDW(intptr_t addr);
|
| + inline double ReadDouble(intptr_t addr);
|
| + inline void WriteDW(intptr_t addr, int64_t value);
|
|
|
| + // S390
|
| void Trace(Instruction* instr);
|
| - void SetCR0(intptr_t result, bool setSO = false);
|
| - void ExecuteBranchConditional(Instruction* instr, BCType type);
|
| - void ExecuteExt1(Instruction* instr);
|
| - bool ExecuteExt2_10bit(Instruction* instr);
|
| - bool ExecuteExt2_9bit_part1(Instruction* instr);
|
| - bool ExecuteExt2_9bit_part2(Instruction* instr);
|
| - void ExecuteExt2_5bit(Instruction* instr);
|
| - void ExecuteExt2(Instruction* instr);
|
| - void ExecuteExt3(Instruction* instr);
|
| - void ExecuteExt4(Instruction* instr);
|
| -#if V8_TARGET_ARCH_PPC64
|
| - void ExecuteExt5(Instruction* instr);
|
| -#endif
|
| - void ExecuteGeneric(Instruction* instr);
|
| -
|
| - void SetFPSCR(int bit) { fp_condition_reg_ |= (1 << (31 - bit)); }
|
| - void ClearFPSCR(int bit) { fp_condition_reg_ &= ~(1 << (31 - bit)); }
|
| + bool DecodeTwoByte(Instruction* instr);
|
| + bool DecodeFourByte(Instruction* instr);
|
| + bool DecodeFourByteArithmetic(Instruction* instr);
|
| + bool DecodeFourByteFloatingPoint(Instruction* instr);
|
| + void DecodeFourByteFloatingPointIntConversion(Instruction* instr);
|
| + void DecodeFourByteFloatingPointRound(Instruction* instr);
|
| +
|
| + bool DecodeSixByte(Instruction* instr);
|
| + bool DecodeSixByteArithmetic(Instruction* instr);
|
| + bool S390InstructionDecode(Instruction* instr);
|
| +
|
| + template <typename T>
|
| + void SetS390ConditionCode(T lhs, T rhs) {
|
| + condition_reg_ = 0;
|
| + if (lhs == rhs) {
|
| + condition_reg_ |= CC_EQ;
|
| + } else if (lhs < rhs) {
|
| + condition_reg_ |= CC_LT;
|
| + } else if (lhs > rhs) {
|
| + condition_reg_ |= CC_GT;
|
| + }
|
| +
|
| + // We get down here only for floating point
|
| + // comparisons and the values are unordered
|
| + // i.e. NaN
|
| + if (condition_reg_ == 0) condition_reg_ = unordered;
|
| + }
|
| +
|
| + bool isNaN(double value) { return (value != value); }
|
| +
|
| + // Set the condition code for bitwise operations
|
| + // CC0 is set if value == 0.
|
| + // CC1 is set if value != 0.
|
| + // CC2/CC3 are not set.
|
| + template <typename T>
|
| + void SetS390BitWiseConditionCode(T value) {
|
| + condition_reg_ = 0;
|
| +
|
| + if (value == 0)
|
| + condition_reg_ |= CC_EQ;
|
| + else
|
| + condition_reg_ |= CC_LT;
|
| + }
|
| +
|
| + void SetS390OverflowCode(bool isOF) {
|
| + if (isOF) condition_reg_ = CC_OF;
|
| + }
|
| +
|
| + bool TestConditionCode(Condition mask) {
|
| + // Check for unconditional branch
|
| + if (mask == 0xf) return true;
|
| +
|
| + return (condition_reg_ & mask) != 0;
|
| + }
|
|
|
| // Executes one instruction.
|
| - void ExecuteInstruction(Instruction* instr);
|
| + void ExecuteInstruction(Instruction* instr, bool auto_incr_pc = true);
|
|
|
| // ICache.
|
| static void CheckICache(v8::internal::HashMap* i_cache, Instruction* instr);
|
| @@ -345,27 +380,24 @@ class Simulator {
|
| void SetFpResult(const double& result);
|
| void TrashCallerSaveRegisters();
|
|
|
| - void CallInternal(byte* entry);
|
| + void CallInternal(byte* entry, int reg_arg_count = 3);
|
|
|
| // Architecture state.
|
| - // Saturating instructions require a Q flag to indicate saturation.
|
| - // There is currently no way to read the CPSR directly, and thus read the Q
|
| - // flag, so this is left unimplemented.
|
| - intptr_t registers_[kNumGPRs];
|
| + // On z9 and higher and supported Linux on z Systems platforms, all registers
|
| + // are 64-bit, even in 31-bit mode.
|
| + uint64_t registers_[kNumGPRs];
|
| + int64_t fp_registers_[kNumFPRs];
|
| +
|
| + // Condition Code register. In S390, the last 4 bits are used.
|
| int32_t condition_reg_;
|
| - int32_t fp_condition_reg_;
|
| - intptr_t special_reg_lr_;
|
| + // Special register to track PC.
|
| intptr_t special_reg_pc_;
|
| - intptr_t special_reg_ctr_;
|
| - int32_t special_reg_xer_;
|
| -
|
| - int64_t fp_registers_[kNumFPRs];
|
|
|
| // Simulator support.
|
| char* stack_;
|
| static const size_t stack_protection_size_ = 256 * kPointerSize;
|
| bool pc_modified_;
|
| - int icount_;
|
| + int64_t icount_;
|
|
|
| // Debugger input.
|
| char* last_debugger_input_;
|
| @@ -395,9 +427,9 @@ class Simulator {
|
| char* desc;
|
| };
|
| StopCountAndDesc watched_stops_[kNumOfWatchedStops];
|
| + void DebugStart();
|
| };
|
|
|
| -
|
| // When running with the simulator transition into simulated execution at this
|
| // point.
|
| #define CALL_GENERATED_CODE(isolate, entry, p0, p1, p2, p3, p4) \
|
| @@ -412,7 +444,6 @@ class Simulator {
|
| (intptr_t)p5, (intptr_t)p6, (intptr_t)p7, \
|
| (intptr_t)NULL, (intptr_t)p8)
|
|
|
| -
|
| // The simulator has its own stack. Thus it has a different stack limit from
|
| // the C-based native code. The JS-based limit normally points near the end of
|
| // the simulator stack. When the C-based limit is exhausted we reflect that by
|
| @@ -434,8 +465,9 @@ class SimulatorStack : public v8::internal::AllStatic {
|
| Simulator::current(isolate)->PopAddress();
|
| }
|
| };
|
| +
|
| } // namespace internal
|
| } // namespace v8
|
|
|
| #endif // !defined(USE_SIMULATOR)
|
| -#endif // V8_PPC_SIMULATOR_PPC_H_
|
| +#endif // V8_S390_SIMULATOR_S390_H_
|
|
|