OLD | NEW |
(Empty) | |
| 1 // Copyright 2014 the V8 project authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 #include <stdarg.h> |
| 6 #include <stdlib.h> |
| 7 #include <cmath> |
| 8 |
| 9 #if V8_TARGET_ARCH_S390 |
| 10 |
| 11 #include "src/assembler.h" |
| 12 #include "src/base/bits.h" |
| 13 #include "src/codegen.h" |
| 14 #include "src/disasm.h" |
| 15 #include "src/runtime/runtime-utils.h" |
| 16 #include "src/s390/constants-s390.h" |
| 17 #include "src/s390/frames-s390.h" |
| 18 #include "src/s390/simulator-s390.h" |
| 19 #if defined(USE_SIMULATOR) |
| 20 |
| 21 // Only build the simulator if not compiling for real s390 hardware. |
| 22 namespace v8 { |
| 23 namespace internal { |
| 24 |
| 25 // This macro provides a platform independent use of sscanf. The reason for |
| 26 // SScanF not being implemented in a platform independent way through |
| 27 // ::v8::internal::OS in the same way as SNPrintF is that the |
| 28 // Windows C Run-Time Library does not provide vsscanf. |
| 29 #define SScanF sscanf // NOLINT |
| 30 |
| 31 // The S390Debugger class is used by the simulator while debugging simulated |
| 32 // z/Architecture code. |
| 33 class S390Debugger { |
| 34 public: |
| 35 explicit S390Debugger(Simulator* sim) : sim_(sim) {} |
| 36 ~S390Debugger(); |
| 37 |
| 38 void Stop(Instruction* instr); |
| 39 void Debug(); |
| 40 |
| 41 private: |
| 42 #if V8_TARGET_LITTLE_ENDIAN |
| 43 static const Instr kBreakpointInstr = (0x0000FFB2); // TRAP4 0000 |
| 44 static const Instr kNopInstr = (0x00160016); // OR r0, r0 x2 |
| 45 #else |
| 46 static const Instr kBreakpointInstr = (0xB2FF0000); // TRAP4 0000 |
| 47 static const Instr kNopInstr = (0x16001600); // OR r0, r0 x2 |
| 48 #endif |
| 49 |
| 50 Simulator* sim_; |
| 51 |
| 52 intptr_t GetRegisterValue(int regnum); |
| 53 double GetRegisterPairDoubleValue(int regnum); |
| 54 double GetFPDoubleRegisterValue(int regnum); |
| 55 float GetFPFloatRegisterValue(int regnum); |
| 56 bool GetValue(const char* desc, intptr_t* value); |
| 57 bool GetFPDoubleValue(const char* desc, double* value); |
| 58 |
| 59 // Set or delete a breakpoint. Returns true if successful. |
| 60 bool SetBreakpoint(Instruction* break_pc); |
| 61 bool DeleteBreakpoint(Instruction* break_pc); |
| 62 |
| 63 // Undo and redo all breakpoints. This is needed to bracket disassembly and |
| 64 // execution to skip past breakpoints when run from the debugger. |
| 65 void UndoBreakpoints(); |
| 66 void RedoBreakpoints(); |
| 67 }; |
| 68 |
| 69 S390Debugger::~S390Debugger() {} |
| 70 |
| 71 #ifdef GENERATED_CODE_COVERAGE |
| 72 static FILE* coverage_log = NULL; |
| 73 |
| 74 static void InitializeCoverage() { |
| 75 char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG"); |
| 76 if (file_name != NULL) { |
| 77 coverage_log = fopen(file_name, "aw+"); |
| 78 } |
| 79 } |
| 80 |
| 81 void S390Debugger::Stop(Instruction* instr) { |
| 82 // Get the stop code. |
| 83 uint32_t code = instr->SvcValue() & kStopCodeMask; |
| 84 // Retrieve the encoded address, which comes just after this stop. |
| 85 char** msg_address = |
| 86 reinterpret_cast<char**>(sim_->get_pc() + sizeof(FourByteInstr)); |
| 87 char* msg = *msg_address; |
| 88 DCHECK(msg != NULL); |
| 89 |
| 90 // Update this stop description. |
| 91 if (isWatchedStop(code) && !watched_stops_[code].desc) { |
| 92 watched_stops_[code].desc = msg; |
| 93 } |
| 94 |
| 95 if (strlen(msg) > 0) { |
| 96 if (coverage_log != NULL) { |
| 97 fprintf(coverage_log, "%s\n", msg); |
| 98 fflush(coverage_log); |
| 99 } |
| 100 // Overwrite the instruction and address with nops. |
| 101 instr->SetInstructionBits(kNopInstr); |
| 102 reinterpret_cast<Instruction*>(msg_address)->SetInstructionBits(kNopInstr); |
| 103 } |
| 104 sim_->set_pc(sim_->get_pc() + sizeof(FourByteInstr) + kPointerSize); |
| 105 } |
| 106 |
| 107 #else // ndef GENERATED_CODE_COVERAGE |
| 108 |
| 109 static void InitializeCoverage() {} |
| 110 |
| 111 void S390Debugger::Stop(Instruction* instr) { |
| 112 // Get the stop code. |
| 113 // use of kStopCodeMask not right on PowerPC |
| 114 uint32_t code = instr->SvcValue() & kStopCodeMask; |
| 115 // Retrieve the encoded address, which comes just after this stop. |
| 116 char* msg = *reinterpret_cast<char**>(sim_->get_pc() + sizeof(FourByteInstr)); |
| 117 // Update this stop description. |
| 118 if (sim_->isWatchedStop(code) && !sim_->watched_stops_[code].desc) { |
| 119 sim_->watched_stops_[code].desc = msg; |
| 120 } |
| 121 // Print the stop message and code if it is not the default code. |
| 122 if (code != kMaxStopCode) { |
| 123 PrintF("Simulator hit stop %u: %s\n", code, msg); |
| 124 } else { |
| 125 PrintF("Simulator hit %s\n", msg); |
| 126 } |
| 127 sim_->set_pc(sim_->get_pc() + sizeof(FourByteInstr) + kPointerSize); |
| 128 Debug(); |
| 129 } |
| 130 #endif |
| 131 |
| 132 intptr_t S390Debugger::GetRegisterValue(int regnum) { |
| 133 return sim_->get_register(regnum); |
| 134 } |
| 135 |
| 136 double S390Debugger::GetRegisterPairDoubleValue(int regnum) { |
| 137 return sim_->get_double_from_register_pair(regnum); |
| 138 } |
| 139 |
| 140 double S390Debugger::GetFPDoubleRegisterValue(int regnum) { |
| 141 return sim_->get_double_from_d_register(regnum); |
| 142 } |
| 143 |
| 144 float S390Debugger::GetFPFloatRegisterValue(int regnum) { |
| 145 return sim_->get_float32_from_d_register(regnum); |
| 146 } |
| 147 |
| 148 bool S390Debugger::GetValue(const char* desc, intptr_t* value) { |
| 149 int regnum = Registers::Number(desc); |
| 150 if (regnum != kNoRegister) { |
| 151 *value = GetRegisterValue(regnum); |
| 152 return true; |
| 153 } else { |
| 154 if (strncmp(desc, "0x", 2) == 0) { |
| 155 return SScanF(desc + 2, "%" V8PRIxPTR, |
| 156 reinterpret_cast<uintptr_t*>(value)) == 1; |
| 157 } else { |
| 158 return SScanF(desc, "%" V8PRIuPTR, reinterpret_cast<uintptr_t*>(value)) == |
| 159 1; |
| 160 } |
| 161 } |
| 162 return false; |
| 163 } |
| 164 |
| 165 bool S390Debugger::GetFPDoubleValue(const char* desc, double* value) { |
| 166 int regnum = DoubleRegisters::Number(desc); |
| 167 if (regnum != kNoRegister) { |
| 168 *value = sim_->get_double_from_d_register(regnum); |
| 169 return true; |
| 170 } |
| 171 return false; |
| 172 } |
| 173 |
| 174 bool S390Debugger::SetBreakpoint(Instruction* break_pc) { |
| 175 // Check if a breakpoint can be set. If not return without any side-effects. |
| 176 if (sim_->break_pc_ != NULL) { |
| 177 return false; |
| 178 } |
| 179 |
| 180 // Set the breakpoint. |
| 181 sim_->break_pc_ = break_pc; |
| 182 sim_->break_instr_ = break_pc->InstructionBits(); |
| 183 // Not setting the breakpoint instruction in the code itself. It will be set |
| 184 // when the debugger shell continues. |
| 185 return true; |
| 186 } |
| 187 |
| 188 bool S390Debugger::DeleteBreakpoint(Instruction* break_pc) { |
| 189 if (sim_->break_pc_ != NULL) { |
| 190 sim_->break_pc_->SetInstructionBits(sim_->break_instr_); |
| 191 } |
| 192 |
| 193 sim_->break_pc_ = NULL; |
| 194 sim_->break_instr_ = 0; |
| 195 return true; |
| 196 } |
| 197 |
| 198 void S390Debugger::UndoBreakpoints() { |
| 199 if (sim_->break_pc_ != NULL) { |
| 200 sim_->break_pc_->SetInstructionBits(sim_->break_instr_); |
| 201 } |
| 202 } |
| 203 |
| 204 void S390Debugger::RedoBreakpoints() { |
| 205 if (sim_->break_pc_ != NULL) { |
| 206 sim_->break_pc_->SetInstructionBits(kBreakpointInstr); |
| 207 } |
| 208 } |
| 209 |
| 210 void S390Debugger::Debug() { |
| 211 intptr_t last_pc = -1; |
| 212 bool done = false; |
| 213 |
| 214 #define COMMAND_SIZE 63 |
| 215 #define ARG_SIZE 255 |
| 216 |
| 217 #define STR(a) #a |
| 218 #define XSTR(a) STR(a) |
| 219 |
| 220 char cmd[COMMAND_SIZE + 1]; |
| 221 char arg1[ARG_SIZE + 1]; |
| 222 char arg2[ARG_SIZE + 1]; |
| 223 char* argv[3] = {cmd, arg1, arg2}; |
| 224 |
| 225 // make sure to have a proper terminating character if reaching the limit |
| 226 cmd[COMMAND_SIZE] = 0; |
| 227 arg1[ARG_SIZE] = 0; |
| 228 arg2[ARG_SIZE] = 0; |
| 229 |
| 230 // Undo all set breakpoints while running in the debugger shell. This will |
| 231 // make them invisible to all commands. |
| 232 UndoBreakpoints(); |
| 233 // Disable tracing while simulating |
| 234 bool trace = ::v8::internal::FLAG_trace_sim; |
| 235 ::v8::internal::FLAG_trace_sim = false; |
| 236 |
| 237 while (!done && !sim_->has_bad_pc()) { |
| 238 if (last_pc != sim_->get_pc()) { |
| 239 disasm::NameConverter converter; |
| 240 disasm::Disassembler dasm(converter); |
| 241 // use a reasonably large buffer |
| 242 v8::internal::EmbeddedVector<char, 256> buffer; |
| 243 dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(sim_->get_pc())); |
| 244 PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(), buffer.start()); |
| 245 last_pc = sim_->get_pc(); |
| 246 } |
| 247 char* line = ReadLine("sim> "); |
| 248 if (line == NULL) { |
| 249 break; |
| 250 } else { |
| 251 char* last_input = sim_->last_debugger_input(); |
| 252 if (strcmp(line, "\n") == 0 && last_input != NULL) { |
| 253 line = last_input; |
| 254 } else { |
| 255 // Ownership is transferred to sim_; |
| 256 sim_->set_last_debugger_input(line); |
| 257 } |
| 258 // Use sscanf to parse the individual parts of the command line. At the |
| 259 // moment no command expects more than two parameters. |
| 260 int argc = SScanF(line, |
| 261 "%" XSTR(COMMAND_SIZE) "s " |
| 262 "%" XSTR(ARG_SIZE) "s " |
| 263 "%" XSTR(ARG_SIZE) "s", |
| 264 cmd, arg1, arg2); |
| 265 if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { |
| 266 intptr_t value; |
| 267 |
| 268 // If at a breakpoint, proceed past it. |
| 269 if ((reinterpret_cast<Instruction*>(sim_->get_pc())) |
| 270 ->InstructionBits() == 0x7d821008) { |
| 271 sim_->set_pc(sim_->get_pc() + sizeof(FourByteInstr)); |
| 272 } else { |
| 273 sim_->ExecuteInstruction( |
| 274 reinterpret_cast<Instruction*>(sim_->get_pc())); |
| 275 } |
| 276 |
| 277 if (argc == 2 && last_pc != sim_->get_pc() && GetValue(arg1, &value)) { |
| 278 for (int i = 1; (!sim_->has_bad_pc()) && i < value; i++) { |
| 279 disasm::NameConverter converter; |
| 280 disasm::Disassembler dasm(converter); |
| 281 // use a reasonably large buffer |
| 282 v8::internal::EmbeddedVector<char, 256> buffer; |
| 283 dasm.InstructionDecode(buffer, |
| 284 reinterpret_cast<byte*>(sim_->get_pc())); |
| 285 PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(), |
| 286 buffer.start()); |
| 287 sim_->ExecuteInstruction( |
| 288 reinterpret_cast<Instruction*>(sim_->get_pc())); |
| 289 } |
| 290 } |
| 291 } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { |
| 292 // If at a breakpoint, proceed past it. |
| 293 if ((reinterpret_cast<Instruction*>(sim_->get_pc())) |
| 294 ->InstructionBits() == 0x7d821008) { |
| 295 sim_->set_pc(sim_->get_pc() + sizeof(FourByteInstr)); |
| 296 } else { |
| 297 // Execute the one instruction we broke at with breakpoints disabled. |
| 298 sim_->ExecuteInstruction( |
| 299 reinterpret_cast<Instruction*>(sim_->get_pc())); |
| 300 } |
| 301 // Leave the debugger shell. |
| 302 done = true; |
| 303 } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { |
| 304 if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) { |
| 305 intptr_t value; |
| 306 double dvalue; |
| 307 if (strcmp(arg1, "all") == 0) { |
| 308 for (int i = 0; i < kNumRegisters; i++) { |
| 309 value = GetRegisterValue(i); |
| 310 PrintF(" %3s: %08" V8PRIxPTR, |
| 311 Register::from_code(i).ToString(), value); |
| 312 if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 && |
| 313 (i % 2) == 0) { |
| 314 dvalue = GetRegisterPairDoubleValue(i); |
| 315 PrintF(" (%f)\n", dvalue); |
| 316 } else if (i != 0 && !((i + 1) & 3)) { |
| 317 PrintF("\n"); |
| 318 } |
| 319 } |
| 320 PrintF(" pc: %08" V8PRIxPTR " cr: %08x\n", sim_->special_reg_pc_, |
| 321 sim_->condition_reg_); |
| 322 } else if (strcmp(arg1, "alld") == 0) { |
| 323 for (int i = 0; i < kNumRegisters; i++) { |
| 324 value = GetRegisterValue(i); |
| 325 PrintF(" %3s: %08" V8PRIxPTR " %11" V8PRIdPTR, |
| 326 Register::from_code(i).ToString(), value, value); |
| 327 if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 && |
| 328 (i % 2) == 0) { |
| 329 dvalue = GetRegisterPairDoubleValue(i); |
| 330 PrintF(" (%f)\n", dvalue); |
| 331 } else if (!((i + 1) % 2)) { |
| 332 PrintF("\n"); |
| 333 } |
| 334 } |
| 335 PrintF(" pc: %08" V8PRIxPTR " cr: %08x\n", sim_->special_reg_pc_, |
| 336 sim_->condition_reg_); |
| 337 } else if (strcmp(arg1, "allf") == 0) { |
| 338 for (int i = 0; i < DoubleRegister::kNumRegisters; i++) { |
| 339 float fvalue = GetFPFloatRegisterValue(i); |
| 340 uint32_t as_words = bit_cast<uint32_t>(fvalue); |
| 341 PrintF("%3s: %f 0x%08x\n", |
| 342 DoubleRegister::from_code(i).ToString(), fvalue, as_words); |
| 343 } |
| 344 } else if (strcmp(arg1, "alld") == 0) { |
| 345 for (int i = 0; i < DoubleRegister::kNumRegisters; i++) { |
| 346 dvalue = GetFPDoubleRegisterValue(i); |
| 347 uint64_t as_words = bit_cast<uint64_t>(dvalue); |
| 348 PrintF("%3s: %f 0x%08x %08x\n", |
| 349 DoubleRegister::from_code(i).ToString(), dvalue, |
| 350 static_cast<uint32_t>(as_words >> 32), |
| 351 static_cast<uint32_t>(as_words & 0xffffffff)); |
| 352 } |
| 353 } else if (arg1[0] == 'r' && |
| 354 (arg1[1] >= '0' && arg1[1] <= '2' && |
| 355 (arg1[2] == '\0' || (arg1[2] >= '0' && arg1[2] <= '5' && |
| 356 arg1[3] == '\0')))) { |
| 357 int regnum = strtoul(&arg1[1], 0, 10); |
| 358 if (regnum != kNoRegister) { |
| 359 value = GetRegisterValue(regnum); |
| 360 PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value, |
| 361 value); |
| 362 } else { |
| 363 PrintF("%s unrecognized\n", arg1); |
| 364 } |
| 365 } else { |
| 366 if (GetValue(arg1, &value)) { |
| 367 PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value, |
| 368 value); |
| 369 } else if (GetFPDoubleValue(arg1, &dvalue)) { |
| 370 uint64_t as_words = bit_cast<uint64_t>(dvalue); |
| 371 PrintF("%s: %f 0x%08x %08x\n", arg1, dvalue, |
| 372 static_cast<uint32_t>(as_words >> 32), |
| 373 static_cast<uint32_t>(as_words & 0xffffffff)); |
| 374 } else { |
| 375 PrintF("%s unrecognized\n", arg1); |
| 376 } |
| 377 } |
| 378 } else { |
| 379 PrintF("print <register>\n"); |
| 380 } |
| 381 } else if ((strcmp(cmd, "po") == 0) || |
| 382 (strcmp(cmd, "printobject") == 0)) { |
| 383 if (argc == 2) { |
| 384 intptr_t value; |
| 385 OFStream os(stdout); |
| 386 if (GetValue(arg1, &value)) { |
| 387 Object* obj = reinterpret_cast<Object*>(value); |
| 388 os << arg1 << ": \n"; |
| 389 #ifdef DEBUG |
| 390 obj->Print(os); |
| 391 os << "\n"; |
| 392 #else |
| 393 os << Brief(obj) << "\n"; |
| 394 #endif |
| 395 } else { |
| 396 os << arg1 << " unrecognized\n"; |
| 397 } |
| 398 } else { |
| 399 PrintF("printobject <value>\n"); |
| 400 } |
| 401 } else if (strcmp(cmd, "setpc") == 0) { |
| 402 intptr_t value; |
| 403 |
| 404 if (!GetValue(arg1, &value)) { |
| 405 PrintF("%s unrecognized\n", arg1); |
| 406 continue; |
| 407 } |
| 408 sim_->set_pc(value); |
| 409 } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) { |
| 410 intptr_t* cur = NULL; |
| 411 intptr_t* end = NULL; |
| 412 int next_arg = 1; |
| 413 |
| 414 if (strcmp(cmd, "stack") == 0) { |
| 415 cur = reinterpret_cast<intptr_t*>(sim_->get_register(Simulator::sp)); |
| 416 } else { // "mem" |
| 417 intptr_t value; |
| 418 if (!GetValue(arg1, &value)) { |
| 419 PrintF("%s unrecognized\n", arg1); |
| 420 continue; |
| 421 } |
| 422 cur = reinterpret_cast<intptr_t*>(value); |
| 423 next_arg++; |
| 424 } |
| 425 |
| 426 intptr_t words; // likely inaccurate variable name for 64bit |
| 427 if (argc == next_arg) { |
| 428 words = 10; |
| 429 } else { |
| 430 if (!GetValue(argv[next_arg], &words)) { |
| 431 words = 10; |
| 432 } |
| 433 } |
| 434 end = cur + words; |
| 435 |
| 436 while (cur < end) { |
| 437 PrintF(" 0x%08" V8PRIxPTR ": 0x%08" V8PRIxPTR " %10" V8PRIdPTR, |
| 438 reinterpret_cast<intptr_t>(cur), *cur, *cur); |
| 439 HeapObject* obj = reinterpret_cast<HeapObject*>(*cur); |
| 440 intptr_t value = *cur; |
| 441 Heap* current_heap = sim_->isolate_->heap(); |
| 442 if (((value & 1) == 0) || |
| 443 current_heap->ContainsSlow(obj->address())) { |
| 444 PrintF("(smi %d)", PlatformSmiTagging::SmiToInt(obj)); |
| 445 } else if (current_heap->Contains(obj)) { |
| 446 PrintF(" ("); |
| 447 obj->ShortPrint(); |
| 448 PrintF(")"); |
| 449 } |
| 450 PrintF("\n"); |
| 451 cur++; |
| 452 } |
| 453 } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) { |
| 454 disasm::NameConverter converter; |
| 455 disasm::Disassembler dasm(converter); |
| 456 // use a reasonably large buffer |
| 457 v8::internal::EmbeddedVector<char, 256> buffer; |
| 458 |
| 459 byte* prev = NULL; |
| 460 byte* cur = NULL; |
| 461 // Default number of instructions to disassemble. |
| 462 int32_t numInstructions = 10; |
| 463 |
| 464 if (argc == 1) { |
| 465 cur = reinterpret_cast<byte*>(sim_->get_pc()); |
| 466 } else if (argc == 2) { |
| 467 int regnum = Registers::Number(arg1); |
| 468 if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) { |
| 469 // The argument is an address or a register name. |
| 470 intptr_t value; |
| 471 if (GetValue(arg1, &value)) { |
| 472 cur = reinterpret_cast<byte*>(value); |
| 473 } |
| 474 } else { |
| 475 // The argument is the number of instructions. |
| 476 intptr_t value; |
| 477 if (GetValue(arg1, &value)) { |
| 478 cur = reinterpret_cast<byte*>(sim_->get_pc()); |
| 479 // Disassemble <arg1> instructions. |
| 480 numInstructions = static_cast<int32_t>(value); |
| 481 } |
| 482 } |
| 483 } else { |
| 484 intptr_t value1; |
| 485 intptr_t value2; |
| 486 if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { |
| 487 cur = reinterpret_cast<byte*>(value1); |
| 488 // Disassemble <arg2> instructions. |
| 489 numInstructions = static_cast<int32_t>(value2); |
| 490 } |
| 491 } |
| 492 |
| 493 while (numInstructions > 0) { |
| 494 prev = cur; |
| 495 cur += dasm.InstructionDecode(buffer, cur); |
| 496 PrintF(" 0x%08" V8PRIxPTR " %s\n", reinterpret_cast<intptr_t>(prev), |
| 497 buffer.start()); |
| 498 numInstructions--; |
| 499 } |
| 500 } else if (strcmp(cmd, "gdb") == 0) { |
| 501 PrintF("relinquishing control to gdb\n"); |
| 502 v8::base::OS::DebugBreak(); |
| 503 PrintF("regaining control from gdb\n"); |
| 504 } else if (strcmp(cmd, "break") == 0) { |
| 505 if (argc == 2) { |
| 506 intptr_t value; |
| 507 if (GetValue(arg1, &value)) { |
| 508 if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) { |
| 509 PrintF("setting breakpoint failed\n"); |
| 510 } |
| 511 } else { |
| 512 PrintF("%s unrecognized\n", arg1); |
| 513 } |
| 514 } else { |
| 515 PrintF("break <address>\n"); |
| 516 } |
| 517 } else if (strcmp(cmd, "del") == 0) { |
| 518 if (!DeleteBreakpoint(NULL)) { |
| 519 PrintF("deleting breakpoint failed\n"); |
| 520 } |
| 521 } else if (strcmp(cmd, "cr") == 0) { |
| 522 PrintF("Condition reg: %08x\n", sim_->condition_reg_); |
| 523 } else if (strcmp(cmd, "stop") == 0) { |
| 524 intptr_t value; |
| 525 intptr_t stop_pc = |
| 526 sim_->get_pc() - (sizeof(FourByteInstr) + kPointerSize); |
| 527 Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc); |
| 528 Instruction* msg_address = |
| 529 reinterpret_cast<Instruction*>(stop_pc + sizeof(FourByteInstr)); |
| 530 if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) { |
| 531 // Remove the current stop. |
| 532 if (sim_->isStopInstruction(stop_instr)) { |
| 533 stop_instr->SetInstructionBits(kNopInstr); |
| 534 msg_address->SetInstructionBits(kNopInstr); |
| 535 } else { |
| 536 PrintF("Not at debugger stop.\n"); |
| 537 } |
| 538 } else if (argc == 3) { |
| 539 // Print information about all/the specified breakpoint(s). |
| 540 if (strcmp(arg1, "info") == 0) { |
| 541 if (strcmp(arg2, "all") == 0) { |
| 542 PrintF("Stop information:\n"); |
| 543 for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { |
| 544 sim_->PrintStopInfo(i); |
| 545 } |
| 546 } else if (GetValue(arg2, &value)) { |
| 547 sim_->PrintStopInfo(value); |
| 548 } else { |
| 549 PrintF("Unrecognized argument.\n"); |
| 550 } |
| 551 } else if (strcmp(arg1, "enable") == 0) { |
| 552 // Enable all/the specified breakpoint(s). |
| 553 if (strcmp(arg2, "all") == 0) { |
| 554 for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { |
| 555 sim_->EnableStop(i); |
| 556 } |
| 557 } else if (GetValue(arg2, &value)) { |
| 558 sim_->EnableStop(value); |
| 559 } else { |
| 560 PrintF("Unrecognized argument.\n"); |
| 561 } |
| 562 } else if (strcmp(arg1, "disable") == 0) { |
| 563 // Disable all/the specified breakpoint(s). |
| 564 if (strcmp(arg2, "all") == 0) { |
| 565 for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { |
| 566 sim_->DisableStop(i); |
| 567 } |
| 568 } else if (GetValue(arg2, &value)) { |
| 569 sim_->DisableStop(value); |
| 570 } else { |
| 571 PrintF("Unrecognized argument.\n"); |
| 572 } |
| 573 } |
| 574 } else { |
| 575 PrintF("Wrong usage. Use help command for more information.\n"); |
| 576 } |
| 577 } else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) { |
| 578 ::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim; |
| 579 PrintF("Trace of executed instructions is %s\n", |
| 580 ::v8::internal::FLAG_trace_sim ? "on" : "off"); |
| 581 } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { |
| 582 PrintF("cont\n"); |
| 583 PrintF(" continue execution (alias 'c')\n"); |
| 584 PrintF("stepi [num instructions]\n"); |
| 585 PrintF(" step one/num instruction(s) (alias 'si')\n"); |
| 586 PrintF("print <register>\n"); |
| 587 PrintF(" print register content (alias 'p')\n"); |
| 588 PrintF(" use register name 'all' to display all integer registers\n"); |
| 589 PrintF( |
| 590 " use register name 'alld' to display integer registers " |
| 591 "with decimal values\n"); |
| 592 PrintF(" use register name 'rN' to display register number 'N'\n"); |
| 593 PrintF(" add argument 'fp' to print register pair double values\n"); |
| 594 PrintF( |
| 595 " use register name 'allf' to display floating-point " |
| 596 "registers\n"); |
| 597 PrintF("printobject <register>\n"); |
| 598 PrintF(" print an object from a register (alias 'po')\n"); |
| 599 PrintF("cr\n"); |
| 600 PrintF(" print condition register\n"); |
| 601 PrintF("stack [<num words>]\n"); |
| 602 PrintF(" dump stack content, default dump 10 words)\n"); |
| 603 PrintF("mem <address> [<num words>]\n"); |
| 604 PrintF(" dump memory content, default dump 10 words)\n"); |
| 605 PrintF("disasm [<instructions>]\n"); |
| 606 PrintF("disasm [<address/register>]\n"); |
| 607 PrintF("disasm [[<address/register>] <instructions>]\n"); |
| 608 PrintF(" disassemble code, default is 10 instructions\n"); |
| 609 PrintF(" from pc (alias 'di')\n"); |
| 610 PrintF("gdb\n"); |
| 611 PrintF(" enter gdb\n"); |
| 612 PrintF("break <address>\n"); |
| 613 PrintF(" set a break point on the address\n"); |
| 614 PrintF("del\n"); |
| 615 PrintF(" delete the breakpoint\n"); |
| 616 PrintF("trace (alias 't')\n"); |
| 617 PrintF(" toogle the tracing of all executed statements\n"); |
| 618 PrintF("stop feature:\n"); |
| 619 PrintF(" Description:\n"); |
| 620 PrintF(" Stops are debug instructions inserted by\n"); |
| 621 PrintF(" the Assembler::stop() function.\n"); |
| 622 PrintF(" When hitting a stop, the Simulator will\n"); |
| 623 PrintF(" stop and and give control to the S390Debugger.\n"); |
| 624 PrintF(" The first %d stop codes are watched:\n", |
| 625 Simulator::kNumOfWatchedStops); |
| 626 PrintF(" - They can be enabled / disabled: the Simulator\n"); |
| 627 PrintF(" will / won't stop when hitting them.\n"); |
| 628 PrintF(" - The Simulator keeps track of how many times they \n"); |
| 629 PrintF(" are met. (See the info command.) Going over a\n"); |
| 630 PrintF(" disabled stop still increases its counter. \n"); |
| 631 PrintF(" Commands:\n"); |
| 632 PrintF(" stop info all/<code> : print infos about number <code>\n"); |
| 633 PrintF(" or all stop(s).\n"); |
| 634 PrintF(" stop enable/disable all/<code> : enables / disables\n"); |
| 635 PrintF(" all or number <code> stop(s)\n"); |
| 636 PrintF(" stop unstop\n"); |
| 637 PrintF(" ignore the stop instruction at the current location\n"); |
| 638 PrintF(" from now on\n"); |
| 639 } else { |
| 640 PrintF("Unknown command: %s\n", cmd); |
| 641 } |
| 642 } |
| 643 } |
| 644 |
| 645 // Add all the breakpoints back to stop execution and enter the debugger |
| 646 // shell when hit. |
| 647 RedoBreakpoints(); |
| 648 // Restore tracing |
| 649 ::v8::internal::FLAG_trace_sim = trace; |
| 650 |
| 651 #undef COMMAND_SIZE |
| 652 #undef ARG_SIZE |
| 653 |
| 654 #undef STR |
| 655 #undef XSTR |
| 656 } |
| 657 |
| 658 static bool ICacheMatch(void* one, void* two) { |
| 659 DCHECK((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0); |
| 660 DCHECK((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0); |
| 661 return one == two; |
| 662 } |
| 663 |
| 664 static uint32_t ICacheHash(void* key) { |
| 665 return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2; |
| 666 } |
| 667 |
| 668 static bool AllOnOnePage(uintptr_t start, int size) { |
| 669 intptr_t start_page = (start & ~CachePage::kPageMask); |
| 670 intptr_t end_page = ((start + size) & ~CachePage::kPageMask); |
| 671 return start_page == end_page; |
| 672 } |
| 673 |
| 674 void Simulator::set_last_debugger_input(char* input) { |
| 675 DeleteArray(last_debugger_input_); |
| 676 last_debugger_input_ = input; |
| 677 } |
| 678 |
| 679 void Simulator::FlushICache(v8::internal::HashMap* i_cache, void* start_addr, |
| 680 size_t size) { |
| 681 intptr_t start = reinterpret_cast<intptr_t>(start_addr); |
| 682 int intra_line = (start & CachePage::kLineMask); |
| 683 start -= intra_line; |
| 684 size += intra_line; |
| 685 size = ((size - 1) | CachePage::kLineMask) + 1; |
| 686 int offset = (start & CachePage::kPageMask); |
| 687 while (!AllOnOnePage(start, size - 1)) { |
| 688 int bytes_to_flush = CachePage::kPageSize - offset; |
| 689 FlushOnePage(i_cache, start, bytes_to_flush); |
| 690 start += bytes_to_flush; |
| 691 size -= bytes_to_flush; |
| 692 DCHECK_EQ(0, static_cast<int>(start & CachePage::kPageMask)); |
| 693 offset = 0; |
| 694 } |
| 695 if (size != 0) { |
| 696 FlushOnePage(i_cache, start, size); |
| 697 } |
| 698 } |
| 699 |
| 700 CachePage* Simulator::GetCachePage(v8::internal::HashMap* i_cache, void* page) { |
| 701 v8::internal::HashMap::Entry* entry = |
| 702 i_cache->LookupOrInsert(page, ICacheHash(page)); |
| 703 if (entry->value == NULL) { |
| 704 CachePage* new_page = new CachePage(); |
| 705 entry->value = new_page; |
| 706 } |
| 707 return reinterpret_cast<CachePage*>(entry->value); |
| 708 } |
| 709 |
| 710 // Flush from start up to and not including start + size. |
| 711 void Simulator::FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start, |
| 712 int size) { |
| 713 DCHECK(size <= CachePage::kPageSize); |
| 714 DCHECK(AllOnOnePage(start, size - 1)); |
| 715 DCHECK((start & CachePage::kLineMask) == 0); |
| 716 DCHECK((size & CachePage::kLineMask) == 0); |
| 717 void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask)); |
| 718 int offset = (start & CachePage::kPageMask); |
| 719 CachePage* cache_page = GetCachePage(i_cache, page); |
| 720 char* valid_bytemap = cache_page->ValidityByte(offset); |
| 721 memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift); |
| 722 } |
| 723 |
| 724 void Simulator::CheckICache(v8::internal::HashMap* i_cache, |
| 725 Instruction* instr) { |
| 726 intptr_t address = reinterpret_cast<intptr_t>(instr); |
| 727 void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask)); |
| 728 void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask)); |
| 729 int offset = (address & CachePage::kPageMask); |
| 730 CachePage* cache_page = GetCachePage(i_cache, page); |
| 731 char* cache_valid_byte = cache_page->ValidityByte(offset); |
| 732 bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID); |
| 733 char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask); |
| 734 if (cache_hit) { |
| 735 // Check that the data in memory matches the contents of the I-cache. |
| 736 CHECK_EQ(memcmp(reinterpret_cast<void*>(instr), |
| 737 cache_page->CachedData(offset), sizeof(FourByteInstr)), |
| 738 0); |
| 739 } else { |
| 740 // Cache miss. Load memory into the cache. |
| 741 memcpy(cached_line, line, CachePage::kLineLength); |
| 742 *cache_valid_byte = CachePage::LINE_VALID; |
| 743 } |
| 744 } |
| 745 |
| 746 void Simulator::Initialize(Isolate* isolate) { |
| 747 if (isolate->simulator_initialized()) return; |
| 748 isolate->set_simulator_initialized(true); |
| 749 ::v8::internal::ExternalReference::set_redirector(isolate, |
| 750 &RedirectExternalReference); |
| 751 } |
| 752 |
| 753 Simulator::Simulator(Isolate* isolate) : isolate_(isolate) { |
| 754 i_cache_ = isolate_->simulator_i_cache(); |
| 755 if (i_cache_ == NULL) { |
| 756 i_cache_ = new v8::internal::HashMap(&ICacheMatch); |
| 757 isolate_->set_simulator_i_cache(i_cache_); |
| 758 } |
| 759 Initialize(isolate); |
| 760 // Set up simulator support first. Some of this information is needed to |
| 761 // setup the architecture state. |
| 762 #if V8_TARGET_ARCH_S390X |
| 763 size_t stack_size = FLAG_sim_stack_size * KB; |
| 764 #else |
| 765 size_t stack_size = MB; // allocate 1MB for stack |
| 766 #endif |
| 767 stack_size += 2 * stack_protection_size_; |
| 768 stack_ = reinterpret_cast<char*>(malloc(stack_size)); |
| 769 pc_modified_ = false; |
| 770 icount_ = 0; |
| 771 break_pc_ = NULL; |
| 772 break_instr_ = 0; |
| 773 |
| 774 // make sure our register type can hold exactly 4/8 bytes |
| 775 #ifdef V8_TARGET_ARCH_S390X |
| 776 DCHECK(sizeof(intptr_t) == 8); |
| 777 #else |
| 778 DCHECK(sizeof(intptr_t) == 4); |
| 779 #endif |
| 780 // Set up architecture state. |
| 781 // All registers are initialized to zero to start with. |
| 782 for (int i = 0; i < kNumGPRs; i++) { |
| 783 registers_[i] = 0; |
| 784 } |
| 785 condition_reg_ = 0; |
| 786 special_reg_pc_ = 0; |
| 787 |
| 788 // Initializing FP registers. |
| 789 for (int i = 0; i < kNumFPRs; i++) { |
| 790 fp_registers_[i] = 0.0; |
| 791 } |
| 792 |
| 793 // The sp is initialized to point to the bottom (high address) of the |
| 794 // allocated stack area. To be safe in potential stack underflows we leave |
| 795 // some buffer below. |
| 796 registers_[sp] = |
| 797 reinterpret_cast<intptr_t>(stack_) + stack_size - stack_protection_size_; |
| 798 InitializeCoverage(); |
| 799 |
| 800 last_debugger_input_ = NULL; |
| 801 } |
| 802 |
| 803 Simulator::~Simulator() { free(stack_); } |
| 804 |
| 805 // When the generated code calls an external reference we need to catch that in |
| 806 // the simulator. The external reference will be a function compiled for the |
| 807 // host architecture. We need to call that function instead of trying to |
| 808 // execute it with the simulator. We do that by redirecting the external |
| 809 // reference to a svc (Supervisor Call) instruction that is handled by |
| 810 // the simulator. We write the original destination of the jump just at a known |
| 811 // offset from the svc instruction so the simulator knows what to call. |
| 812 class Redirection { |
| 813 public: |
| 814 Redirection(Isolate* isolate, void* external_function, |
| 815 ExternalReference::Type type) |
| 816 : external_function_(external_function), |
| 817 // we use TRAP4 here (0xBF22) |
| 818 #if V8_TARGET_LITTLE_ENDIAN |
| 819 swi_instruction_(0x1000FFB2), |
| 820 #else |
| 821 swi_instruction_(0xB2FF0000 | kCallRtRedirected), |
| 822 #endif |
| 823 type_(type), |
| 824 next_(NULL) { |
| 825 next_ = isolate->simulator_redirection(); |
| 826 Simulator::current(isolate)->FlushICache( |
| 827 isolate->simulator_i_cache(), |
| 828 reinterpret_cast<void*>(&swi_instruction_), sizeof(FourByteInstr)); |
| 829 isolate->set_simulator_redirection(this); |
| 830 if (ABI_USES_FUNCTION_DESCRIPTORS) { |
| 831 function_descriptor_[0] = reinterpret_cast<intptr_t>(&swi_instruction_); |
| 832 function_descriptor_[1] = 0; |
| 833 function_descriptor_[2] = 0; |
| 834 } |
| 835 } |
| 836 |
| 837 void* address() { |
| 838 if (ABI_USES_FUNCTION_DESCRIPTORS) { |
| 839 return reinterpret_cast<void*>(function_descriptor_); |
| 840 } else { |
| 841 return reinterpret_cast<void*>(&swi_instruction_); |
| 842 } |
| 843 } |
| 844 |
| 845 void* external_function() { return external_function_; } |
| 846 ExternalReference::Type type() { return type_; } |
| 847 |
| 848 static Redirection* Get(Isolate* isolate, void* external_function, |
| 849 ExternalReference::Type type) { |
| 850 Redirection* current = isolate->simulator_redirection(); |
| 851 for (; current != NULL; current = current->next_) { |
| 852 if (current->external_function_ == external_function) { |
| 853 DCHECK_EQ(current->type(), type); |
| 854 return current; |
| 855 } |
| 856 } |
| 857 return new Redirection(isolate, external_function, type); |
| 858 } |
| 859 |
| 860 static Redirection* FromSwiInstruction(Instruction* swi_instruction) { |
| 861 char* addr_of_swi = reinterpret_cast<char*>(swi_instruction); |
| 862 char* addr_of_redirection = |
| 863 addr_of_swi - offsetof(Redirection, swi_instruction_); |
| 864 return reinterpret_cast<Redirection*>(addr_of_redirection); |
| 865 } |
| 866 |
| 867 static Redirection* FromAddress(void* address) { |
| 868 int delta = ABI_USES_FUNCTION_DESCRIPTORS |
| 869 ? offsetof(Redirection, function_descriptor_) |
| 870 : offsetof(Redirection, swi_instruction_); |
| 871 char* addr_of_redirection = reinterpret_cast<char*>(address) - delta; |
| 872 return reinterpret_cast<Redirection*>(addr_of_redirection); |
| 873 } |
| 874 |
| 875 static void* ReverseRedirection(intptr_t reg) { |
| 876 Redirection* redirection = FromAddress(reinterpret_cast<void*>(reg)); |
| 877 return redirection->external_function(); |
| 878 } |
| 879 |
| 880 static void DeleteChain(Redirection* redirection) { |
| 881 while (redirection != nullptr) { |
| 882 Redirection* next = redirection->next_; |
| 883 delete redirection; |
| 884 redirection = next; |
| 885 } |
| 886 } |
| 887 |
| 888 private: |
| 889 void* external_function_; |
| 890 uint32_t swi_instruction_; |
| 891 ExternalReference::Type type_; |
| 892 Redirection* next_; |
| 893 intptr_t function_descriptor_[3]; |
| 894 }; |
| 895 |
| 896 // static |
| 897 void Simulator::TearDown(HashMap* i_cache, Redirection* first) { |
| 898 Redirection::DeleteChain(first); |
| 899 if (i_cache != nullptr) { |
| 900 for (HashMap::Entry* entry = i_cache->Start(); entry != nullptr; |
| 901 entry = i_cache->Next(entry)) { |
| 902 delete static_cast<CachePage*>(entry->value); |
| 903 } |
| 904 delete i_cache; |
| 905 } |
| 906 } |
| 907 |
| 908 void* Simulator::RedirectExternalReference(Isolate* isolate, |
| 909 void* external_function, |
| 910 ExternalReference::Type type) { |
| 911 Redirection* redirection = Redirection::Get(isolate, external_function, type); |
| 912 return redirection->address(); |
| 913 } |
| 914 |
| 915 // Get the active Simulator for the current thread. |
| 916 Simulator* Simulator::current(Isolate* isolate) { |
| 917 v8::internal::Isolate::PerIsolateThreadData* isolate_data = |
| 918 isolate->FindOrAllocatePerThreadDataForThisThread(); |
| 919 DCHECK(isolate_data != NULL); |
| 920 |
| 921 Simulator* sim = isolate_data->simulator(); |
| 922 if (sim == NULL) { |
| 923 // TODO(146): delete the simulator object when a thread/isolate goes away. |
| 924 sim = new Simulator(isolate); |
| 925 isolate_data->set_simulator(sim); |
| 926 } |
| 927 return sim; |
| 928 } |
| 929 |
| 930 // Sets the register in the architecture state. |
| 931 void Simulator::set_register(int reg, uint64_t value) { |
| 932 DCHECK((reg >= 0) && (reg < kNumGPRs)); |
| 933 registers_[reg] = value; |
| 934 } |
| 935 |
| 936 // Get the register from the architecture state. |
| 937 uint64_t Simulator::get_register(int reg) const { |
| 938 DCHECK((reg >= 0) && (reg < kNumGPRs)); |
| 939 // Stupid code added to avoid bug in GCC. |
| 940 // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949 |
| 941 if (reg >= kNumGPRs) return 0; |
| 942 // End stupid code. |
| 943 return registers_[reg]; |
| 944 } |
| 945 |
| 946 template <typename T> |
| 947 T Simulator::get_low_register(int reg) const { |
| 948 DCHECK((reg >= 0) && (reg < kNumGPRs)); |
| 949 // Stupid code added to avoid bug in GCC. |
| 950 // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949 |
| 951 if (reg >= kNumGPRs) return 0; |
| 952 // End stupid code. |
| 953 return static_cast<T>(registers_[reg] & 0xFFFFFFFF); |
| 954 } |
| 955 |
| 956 template <typename T> |
| 957 T Simulator::get_high_register(int reg) const { |
| 958 DCHECK((reg >= 0) && (reg < kNumGPRs)); |
| 959 // Stupid code added to avoid bug in GCC. |
| 960 // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949 |
| 961 if (reg >= kNumGPRs) return 0; |
| 962 // End stupid code. |
| 963 return static_cast<T>(registers_[reg] >> 32); |
| 964 } |
| 965 |
| 966 void Simulator::set_low_register(int reg, uint32_t value) { |
| 967 uint64_t shifted_val = static_cast<uint64_t>(value); |
| 968 uint64_t orig_val = static_cast<uint64_t>(registers_[reg]); |
| 969 uint64_t result = (orig_val >> 32 << 32) | shifted_val; |
| 970 registers_[reg] = result; |
| 971 } |
| 972 |
| 973 void Simulator::set_high_register(int reg, uint32_t value) { |
| 974 uint64_t shifted_val = static_cast<uint64_t>(value) << 32; |
| 975 uint64_t orig_val = static_cast<uint64_t>(registers_[reg]); |
| 976 uint64_t result = (orig_val & 0xFFFFFFFF) | shifted_val; |
| 977 registers_[reg] = result; |
| 978 } |
| 979 |
| 980 double Simulator::get_double_from_register_pair(int reg) { |
| 981 DCHECK((reg >= 0) && (reg < kNumGPRs) && ((reg % 2) == 0)); |
| 982 |
| 983 double dm_val = 0.0; |
| 984 #if 0 && !V8_TARGET_ARCH_S390X // doesn't make sense in 64bit mode |
| 985 // Read the bits from the unsigned integer register_[] array |
| 986 // into the double precision floating point value and return it. |
| 987 char buffer[sizeof(fp_registers_[0])]; |
| 988 memcpy(buffer, ®isters_[reg], 2 * sizeof(registers_[0])); |
| 989 memcpy(&dm_val, buffer, 2 * sizeof(registers_[0])); |
| 990 #endif |
| 991 return (dm_val); |
| 992 } |
| 993 |
| 994 // Raw access to the PC register. |
| 995 void Simulator::set_pc(intptr_t value) { |
| 996 pc_modified_ = true; |
| 997 special_reg_pc_ = value; |
| 998 } |
| 999 |
| 1000 bool Simulator::has_bad_pc() const { |
| 1001 return ((special_reg_pc_ == bad_lr) || (special_reg_pc_ == end_sim_pc)); |
| 1002 } |
| 1003 |
| 1004 // Raw access to the PC register without the special adjustment when reading. |
| 1005 intptr_t Simulator::get_pc() const { return special_reg_pc_; } |
| 1006 |
| 1007 // Runtime FP routines take: |
| 1008 // - two double arguments |
| 1009 // - one double argument and zero or one integer arguments. |
| 1010 // All are consructed here from d1, d2 and r2. |
| 1011 void Simulator::GetFpArgs(double* x, double* y, intptr_t* z) { |
| 1012 *x = get_double_from_d_register(0); |
| 1013 *y = get_double_from_d_register(2); |
| 1014 *z = get_register(2); |
| 1015 } |
| 1016 |
| 1017 // The return value is in d0. |
| 1018 void Simulator::SetFpResult(const double& result) { |
| 1019 set_d_register_from_double(0, result); |
| 1020 } |
| 1021 |
| 1022 void Simulator::TrashCallerSaveRegisters() { |
| 1023 // We don't trash the registers with the return value. |
| 1024 #if 0 // A good idea to trash volatile registers, needs to be done |
| 1025 registers_[2] = 0x50Bad4U; |
| 1026 registers_[3] = 0x50Bad4U; |
| 1027 registers_[12] = 0x50Bad4U; |
| 1028 #endif |
| 1029 } |
| 1030 |
| 1031 uint32_t Simulator::ReadWU(intptr_t addr, Instruction* instr) { |
| 1032 uint32_t* ptr = reinterpret_cast<uint32_t*>(addr); |
| 1033 return *ptr; |
| 1034 } |
| 1035 |
| 1036 int32_t Simulator::ReadW(intptr_t addr, Instruction* instr) { |
| 1037 int32_t* ptr = reinterpret_cast<int32_t*>(addr); |
| 1038 return *ptr; |
| 1039 } |
| 1040 |
| 1041 void Simulator::WriteW(intptr_t addr, uint32_t value, Instruction* instr) { |
| 1042 uint32_t* ptr = reinterpret_cast<uint32_t*>(addr); |
| 1043 *ptr = value; |
| 1044 return; |
| 1045 } |
| 1046 |
| 1047 void Simulator::WriteW(intptr_t addr, int32_t value, Instruction* instr) { |
| 1048 int32_t* ptr = reinterpret_cast<int32_t*>(addr); |
| 1049 *ptr = value; |
| 1050 return; |
| 1051 } |
| 1052 |
| 1053 uint16_t Simulator::ReadHU(intptr_t addr, Instruction* instr) { |
| 1054 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); |
| 1055 return *ptr; |
| 1056 } |
| 1057 |
| 1058 int16_t Simulator::ReadH(intptr_t addr, Instruction* instr) { |
| 1059 int16_t* ptr = reinterpret_cast<int16_t*>(addr); |
| 1060 return *ptr; |
| 1061 } |
| 1062 |
| 1063 void Simulator::WriteH(intptr_t addr, uint16_t value, Instruction* instr) { |
| 1064 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); |
| 1065 *ptr = value; |
| 1066 return; |
| 1067 } |
| 1068 |
| 1069 void Simulator::WriteH(intptr_t addr, int16_t value, Instruction* instr) { |
| 1070 int16_t* ptr = reinterpret_cast<int16_t*>(addr); |
| 1071 *ptr = value; |
| 1072 return; |
| 1073 } |
| 1074 |
| 1075 uint8_t Simulator::ReadBU(intptr_t addr) { |
| 1076 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); |
| 1077 return *ptr; |
| 1078 } |
| 1079 |
| 1080 int8_t Simulator::ReadB(intptr_t addr) { |
| 1081 int8_t* ptr = reinterpret_cast<int8_t*>(addr); |
| 1082 return *ptr; |
| 1083 } |
| 1084 |
| 1085 void Simulator::WriteB(intptr_t addr, uint8_t value) { |
| 1086 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); |
| 1087 *ptr = value; |
| 1088 } |
| 1089 |
| 1090 void Simulator::WriteB(intptr_t addr, int8_t value) { |
| 1091 int8_t* ptr = reinterpret_cast<int8_t*>(addr); |
| 1092 *ptr = value; |
| 1093 } |
| 1094 |
| 1095 int64_t Simulator::ReadDW(intptr_t addr) { |
| 1096 int64_t* ptr = reinterpret_cast<int64_t*>(addr); |
| 1097 return *ptr; |
| 1098 } |
| 1099 |
| 1100 void Simulator::WriteDW(intptr_t addr, int64_t value) { |
| 1101 int64_t* ptr = reinterpret_cast<int64_t*>(addr); |
| 1102 *ptr = value; |
| 1103 return; |
| 1104 } |
| 1105 |
| 1106 /** |
| 1107 * Reads a double value from memory at given address. |
| 1108 */ |
| 1109 double Simulator::ReadDouble(intptr_t addr) { |
| 1110 double* ptr = reinterpret_cast<double*>(addr); |
| 1111 return *ptr; |
| 1112 } |
| 1113 |
| 1114 // Returns the limit of the stack area to enable checking for stack overflows. |
| 1115 uintptr_t Simulator::StackLimit(uintptr_t c_limit) const { |
| 1116 // The simulator uses a separate JS stack. If we have exhausted the C stack, |
| 1117 // we also drop down the JS limit to reflect the exhaustion on the JS stack. |
| 1118 if (GetCurrentStackPosition() < c_limit) { |
| 1119 return reinterpret_cast<uintptr_t>(get_sp()); |
| 1120 } |
| 1121 |
| 1122 // Otherwise the limit is the JS stack. Leave a safety margin to prevent |
| 1123 // overrunning the stack when pushing values. |
| 1124 return reinterpret_cast<uintptr_t>(stack_) + stack_protection_size_; |
| 1125 } |
| 1126 |
| 1127 // Unsupported instructions use Format to print an error and stop execution. |
| 1128 void Simulator::Format(Instruction* instr, const char* format) { |
| 1129 PrintF("Simulator found unsupported instruction:\n 0x%08" V8PRIxPTR ": %s\n", |
| 1130 reinterpret_cast<intptr_t>(instr), format); |
| 1131 UNIMPLEMENTED(); |
| 1132 } |
| 1133 |
| 1134 // Calculate C flag value for additions. |
| 1135 bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) { |
| 1136 uint32_t uleft = static_cast<uint32_t>(left); |
| 1137 uint32_t uright = static_cast<uint32_t>(right); |
| 1138 uint32_t urest = 0xffffffffU - uleft; |
| 1139 |
| 1140 return (uright > urest) || |
| 1141 (carry && (((uright + 1) > urest) || (uright > (urest - 1)))); |
| 1142 } |
| 1143 |
| 1144 // Calculate C flag value for subtractions. |
| 1145 bool Simulator::BorrowFrom(int32_t left, int32_t right) { |
| 1146 uint32_t uleft = static_cast<uint32_t>(left); |
| 1147 uint32_t uright = static_cast<uint32_t>(right); |
| 1148 |
| 1149 return (uright > uleft); |
| 1150 } |
| 1151 |
| 1152 // Calculate V flag value for additions and subtractions. |
| 1153 bool Simulator::OverflowFrom(int32_t alu_out, int32_t left, int32_t right, |
| 1154 bool addition) { |
| 1155 bool overflow; |
| 1156 if (addition) { |
| 1157 // operands have the same sign |
| 1158 overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0)) |
| 1159 // and operands and result have different sign |
| 1160 && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); |
| 1161 } else { |
| 1162 // operands have different signs |
| 1163 overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0)) |
| 1164 // and first operand and result have different signs |
| 1165 && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); |
| 1166 } |
| 1167 return overflow; |
| 1168 } |
| 1169 |
| 1170 #if V8_TARGET_ARCH_S390X |
| 1171 static void decodeObjectPair(ObjectPair* pair, intptr_t* x, intptr_t* y) { |
| 1172 *x = reinterpret_cast<intptr_t>(pair->x); |
| 1173 *y = reinterpret_cast<intptr_t>(pair->y); |
| 1174 } |
| 1175 #else |
| 1176 static void decodeObjectPair(ObjectPair* pair, intptr_t* x, intptr_t* y) { |
| 1177 #if V8_TARGET_BIG_ENDIAN |
| 1178 *x = static_cast<int32_t>(*pair >> 32); |
| 1179 *y = static_cast<int32_t>(*pair); |
| 1180 #else |
| 1181 *x = static_cast<int32_t>(*pair); |
| 1182 *y = static_cast<int32_t>(*pair >> 32); |
| 1183 #endif |
| 1184 } |
| 1185 #endif |
| 1186 |
| 1187 // Calls into the V8 runtime. |
| 1188 typedef intptr_t (*SimulatorRuntimeCall)(intptr_t arg0, intptr_t arg1, |
| 1189 intptr_t arg2, intptr_t arg3, |
| 1190 intptr_t arg4, intptr_t arg5); |
| 1191 typedef ObjectPair (*SimulatorRuntimePairCall)(intptr_t arg0, intptr_t arg1, |
| 1192 intptr_t arg2, intptr_t arg3, |
| 1193 intptr_t arg4, intptr_t arg5); |
| 1194 typedef ObjectTriple (*SimulatorRuntimeTripleCall)(intptr_t arg0, intptr_t arg1, |
| 1195 intptr_t arg2, intptr_t arg3, |
| 1196 intptr_t arg4, |
| 1197 intptr_t arg5); |
| 1198 |
| 1199 // These prototypes handle the four types of FP calls. |
| 1200 typedef int (*SimulatorRuntimeCompareCall)(double darg0, double darg1); |
| 1201 typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1); |
| 1202 typedef double (*SimulatorRuntimeFPCall)(double darg0); |
| 1203 typedef double (*SimulatorRuntimeFPIntCall)(double darg0, intptr_t arg0); |
| 1204 |
| 1205 // This signature supports direct call in to API function native callback |
| 1206 // (refer to InvocationCallback in v8.h). |
| 1207 typedef void (*SimulatorRuntimeDirectApiCall)(intptr_t arg0); |
| 1208 typedef void (*SimulatorRuntimeProfilingApiCall)(intptr_t arg0, void* arg1); |
| 1209 |
| 1210 // This signature supports direct call to accessor getter callback. |
| 1211 typedef void (*SimulatorRuntimeDirectGetterCall)(intptr_t arg0, intptr_t arg1); |
| 1212 typedef void (*SimulatorRuntimeProfilingGetterCall)(intptr_t arg0, |
| 1213 intptr_t arg1, void* arg2); |
| 1214 |
| 1215 // Software interrupt instructions are used by the simulator to call into the |
| 1216 // C-based V8 runtime. |
| 1217 void Simulator::SoftwareInterrupt(Instruction* instr) { |
| 1218 int svc = instr->SvcValue(); |
| 1219 switch (svc) { |
| 1220 case kCallRtRedirected: { |
| 1221 // Check if stack is aligned. Error if not aligned is reported below to |
| 1222 // include information on the function called. |
| 1223 bool stack_aligned = |
| 1224 (get_register(sp) & (::v8::internal::FLAG_sim_stack_alignment - 1)) == |
| 1225 0; |
| 1226 Redirection* redirection = Redirection::FromSwiInstruction(instr); |
| 1227 const int kArgCount = 6; |
| 1228 int arg0_regnum = 2; |
| 1229 intptr_t result_buffer = 0; |
| 1230 bool uses_result_buffer = |
| 1231 redirection->type() == ExternalReference::BUILTIN_CALL_TRIPLE || |
| 1232 (redirection->type() == ExternalReference::BUILTIN_CALL_PAIR && |
| 1233 !ABI_RETURNS_OBJECTPAIR_IN_REGS); |
| 1234 if (uses_result_buffer) { |
| 1235 result_buffer = get_register(r2); |
| 1236 arg0_regnum++; |
| 1237 } |
| 1238 intptr_t arg[kArgCount]; |
| 1239 for (int i = 0; i < kArgCount - 1; i++) { |
| 1240 arg[i] = get_register(arg0_regnum + i); |
| 1241 } |
| 1242 intptr_t* stack_pointer = reinterpret_cast<intptr_t*>(get_register(sp)); |
| 1243 arg[5] = stack_pointer[kCalleeRegisterSaveAreaSize / kPointerSize]; |
| 1244 bool fp_call = |
| 1245 (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) || |
| 1246 (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) || |
| 1247 (redirection->type() == ExternalReference::BUILTIN_FP_CALL) || |
| 1248 (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL); |
| 1249 |
| 1250 // Place the return address on the stack, making the call GC safe. |
| 1251 *reinterpret_cast<intptr_t*>(get_register(sp) + |
| 1252 kStackFrameRASlot * kPointerSize) = |
| 1253 get_register(r14); |
| 1254 |
| 1255 intptr_t external = |
| 1256 reinterpret_cast<intptr_t>(redirection->external_function()); |
| 1257 if (fp_call) { |
| 1258 double dval0, dval1; // one or two double parameters |
| 1259 intptr_t ival; // zero or one integer parameters |
| 1260 int iresult = 0; // integer return value |
| 1261 double dresult = 0; // double return value |
| 1262 GetFpArgs(&dval0, &dval1, &ival); |
| 1263 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
| 1264 SimulatorRuntimeCall generic_target = |
| 1265 reinterpret_cast<SimulatorRuntimeCall>(external); |
| 1266 switch (redirection->type()) { |
| 1267 case ExternalReference::BUILTIN_FP_FP_CALL: |
| 1268 case ExternalReference::BUILTIN_COMPARE_CALL: |
| 1269 PrintF("Call to host function at %p with args %f, %f", |
| 1270 FUNCTION_ADDR(generic_target), dval0, dval1); |
| 1271 break; |
| 1272 case ExternalReference::BUILTIN_FP_CALL: |
| 1273 PrintF("Call to host function at %p with arg %f", |
| 1274 FUNCTION_ADDR(generic_target), dval0); |
| 1275 break; |
| 1276 case ExternalReference::BUILTIN_FP_INT_CALL: |
| 1277 PrintF("Call to host function at %p with args %f, %" V8PRIdPTR, |
| 1278 FUNCTION_ADDR(generic_target), dval0, ival); |
| 1279 break; |
| 1280 default: |
| 1281 UNREACHABLE(); |
| 1282 break; |
| 1283 } |
| 1284 if (!stack_aligned) { |
| 1285 PrintF(" with unaligned stack %08" V8PRIxPTR "\n", |
| 1286 static_cast<intptr_t>(get_register(sp))); |
| 1287 } |
| 1288 PrintF("\n"); |
| 1289 } |
| 1290 CHECK(stack_aligned); |
| 1291 switch (redirection->type()) { |
| 1292 case ExternalReference::BUILTIN_COMPARE_CALL: { |
| 1293 SimulatorRuntimeCompareCall target = |
| 1294 reinterpret_cast<SimulatorRuntimeCompareCall>(external); |
| 1295 iresult = target(dval0, dval1); |
| 1296 set_register(r2, iresult); |
| 1297 break; |
| 1298 } |
| 1299 case ExternalReference::BUILTIN_FP_FP_CALL: { |
| 1300 SimulatorRuntimeFPFPCall target = |
| 1301 reinterpret_cast<SimulatorRuntimeFPFPCall>(external); |
| 1302 dresult = target(dval0, dval1); |
| 1303 SetFpResult(dresult); |
| 1304 break; |
| 1305 } |
| 1306 case ExternalReference::BUILTIN_FP_CALL: { |
| 1307 SimulatorRuntimeFPCall target = |
| 1308 reinterpret_cast<SimulatorRuntimeFPCall>(external); |
| 1309 dresult = target(dval0); |
| 1310 SetFpResult(dresult); |
| 1311 break; |
| 1312 } |
| 1313 case ExternalReference::BUILTIN_FP_INT_CALL: { |
| 1314 SimulatorRuntimeFPIntCall target = |
| 1315 reinterpret_cast<SimulatorRuntimeFPIntCall>(external); |
| 1316 dresult = target(dval0, ival); |
| 1317 SetFpResult(dresult); |
| 1318 break; |
| 1319 } |
| 1320 default: |
| 1321 UNREACHABLE(); |
| 1322 break; |
| 1323 } |
| 1324 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
| 1325 switch (redirection->type()) { |
| 1326 case ExternalReference::BUILTIN_COMPARE_CALL: |
| 1327 PrintF("Returned %08x\n", iresult); |
| 1328 break; |
| 1329 case ExternalReference::BUILTIN_FP_FP_CALL: |
| 1330 case ExternalReference::BUILTIN_FP_CALL: |
| 1331 case ExternalReference::BUILTIN_FP_INT_CALL: |
| 1332 PrintF("Returned %f\n", dresult); |
| 1333 break; |
| 1334 default: |
| 1335 UNREACHABLE(); |
| 1336 break; |
| 1337 } |
| 1338 } |
| 1339 } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) { |
| 1340 // See callers of MacroAssembler::CallApiFunctionAndReturn for |
| 1341 // explanation of register usage. |
| 1342 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
| 1343 PrintF("Call to host function at %p args %08" V8PRIxPTR, |
| 1344 reinterpret_cast<void*>(external), arg[0]); |
| 1345 if (!stack_aligned) { |
| 1346 PrintF(" with unaligned stack %08" V8PRIxPTR "\n", |
| 1347 static_cast<intptr_t>(get_register(sp))); |
| 1348 } |
| 1349 PrintF("\n"); |
| 1350 } |
| 1351 CHECK(stack_aligned); |
| 1352 SimulatorRuntimeDirectApiCall target = |
| 1353 reinterpret_cast<SimulatorRuntimeDirectApiCall>(external); |
| 1354 target(arg[0]); |
| 1355 } else if (redirection->type() == ExternalReference::PROFILING_API_CALL) { |
| 1356 // See callers of MacroAssembler::CallApiFunctionAndReturn for |
| 1357 // explanation of register usage. |
| 1358 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
| 1359 PrintF("Call to host function at %p args %08" V8PRIxPTR |
| 1360 " %08" V8PRIxPTR, |
| 1361 reinterpret_cast<void*>(external), arg[0], arg[1]); |
| 1362 if (!stack_aligned) { |
| 1363 PrintF(" with unaligned stack %08" V8PRIxPTR "\n", |
| 1364 static_cast<intptr_t>(get_register(sp))); |
| 1365 } |
| 1366 PrintF("\n"); |
| 1367 } |
| 1368 CHECK(stack_aligned); |
| 1369 SimulatorRuntimeProfilingApiCall target = |
| 1370 reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external); |
| 1371 target(arg[0], Redirection::ReverseRedirection(arg[1])); |
| 1372 } else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) { |
| 1373 // See callers of MacroAssembler::CallApiFunctionAndReturn for |
| 1374 // explanation of register usage. |
| 1375 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
| 1376 PrintF("Call to host function at %p args %08" V8PRIxPTR |
| 1377 " %08" V8PRIxPTR, |
| 1378 reinterpret_cast<void*>(external), arg[0], arg[1]); |
| 1379 if (!stack_aligned) { |
| 1380 PrintF(" with unaligned stack %08" V8PRIxPTR "\n", |
| 1381 static_cast<intptr_t>(get_register(sp))); |
| 1382 } |
| 1383 PrintF("\n"); |
| 1384 } |
| 1385 CHECK(stack_aligned); |
| 1386 SimulatorRuntimeDirectGetterCall target = |
| 1387 reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external); |
| 1388 if (!ABI_PASSES_HANDLES_IN_REGS) { |
| 1389 arg[0] = *(reinterpret_cast<intptr_t*>(arg[0])); |
| 1390 } |
| 1391 target(arg[0], arg[1]); |
| 1392 } else if (redirection->type() == |
| 1393 ExternalReference::PROFILING_GETTER_CALL) { |
| 1394 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
| 1395 PrintF("Call to host function at %p args %08" V8PRIxPTR |
| 1396 " %08" V8PRIxPTR " %08" V8PRIxPTR, |
| 1397 reinterpret_cast<void*>(external), arg[0], arg[1], arg[2]); |
| 1398 if (!stack_aligned) { |
| 1399 PrintF(" with unaligned stack %08" V8PRIxPTR "\n", |
| 1400 static_cast<intptr_t>(get_register(sp))); |
| 1401 } |
| 1402 PrintF("\n"); |
| 1403 } |
| 1404 CHECK(stack_aligned); |
| 1405 SimulatorRuntimeProfilingGetterCall target = |
| 1406 reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external); |
| 1407 if (!ABI_PASSES_HANDLES_IN_REGS) { |
| 1408 arg[0] = *(reinterpret_cast<intptr_t*>(arg[0])); |
| 1409 } |
| 1410 target(arg[0], arg[1], Redirection::ReverseRedirection(arg[2])); |
| 1411 } else { |
| 1412 // builtin call. |
| 1413 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
| 1414 SimulatorRuntimeCall target = |
| 1415 reinterpret_cast<SimulatorRuntimeCall>(external); |
| 1416 PrintF( |
| 1417 "Call to host function at %p,\n" |
| 1418 "\t\t\t\targs %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR |
| 1419 ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR, |
| 1420 FUNCTION_ADDR(target), arg[0], arg[1], arg[2], arg[3], arg[4], |
| 1421 arg[5]); |
| 1422 if (!stack_aligned) { |
| 1423 PrintF(" with unaligned stack %08" V8PRIxPTR "\n", |
| 1424 static_cast<intptr_t>(get_register(sp))); |
| 1425 } |
| 1426 PrintF("\n"); |
| 1427 } |
| 1428 CHECK(stack_aligned); |
| 1429 if (redirection->type() == ExternalReference::BUILTIN_CALL_TRIPLE) { |
| 1430 SimulatorRuntimeTripleCall target = |
| 1431 reinterpret_cast<SimulatorRuntimeTripleCall>(external); |
| 1432 ObjectTriple result = |
| 1433 target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]); |
| 1434 if (::v8::internal::FLAG_trace_sim) { |
| 1435 PrintF("Returned {%08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR |
| 1436 "}\n", |
| 1437 reinterpret_cast<intptr_t>(result.x), |
| 1438 reinterpret_cast<intptr_t>(result.y), |
| 1439 reinterpret_cast<intptr_t>(result.z)); |
| 1440 } |
| 1441 memcpy(reinterpret_cast<void*>(result_buffer), &result, |
| 1442 sizeof(ObjectTriple)); |
| 1443 set_register(r2, result_buffer); |
| 1444 } else { |
| 1445 if (redirection->type() == ExternalReference::BUILTIN_CALL_PAIR) { |
| 1446 SimulatorRuntimePairCall target = |
| 1447 reinterpret_cast<SimulatorRuntimePairCall>(external); |
| 1448 ObjectPair result = |
| 1449 target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]); |
| 1450 intptr_t x; |
| 1451 intptr_t y; |
| 1452 decodeObjectPair(&result, &x, &y); |
| 1453 if (::v8::internal::FLAG_trace_sim) { |
| 1454 PrintF("Returned {%08" V8PRIxPTR ", %08" V8PRIxPTR "}\n", x, y); |
| 1455 } |
| 1456 if (ABI_RETURNS_OBJECTPAIR_IN_REGS) { |
| 1457 set_register(r2, x); |
| 1458 set_register(r3, y); |
| 1459 } else { |
| 1460 memcpy(reinterpret_cast<void*>(result_buffer), &result, |
| 1461 sizeof(ObjectPair)); |
| 1462 set_register(r2, result_buffer); |
| 1463 } |
| 1464 } else { |
| 1465 DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL); |
| 1466 SimulatorRuntimeCall target = |
| 1467 reinterpret_cast<SimulatorRuntimeCall>(external); |
| 1468 intptr_t result = |
| 1469 target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]); |
| 1470 if (::v8::internal::FLAG_trace_sim) { |
| 1471 PrintF("Returned %08" V8PRIxPTR "\n", result); |
| 1472 } |
| 1473 set_register(r2, result); |
| 1474 } |
| 1475 } |
| 1476 // #if !V8_TARGET_ARCH_S390X |
| 1477 // DCHECK(redirection->type() == |
| 1478 // ExternalReference::BUILTIN_CALL); |
| 1479 // SimulatorRuntimeCall target = |
| 1480 // reinterpret_cast<SimulatorRuntimeCall>(external); |
| 1481 // int64_t result = target(arg[0], arg[1], arg[2], arg[3], |
| 1482 // arg[4], |
| 1483 // arg[5]); |
| 1484 // int32_t lo_res = static_cast<int32_t>(result); |
| 1485 // int32_t hi_res = static_cast<int32_t>(result >> 32); |
| 1486 // #if !V8_TARGET_LITTLE_ENDIAN |
| 1487 // if (::v8::internal::FLAG_trace_sim) { |
| 1488 // PrintF("Returned %08x\n", hi_res); |
| 1489 // } |
| 1490 // set_register(r2, hi_res); |
| 1491 // set_register(r3, lo_res); |
| 1492 // #else |
| 1493 // if (::v8::internal::FLAG_trace_sim) { |
| 1494 // PrintF("Returned %08x\n", lo_res); |
| 1495 // } |
| 1496 // set_register(r2, lo_res); |
| 1497 // set_register(r3, hi_res); |
| 1498 // #endif |
| 1499 // #else |
| 1500 // if (redirection->type() == ExternalReference::BUILTIN_CALL) { |
| 1501 // SimulatorRuntimeCall target = |
| 1502 // reinterpret_cast<SimulatorRuntimeCall>(external); |
| 1503 // intptr_t result = target(arg[0], arg[1], arg[2], arg[3], |
| 1504 // arg[4], |
| 1505 // arg[5]); |
| 1506 // if (::v8::internal::FLAG_trace_sim) { |
| 1507 // PrintF("Returned %08" V8PRIxPTR "\n", result); |
| 1508 // } |
| 1509 // set_register(r2, result); |
| 1510 // } else { |
| 1511 // DCHECK(redirection->type() == |
| 1512 // ExternalReference::BUILTIN_CALL_PAIR); |
| 1513 // SimulatorRuntimePairCall target = |
| 1514 // reinterpret_cast<SimulatorRuntimePairCall>(external); |
| 1515 // ObjectPair result = target(arg[0], arg[1], arg[2], arg[3], |
| 1516 // arg[4], arg[5]); |
| 1517 // if (::v8::internal::FLAG_trace_sim) { |
| 1518 // PrintF("Returned %08" V8PRIxPTR ", %08" V8PRIxPTR "\n", |
| 1519 // result.x, result.y); |
| 1520 // } |
| 1521 // #if ABI_RETURNS_OBJECTPAIR_IN_REGS |
| 1522 // set_register(r2, result.x); |
| 1523 // set_register(r3, result.y); |
| 1524 // #else |
| 1525 // memcpy(reinterpret_cast<void *>(result_buffer), &result, |
| 1526 // sizeof(ObjectPair)); |
| 1527 // #endif |
| 1528 // } |
| 1529 // #endif |
| 1530 } |
| 1531 int64_t saved_lr = *reinterpret_cast<intptr_t*>( |
| 1532 get_register(sp) + kStackFrameRASlot * kPointerSize); |
| 1533 #if (!V8_TARGET_ARCH_S390X && V8_HOST_ARCH_S390) |
| 1534 // On zLinux-31, the saved_lr might be tagged with a high bit of 1. |
| 1535 // Cleanse it before proceeding with simulation. |
| 1536 saved_lr &= 0x7FFFFFFF; |
| 1537 #endif |
| 1538 set_pc(saved_lr); |
| 1539 break; |
| 1540 } |
| 1541 case kBreakpoint: { |
| 1542 S390Debugger dbg(this); |
| 1543 dbg.Debug(); |
| 1544 break; |
| 1545 } |
| 1546 // stop uses all codes greater than 1 << 23. |
| 1547 default: { |
| 1548 if (svc >= (1 << 23)) { |
| 1549 uint32_t code = svc & kStopCodeMask; |
| 1550 if (isWatchedStop(code)) { |
| 1551 IncreaseStopCounter(code); |
| 1552 } |
| 1553 // Stop if it is enabled, otherwise go on jumping over the stop |
| 1554 // and the message address. |
| 1555 if (isEnabledStop(code)) { |
| 1556 S390Debugger dbg(this); |
| 1557 dbg.Stop(instr); |
| 1558 } else { |
| 1559 set_pc(get_pc() + sizeof(FourByteInstr) + kPointerSize); |
| 1560 } |
| 1561 } else { |
| 1562 // This is not a valid svc code. |
| 1563 UNREACHABLE(); |
| 1564 break; |
| 1565 } |
| 1566 } |
| 1567 } |
| 1568 } |
| 1569 |
| 1570 // Stop helper functions. |
| 1571 bool Simulator::isStopInstruction(Instruction* instr) { |
| 1572 return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode); |
| 1573 } |
| 1574 |
| 1575 bool Simulator::isWatchedStop(uint32_t code) { |
| 1576 DCHECK(code <= kMaxStopCode); |
| 1577 return code < kNumOfWatchedStops; |
| 1578 } |
| 1579 |
| 1580 bool Simulator::isEnabledStop(uint32_t code) { |
| 1581 DCHECK(code <= kMaxStopCode); |
| 1582 // Unwatched stops are always enabled. |
| 1583 return !isWatchedStop(code) || |
| 1584 !(watched_stops_[code].count & kStopDisabledBit); |
| 1585 } |
| 1586 |
| 1587 void Simulator::EnableStop(uint32_t code) { |
| 1588 DCHECK(isWatchedStop(code)); |
| 1589 if (!isEnabledStop(code)) { |
| 1590 watched_stops_[code].count &= ~kStopDisabledBit; |
| 1591 } |
| 1592 } |
| 1593 |
| 1594 void Simulator::DisableStop(uint32_t code) { |
| 1595 DCHECK(isWatchedStop(code)); |
| 1596 if (isEnabledStop(code)) { |
| 1597 watched_stops_[code].count |= kStopDisabledBit; |
| 1598 } |
| 1599 } |
| 1600 |
| 1601 void Simulator::IncreaseStopCounter(uint32_t code) { |
| 1602 DCHECK(code <= kMaxStopCode); |
| 1603 DCHECK(isWatchedStop(code)); |
| 1604 if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) { |
| 1605 PrintF( |
| 1606 "Stop counter for code %i has overflowed.\n" |
| 1607 "Enabling this code and reseting the counter to 0.\n", |
| 1608 code); |
| 1609 watched_stops_[code].count = 0; |
| 1610 EnableStop(code); |
| 1611 } else { |
| 1612 watched_stops_[code].count++; |
| 1613 } |
| 1614 } |
| 1615 |
| 1616 // Print a stop status. |
| 1617 void Simulator::PrintStopInfo(uint32_t code) { |
| 1618 DCHECK(code <= kMaxStopCode); |
| 1619 if (!isWatchedStop(code)) { |
| 1620 PrintF("Stop not watched."); |
| 1621 } else { |
| 1622 const char* state = isEnabledStop(code) ? "Enabled" : "Disabled"; |
| 1623 int32_t count = watched_stops_[code].count & ~kStopDisabledBit; |
| 1624 // Don't print the state of unused breakpoints. |
| 1625 if (count != 0) { |
| 1626 if (watched_stops_[code].desc) { |
| 1627 PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code, |
| 1628 state, count, watched_stops_[code].desc); |
| 1629 } else { |
| 1630 PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state, |
| 1631 count); |
| 1632 } |
| 1633 } |
| 1634 } |
| 1635 } |
| 1636 |
| 1637 // Method for checking overflow on signed addition: |
| 1638 // Test src1 and src2 have opposite sign, |
| 1639 // (1) No overflow if they have opposite sign |
| 1640 // (2) Test the result and one of the operands have opposite sign |
| 1641 // (a) No overflow if they don't have opposite sign |
| 1642 // (b) Overflow if opposite |
| 1643 #define CheckOverflowForIntAdd(src1, src2) \ |
| 1644 (((src1) ^ (src2)) < 0 ? false : ((((src1) + (src2)) ^ (src1)) < 0)) |
| 1645 |
| 1646 // Method for checking overflow on signed subtraction: |
| 1647 #define CheckOverflowForIntSub(src1, src2) \ |
| 1648 (((src1 - src2) < src1) != (src2 > 0)) |
| 1649 |
| 1650 // Method for checking overflow on unsigned addtion |
| 1651 #define CheckOverflowForUIntAdd(src1, src2) \ |
| 1652 ((src1) + (src2) < (src1) || (src1) + (src2) < (src2)) |
| 1653 |
| 1654 // Method for checking overflow on unsigned subtraction |
| 1655 #define CheckOverflowForUIntSub(src1, src2) ((src1) - (src2) > (src1)) |
| 1656 |
| 1657 // Method for checking overflow on multiplication |
| 1658 #define CheckOverflowForMul(src1, src2) (((src1) * (src2)) / (src2) != (src1)) |
| 1659 |
| 1660 // Method for checking overflow on shift right |
| 1661 #define CheckOverflowForShiftRight(src1, src2) \ |
| 1662 (((src1) >> (src2)) << (src2) != (src1)) |
| 1663 |
| 1664 // Method for checking overflow on shift left |
| 1665 #define CheckOverflowForShiftLeft(src1, src2) \ |
| 1666 (((src1) << (src2)) >> (src2) != (src1)) |
| 1667 |
| 1668 // S390 Decode and simulate helpers |
| 1669 bool Simulator::DecodeTwoByte(Instruction* instr) { |
| 1670 Opcode op = instr->S390OpcodeValue(); |
| 1671 |
| 1672 switch (op) { |
| 1673 // RR format instructions |
| 1674 case AR: |
| 1675 case SR: |
| 1676 case MR: |
| 1677 case DR: |
| 1678 case OR: |
| 1679 case NR: |
| 1680 case XR: { |
| 1681 RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr); |
| 1682 int r1 = rrinst->R1Value(); |
| 1683 int r2 = rrinst->R2Value(); |
| 1684 int32_t r1_val = get_low_register<int32_t>(r1); |
| 1685 int32_t r2_val = get_low_register<int32_t>(r2); |
| 1686 bool isOF = false; |
| 1687 switch (op) { |
| 1688 case AR: |
| 1689 isOF = CheckOverflowForIntAdd(r1_val, r2_val); |
| 1690 r1_val += r2_val; |
| 1691 SetS390ConditionCode<int32_t>(r1_val, 0); |
| 1692 SetS390OverflowCode(isOF); |
| 1693 break; |
| 1694 case SR: |
| 1695 isOF = CheckOverflowForIntSub(r1_val, r2_val); |
| 1696 r1_val -= r2_val; |
| 1697 SetS390ConditionCode<int32_t>(r1_val, 0); |
| 1698 SetS390OverflowCode(isOF); |
| 1699 break; |
| 1700 case OR: |
| 1701 r1_val |= r2_val; |
| 1702 SetS390BitWiseConditionCode<uint32_t>(r1_val); |
| 1703 break; |
| 1704 case NR: |
| 1705 r1_val &= r2_val; |
| 1706 SetS390BitWiseConditionCode<uint32_t>(r1_val); |
| 1707 break; |
| 1708 case XR: |
| 1709 r1_val ^= r2_val; |
| 1710 SetS390BitWiseConditionCode<uint32_t>(r1_val); |
| 1711 break; |
| 1712 case MR: { |
| 1713 DCHECK(r1 % 2 == 0); |
| 1714 r1_val = get_low_register<int32_t>(r1 + 1); |
| 1715 int64_t product = |
| 1716 static_cast<int64_t>(r1_val) * static_cast<int64_t>(r2_val); |
| 1717 int32_t high_bits = product >> 32; |
| 1718 r1_val = high_bits; |
| 1719 int32_t low_bits = product & 0x00000000FFFFFFFF; |
| 1720 set_low_register(r1, high_bits); |
| 1721 set_low_register(r1 + 1, low_bits); |
| 1722 break; |
| 1723 } |
| 1724 case DR: { |
| 1725 // reg-reg pair should be even-odd pair, assert r1 is an even register |
| 1726 DCHECK(r1 % 2 == 0); |
| 1727 // leftmost 32 bits of the dividend are in r1 |
| 1728 // rightmost 32 bits of the dividend are in r1+1 |
| 1729 // get the signed value from r1 |
| 1730 int64_t dividend = static_cast<int64_t>(r1_val) << 32; |
| 1731 // get unsigned value from r1+1 |
| 1732 // avoid addition with sign-extended r1+1 value |
| 1733 dividend += get_low_register<uint32_t>(r1 + 1); |
| 1734 int32_t remainder = dividend % r2_val; |
| 1735 int32_t quotient = dividend / r2_val; |
| 1736 r1_val = remainder; |
| 1737 set_low_register(r1, remainder); |
| 1738 set_low_register(r1 + 1, quotient); |
| 1739 break; // reg pair |
| 1740 } |
| 1741 default: |
| 1742 UNREACHABLE(); |
| 1743 break; |
| 1744 } |
| 1745 set_low_register(r1, r1_val); |
| 1746 break; |
| 1747 } |
| 1748 case LR: { |
| 1749 RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr); |
| 1750 int r1 = rrinst->R1Value(); |
| 1751 int r2 = rrinst->R2Value(); |
| 1752 set_low_register(r1, get_low_register<int32_t>(r2)); |
| 1753 break; |
| 1754 } |
| 1755 case LDR: { |
| 1756 RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr); |
| 1757 int r1 = rrinst->R1Value(); |
| 1758 int r2 = rrinst->R2Value(); |
| 1759 int64_t r2_val = get_d_register(r2); |
| 1760 set_d_register(r1, r2_val); |
| 1761 break; |
| 1762 } |
| 1763 case CR: { |
| 1764 RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr); |
| 1765 int r1 = rrinst->R1Value(); |
| 1766 int r2 = rrinst->R2Value(); |
| 1767 int32_t r1_val = get_low_register<int32_t>(r1); |
| 1768 int32_t r2_val = get_low_register<int32_t>(r2); |
| 1769 SetS390ConditionCode<int32_t>(r1_val, r2_val); |
| 1770 break; |
| 1771 } |
| 1772 case CLR: { |
| 1773 RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr); |
| 1774 int r1 = rrinst->R1Value(); |
| 1775 int r2 = rrinst->R2Value(); |
| 1776 uint32_t r1_val = get_low_register<uint32_t>(r1); |
| 1777 uint32_t r2_val = get_low_register<uint32_t>(r2); |
| 1778 SetS390ConditionCode<uint32_t>(r1_val, r2_val); |
| 1779 break; |
| 1780 } |
| 1781 case BCR: { |
| 1782 RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr); |
| 1783 int r1 = rrinst->R1Value(); |
| 1784 int r2 = rrinst->R2Value(); |
| 1785 if (TestConditionCode(Condition(r1))) { |
| 1786 intptr_t r2_val = get_register(r2); |
| 1787 #if (!V8_TARGET_ARCH_S390X && V8_HOST_ARCH_S390) |
| 1788 // On 31-bit, the top most bit may be 0 or 1, but is ignored by the |
| 1789 // hardware. Cleanse the top bit before jumping to it, unless it's one |
| 1790 // of the special PCs |
| 1791 if (r2_val != bad_lr && r2_val != end_sim_pc) r2_val &= 0x7FFFFFFF; |
| 1792 #endif |
| 1793 set_pc(r2_val); |
| 1794 } |
| 1795 break; |
| 1796 } |
| 1797 case LTR: { |
| 1798 RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr); |
| 1799 int r1 = rrinst->R1Value(); |
| 1800 int r2 = rrinst->R2Value(); |
| 1801 int32_t r2_val = get_low_register<int32_t>(r2); |
| 1802 SetS390ConditionCode<int32_t>(r2_val, 0); |
| 1803 set_low_register(r1, r2_val); |
| 1804 break; |
| 1805 } |
| 1806 case ALR: |
| 1807 case SLR: { |
| 1808 RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr); |
| 1809 int r1 = rrinst->R1Value(); |
| 1810 int r2 = rrinst->R2Value(); |
| 1811 uint32_t r1_val = get_low_register<uint32_t>(r1); |
| 1812 uint32_t r2_val = get_low_register<uint32_t>(r2); |
| 1813 uint32_t alu_out = 0; |
| 1814 bool isOF = false; |
| 1815 if (ALR == op) { |
| 1816 alu_out = r1_val + r2_val; |
| 1817 isOF = CheckOverflowForUIntAdd(r1_val, r2_val); |
| 1818 } else if (SLR == op) { |
| 1819 alu_out = r1_val - r2_val; |
| 1820 isOF = CheckOverflowForUIntSub(r1_val, r2_val); |
| 1821 } else { |
| 1822 UNREACHABLE(); |
| 1823 } |
| 1824 set_low_register(r1, alu_out); |
| 1825 SetS390ConditionCode<uint32_t>(alu_out, 0); |
| 1826 SetS390OverflowCode(isOF); |
| 1827 break; |
| 1828 } |
| 1829 case LNR: { |
| 1830 // Load Negative (32) |
| 1831 RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr); |
| 1832 int r1 = rrinst->R1Value(); |
| 1833 int r2 = rrinst->R2Value(); |
| 1834 int32_t r2_val = get_low_register<int32_t>(r2); |
| 1835 r2_val = (r2_val >= 0) ? -r2_val : r2_val; // If pos, then negate it. |
| 1836 set_low_register(r1, r2_val); |
| 1837 condition_reg_ = (r2_val == 0) ? CC_EQ : CC_LT; // CC0 - result is zero |
| 1838 // CC1 - result is negative |
| 1839 break; |
| 1840 } |
| 1841 case BASR: { |
| 1842 RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr); |
| 1843 int r1 = rrinst->R1Value(); |
| 1844 int r2 = rrinst->R2Value(); |
| 1845 intptr_t link_addr = get_pc() + 2; |
| 1846 // If R2 is zero, the BASR does not branch. |
| 1847 int64_t r2_val = (r2 == 0) ? link_addr : get_register(r2); |
| 1848 #if (!V8_TARGET_ARCH_S390X && V8_HOST_ARCH_S390) |
| 1849 // On 31-bit, the top most bit may be 0 or 1, which can cause issues |
| 1850 // for stackwalker. The top bit should either be cleanse before being |
| 1851 // pushed onto the stack, or during stack walking when dereferenced. |
| 1852 // For simulator, we'll take the worst case scenario and always tag |
| 1853 // the high bit, to flush out more problems. |
| 1854 link_addr |= 0x80000000; |
| 1855 #endif |
| 1856 set_register(r1, link_addr); |
| 1857 set_pc(r2_val); |
| 1858 break; |
| 1859 } |
| 1860 case LCR: { |
| 1861 RRInstruction* rrinst = reinterpret_cast<RRInstruction*>(instr); |
| 1862 int r1 = rrinst->R1Value(); |
| 1863 int r2 = rrinst->R2Value(); |
| 1864 int32_t r2_val = get_low_register<int32_t>(r2); |
| 1865 int32_t original_r2_val = r2_val; |
| 1866 r2_val = ~r2_val; |
| 1867 r2_val = r2_val + 1; |
| 1868 set_low_register(r1, r2_val); |
| 1869 SetS390ConditionCode<int32_t>(r2_val, 0); |
| 1870 // Checks for overflow where r2_val = -2147483648. |
| 1871 // Cannot do int comparison due to GCC 4.8 bug on x86. |
| 1872 // Detect INT_MIN alternatively, as it is the only value where both |
| 1873 // original and result are negative due to overflow. |
| 1874 if (r2_val < 0 && original_r2_val < 0) { |
| 1875 SetS390OverflowCode(true); |
| 1876 } |
| 1877 break; |
| 1878 } |
| 1879 case BKPT: { |
| 1880 set_pc(get_pc() + 2); |
| 1881 S390Debugger dbg(this); |
| 1882 dbg.Debug(); |
| 1883 break; |
| 1884 } |
| 1885 default: |
| 1886 UNREACHABLE(); |
| 1887 return false; |
| 1888 break; |
| 1889 } |
| 1890 return true; |
| 1891 } |
| 1892 |
| 1893 // Decode routine for four-byte instructions |
| 1894 bool Simulator::DecodeFourByte(Instruction* instr) { |
| 1895 Opcode op = instr->S390OpcodeValue(); |
| 1896 |
| 1897 // Pre-cast instruction to various types |
| 1898 RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr); |
| 1899 SIInstruction* siInstr = reinterpret_cast<SIInstruction*>(instr); |
| 1900 |
| 1901 switch (op) { |
| 1902 case POPCNT_Z: { |
| 1903 int r1 = rreInst->R1Value(); |
| 1904 int r2 = rreInst->R2Value(); |
| 1905 int64_t r2_val = get_register(r2); |
| 1906 int64_t r1_val = 0; |
| 1907 |
| 1908 uint8_t* r2_val_ptr = reinterpret_cast<uint8_t*>(&r2_val); |
| 1909 uint8_t* r1_val_ptr = reinterpret_cast<uint8_t*>(&r1_val); |
| 1910 for (int i = 0; i < 8; i++) { |
| 1911 uint32_t x = static_cast<uint32_t>(r2_val_ptr[i]); |
| 1912 #if defined(__GNUC__) |
| 1913 r1_val_ptr[i] = __builtin_popcount(x); |
| 1914 #else |
| 1915 #error unsupport __builtin_popcount |
| 1916 #endif |
| 1917 } |
| 1918 |
| 1919 set_register(r1, static_cast<uint64_t>(r1_val)); |
| 1920 break; |
| 1921 } |
| 1922 case LLGFR: { |
| 1923 int r1 = rreInst->R1Value(); |
| 1924 int r2 = rreInst->R2Value(); |
| 1925 int32_t r2_val = get_low_register<int32_t>(r2); |
| 1926 uint64_t r2_finalval = |
| 1927 (static_cast<uint64_t>(r2_val) & 0x00000000ffffffff); |
| 1928 set_register(r1, r2_finalval); |
| 1929 break; |
| 1930 } |
| 1931 case EX: { |
| 1932 RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr); |
| 1933 int r1 = rxinst->R1Value(); |
| 1934 int b2 = rxinst->B2Value(); |
| 1935 int x2 = rxinst->X2Value(); |
| 1936 int64_t b2_val = (b2 == 0) ? 0 : get_register(b2); |
| 1937 int64_t x2_val = (x2 == 0) ? 0 : get_register(x2); |
| 1938 intptr_t d2_val = rxinst->D2Value(); |
| 1939 int32_t r1_val = get_low_register<int32_t>(r1); |
| 1940 |
| 1941 SixByteInstr the_instr = Instruction::InstructionBits( |
| 1942 reinterpret_cast<const byte*>(b2_val + x2_val + d2_val)); |
| 1943 int length = Instruction::InstructionLength( |
| 1944 reinterpret_cast<const byte*>(b2_val + x2_val + d2_val)); |
| 1945 |
| 1946 char new_instr_buf[8]; |
| 1947 char* addr = reinterpret_cast<char*>(&new_instr_buf[0]); |
| 1948 the_instr |= static_cast<SixByteInstr>(r1_val & 0xff) |
| 1949 << (8 * length - 16); |
| 1950 Instruction::SetInstructionBits<SixByteInstr>( |
| 1951 reinterpret_cast<byte*>(addr), static_cast<SixByteInstr>(the_instr)); |
| 1952 ExecuteInstruction(reinterpret_cast<Instruction*>(addr), false); |
| 1953 break; |
| 1954 } |
| 1955 case LGR: { |
| 1956 // Load Register (64) |
| 1957 int r1 = rreInst->R1Value(); |
| 1958 int r2 = rreInst->R2Value(); |
| 1959 set_register(r1, get_register(r2)); |
| 1960 break; |
| 1961 } |
| 1962 case LDGR: { |
| 1963 // Load FPR from GPR (L <- 64) |
| 1964 uint64_t int_val = get_register(rreInst->R2Value()); |
| 1965 // double double_val = bit_cast<double, uint64_t>(int_val); |
| 1966 // set_d_register_from_double(rreInst->R1Value(), double_val); |
| 1967 set_d_register(rreInst->R1Value(), int_val); |
| 1968 break; |
| 1969 } |
| 1970 case LGDR: { |
| 1971 // Load GPR from FPR (64 <- L) |
| 1972 int64_t double_val = get_d_register(rreInst->R2Value()); |
| 1973 set_register(rreInst->R1Value(), double_val); |
| 1974 break; |
| 1975 } |
| 1976 case LTGR: { |
| 1977 // Load Register (64) |
| 1978 int r1 = rreInst->R1Value(); |
| 1979 int r2 = rreInst->R2Value(); |
| 1980 int64_t r2_val = get_register(r2); |
| 1981 SetS390ConditionCode<int64_t>(r2_val, 0); |
| 1982 set_register(r1, get_register(r2)); |
| 1983 break; |
| 1984 } |
| 1985 case LZDR: { |
| 1986 int r1 = rreInst->R1Value(); |
| 1987 set_d_register_from_double(r1, 0.0); |
| 1988 break; |
| 1989 } |
| 1990 case LTEBR: { |
| 1991 RREInstruction* rreinst = reinterpret_cast<RREInstruction*>(instr); |
| 1992 int r1 = rreinst->R1Value(); |
| 1993 int r2 = rreinst->R2Value(); |
| 1994 int64_t r2_val = get_d_register(r2); |
| 1995 float fr2_val = get_float32_from_d_register(r2); |
| 1996 SetS390ConditionCode<float>(fr2_val, 0.0); |
| 1997 set_d_register(r1, r2_val); |
| 1998 break; |
| 1999 } |
| 2000 case LTDBR: { |
| 2001 RREInstruction* rreinst = reinterpret_cast<RREInstruction*>(instr); |
| 2002 int r1 = rreinst->R1Value(); |
| 2003 int r2 = rreinst->R2Value(); |
| 2004 int64_t r2_val = get_d_register(r2); |
| 2005 SetS390ConditionCode<double>(bit_cast<double, int64_t>(r2_val), 0.0); |
| 2006 set_d_register(r1, r2_val); |
| 2007 break; |
| 2008 } |
| 2009 case CGR: { |
| 2010 // Compare (64) |
| 2011 int64_t r1_val = get_register(rreInst->R1Value()); |
| 2012 int64_t r2_val = get_register(rreInst->R2Value()); |
| 2013 SetS390ConditionCode<int64_t>(r1_val, r2_val); |
| 2014 break; |
| 2015 } |
| 2016 case CLGR: { |
| 2017 // Compare Logical (64) |
| 2018 uint64_t r1_val = static_cast<uint64_t>(get_register(rreInst->R1Value())); |
| 2019 uint64_t r2_val = static_cast<uint64_t>(get_register(rreInst->R2Value())); |
| 2020 SetS390ConditionCode<uint64_t>(r1_val, r2_val); |
| 2021 break; |
| 2022 } |
| 2023 case LH: { |
| 2024 // Load Halfword |
| 2025 RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr); |
| 2026 int r1 = rxinst->R1Value(); |
| 2027 int x2 = rxinst->X2Value(); |
| 2028 int b2 = rxinst->B2Value(); |
| 2029 |
| 2030 int64_t x2_val = (x2 == 0) ? 0 : get_register(x2); |
| 2031 int64_t b2_val = (b2 == 0) ? 0 : get_register(b2); |
| 2032 intptr_t d2_val = rxinst->D2Value(); |
| 2033 intptr_t mem_addr = x2_val + b2_val + d2_val; |
| 2034 |
| 2035 int32_t result = static_cast<int32_t>(ReadH(mem_addr, instr)); |
| 2036 set_low_register(r1, result); |
| 2037 break; |
| 2038 } |
| 2039 case LHI: { |
| 2040 RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr); |
| 2041 int r1 = riinst->R1Value(); |
| 2042 int i = riinst->I2Value(); |
| 2043 set_low_register(r1, i); |
| 2044 break; |
| 2045 } |
| 2046 case LGHI: { |
| 2047 RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr); |
| 2048 int r1 = riinst->R1Value(); |
| 2049 int64_t i = riinst->I2Value(); |
| 2050 set_register(r1, i); |
| 2051 break; |
| 2052 } |
| 2053 case CHI: { |
| 2054 RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr); |
| 2055 int r1 = riinst->R1Value(); |
| 2056 int16_t i = riinst->I2Value(); |
| 2057 int32_t r1_val = get_low_register<int32_t>(r1); |
| 2058 SetS390ConditionCode<int32_t>(r1_val, i); |
| 2059 break; |
| 2060 } |
| 2061 case CGHI: { |
| 2062 RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr); |
| 2063 int r1 = riinst->R1Value(); |
| 2064 int64_t i = static_cast<int64_t>(riinst->I2Value()); |
| 2065 int64_t r1_val = get_register(r1); |
| 2066 SetS390ConditionCode<int64_t>(r1_val, i); |
| 2067 break; |
| 2068 } |
| 2069 case BRAS: { |
| 2070 // Branch Relative and Save |
| 2071 RILInstruction* rilInstr = reinterpret_cast<RILInstruction*>(instr); |
| 2072 int r1 = rilInstr->R1Value(); |
| 2073 intptr_t d2 = rilInstr->I2Value(); |
| 2074 intptr_t pc = get_pc(); |
| 2075 // Set PC of next instruction to register |
| 2076 set_register(r1, pc + sizeof(FourByteInstr)); |
| 2077 // Update PC to branch target |
| 2078 set_pc(pc + d2 * 2); |
| 2079 break; |
| 2080 } |
| 2081 case BRC: { |
| 2082 // Branch Relative on Condition |
| 2083 RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr); |
| 2084 int m1 = riinst->M1Value(); |
| 2085 if (TestConditionCode((Condition)m1)) { |
| 2086 intptr_t offset = riinst->I2Value() * 2; |
| 2087 set_pc(get_pc() + offset); |
| 2088 } |
| 2089 break; |
| 2090 } |
| 2091 case BRCT: |
| 2092 case BRCTG: { |
| 2093 // Branch On Count (32/64). |
| 2094 RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr); |
| 2095 int r1 = riinst->R1Value(); |
| 2096 int64_t value = |
| 2097 (op == BRCT) ? get_low_register<int32_t>(r1) : get_register(r1); |
| 2098 if (BRCT == op) |
| 2099 set_low_register(r1, --value); |
| 2100 else |
| 2101 set_register(r1, --value); |
| 2102 // Branch if value != 0 |
| 2103 if (value != 0) { |
| 2104 intptr_t offset = riinst->I2Value() * 2; |
| 2105 set_pc(get_pc() + offset); |
| 2106 } |
| 2107 break; |
| 2108 } |
| 2109 case BXH: { |
| 2110 RSInstruction* rsinst = reinterpret_cast<RSInstruction*>(instr); |
| 2111 int r1 = rsinst->R1Value(); |
| 2112 int r3 = rsinst->R3Value(); |
| 2113 int b2 = rsinst->B2Value(); |
| 2114 int d2 = rsinst->D2Value(); |
| 2115 |
| 2116 // r1_val is the first operand, r3_val is the increment |
| 2117 int32_t r1_val = r1 == 0 ? 0 : get_register(r1); |
| 2118 int32_t r3_val = r2 == 0 ? 0 : get_register(r3); |
| 2119 intptr_t b2_val = b2 == 0 ? 0 : get_register(b2); |
| 2120 intptr_t branch_address = b2_val + d2; |
| 2121 // increment r1_val |
| 2122 r1_val += r3_val; |
| 2123 |
| 2124 // if the increment is even, then it designates a pair of registers |
| 2125 // and the contents of the even and odd registers of the pair are used as |
| 2126 // the increment and compare value respectively. If the increment is odd, |
| 2127 // the increment itself is used as both the increment and compare value |
| 2128 int32_t compare_val = r3 % 2 == 0 ? get_register(r3 + 1) : r3_val; |
| 2129 if (r1_val > compare_val) { |
| 2130 // branch to address if r1_val is greater than compare value |
| 2131 set_pc(branch_address); |
| 2132 } |
| 2133 |
| 2134 // update contents of register in r1 with the new incremented value |
| 2135 set_register(r1, r1_val); |
| 2136 break; |
| 2137 } |
| 2138 case IIHH: |
| 2139 case IIHL: |
| 2140 case IILH: |
| 2141 case IILL: { |
| 2142 UNIMPLEMENTED(); |
| 2143 break; |
| 2144 } |
| 2145 case STM: |
| 2146 case LM: { |
| 2147 // Store Multiple 32-bits. |
| 2148 RSInstruction* rsinstr = reinterpret_cast<RSInstruction*>(instr); |
| 2149 int r1 = rsinstr->R1Value(); |
| 2150 int r3 = rsinstr->R3Value(); |
| 2151 int rb = rsinstr->B2Value(); |
| 2152 int offset = rsinstr->D2Value(); |
| 2153 |
| 2154 // Regs roll around if r3 is less than r1. |
| 2155 // Artifically increase r3 by 16 so we can calculate |
| 2156 // the number of regs stored properly. |
| 2157 if (r3 < r1) r3 += 16; |
| 2158 |
| 2159 int32_t rb_val = (rb == 0) ? 0 : get_low_register<int32_t>(rb); |
| 2160 |
| 2161 // Store each register in ascending order. |
| 2162 for (int i = 0; i <= r3 - r1; i++) { |
| 2163 if (op == STM) { |
| 2164 int32_t value = get_low_register<int32_t>((r1 + i) % 16); |
| 2165 WriteW(rb_val + offset + 4 * i, value, instr); |
| 2166 } else if (op == LM) { |
| 2167 int32_t value = ReadW(rb_val + offset + 4 * i, instr); |
| 2168 set_low_register((r1 + i) % 16, value); |
| 2169 } |
| 2170 } |
| 2171 break; |
| 2172 } |
| 2173 case SLL: |
| 2174 case SRL: { |
| 2175 RSInstruction* rsInstr = reinterpret_cast<RSInstruction*>(instr); |
| 2176 int r1 = rsInstr->R1Value(); |
| 2177 int b2 = rsInstr->B2Value(); |
| 2178 intptr_t d2 = rsInstr->D2Value(); |
| 2179 // only takes rightmost 6bits |
| 2180 int64_t b2_val = b2 == 0 ? 0 : get_register(b2); |
| 2181 int shiftBits = (b2_val + d2) & 0x3F; |
| 2182 uint32_t r1_val = get_low_register<uint32_t>(r1); |
| 2183 uint32_t alu_out = 0; |
| 2184 if (SLL == op) { |
| 2185 alu_out = r1_val << shiftBits; |
| 2186 } else if (SRL == op) { |
| 2187 alu_out = r1_val >> shiftBits; |
| 2188 } else { |
| 2189 UNREACHABLE(); |
| 2190 } |
| 2191 set_low_register(r1, alu_out); |
| 2192 break; |
| 2193 } |
| 2194 case SLA: |
| 2195 case SRA: { |
| 2196 RSInstruction* rsInstr = reinterpret_cast<RSInstruction*>(instr); |
| 2197 int r1 = rsInstr->R1Value(); |
| 2198 int b2 = rsInstr->B2Value(); |
| 2199 intptr_t d2 = rsInstr->D2Value(); |
| 2200 // only takes rightmost 6bits |
| 2201 int64_t b2_val = b2 == 0 ? 0 : get_register(b2); |
| 2202 int shiftBits = (b2_val + d2) & 0x3F; |
| 2203 int32_t r1_val = get_low_register<int32_t>(r1); |
| 2204 int32_t alu_out = 0; |
| 2205 bool isOF = false; |
| 2206 if (op == SLA) { |
| 2207 isOF = CheckOverflowForShiftLeft(r1_val, shiftBits); |
| 2208 alu_out = r1_val << shiftBits; |
| 2209 } else if (op == SRA) { |
| 2210 alu_out = r1_val >> shiftBits; |
| 2211 } |
| 2212 set_low_register(r1, alu_out); |
| 2213 SetS390ConditionCode<int32_t>(alu_out, 0); |
| 2214 SetS390OverflowCode(isOF); |
| 2215 break; |
| 2216 } |
| 2217 case LLHR: { |
| 2218 UNIMPLEMENTED(); |
| 2219 break; |
| 2220 } |
| 2221 case LLGHR: { |
| 2222 UNIMPLEMENTED(); |
| 2223 break; |
| 2224 } |
| 2225 case L: |
| 2226 case LA: |
| 2227 case LD: |
| 2228 case LE: { |
| 2229 RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr); |
| 2230 int b2 = rxinst->B2Value(); |
| 2231 int x2 = rxinst->X2Value(); |
| 2232 int32_t r1 = rxinst->R1Value(); |
| 2233 int64_t b2_val = (b2 == 0) ? 0 : get_register(b2); |
| 2234 int64_t x2_val = (x2 == 0) ? 0 : get_register(x2); |
| 2235 intptr_t d2_val = rxinst->D2Value(); |
| 2236 intptr_t addr = b2_val + x2_val + d2_val; |
| 2237 if (op == L) { |
| 2238 int32_t mem_val = ReadW(addr, instr); |
| 2239 set_low_register(r1, mem_val); |
| 2240 } else if (op == LA) { |
| 2241 set_register(r1, addr); |
| 2242 } else if (op == LD) { |
| 2243 int64_t dbl_val = *reinterpret_cast<int64_t*>(addr); |
| 2244 set_d_register(r1, dbl_val); |
| 2245 } else if (op == LE) { |
| 2246 float float_val = *reinterpret_cast<float*>(addr); |
| 2247 set_d_register_from_float32(r1, float_val); |
| 2248 } |
| 2249 break; |
| 2250 } |
| 2251 case C: |
| 2252 case CL: { |
| 2253 RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr); |
| 2254 int b2 = rxinst->B2Value(); |
| 2255 int x2 = rxinst->X2Value(); |
| 2256 int32_t r1_val = get_low_register<int32_t>(rxinst->R1Value()); |
| 2257 int64_t b2_val = (b2 == 0) ? 0 : get_register(b2); |
| 2258 int64_t x2_val = (x2 == 0) ? 0 : get_register(x2); |
| 2259 intptr_t d2_val = rxinst->D2Value(); |
| 2260 intptr_t addr = b2_val + x2_val + d2_val; |
| 2261 int32_t mem_val = ReadW(addr, instr); |
| 2262 if (C == op) |
| 2263 SetS390ConditionCode<int32_t>(r1_val, mem_val); |
| 2264 else if (CL == op) |
| 2265 SetS390ConditionCode<uint32_t>(r1_val, mem_val); |
| 2266 break; |
| 2267 } |
| 2268 case CLI: { |
| 2269 // Compare Immediate (Mem - Imm) (8) |
| 2270 int b1 = siInstr->B1Value(); |
| 2271 int64_t b1_val = (b1 == 0) ? 0 : get_register(b1); |
| 2272 intptr_t d1_val = siInstr->D1Value(); |
| 2273 intptr_t addr = b1_val + d1_val; |
| 2274 uint8_t mem_val = ReadB(addr); |
| 2275 uint8_t imm_val = siInstr->I2Value(); |
| 2276 SetS390ConditionCode<uint8_t>(mem_val, imm_val); |
| 2277 break; |
| 2278 } |
| 2279 case TM: { |
| 2280 // Test Under Mask (Mem - Imm) (8) |
| 2281 int b1 = siInstr->B1Value(); |
| 2282 int64_t b1_val = (b1 == 0) ? 0 : get_register(b1); |
| 2283 intptr_t d1_val = siInstr->D1Value(); |
| 2284 intptr_t addr = b1_val + d1_val; |
| 2285 uint8_t mem_val = ReadB(addr); |
| 2286 uint8_t imm_val = siInstr->I2Value(); |
| 2287 uint8_t selected_bits = mem_val & imm_val; |
| 2288 // CC0: Selected bits are zero |
| 2289 // CC1: Selected bits mixed zeros and ones |
| 2290 // CC3: Selected bits all ones |
| 2291 if (0 == selected_bits) { |
| 2292 condition_reg_ = CC_EQ; // CC0 |
| 2293 } else if (selected_bits == imm_val) { |
| 2294 condition_reg_ = 0x1; // CC3 |
| 2295 } else { |
| 2296 condition_reg_ = 0x4; // CC1 |
| 2297 } |
| 2298 break; |
| 2299 } |
| 2300 case ST: |
| 2301 case STE: |
| 2302 case STD: { |
| 2303 RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr); |
| 2304 int b2 = rxinst->B2Value(); |
| 2305 int x2 = rxinst->X2Value(); |
| 2306 int32_t r1_val = get_low_register<int32_t>(rxinst->R1Value()); |
| 2307 int64_t b2_val = (b2 == 0) ? 0 : get_register(b2); |
| 2308 int64_t x2_val = (x2 == 0) ? 0 : get_register(x2); |
| 2309 intptr_t d2_val = rxinst->D2Value(); |
| 2310 intptr_t addr = b2_val + x2_val + d2_val; |
| 2311 if (op == ST) { |
| 2312 WriteW(addr, r1_val, instr); |
| 2313 } else if (op == STD) { |
| 2314 int64_t frs_val = get_d_register(rxinst->R1Value()); |
| 2315 WriteDW(addr, frs_val); |
| 2316 } else if (op == STE) { |
| 2317 int64_t frs_val = get_d_register(rxinst->R1Value()) >> 32; |
| 2318 WriteW(addr, static_cast<int32_t>(frs_val), instr); |
| 2319 } |
| 2320 break; |
| 2321 } |
| 2322 case LTGFR: |
| 2323 case LGFR: { |
| 2324 // Load and Test Register (64 <- 32) (Sign Extends 32-bit val) |
| 2325 // Load Register (64 <- 32) (Sign Extends 32-bit val) |
| 2326 RREInstruction* rreInstr = reinterpret_cast<RREInstruction*>(instr); |
| 2327 int r1 = rreInstr->R1Value(); |
| 2328 int r2 = rreInstr->R2Value(); |
| 2329 int32_t r2_val = get_low_register<int32_t>(r2); |
| 2330 int64_t result = static_cast<int64_t>(r2_val); |
| 2331 set_register(r1, result); |
| 2332 |
| 2333 if (LTGFR == op) SetS390ConditionCode<int64_t>(result, 0); |
| 2334 break; |
| 2335 } |
| 2336 case LNGR: { |
| 2337 // Load Negative (64) |
| 2338 int r1 = rreInst->R1Value(); |
| 2339 int r2 = rreInst->R2Value(); |
| 2340 int64_t r2_val = get_register(r2); |
| 2341 r2_val = (r2_val >= 0) ? -r2_val : r2_val; // If pos, then negate it. |
| 2342 set_register(r1, r2_val); |
| 2343 condition_reg_ = (r2_val == 0) ? CC_EQ : CC_LT; // CC0 - result is zero |
| 2344 // CC1 - result is negative |
| 2345 break; |
| 2346 } |
| 2347 case TRAP4: { |
| 2348 // whack the space of the caller allocated stack |
| 2349 int64_t sp_addr = get_register(sp); |
| 2350 for (int i = 0; i < kCalleeRegisterSaveAreaSize / kPointerSize; ++i) { |
| 2351 // we dont want to whack the RA (r14) |
| 2352 if (i != 14) (reinterpret_cast<intptr_t*>(sp_addr))[i] = 0xdeadbabe; |
| 2353 } |
| 2354 SoftwareInterrupt(instr); |
| 2355 break; |
| 2356 } |
| 2357 case STC: { |
| 2358 // Store Character/Byte |
| 2359 RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr); |
| 2360 int b2 = rxinst->B2Value(); |
| 2361 int x2 = rxinst->X2Value(); |
| 2362 uint8_t r1_val = get_low_register<int32_t>(rxinst->R1Value()); |
| 2363 int64_t b2_val = (b2 == 0) ? 0 : get_register(b2); |
| 2364 int64_t x2_val = (x2 == 0) ? 0 : get_register(x2); |
| 2365 intptr_t d2_val = rxinst->D2Value(); |
| 2366 intptr_t mem_addr = b2_val + x2_val + d2_val; |
| 2367 WriteB(mem_addr, r1_val); |
| 2368 break; |
| 2369 } |
| 2370 case STH: { |
| 2371 RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr); |
| 2372 int b2 = rxinst->B2Value(); |
| 2373 int x2 = rxinst->X2Value(); |
| 2374 int16_t r1_val = get_low_register<int32_t>(rxinst->R1Value()); |
| 2375 int64_t b2_val = (b2 == 0) ? 0 : get_register(b2); |
| 2376 int64_t x2_val = (x2 == 0) ? 0 : get_register(x2); |
| 2377 intptr_t d2_val = rxinst->D2Value(); |
| 2378 intptr_t mem_addr = b2_val + x2_val + d2_val; |
| 2379 WriteH(mem_addr, r1_val, instr); |
| 2380 break; |
| 2381 } |
| 2382 #if V8_TARGET_ARCH_S390X |
| 2383 case LCGR: { |
| 2384 int r1 = rreInst->R1Value(); |
| 2385 int r2 = rreInst->R2Value(); |
| 2386 int64_t r2_val = get_register(r2); |
| 2387 r2_val = ~r2_val; |
| 2388 r2_val = r2_val + 1; |
| 2389 set_register(r1, r2_val); |
| 2390 SetS390ConditionCode<int64_t>(r2_val, 0); |
| 2391 // if the input is INT_MIN, loading its compliment would be overflowing |
| 2392 if (r2_val < 0 && (r2_val + 1) > 0) { |
| 2393 SetS390OverflowCode(true); |
| 2394 } |
| 2395 break; |
| 2396 } |
| 2397 #endif |
| 2398 case SRDA: { |
| 2399 RSInstruction* rsInstr = reinterpret_cast<RSInstruction*>(instr); |
| 2400 int r1 = rsInstr->R1Value(); |
| 2401 DCHECK(r1 % 2 == 0); // must be a reg pair |
| 2402 int b2 = rsInstr->B2Value(); |
| 2403 intptr_t d2 = rsInstr->D2Value(); |
| 2404 // only takes rightmost 6bits |
| 2405 int64_t b2_val = b2 == 0 ? 0 : get_register(b2); |
| 2406 int shiftBits = (b2_val + d2) & 0x3F; |
| 2407 int64_t opnd1 = static_cast<int64_t>(get_low_register<int32_t>(r1)) << 32; |
| 2408 int64_t opnd2 = static_cast<uint64_t>(get_low_register<uint32_t>(r1 + 1)); |
| 2409 int64_t r1_val = opnd1 + opnd2; |
| 2410 int64_t alu_out = r1_val >> shiftBits; |
| 2411 set_low_register(r1, alu_out >> 32); |
| 2412 set_low_register(r1 + 1, alu_out & 0x00000000FFFFFFFF); |
| 2413 SetS390ConditionCode<int32_t>(alu_out, 0); |
| 2414 break; |
| 2415 } |
| 2416 case SRDL: { |
| 2417 RSInstruction* rsInstr = reinterpret_cast<RSInstruction*>(instr); |
| 2418 int r1 = rsInstr->R1Value(); |
| 2419 DCHECK(r1 % 2 == 0); // must be a reg pair |
| 2420 int b2 = rsInstr->B2Value(); |
| 2421 intptr_t d2 = rsInstr->D2Value(); |
| 2422 // only takes rightmost 6bits |
| 2423 int64_t b2_val = b2 == 0 ? 0 : get_register(b2); |
| 2424 int shiftBits = (b2_val + d2) & 0x3F; |
| 2425 uint64_t opnd1 = static_cast<uint64_t>(get_low_register<uint32_t>(r1)) |
| 2426 << 32; |
| 2427 uint64_t opnd2 = |
| 2428 static_cast<uint64_t>(get_low_register<uint32_t>(r1 + 1)); |
| 2429 uint64_t r1_val = opnd1 | opnd2; |
| 2430 uint64_t alu_out = r1_val >> shiftBits; |
| 2431 set_low_register(r1, alu_out >> 32); |
| 2432 set_low_register(r1 + 1, alu_out & 0x00000000FFFFFFFF); |
| 2433 SetS390ConditionCode<int32_t>(alu_out, 0); |
| 2434 break; |
| 2435 } |
| 2436 default: { return DecodeFourByteArithmetic(instr); } |
| 2437 } |
| 2438 return true; |
| 2439 } |
| 2440 |
| 2441 /** |
| 2442 * Decodes and simulates four byte arithmetic instructions |
| 2443 */ |
| 2444 bool Simulator::DecodeFourByteArithmetic(Instruction* instr) { |
| 2445 Opcode op = instr->S390OpcodeValue(); |
| 2446 |
| 2447 // Pre-cast instruction to various types |
| 2448 RRFInstruction* rrfInst = reinterpret_cast<RRFInstruction*>(instr); |
| 2449 RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr); |
| 2450 |
| 2451 switch (op) { |
| 2452 case AGR: |
| 2453 case SGR: |
| 2454 case OGR: |
| 2455 case NGR: |
| 2456 case XGR: { |
| 2457 int r1 = rreInst->R1Value(); |
| 2458 int r2 = rreInst->R2Value(); |
| 2459 int64_t r1_val = get_register(r1); |
| 2460 int64_t r2_val = get_register(r2); |
| 2461 bool isOF = false; |
| 2462 switch (op) { |
| 2463 case AGR: |
| 2464 isOF = CheckOverflowForIntAdd(r1_val, r2_val); |
| 2465 r1_val += r2_val; |
| 2466 SetS390ConditionCode<int64_t>(r1_val, 0); |
| 2467 SetS390OverflowCode(isOF); |
| 2468 break; |
| 2469 case SGR: |
| 2470 isOF = CheckOverflowForIntSub(r1_val, r2_val); |
| 2471 r1_val -= r2_val; |
| 2472 SetS390ConditionCode<int64_t>(r1_val, 0); |
| 2473 SetS390OverflowCode(isOF); |
| 2474 break; |
| 2475 case OGR: |
| 2476 r1_val |= r2_val; |
| 2477 SetS390BitWiseConditionCode<uint64_t>(r1_val); |
| 2478 break; |
| 2479 case NGR: |
| 2480 r1_val &= r2_val; |
| 2481 SetS390BitWiseConditionCode<uint64_t>(r1_val); |
| 2482 break; |
| 2483 case XGR: |
| 2484 r1_val ^= r2_val; |
| 2485 SetS390BitWiseConditionCode<uint64_t>(r1_val); |
| 2486 break; |
| 2487 default: |
| 2488 UNREACHABLE(); |
| 2489 break; |
| 2490 } |
| 2491 set_register(r1, r1_val); |
| 2492 break; |
| 2493 } |
| 2494 case AGFR: { |
| 2495 // Add Register (64 <- 32) (Sign Extends 32-bit val) |
| 2496 int r1 = rreInst->R1Value(); |
| 2497 int r2 = rreInst->R2Value(); |
| 2498 int64_t r1_val = get_register(r1); |
| 2499 int64_t r2_val = static_cast<int64_t>(get_low_register<int32_t>(r2)); |
| 2500 bool isOF = CheckOverflowForIntAdd(r1_val, r2_val); |
| 2501 r1_val += r2_val; |
| 2502 SetS390ConditionCode<int64_t>(r1_val, 0); |
| 2503 SetS390OverflowCode(isOF); |
| 2504 set_register(r1, r1_val); |
| 2505 break; |
| 2506 } |
| 2507 case SGFR: { |
| 2508 // Sub Reg (64 <- 32) |
| 2509 int r1 = rreInst->R1Value(); |
| 2510 int r2 = rreInst->R2Value(); |
| 2511 int64_t r1_val = get_register(r1); |
| 2512 int64_t r2_val = static_cast<int64_t>(get_low_register<int32_t>(r2)); |
| 2513 bool isOF = false; |
| 2514 isOF = CheckOverflowForIntSub(r1_val, r2_val); |
| 2515 r1_val -= r2_val; |
| 2516 SetS390ConditionCode<int64_t>(r1_val, 0); |
| 2517 SetS390OverflowCode(isOF); |
| 2518 set_register(r1, r1_val); |
| 2519 break; |
| 2520 } |
| 2521 case ARK: |
| 2522 case SRK: |
| 2523 case NRK: |
| 2524 case ORK: |
| 2525 case XRK: { |
| 2526 // 32-bit Non-clobbering arithmetics / bitwise ops |
| 2527 int r1 = rrfInst->R1Value(); |
| 2528 int r2 = rrfInst->R2Value(); |
| 2529 int r3 = rrfInst->R3Value(); |
| 2530 int32_t r2_val = get_low_register<int32_t>(r2); |
| 2531 int32_t r3_val = get_low_register<int32_t>(r3); |
| 2532 if (ARK == op) { |
| 2533 bool isOF = CheckOverflowForIntAdd(r2_val, r3_val); |
| 2534 SetS390ConditionCode<int32_t>(r2_val + r3_val, 0); |
| 2535 SetS390OverflowCode(isOF); |
| 2536 set_low_register(r1, r2_val + r3_val); |
| 2537 } else if (SRK == op) { |
| 2538 bool isOF = CheckOverflowForIntSub(r2_val, r3_val); |
| 2539 SetS390ConditionCode<int32_t>(r2_val - r3_val, 0); |
| 2540 SetS390OverflowCode(isOF); |
| 2541 set_low_register(r1, r2_val - r3_val); |
| 2542 } else { |
| 2543 // Assume bitwise operation here |
| 2544 uint32_t bitwise_result = 0; |
| 2545 if (NRK == op) { |
| 2546 bitwise_result = r2_val & r3_val; |
| 2547 } else if (ORK == op) { |
| 2548 bitwise_result = r2_val | r3_val; |
| 2549 } else if (XRK == op) { |
| 2550 bitwise_result = r2_val ^ r3_val; |
| 2551 } |
| 2552 SetS390BitWiseConditionCode<uint32_t>(bitwise_result); |
| 2553 set_low_register(r1, bitwise_result); |
| 2554 } |
| 2555 break; |
| 2556 } |
| 2557 case ALRK: |
| 2558 case SLRK: { |
| 2559 // 32-bit Non-clobbering unsigned arithmetics |
| 2560 int r1 = rrfInst->R1Value(); |
| 2561 int r2 = rrfInst->R2Value(); |
| 2562 int r3 = rrfInst->R3Value(); |
| 2563 uint32_t r2_val = get_low_register<uint32_t>(r2); |
| 2564 uint32_t r3_val = get_low_register<uint32_t>(r3); |
| 2565 if (ALRK == op) { |
| 2566 bool isOF = CheckOverflowForUIntAdd(r2_val, r3_val); |
| 2567 SetS390ConditionCode<uint32_t>(r2_val + r3_val, 0); |
| 2568 SetS390OverflowCode(isOF); |
| 2569 set_low_register(r1, r2_val + r3_val); |
| 2570 } else if (SLRK == op) { |
| 2571 bool isOF = CheckOverflowForUIntSub(r2_val, r3_val); |
| 2572 SetS390ConditionCode<uint32_t>(r2_val - r3_val, 0); |
| 2573 SetS390OverflowCode(isOF); |
| 2574 set_low_register(r1, r2_val - r3_val); |
| 2575 } |
| 2576 break; |
| 2577 } |
| 2578 case AGRK: |
| 2579 case SGRK: |
| 2580 case NGRK: |
| 2581 case OGRK: |
| 2582 case XGRK: { |
| 2583 // 64-bit Non-clobbering arithmetics / bitwise ops. |
| 2584 int r1 = rrfInst->R1Value(); |
| 2585 int r2 = rrfInst->R2Value(); |
| 2586 int r3 = rrfInst->R3Value(); |
| 2587 int64_t r2_val = get_register(r2); |
| 2588 int64_t r3_val = get_register(r3); |
| 2589 if (AGRK == op) { |
| 2590 bool isOF = CheckOverflowForIntAdd(r2_val, r3_val); |
| 2591 SetS390ConditionCode<int64_t>(r2_val + r3_val, 0); |
| 2592 SetS390OverflowCode(isOF); |
| 2593 set_register(r1, r2_val + r3_val); |
| 2594 } else if (SGRK == op) { |
| 2595 bool isOF = CheckOverflowForIntSub(r2_val, r3_val); |
| 2596 SetS390ConditionCode<int64_t>(r2_val - r3_val, 0); |
| 2597 SetS390OverflowCode(isOF); |
| 2598 set_register(r1, r2_val - r3_val); |
| 2599 } else { |
| 2600 // Assume bitwise operation here |
| 2601 uint64_t bitwise_result = 0; |
| 2602 if (NGRK == op) { |
| 2603 bitwise_result = r2_val & r3_val; |
| 2604 } else if (OGRK == op) { |
| 2605 bitwise_result = r2_val | r3_val; |
| 2606 } else if (XGRK == op) { |
| 2607 bitwise_result = r2_val ^ r3_val; |
| 2608 } |
| 2609 SetS390BitWiseConditionCode<uint64_t>(bitwise_result); |
| 2610 set_register(r1, bitwise_result); |
| 2611 } |
| 2612 break; |
| 2613 } |
| 2614 case ALGRK: |
| 2615 case SLGRK: { |
| 2616 // 64-bit Non-clobbering unsigned arithmetics |
| 2617 int r1 = rrfInst->R1Value(); |
| 2618 int r2 = rrfInst->R2Value(); |
| 2619 int r3 = rrfInst->R3Value(); |
| 2620 uint64_t r2_val = get_register(r2); |
| 2621 uint64_t r3_val = get_register(r3); |
| 2622 if (ALGRK == op) { |
| 2623 bool isOF = CheckOverflowForUIntAdd(r2_val, r3_val); |
| 2624 SetS390ConditionCode<uint64_t>(r2_val + r3_val, 0); |
| 2625 SetS390OverflowCode(isOF); |
| 2626 set_register(r1, r2_val + r3_val); |
| 2627 } else if (SLGRK == op) { |
| 2628 bool isOF = CheckOverflowForUIntSub(r2_val, r3_val); |
| 2629 SetS390ConditionCode<uint64_t>(r2_val - r3_val, 0); |
| 2630 SetS390OverflowCode(isOF); |
| 2631 set_register(r1, r2_val - r3_val); |
| 2632 } |
| 2633 break; |
| 2634 } |
| 2635 case AHI: |
| 2636 case MHI: { |
| 2637 RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr); |
| 2638 int r1 = riinst->R1Value(); |
| 2639 int i = riinst->I2Value(); |
| 2640 int32_t r1_val = get_low_register<int32_t>(r1); |
| 2641 bool isOF = false; |
| 2642 switch (op) { |
| 2643 case AHI: |
| 2644 isOF = CheckOverflowForIntAdd(r1_val, i); |
| 2645 r1_val += i; |
| 2646 break; |
| 2647 case MHI: |
| 2648 isOF = CheckOverflowForMul(r1_val, i); |
| 2649 r1_val *= i; |
| 2650 break; // no overflow indication is given |
| 2651 default: |
| 2652 break; |
| 2653 } |
| 2654 set_low_register(r1, r1_val); |
| 2655 SetS390ConditionCode<int32_t>(r1_val, 0); |
| 2656 SetS390OverflowCode(isOF); |
| 2657 break; |
| 2658 } |
| 2659 case AGHI: |
| 2660 case MGHI: { |
| 2661 RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr); |
| 2662 int r1 = riinst->R1Value(); |
| 2663 int64_t i = static_cast<int64_t>(riinst->I2Value()); |
| 2664 int64_t r1_val = get_register(r1); |
| 2665 bool isOF = false; |
| 2666 switch (op) { |
| 2667 case AGHI: |
| 2668 isOF = CheckOverflowForIntAdd(r1_val, i); |
| 2669 r1_val += i; |
| 2670 break; |
| 2671 case MGHI: |
| 2672 isOF = CheckOverflowForMul(r1_val, i); |
| 2673 r1_val *= i; |
| 2674 break; // no overflow indication is given |
| 2675 default: |
| 2676 break; |
| 2677 } |
| 2678 set_register(r1, r1_val); |
| 2679 SetS390ConditionCode<int32_t>(r1_val, 0); |
| 2680 SetS390OverflowCode(isOF); |
| 2681 break; |
| 2682 } |
| 2683 case MLR: { |
| 2684 RREInstruction* rreinst = reinterpret_cast<RREInstruction*>(instr); |
| 2685 int r1 = rreinst->R1Value(); |
| 2686 int r2 = rreinst->R2Value(); |
| 2687 DCHECK(r1 % 2 == 0); |
| 2688 |
| 2689 uint32_t r1_val = get_low_register<uint32_t>(r1 + 1); |
| 2690 uint32_t r2_val = get_low_register<uint32_t>(r2); |
| 2691 uint64_t product = |
| 2692 static_cast<uint64_t>(r1_val) * static_cast<uint64_t>(r2_val); |
| 2693 int32_t high_bits = product >> 32; |
| 2694 int32_t low_bits = product & 0x00000000FFFFFFFF; |
| 2695 set_low_register(r1, high_bits); |
| 2696 set_low_register(r1 + 1, low_bits); |
| 2697 break; |
| 2698 } |
| 2699 case DLGR: { |
| 2700 #ifdef V8_TARGET_ARCH_S390X |
| 2701 RREInstruction* rreinst = reinterpret_cast<RREInstruction*>(instr); |
| 2702 int r1 = rreinst->R1Value(); |
| 2703 int r2 = rreinst->R2Value(); |
| 2704 uint64_t r1_val = static_cast<uint64_t>(r1); |
| 2705 uint64_t r2_val = static_cast<uint64_t>(r2); |
| 2706 DCHECK(r1 % 2 == 0); |
| 2707 unsigned __int128 dividend = static_cast<unsigned __int128>(r1_val) << 64; |
| 2708 dividend += static_cast<uint64_t>(r1 + 1); |
| 2709 uint64_t remainder = dividend % r2_val; |
| 2710 uint64_t quotient = dividend / r2_val; |
| 2711 r1_val = remainder; |
| 2712 set_register(r1, remainder); |
| 2713 set_register(r1 + 1, quotient); |
| 2714 #else |
| 2715 UNREACHABLE(); |
| 2716 #endif |
| 2717 break; |
| 2718 } |
| 2719 case DLR: { |
| 2720 RREInstruction* rreinst = reinterpret_cast<RREInstruction*>(instr); |
| 2721 int r1 = rreinst->R1Value(); |
| 2722 int r2 = rreinst->R2Value(); |
| 2723 uint32_t r1_val = get_low_register<uint32_t>(r1); |
| 2724 uint32_t r2_val = get_low_register<uint32_t>(r2); |
| 2725 DCHECK(r1 % 2 == 0); |
| 2726 uint64_t dividend = static_cast<uint64_t>(r1_val) << 32; |
| 2727 dividend += get_low_register<uint32_t>(r1 + 1); |
| 2728 uint32_t remainder = dividend % r2_val; |
| 2729 uint32_t quotient = dividend / r2_val; |
| 2730 r1_val = remainder; |
| 2731 set_low_register(r1, remainder); |
| 2732 set_low_register(r1 + 1, quotient); |
| 2733 break; |
| 2734 } |
| 2735 case A: |
| 2736 case S: |
| 2737 case M: |
| 2738 case D: |
| 2739 case O: |
| 2740 case N: |
| 2741 case X: { |
| 2742 // 32-bit Reg-Mem instructions |
| 2743 RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr); |
| 2744 int b2 = rxinst->B2Value(); |
| 2745 int x2 = rxinst->X2Value(); |
| 2746 int32_t r1_val = get_low_register<int32_t>(rxinst->R1Value()); |
| 2747 int64_t b2_val = (b2 == 0) ? 0 : get_register(b2); |
| 2748 int64_t x2_val = (x2 == 0) ? 0 : get_register(x2); |
| 2749 intptr_t d2_val = rxinst->D2Value(); |
| 2750 int32_t mem_val = ReadW(b2_val + x2_val + d2_val, instr); |
| 2751 int32_t alu_out = 0; |
| 2752 bool isOF = false; |
| 2753 switch (op) { |
| 2754 case A: |
| 2755 isOF = CheckOverflowForIntAdd(r1_val, mem_val); |
| 2756 alu_out = r1_val + mem_val; |
| 2757 SetS390ConditionCode<int32_t>(alu_out, 0); |
| 2758 SetS390OverflowCode(isOF); |
| 2759 break; |
| 2760 case S: |
| 2761 isOF = CheckOverflowForIntSub(r1_val, mem_val); |
| 2762 alu_out = r1_val - mem_val; |
| 2763 SetS390ConditionCode<int32_t>(alu_out, 0); |
| 2764 SetS390OverflowCode(isOF); |
| 2765 break; |
| 2766 case M: |
| 2767 case D: |
| 2768 UNIMPLEMENTED(); |
| 2769 break; |
| 2770 case O: |
| 2771 alu_out = r1_val | mem_val; |
| 2772 SetS390BitWiseConditionCode<uint32_t>(alu_out); |
| 2773 break; |
| 2774 case N: |
| 2775 alu_out = r1_val & mem_val; |
| 2776 SetS390BitWiseConditionCode<uint32_t>(alu_out); |
| 2777 break; |
| 2778 case X: |
| 2779 alu_out = r1_val ^ mem_val; |
| 2780 SetS390BitWiseConditionCode<uint32_t>(alu_out); |
| 2781 break; |
| 2782 default: |
| 2783 UNREACHABLE(); |
| 2784 break; |
| 2785 } |
| 2786 set_low_register(r1, alu_out); |
| 2787 break; |
| 2788 } |
| 2789 case OILL: |
| 2790 case OIHL: { |
| 2791 RIInstruction* riInst = reinterpret_cast<RIInstruction*>(instr); |
| 2792 int r1 = riInst->R1Value(); |
| 2793 int i = riInst->I2Value(); |
| 2794 int32_t r1_val = get_low_register<int32_t>(r1); |
| 2795 if (OILL == op) { |
| 2796 // CC is set based on the 16 bits that are AND'd |
| 2797 SetS390BitWiseConditionCode<uint16_t>(r1_val | i); |
| 2798 } else if (OILH == op) { |
| 2799 // CC is set based on the 16 bits that are AND'd |
| 2800 SetS390BitWiseConditionCode<uint16_t>((r1_val >> 16) | i); |
| 2801 i = i << 16; |
| 2802 } else { |
| 2803 UNIMPLEMENTED(); |
| 2804 } |
| 2805 set_low_register(r1, r1_val | i); |
| 2806 break; |
| 2807 } |
| 2808 case NILL: |
| 2809 case NILH: { |
| 2810 RIInstruction* riInst = reinterpret_cast<RIInstruction*>(instr); |
| 2811 int r1 = riInst->R1Value(); |
| 2812 int i = riInst->I2Value(); |
| 2813 int32_t r1_val = get_low_register<int32_t>(r1); |
| 2814 if (NILL == op) { |
| 2815 // CC is set based on the 16 bits that are AND'd |
| 2816 SetS390BitWiseConditionCode<uint16_t>(r1_val & i); |
| 2817 i |= 0xFFFF0000; |
| 2818 } else if (NILH == op) { |
| 2819 // CC is set based on the 16 bits that are AND'd |
| 2820 SetS390BitWiseConditionCode<uint16_t>((r1_val >> 16) & i); |
| 2821 i = (i << 16) | 0x0000FFFF; |
| 2822 } else { |
| 2823 UNIMPLEMENTED(); |
| 2824 } |
| 2825 set_low_register(r1, r1_val & i); |
| 2826 break; |
| 2827 } |
| 2828 case AH: |
| 2829 case SH: |
| 2830 case MH: { |
| 2831 RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr); |
| 2832 int b2 = rxinst->B2Value(); |
| 2833 int x2 = rxinst->X2Value(); |
| 2834 int32_t r1_val = get_low_register<int32_t>(rxinst->R1Value()); |
| 2835 int64_t b2_val = (b2 == 0) ? 0 : get_register(b2); |
| 2836 int64_t x2_val = (x2 == 0) ? 0 : get_register(x2); |
| 2837 intptr_t d2_val = rxinst->D2Value(); |
| 2838 intptr_t addr = b2_val + x2_val + d2_val; |
| 2839 int16_t mem_val = ReadH(addr, instr); |
| 2840 int32_t alu_out = 0; |
| 2841 bool isOF = false; |
| 2842 if (AH == op) { |
| 2843 isOF = CheckOverflowForIntAdd(r1_val, mem_val); |
| 2844 alu_out = r1_val + mem_val; |
| 2845 } else if (SH == op) { |
| 2846 isOF = CheckOverflowForIntSub(r1_val, mem_val); |
| 2847 alu_out = r1_val - mem_val; |
| 2848 } else if (MH == op) { |
| 2849 alu_out = r1_val * mem_val; |
| 2850 } else { |
| 2851 UNREACHABLE(); |
| 2852 } |
| 2853 set_low_register(r1, alu_out); |
| 2854 if (MH != op) { // MH does not change condition code |
| 2855 SetS390ConditionCode<int32_t>(alu_out, 0); |
| 2856 SetS390OverflowCode(isOF); |
| 2857 } |
| 2858 break; |
| 2859 } |
| 2860 case DSGR: { |
| 2861 RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr); |
| 2862 int r1 = rreInst->R1Value(); |
| 2863 int r2 = rreInst->R2Value(); |
| 2864 |
| 2865 DCHECK(r1 % 2 == 0); |
| 2866 |
| 2867 int64_t dividend = get_register(r1 + 1); |
| 2868 int64_t divisor = get_register(r2); |
| 2869 set_register(r1, dividend % divisor); |
| 2870 set_register(r1 + 1, dividend / divisor); |
| 2871 |
| 2872 break; |
| 2873 } |
| 2874 case FLOGR: { |
| 2875 RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr); |
| 2876 int r1 = rreInst->R1Value(); |
| 2877 int r2 = rreInst->R2Value(); |
| 2878 |
| 2879 DCHECK(r1 % 2 == 0); |
| 2880 |
| 2881 int64_t r2_val = get_register(r2); |
| 2882 |
| 2883 int i = 0; |
| 2884 for (; i < 64; i++) { |
| 2885 if (r2_val < 0) break; |
| 2886 r2_val <<= 1; |
| 2887 } |
| 2888 |
| 2889 r2_val = get_register(r2); |
| 2890 |
| 2891 int64_t mask = ~(1 << (63 - i)); |
| 2892 set_register(r1, i); |
| 2893 set_register(r1 + 1, r2_val & mask); |
| 2894 |
| 2895 break; |
| 2896 } |
| 2897 case MSR: |
| 2898 case MSGR: { // they do not set overflow code |
| 2899 RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr); |
| 2900 int r1 = rreInst->R1Value(); |
| 2901 int r2 = rreInst->R2Value(); |
| 2902 if (op == MSR) { |
| 2903 int32_t r1_val = get_low_register<int32_t>(r1); |
| 2904 int32_t r2_val = get_low_register<int32_t>(r2); |
| 2905 set_low_register(r1, r1_val * r2_val); |
| 2906 } else if (op == MSGR) { |
| 2907 int64_t r1_val = get_register(r1); |
| 2908 int64_t r2_val = get_register(r2); |
| 2909 set_register(r1, r1_val * r2_val); |
| 2910 } else { |
| 2911 UNREACHABLE(); |
| 2912 } |
| 2913 break; |
| 2914 } |
| 2915 case MS: { |
| 2916 RXInstruction* rxinst = reinterpret_cast<RXInstruction*>(instr); |
| 2917 int r1 = rxinst->R1Value(); |
| 2918 int b2 = rxinst->B2Value(); |
| 2919 int x2 = rxinst->X2Value(); |
| 2920 int64_t x2_val = (x2 == 0) ? 0 : get_register(x2); |
| 2921 int64_t b2_val = (b2 == 0) ? 0 : get_register(b2); |
| 2922 intptr_t d2_val = rxinst->D2Value(); |
| 2923 int32_t mem_val = ReadW(b2_val + x2_val + d2_val, instr); |
| 2924 int32_t r1_val = get_low_register<int32_t>(r1); |
| 2925 set_low_register(r1, r1_val * mem_val); |
| 2926 break; |
| 2927 } |
| 2928 case LGBR: |
| 2929 case LBR: { |
| 2930 RREInstruction* rrinst = reinterpret_cast<RREInstruction*>(instr); |
| 2931 int r1 = rrinst->R1Value(); |
| 2932 int r2 = rrinst->R2Value(); |
| 2933 #ifdef V8_TARGET_ARCH_S390X |
| 2934 int64_t r2_val = get_low_register<int64_t>(r2); |
| 2935 r2_val <<= 56; |
| 2936 r2_val >>= 56; |
| 2937 set_register(r1, r2_val); |
| 2938 #else |
| 2939 int32_t r2_val = get_low_register<int32_t>(r2); |
| 2940 r2_val <<= 24; |
| 2941 r2_val >>= 24; |
| 2942 set_low_register(r1, r2_val); |
| 2943 #endif |
| 2944 break; |
| 2945 } |
| 2946 case LGHR: |
| 2947 case LHR: { |
| 2948 RREInstruction* rrinst = reinterpret_cast<RREInstruction*>(instr); |
| 2949 int r1 = rrinst->R1Value(); |
| 2950 int r2 = rrinst->R2Value(); |
| 2951 #ifdef V8_TARGET_ARCH_S390X |
| 2952 int64_t r2_val = get_low_register<int64_t>(r2); |
| 2953 r2_val <<= 48; |
| 2954 r2_val >>= 48; |
| 2955 set_register(r1, r2_val); |
| 2956 #else |
| 2957 int32_t r2_val = get_low_register<int32_t>(r2); |
| 2958 r2_val <<= 16; |
| 2959 r2_val >>= 16; |
| 2960 set_low_register(r1, r2_val); |
| 2961 #endif |
| 2962 break; |
| 2963 } |
| 2964 default: { return DecodeFourByteFloatingPoint(instr); } |
| 2965 } |
| 2966 return true; |
| 2967 } |
| 2968 |
| 2969 void Simulator::DecodeFourByteFloatingPointIntConversion(Instruction* instr) { |
| 2970 Opcode op = instr->S390OpcodeValue(); |
| 2971 switch (op) { |
| 2972 case CDLFBR: |
| 2973 case CDLGBR: |
| 2974 case CELGBR: |
| 2975 case CLFDBR: |
| 2976 case CLGDBR: |
| 2977 case CELFBR: |
| 2978 case CLGEBR: { |
| 2979 RREInstruction* rreInstr = reinterpret_cast<RREInstruction*>(instr); |
| 2980 int r1 = rreInstr->R1Value(); |
| 2981 int r2 = rreInstr->R2Value(); |
| 2982 if (op == CDLFBR) { |
| 2983 uint32_t r2_val = get_low_register<uint32_t>(r2); |
| 2984 double r1_val = static_cast<double>(r2_val); |
| 2985 set_d_register_from_double(r1, r1_val); |
| 2986 } else if (op == CELFBR) { |
| 2987 uint32_t r2_val = get_low_register<uint32_t>(r2); |
| 2988 float r1_val = static_cast<float>(r2_val); |
| 2989 set_d_register_from_float32(r1, r1_val); |
| 2990 } else if (op == CDLGBR) { |
| 2991 uint64_t r2_val = get_register(r2); |
| 2992 double r1_val = static_cast<double>(r2_val); |
| 2993 set_d_register_from_double(r1, r1_val); |
| 2994 } else if (op == CELGBR) { |
| 2995 uint64_t r2_val = get_register(r2); |
| 2996 float r1_val = static_cast<float>(r2_val); |
| 2997 set_d_register_from_float32(r1, r1_val); |
| 2998 } else if (op == CLFDBR) { |
| 2999 double r2_val = get_double_from_d_register(r2); |
| 3000 uint32_t r1_val = static_cast<uint32_t>(r2_val); |
| 3001 set_low_register(r1, r1_val); |
| 3002 SetS390ConditionCode<double>(r2_val, 0); |
| 3003 } else if (op == CLGDBR) { |
| 3004 double r2_val = get_double_from_d_register(r2); |
| 3005 uint64_t r1_val = static_cast<uint64_t>(r2_val); |
| 3006 set_register(r1, r1_val); |
| 3007 SetS390ConditionCode<double>(r2_val, 0); |
| 3008 } else if (op == CLGEBR) { |
| 3009 float r2_val = get_float32_from_d_register(r2); |
| 3010 uint64_t r1_val = static_cast<uint64_t>(r2_val); |
| 3011 set_register(r1, r1_val); |
| 3012 SetS390ConditionCode<double>(r2_val, 0); |
| 3013 } |
| 3014 break; |
| 3015 } |
| 3016 default: |
| 3017 UNREACHABLE(); |
| 3018 } |
| 3019 } |
| 3020 |
| 3021 void Simulator::DecodeFourByteFloatingPointRound(Instruction* instr) { |
| 3022 Opcode op = instr->S390OpcodeValue(); |
| 3023 RREInstruction* rreInstr = reinterpret_cast<RREInstruction*>(instr); |
| 3024 int r1 = rreInstr->R1Value(); |
| 3025 int r2 = rreInstr->R2Value(); |
| 3026 double r2_val = get_double_from_d_register(r2); |
| 3027 float r2_fval = get_float32_from_d_register(r2); |
| 3028 |
| 3029 switch (op) { |
| 3030 case CFDBR: { |
| 3031 int mask_val = rreInstr->M3Value(); |
| 3032 int32_t r1_val = 0; |
| 3033 |
| 3034 if (r2_val == 0.0) |
| 3035 condition_reg_ = 8; |
| 3036 else if (r2_val < 0.0) |
| 3037 condition_reg_ = 4; |
| 3038 else if (r2_val > 0.0) |
| 3039 condition_reg_ = 2; |
| 3040 else |
| 3041 condition_reg_ = 1; |
| 3042 |
| 3043 switch (mask_val) { |
| 3044 case CURRENT_ROUNDING_MODE: |
| 3045 case ROUND_TO_PREPARE_FOR_SHORTER_PRECISION: { |
| 3046 r1_val = static_cast<int32_t>(r2_val); |
| 3047 break; |
| 3048 } |
| 3049 case ROUND_TO_NEAREST_WITH_TIES_AWAY_FROM_0: { |
| 3050 double ceil_val = std::ceil(r2_val); |
| 3051 double floor_val = std::floor(r2_val); |
| 3052 double sub_val1 = std::fabs(r2_val - floor_val); |
| 3053 double sub_val2 = std::fabs(r2_val - ceil_val); |
| 3054 if (sub_val1 > sub_val2) { |
| 3055 r1_val = static_cast<int32_t>(ceil_val); |
| 3056 } else if (sub_val1 < sub_val2) { |
| 3057 r1_val = static_cast<int32_t>(floor_val); |
| 3058 } else { // round away from zero: |
| 3059 if (r2_val > 0.0) { |
| 3060 r1_val = static_cast<int32_t>(ceil_val); |
| 3061 } else { |
| 3062 r1_val = static_cast<int32_t>(floor_val); |
| 3063 } |
| 3064 } |
| 3065 break; |
| 3066 } |
| 3067 case ROUND_TO_NEAREST_WITH_TIES_TO_EVEN: { |
| 3068 double ceil_val = std::ceil(r2_val); |
| 3069 double floor_val = std::floor(r2_val); |
| 3070 double sub_val1 = std::fabs(r2_val - floor_val); |
| 3071 double sub_val2 = std::fabs(r2_val - ceil_val); |
| 3072 if (sub_val1 > sub_val2) { |
| 3073 r1_val = static_cast<int32_t>(ceil_val); |
| 3074 } else if (sub_val1 < sub_val2) { |
| 3075 r1_val = static_cast<int32_t>(floor_val); |
| 3076 } else { // check which one is even: |
| 3077 int32_t c_v = static_cast<int32_t>(ceil_val); |
| 3078 int32_t f_v = static_cast<int32_t>(floor_val); |
| 3079 if (f_v % 2 == 0) |
| 3080 r1_val = f_v; |
| 3081 else |
| 3082 r1_val = c_v; |
| 3083 } |
| 3084 break; |
| 3085 } |
| 3086 case ROUND_TOWARD_0: { |
| 3087 // check for overflow, cast r2_val to 64bit integer |
| 3088 // then check value within the range of INT_MIN and INT_MAX |
| 3089 // and set condition code accordingly |
| 3090 int64_t temp = static_cast<int64_t>(r2_val); |
| 3091 if (temp < INT_MIN || temp > INT_MAX) { |
| 3092 condition_reg_ = CC_OF; |
| 3093 } |
| 3094 r1_val = static_cast<int32_t>(r2_val); |
| 3095 break; |
| 3096 } |
| 3097 case ROUND_TOWARD_PLUS_INFINITE: { |
| 3098 r1_val = static_cast<int32_t>(std::ceil(r2_val)); |
| 3099 break; |
| 3100 } |
| 3101 case ROUND_TOWARD_MINUS_INFINITE: { |
| 3102 // check for overflow, cast r2_val to 64bit integer |
| 3103 // then check value within the range of INT_MIN and INT_MAX |
| 3104 // and set condition code accordingly |
| 3105 int64_t temp = static_cast<int64_t>(std::floor(r2_val)); |
| 3106 if (temp < INT_MIN || temp > INT_MAX) { |
| 3107 condition_reg_ = CC_OF; |
| 3108 } |
| 3109 r1_val = static_cast<int32_t>(std::floor(r2_val)); |
| 3110 break; |
| 3111 } |
| 3112 default: |
| 3113 UNREACHABLE(); |
| 3114 } |
| 3115 set_low_register(r1, r1_val); |
| 3116 break; |
| 3117 } |
| 3118 case CGDBR: { |
| 3119 int mask_val = rreInstr->M3Value(); |
| 3120 int64_t r1_val = 0; |
| 3121 |
| 3122 if (r2_val == 0.0) |
| 3123 condition_reg_ = 8; |
| 3124 else if (r2_val < 0.0) |
| 3125 condition_reg_ = 4; |
| 3126 else if (r2_val > 0.0) |
| 3127 condition_reg_ = 2; |
| 3128 else |
| 3129 condition_reg_ = 1; |
| 3130 |
| 3131 switch (mask_val) { |
| 3132 case CURRENT_ROUNDING_MODE: |
| 3133 case ROUND_TO_NEAREST_WITH_TIES_AWAY_FROM_0: |
| 3134 case ROUND_TO_PREPARE_FOR_SHORTER_PRECISION: { |
| 3135 UNIMPLEMENTED(); |
| 3136 break; |
| 3137 } |
| 3138 case ROUND_TO_NEAREST_WITH_TIES_TO_EVEN: { |
| 3139 double ceil_val = std::ceil(r2_val); |
| 3140 double floor_val = std::floor(r2_val); |
| 3141 if (std::abs(r2_val - floor_val) > std::abs(r2_val - ceil_val)) { |
| 3142 r1_val = static_cast<int64_t>(ceil_val); |
| 3143 } else if (std::abs(r2_val - floor_val) < |
| 3144 std::abs(r2_val - ceil_val)) { |
| 3145 r1_val = static_cast<int64_t>(floor_val); |
| 3146 } else { // check which one is even: |
| 3147 int64_t c_v = static_cast<int64_t>(ceil_val); |
| 3148 int64_t f_v = static_cast<int64_t>(floor_val); |
| 3149 if (f_v % 2 == 0) |
| 3150 r1_val = f_v; |
| 3151 else |
| 3152 r1_val = c_v; |
| 3153 } |
| 3154 break; |
| 3155 } |
| 3156 case ROUND_TOWARD_0: { |
| 3157 r1_val = static_cast<int64_t>(r2_val); |
| 3158 break; |
| 3159 } |
| 3160 case ROUND_TOWARD_PLUS_INFINITE: { |
| 3161 r1_val = static_cast<int64_t>(std::ceil(r2_val)); |
| 3162 break; |
| 3163 } |
| 3164 case ROUND_TOWARD_MINUS_INFINITE: { |
| 3165 r1_val = static_cast<int64_t>(std::floor(r2_val)); |
| 3166 break; |
| 3167 } |
| 3168 default: |
| 3169 UNREACHABLE(); |
| 3170 } |
| 3171 set_register(r1, r1_val); |
| 3172 break; |
| 3173 } |
| 3174 case CGEBR: { |
| 3175 int mask_val = rreInstr->M3Value(); |
| 3176 int64_t r1_val = 0; |
| 3177 |
| 3178 if (r2_fval == 0.0) |
| 3179 condition_reg_ = 8; |
| 3180 else if (r2_fval < 0.0) |
| 3181 condition_reg_ = 4; |
| 3182 else if (r2_fval > 0.0) |
| 3183 condition_reg_ = 2; |
| 3184 else |
| 3185 condition_reg_ = 1; |
| 3186 |
| 3187 switch (mask_val) { |
| 3188 case CURRENT_ROUNDING_MODE: |
| 3189 case ROUND_TO_NEAREST_WITH_TIES_AWAY_FROM_0: |
| 3190 case ROUND_TO_PREPARE_FOR_SHORTER_PRECISION: { |
| 3191 UNIMPLEMENTED(); |
| 3192 break; |
| 3193 } |
| 3194 case ROUND_TO_NEAREST_WITH_TIES_TO_EVEN: { |
| 3195 float ceil_val = std::ceil(r2_fval); |
| 3196 float floor_val = std::floor(r2_fval); |
| 3197 if (std::abs(r2_fval - floor_val) > std::abs(r2_fval - ceil_val)) { |
| 3198 r1_val = static_cast<int64_t>(ceil_val); |
| 3199 } else if (std::abs(r2_fval - floor_val) < |
| 3200 std::abs(r2_fval - ceil_val)) { |
| 3201 r1_val = static_cast<int64_t>(floor_val); |
| 3202 } else { // check which one is even: |
| 3203 int64_t c_v = static_cast<int64_t>(ceil_val); |
| 3204 int64_t f_v = static_cast<int64_t>(floor_val); |
| 3205 if (f_v % 2 == 0) |
| 3206 r1_val = f_v; |
| 3207 else |
| 3208 r1_val = c_v; |
| 3209 } |
| 3210 break; |
| 3211 } |
| 3212 case ROUND_TOWARD_0: { |
| 3213 r1_val = static_cast<int64_t>(r2_fval); |
| 3214 break; |
| 3215 } |
| 3216 case ROUND_TOWARD_PLUS_INFINITE: { |
| 3217 r1_val = static_cast<int64_t>(std::ceil(r2_fval)); |
| 3218 break; |
| 3219 } |
| 3220 case ROUND_TOWARD_MINUS_INFINITE: { |
| 3221 r1_val = static_cast<int64_t>(std::floor(r2_fval)); |
| 3222 break; |
| 3223 } |
| 3224 default: |
| 3225 UNREACHABLE(); |
| 3226 } |
| 3227 set_register(r1, r1_val); |
| 3228 break; |
| 3229 } |
| 3230 case CFEBR: { |
| 3231 int mask_val = rreInstr->M3Value(); |
| 3232 int32_t r1_val = 0; |
| 3233 |
| 3234 if (r2_fval == 0.0) |
| 3235 condition_reg_ = 8; |
| 3236 else if (r2_fval < 0.0) |
| 3237 condition_reg_ = 4; |
| 3238 else if (r2_fval > 0.0) |
| 3239 condition_reg_ = 2; |
| 3240 else |
| 3241 condition_reg_ = 1; |
| 3242 |
| 3243 switch (mask_val) { |
| 3244 case CURRENT_ROUNDING_MODE: |
| 3245 case ROUND_TO_PREPARE_FOR_SHORTER_PRECISION: { |
| 3246 r1_val = static_cast<int32_t>(r2_fval); |
| 3247 break; |
| 3248 } |
| 3249 case ROUND_TO_NEAREST_WITH_TIES_AWAY_FROM_0: { |
| 3250 float ceil_val = std::ceil(r2_fval); |
| 3251 float floor_val = std::floor(r2_fval); |
| 3252 float sub_val1 = std::fabs(r2_fval - floor_val); |
| 3253 float sub_val2 = std::fabs(r2_fval - ceil_val); |
| 3254 if (sub_val1 > sub_val2) { |
| 3255 r1_val = static_cast<int32_t>(ceil_val); |
| 3256 } else if (sub_val1 < sub_val2) { |
| 3257 r1_val = static_cast<int32_t>(floor_val); |
| 3258 } else { // round away from zero: |
| 3259 if (r2_fval > 0.0) { |
| 3260 r1_val = static_cast<int32_t>(ceil_val); |
| 3261 } else { |
| 3262 r1_val = static_cast<int32_t>(floor_val); |
| 3263 } |
| 3264 } |
| 3265 break; |
| 3266 } |
| 3267 case ROUND_TO_NEAREST_WITH_TIES_TO_EVEN: { |
| 3268 float ceil_val = std::ceil(r2_fval); |
| 3269 float floor_val = std::floor(r2_fval); |
| 3270 float sub_val1 = std::fabs(r2_fval - floor_val); |
| 3271 float sub_val2 = std::fabs(r2_fval - ceil_val); |
| 3272 if (sub_val1 > sub_val2) { |
| 3273 r1_val = static_cast<int32_t>(ceil_val); |
| 3274 } else if (sub_val1 < sub_val2) { |
| 3275 r1_val = static_cast<int32_t>(floor_val); |
| 3276 } else { // check which one is even: |
| 3277 int32_t c_v = static_cast<int32_t>(ceil_val); |
| 3278 int32_t f_v = static_cast<int32_t>(floor_val); |
| 3279 if (f_v % 2 == 0) |
| 3280 r1_val = f_v; |
| 3281 else |
| 3282 r1_val = c_v; |
| 3283 } |
| 3284 break; |
| 3285 } |
| 3286 case ROUND_TOWARD_0: { |
| 3287 // check for overflow, cast r2_fval to 64bit integer |
| 3288 // then check value within the range of INT_MIN and INT_MAX |
| 3289 // and set condition code accordingly |
| 3290 int64_t temp = static_cast<int64_t>(r2_fval); |
| 3291 if (temp < INT_MIN || temp > INT_MAX) { |
| 3292 condition_reg_ = CC_OF; |
| 3293 } |
| 3294 r1_val = static_cast<int32_t>(r2_fval); |
| 3295 break; |
| 3296 } |
| 3297 case ROUND_TOWARD_PLUS_INFINITE: { |
| 3298 r1_val = static_cast<int32_t>(std::ceil(r2_fval)); |
| 3299 break; |
| 3300 } |
| 3301 case ROUND_TOWARD_MINUS_INFINITE: { |
| 3302 // check for overflow, cast r2_fval to 64bit integer |
| 3303 // then check value within the range of INT_MIN and INT_MAX |
| 3304 // and set condition code accordingly |
| 3305 int64_t temp = static_cast<int64_t>(std::floor(r2_fval)); |
| 3306 if (temp < INT_MIN || temp > INT_MAX) { |
| 3307 condition_reg_ = CC_OF; |
| 3308 } |
| 3309 r1_val = static_cast<int32_t>(std::floor(r2_fval)); |
| 3310 break; |
| 3311 } |
| 3312 default: |
| 3313 UNREACHABLE(); |
| 3314 } |
| 3315 set_low_register(r1, r1_val); |
| 3316 |
| 3317 break; |
| 3318 } |
| 3319 default: |
| 3320 UNREACHABLE(); |
| 3321 } |
| 3322 } |
| 3323 |
| 3324 /** |
| 3325 * Decodes and simulates four byte floating point instructions |
| 3326 */ |
| 3327 bool Simulator::DecodeFourByteFloatingPoint(Instruction* instr) { |
| 3328 Opcode op = instr->S390OpcodeValue(); |
| 3329 |
| 3330 switch (op) { |
| 3331 case ADBR: |
| 3332 case AEBR: |
| 3333 case SDBR: |
| 3334 case SEBR: |
| 3335 case MDBR: |
| 3336 case MEEBR: |
| 3337 case MADBR: |
| 3338 case DDBR: |
| 3339 case DEBR: |
| 3340 case CDBR: |
| 3341 case CEBR: |
| 3342 case CDFBR: |
| 3343 case CDGBR: |
| 3344 case CEGBR: |
| 3345 case CGEBR: |
| 3346 case CFDBR: |
| 3347 case CGDBR: |
| 3348 case SQDBR: |
| 3349 case SQEBR: |
| 3350 case CFEBR: |
| 3351 case CEFBR: |
| 3352 case LCDBR: |
| 3353 case LPDBR: |
| 3354 case LPEBR: { |
| 3355 RREInstruction* rreInstr = reinterpret_cast<RREInstruction*>(instr); |
| 3356 int r1 = rreInstr->R1Value(); |
| 3357 int r2 = rreInstr->R2Value(); |
| 3358 double r1_val = get_double_from_d_register(r1); |
| 3359 double r2_val = get_double_from_d_register(r2); |
| 3360 float fr1_val = get_float32_from_d_register(r1); |
| 3361 float fr2_val = get_float32_from_d_register(r2); |
| 3362 if (op == ADBR) { |
| 3363 r1_val += r2_val; |
| 3364 set_d_register_from_double(r1, r1_val); |
| 3365 SetS390ConditionCode<double>(r1_val, 0); |
| 3366 } else if (op == AEBR) { |
| 3367 fr1_val += fr2_val; |
| 3368 set_d_register_from_float32(r1, fr1_val); |
| 3369 SetS390ConditionCode<float>(fr1_val, 0); |
| 3370 } else if (op == SDBR) { |
| 3371 r1_val -= r2_val; |
| 3372 set_d_register_from_double(r1, r1_val); |
| 3373 SetS390ConditionCode<double>(r1_val, 0); |
| 3374 } else if (op == SEBR) { |
| 3375 fr1_val -= fr2_val; |
| 3376 set_d_register_from_float32(r1, fr1_val); |
| 3377 SetS390ConditionCode<float>(fr1_val, 0); |
| 3378 } else if (op == MDBR) { |
| 3379 r1_val *= r2_val; |
| 3380 set_d_register_from_double(r1, r1_val); |
| 3381 SetS390ConditionCode<double>(r1_val, 0); |
| 3382 } else if (op == MEEBR) { |
| 3383 fr1_val *= fr2_val; |
| 3384 set_d_register_from_float32(r1, fr1_val); |
| 3385 SetS390ConditionCode<float>(fr1_val, 0); |
| 3386 } else if (op == MADBR) { |
| 3387 RRDInstruction* rrdInstr = reinterpret_cast<RRDInstruction*>(instr); |
| 3388 int r1 = rrdInstr->R1Value(); |
| 3389 int r2 = rrdInstr->R2Value(); |
| 3390 int r3 = rrdInstr->R3Value(); |
| 3391 double r1_val = get_double_from_d_register(r1); |
| 3392 double r2_val = get_double_from_d_register(r2); |
| 3393 double r3_val = get_double_from_d_register(r3); |
| 3394 r1_val += r2_val * r3_val; |
| 3395 set_d_register_from_double(r1, r1_val); |
| 3396 SetS390ConditionCode<double>(r1_val, 0); |
| 3397 } else if (op == DDBR) { |
| 3398 r1_val /= r2_val; |
| 3399 set_d_register_from_double(r1, r1_val); |
| 3400 SetS390ConditionCode<double>(r1_val, 0); |
| 3401 } else if (op == DEBR) { |
| 3402 fr1_val /= fr2_val; |
| 3403 set_d_register_from_float32(r1, fr1_val); |
| 3404 SetS390ConditionCode<float>(fr1_val, 0); |
| 3405 } else if (op == CDBR) { |
| 3406 if (isNaN(r1_val) || isNaN(r2_val)) { |
| 3407 condition_reg_ = CC_OF; |
| 3408 } else { |
| 3409 SetS390ConditionCode<double>(r1_val, r2_val); |
| 3410 } |
| 3411 } else if (op == CEBR) { |
| 3412 if (isNaN(r1_val) || isNaN(r2_val)) { |
| 3413 condition_reg_ = CC_OF; |
| 3414 } else { |
| 3415 SetS390ConditionCode<float>(r1_val, r2_val); |
| 3416 } |
| 3417 } else if (op == CDGBR) { |
| 3418 int64_t r2_val = get_register(r2); |
| 3419 double r1_val = static_cast<double>(r2_val); |
| 3420 set_d_register_from_double(r1, r1_val); |
| 3421 } else if (op == CEGBR) { |
| 3422 int64_t fr2_val = get_register(r2); |
| 3423 float fr1_val = static_cast<float>(fr2_val); |
| 3424 set_d_register_from_float32(r1, fr1_val); |
| 3425 } else if (op == CDFBR) { |
| 3426 int32_t r2_val = get_low_register<int32_t>(r2); |
| 3427 double r1_val = static_cast<double>(r2_val); |
| 3428 set_d_register_from_double(r1, r1_val); |
| 3429 } else if (op == CEFBR) { |
| 3430 int32_t fr2_val = get_low_register<int32_t>(r2); |
| 3431 float fr1_val = static_cast<float>(fr2_val); |
| 3432 set_d_register_from_float32(r1, fr1_val); |
| 3433 } else if (op == CFDBR) { |
| 3434 DecodeFourByteFloatingPointRound(instr); |
| 3435 } else if (op == CGDBR) { |
| 3436 DecodeFourByteFloatingPointRound(instr); |
| 3437 } else if (op == CGEBR) { |
| 3438 DecodeFourByteFloatingPointRound(instr); |
| 3439 } else if (op == SQDBR) { |
| 3440 r1_val = std::sqrt(r2_val); |
| 3441 set_d_register_from_double(r1, r1_val); |
| 3442 } else if (op == SQEBR) { |
| 3443 r1_val = std::sqrt(r2_val); |
| 3444 set_d_register_from_float32(r1, r1_val); |
| 3445 } else if (op == CFEBR) { |
| 3446 DecodeFourByteFloatingPointRound(instr); |
| 3447 } else if (op == LCDBR) { |
| 3448 r1_val = -r2_val; |
| 3449 set_d_register_from_double(r1, r1_val); |
| 3450 if (r2_val != r2_val) { // input is NaN |
| 3451 condition_reg_ = CC_OF; |
| 3452 } else if (r2_val == 0) { |
| 3453 condition_reg_ = CC_EQ; |
| 3454 } else if (r2_val < 0) { |
| 3455 condition_reg_ = CC_LT; |
| 3456 } else if (r2_val > 0) { |
| 3457 condition_reg_ = CC_GT; |
| 3458 } |
| 3459 } else if (op == LPDBR) { |
| 3460 r1_val = std::fabs(r2_val); |
| 3461 set_d_register_from_double(r1, r1_val); |
| 3462 if (r2_val != r2_val) { // input is NaN |
| 3463 condition_reg_ = CC_OF; |
| 3464 } else if (r2_val == 0) { |
| 3465 condition_reg_ = CC_EQ; |
| 3466 } else { |
| 3467 condition_reg_ = CC_GT; |
| 3468 } |
| 3469 } else if (op == LPEBR) { |
| 3470 fr1_val = std::fabs(fr2_val); |
| 3471 set_d_register_from_float32(r1, fr1_val); |
| 3472 if (fr2_val != fr2_val) { // input is NaN |
| 3473 condition_reg_ = CC_OF; |
| 3474 } else if (fr2_val == 0) { |
| 3475 condition_reg_ = CC_EQ; |
| 3476 } else { |
| 3477 condition_reg_ = CC_GT; |
| 3478 } |
| 3479 } else { |
| 3480 UNREACHABLE(); |
| 3481 } |
| 3482 break; |
| 3483 } |
| 3484 case CDLFBR: |
| 3485 case CDLGBR: |
| 3486 case CELGBR: |
| 3487 case CLFDBR: |
| 3488 case CELFBR: |
| 3489 case CLGDBR: |
| 3490 case CLGEBR: { |
| 3491 DecodeFourByteFloatingPointIntConversion(instr); |
| 3492 break; |
| 3493 } |
| 3494 case TMLL: { |
| 3495 RIInstruction* riinst = reinterpret_cast<RIInstruction*>(instr); |
| 3496 int r1 = riinst->R1Value(); |
| 3497 int mask = riinst->I2Value() & 0x0000FFFF; |
| 3498 if (mask == 0) { |
| 3499 condition_reg_ = 0x0; |
| 3500 break; |
| 3501 } |
| 3502 uint32_t r1_val = get_low_register<uint32_t>(r1); |
| 3503 r1_val = r1_val & 0x0000FFFF; // uses only the last 16bits |
| 3504 |
| 3505 // Test if all selected bits are Zero |
| 3506 bool allSelectedBitsAreZeros = true; |
| 3507 for (int i = 0; i < 15; i++) { |
| 3508 if (mask & (1 << i)) { |
| 3509 if (r1_val & (1 << i)) { |
| 3510 allSelectedBitsAreZeros = false; |
| 3511 break; |
| 3512 } |
| 3513 } |
| 3514 } |
| 3515 if (allSelectedBitsAreZeros) { |
| 3516 condition_reg_ = 0x8; |
| 3517 break; // Done! |
| 3518 } |
| 3519 |
| 3520 // Test if all selected bits are one |
| 3521 bool allSelectedBitsAreOnes = true; |
| 3522 for (int i = 0; i < 15; i++) { |
| 3523 if (mask & (1 << i)) { |
| 3524 if (!(r1_val & (1 << i))) { |
| 3525 allSelectedBitsAreOnes = false; |
| 3526 break; |
| 3527 } |
| 3528 } |
| 3529 } |
| 3530 if (allSelectedBitsAreOnes) { |
| 3531 condition_reg_ = 0x1; |
| 3532 break; // Done! |
| 3533 } |
| 3534 |
| 3535 // Now we know selected bits mixed zeros and ones |
| 3536 // Test if the leftmost bit is zero or one |
| 3537 for (int i = 14; i >= 0; i--) { |
| 3538 if (mask & (1 << i)) { |
| 3539 if (r1_val & (1 << i)) { |
| 3540 // leftmost bit is one |
| 3541 condition_reg_ = 0x2; |
| 3542 } else { |
| 3543 // leftmost bit is zero |
| 3544 condition_reg_ = 0x4; |
| 3545 } |
| 3546 break; // Done! |
| 3547 } |
| 3548 } |
| 3549 break; |
| 3550 } |
| 3551 case LEDBR: { |
| 3552 RREInstruction* rreInst = reinterpret_cast<RREInstruction*>(instr); |
| 3553 int r1 = rreInst->R1Value(); |
| 3554 int r2 = rreInst->R2Value(); |
| 3555 double r2_val = get_double_from_d_register(r2); |
| 3556 set_d_register_from_float32(r1, static_cast<float>(r2_val)); |
| 3557 break; |
| 3558 } |
| 3559 case FIDBRA: { |
| 3560 RRFInstruction* rrfInst = reinterpret_cast<RRFInstruction*>(instr); |
| 3561 int r1 = rrfInst->R1Value(); |
| 3562 int r2 = rrfInst->R2Value(); |
| 3563 int m3 = rrfInst->M3Value(); |
| 3564 double r2_val = get_double_from_d_register(r2); |
| 3565 DCHECK(rrfInst->M4Value() == 0); |
| 3566 switch (m3) { |
| 3567 case Assembler::FIDBRA_ROUND_TO_NEAREST_AWAY_FROM_0: |
| 3568 set_d_register_from_double(r1, round(r2_val)); |
| 3569 break; |
| 3570 case Assembler::FIDBRA_ROUND_TOWARD_0: |
| 3571 set_d_register_from_double(r1, trunc(r2_val)); |
| 3572 break; |
| 3573 case Assembler::FIDBRA_ROUND_TOWARD_POS_INF: |
| 3574 set_d_register_from_double(r1, std::ceil(r2_val)); |
| 3575 break; |
| 3576 case Assembler::FIDBRA_ROUND_TOWARD_NEG_INF: |
| 3577 set_d_register_from_double(r1, std::floor(r2_val)); |
| 3578 break; |
| 3579 default: |
| 3580 UNIMPLEMENTED(); |
| 3581 break; |
| 3582 } |
| 3583 break; |
| 3584 } |
| 3585 case FIEBRA: { |
| 3586 RRFInstruction* rrfInst = reinterpret_cast<RRFInstruction*>(instr); |
| 3587 int r1 = rrfInst->R1Value(); |
| 3588 int r2 = rrfInst->R2Value(); |
| 3589 int m3 = rrfInst->M3Value(); |
| 3590 float r2_val = get_float32_from_d_register(r2); |
| 3591 DCHECK(rrfInst->M4Value() == 0); |
| 3592 switch (m3) { |
| 3593 case Assembler::FIDBRA_ROUND_TO_NEAREST_AWAY_FROM_0: |
| 3594 set_d_register_from_float32(r1, round(r2_val)); |
| 3595 break; |
| 3596 case Assembler::FIDBRA_ROUND_TOWARD_0: |
| 3597 set_d_register_from_float32(r1, trunc(r2_val)); |
| 3598 break; |
| 3599 case Assembler::FIDBRA_ROUND_TOWARD_POS_INF: |
| 3600 set_d_register_from_float32(r1, std::ceil(r2_val)); |
| 3601 break; |
| 3602 case Assembler::FIDBRA_ROUND_TOWARD_NEG_INF: |
| 3603 set_d_register_from_float32(r1, std::floor(r2_val)); |
| 3604 break; |
| 3605 default: |
| 3606 UNIMPLEMENTED(); |
| 3607 break; |
| 3608 } |
| 3609 break; |
| 3610 } |
| 3611 case MSDBR: { |
| 3612 UNIMPLEMENTED(); |
| 3613 break; |
| 3614 } |
| 3615 case LDEBR: { |
| 3616 RREInstruction* rreInstr = reinterpret_cast<RREInstruction*>(instr); |
| 3617 int r1 = rreInstr->R1Value(); |
| 3618 int r2 = rreInstr->R2Value(); |
| 3619 float fp_val = get_float32_from_d_register(r2); |
| 3620 double db_val = static_cast<double>(fp_val); |
| 3621 set_d_register_from_double(r1, db_val); |
| 3622 break; |
| 3623 } |
| 3624 default: { |
| 3625 UNREACHABLE(); |
| 3626 return false; |
| 3627 } |
| 3628 } |
| 3629 return true; |
| 3630 } |
| 3631 |
| 3632 // Decode routine for six-byte instructions |
| 3633 bool Simulator::DecodeSixByte(Instruction* instr) { |
| 3634 Opcode op = instr->S390OpcodeValue(); |
| 3635 |
| 3636 // Pre-cast instruction to various types |
| 3637 RIEInstruction* rieInstr = reinterpret_cast<RIEInstruction*>(instr); |
| 3638 RILInstruction* rilInstr = reinterpret_cast<RILInstruction*>(instr); |
| 3639 RSYInstruction* rsyInstr = reinterpret_cast<RSYInstruction*>(instr); |
| 3640 RXEInstruction* rxeInstr = reinterpret_cast<RXEInstruction*>(instr); |
| 3641 RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr); |
| 3642 SIYInstruction* siyInstr = reinterpret_cast<SIYInstruction*>(instr); |
| 3643 SILInstruction* silInstr = reinterpret_cast<SILInstruction*>(instr); |
| 3644 SSInstruction* ssInstr = reinterpret_cast<SSInstruction*>(instr); |
| 3645 |
| 3646 switch (op) { |
| 3647 case CLIY: { |
| 3648 // Compare Immediate (Mem - Imm) (8) |
| 3649 int b1 = siyInstr->B1Value(); |
| 3650 int64_t b1_val = (b1 == 0) ? 0 : get_register(b1); |
| 3651 intptr_t d1_val = siyInstr->D1Value(); |
| 3652 intptr_t addr = b1_val + d1_val; |
| 3653 uint8_t mem_val = ReadB(addr); |
| 3654 uint8_t imm_val = siyInstr->I2Value(); |
| 3655 SetS390ConditionCode<uint8_t>(mem_val, imm_val); |
| 3656 break; |
| 3657 } |
| 3658 case TMY: { |
| 3659 // Test Under Mask (Mem - Imm) (8) |
| 3660 int b1 = siyInstr->B1Value(); |
| 3661 int64_t b1_val = (b1 == 0) ? 0 : get_register(b1); |
| 3662 intptr_t d1_val = siyInstr->D1Value(); |
| 3663 intptr_t addr = b1_val + d1_val; |
| 3664 uint8_t mem_val = ReadB(addr); |
| 3665 uint8_t imm_val = siyInstr->I2Value(); |
| 3666 uint8_t selected_bits = mem_val & imm_val; |
| 3667 // CC0: Selected bits are zero |
| 3668 // CC1: Selected bits mixed zeros and ones |
| 3669 // CC3: Selected bits all ones |
| 3670 if (0 == selected_bits) { |
| 3671 condition_reg_ = CC_EQ; // CC0 |
| 3672 } else if (selected_bits == imm_val) { |
| 3673 condition_reg_ = 0x1; // CC3 |
| 3674 } else { |
| 3675 condition_reg_ = 0x4; // CC1 |
| 3676 } |
| 3677 break; |
| 3678 } |
| 3679 case LDEB: { |
| 3680 // Load Float |
| 3681 int r1 = rxeInstr->R1Value(); |
| 3682 int rb = rxeInstr->B2Value(); |
| 3683 int rx = rxeInstr->X2Value(); |
| 3684 int offset = rxeInstr->D2Value(); |
| 3685 int64_t rb_val = (rb == 0) ? 0 : get_register(rb); |
| 3686 int64_t rx_val = (rx == 0) ? 0 : get_register(rx); |
| 3687 double ret = static_cast<double>( |
| 3688 *reinterpret_cast<float*>(rx_val + rb_val + offset)); |
| 3689 set_d_register_from_double(r1, ret); |
| 3690 break; |
| 3691 } |
| 3692 case LAY: { |
| 3693 // Load Address |
| 3694 int r1 = rxyInstr->R1Value(); |
| 3695 int rb = rxyInstr->B2Value(); |
| 3696 int rx = rxyInstr->X2Value(); |
| 3697 int offset = rxyInstr->D2Value(); |
| 3698 int64_t rb_val = (rb == 0) ? 0 : get_register(rb); |
| 3699 int64_t rx_val = (rx == 0) ? 0 : get_register(rx); |
| 3700 set_register(r1, rx_val + rb_val + offset); |
| 3701 break; |
| 3702 } |
| 3703 case LARL: { |
| 3704 // Load Addresss Relative Long |
| 3705 int r1 = rilInstr->R1Value(); |
| 3706 intptr_t offset = rilInstr->I2Value() * 2; |
| 3707 set_register(r1, get_pc() + offset); |
| 3708 break; |
| 3709 } |
| 3710 case LLILF: { |
| 3711 // Load Logical into lower 32-bits (zero extend upper 32-bits) |
| 3712 int r1 = rilInstr->R1Value(); |
| 3713 uint64_t imm = static_cast<uint64_t>(rilInstr->I2UnsignedValue()); |
| 3714 set_register(r1, imm); |
| 3715 break; |
| 3716 } |
| 3717 case LLIHF: { |
| 3718 // Load Logical Immediate into high word |
| 3719 int r1 = rilInstr->R1Value(); |
| 3720 uint64_t imm = static_cast<uint64_t>(rilInstr->I2UnsignedValue()); |
| 3721 set_register(r1, imm << 32); |
| 3722 break; |
| 3723 } |
| 3724 case OILF: |
| 3725 case NILF: |
| 3726 case IILF: { |
| 3727 // Bitwise Op on lower 32-bits |
| 3728 int r1 = rilInstr->R1Value(); |
| 3729 uint32_t imm = rilInstr->I2UnsignedValue(); |
| 3730 uint32_t alu_out = get_low_register<uint32_t>(r1); |
| 3731 if (NILF == op) { |
| 3732 alu_out &= imm; |
| 3733 SetS390BitWiseConditionCode<uint32_t>(alu_out); |
| 3734 } else if (OILF == op) { |
| 3735 alu_out |= imm; |
| 3736 SetS390BitWiseConditionCode<uint32_t>(alu_out); |
| 3737 } else if (op == IILF) { |
| 3738 alu_out = imm; |
| 3739 } else { |
| 3740 DCHECK(false); |
| 3741 } |
| 3742 set_low_register(r1, alu_out); |
| 3743 break; |
| 3744 } |
| 3745 case OIHF: |
| 3746 case NIHF: |
| 3747 case IIHF: { |
| 3748 // Bitwise Op on upper 32-bits |
| 3749 int r1 = rilInstr->R1Value(); |
| 3750 uint32_t imm = rilInstr->I2Value(); |
| 3751 uint32_t alu_out = get_high_register<uint32_t>(r1); |
| 3752 if (op == NIHF) { |
| 3753 alu_out &= imm; |
| 3754 SetS390BitWiseConditionCode<uint32_t>(alu_out); |
| 3755 } else if (op == OIHF) { |
| 3756 alu_out |= imm; |
| 3757 SetS390BitWiseConditionCode<uint32_t>(alu_out); |
| 3758 } else if (op == IIHF) { |
| 3759 alu_out = imm; |
| 3760 } else { |
| 3761 DCHECK(false); |
| 3762 } |
| 3763 set_high_register(r1, alu_out); |
| 3764 break; |
| 3765 } |
| 3766 case CLFI: { |
| 3767 // Compare Logical with Immediate (32) |
| 3768 int r1 = rilInstr->R1Value(); |
| 3769 uint32_t imm = rilInstr->I2UnsignedValue(); |
| 3770 SetS390ConditionCode<uint32_t>(get_low_register<uint32_t>(r1), imm); |
| 3771 break; |
| 3772 } |
| 3773 case CFI: { |
| 3774 // Compare with Immediate (32) |
| 3775 int r1 = rilInstr->R1Value(); |
| 3776 int32_t imm = rilInstr->I2Value(); |
| 3777 SetS390ConditionCode<int32_t>(get_low_register<int32_t>(r1), imm); |
| 3778 break; |
| 3779 } |
| 3780 case CLGFI: { |
| 3781 // Compare Logical with Immediate (64) |
| 3782 int r1 = rilInstr->R1Value(); |
| 3783 uint64_t imm = static_cast<uint64_t>(rilInstr->I2UnsignedValue()); |
| 3784 SetS390ConditionCode<uint64_t>(get_register(r1), imm); |
| 3785 break; |
| 3786 } |
| 3787 case CGFI: { |
| 3788 // Compare with Immediate (64) |
| 3789 int r1 = rilInstr->R1Value(); |
| 3790 int64_t imm = static_cast<int64_t>(rilInstr->I2Value()); |
| 3791 SetS390ConditionCode<int64_t>(get_register(r1), imm); |
| 3792 break; |
| 3793 } |
| 3794 case BRASL: { |
| 3795 // Branch and Save Relative Long |
| 3796 int r1 = rilInstr->R1Value(); |
| 3797 intptr_t d2 = rilInstr->I2Value(); |
| 3798 intptr_t pc = get_pc(); |
| 3799 set_register(r1, pc + 6); // save next instruction to register |
| 3800 set_pc(pc + d2 * 2); // update register |
| 3801 break; |
| 3802 } |
| 3803 case BRCL: { |
| 3804 // Branch on Condition Relative Long |
| 3805 Condition m1 = (Condition)rilInstr->R1Value(); |
| 3806 if (TestConditionCode((Condition)m1)) { |
| 3807 intptr_t offset = rilInstr->I2Value() * 2; |
| 3808 set_pc(get_pc() + offset); |
| 3809 } |
| 3810 break; |
| 3811 } |
| 3812 case LMG: |
| 3813 case STMG: { |
| 3814 // Store Multiple 64-bits. |
| 3815 int r1 = rsyInstr->R1Value(); |
| 3816 int r3 = rsyInstr->R3Value(); |
| 3817 int rb = rsyInstr->B2Value(); |
| 3818 int offset = rsyInstr->D2Value(); |
| 3819 |
| 3820 // Regs roll around if r3 is less than r1. |
| 3821 // Artifically increase r3 by 16 so we can calculate |
| 3822 // the number of regs stored properly. |
| 3823 if (r3 < r1) r3 += 16; |
| 3824 |
| 3825 int64_t rb_val = (rb == 0) ? 0 : get_register(rb); |
| 3826 |
| 3827 // Store each register in ascending order. |
| 3828 for (int i = 0; i <= r3 - r1; i++) { |
| 3829 if (op == LMG) { |
| 3830 int64_t value = ReadDW(rb_val + offset + 8 * i); |
| 3831 set_register((r1 + i) % 16, value); |
| 3832 } else if (op == STMG) { |
| 3833 int64_t value = get_register((r1 + i) % 16); |
| 3834 WriteDW(rb_val + offset + 8 * i, value); |
| 3835 } else { |
| 3836 DCHECK(false); |
| 3837 } |
| 3838 } |
| 3839 break; |
| 3840 } |
| 3841 case SLLK: |
| 3842 case RLL: |
| 3843 case SRLK: { |
| 3844 // For SLLK/SRLL, the 32-bit third operand is shifted the number |
| 3845 // of bits specified by the second-operand address, and the result is |
| 3846 // placed at the first-operand location. Except for when the R1 and R3 |
| 3847 // fields designate the same register, the third operand remains |
| 3848 // unchanged in general register R3. |
| 3849 int r1 = rsyInstr->R1Value(); |
| 3850 int r3 = rsyInstr->R3Value(); |
| 3851 int b2 = rsyInstr->B2Value(); |
| 3852 intptr_t d2 = rsyInstr->D2Value(); |
| 3853 // only takes rightmost 6 bits |
| 3854 int64_t b2_val = (b2 == 0) ? 0 : get_register(b2); |
| 3855 int shiftBits = (b2_val + d2) & 0x3F; |
| 3856 // unsigned |
| 3857 uint32_t r3_val = get_low_register<uint32_t>(r3); |
| 3858 uint32_t alu_out = 0; |
| 3859 if (SLLK == op) { |
| 3860 alu_out = r3_val << shiftBits; |
| 3861 } else if (SRLK == op) { |
| 3862 alu_out = r3_val >> shiftBits; |
| 3863 } else if (RLL == op) { |
| 3864 uint32_t rotateBits = r3_val >> (32 - shiftBits); |
| 3865 alu_out = (r3_val << shiftBits) | (rotateBits); |
| 3866 } else { |
| 3867 UNREACHABLE(); |
| 3868 } |
| 3869 set_low_register(r1, alu_out); |
| 3870 break; |
| 3871 } |
| 3872 case SLLG: |
| 3873 case SRLG: { |
| 3874 // For SLLG/SRLG, the 64-bit third operand is shifted the number |
| 3875 // of bits specified by the second-operand address, and the result is |
| 3876 // placed at the first-operand location. Except for when the R1 and R3 |
| 3877 // fields designate the same register, the third operand remains |
| 3878 // unchanged in general register R3. |
| 3879 int r1 = rsyInstr->R1Value(); |
| 3880 int r3 = rsyInstr->R3Value(); |
| 3881 int b2 = rsyInstr->B2Value(); |
| 3882 intptr_t d2 = rsyInstr->D2Value(); |
| 3883 // only takes rightmost 6 bits |
| 3884 int64_t b2_val = (b2 == 0) ? 0 : get_register(b2); |
| 3885 int shiftBits = (b2_val + d2) & 0x3F; |
| 3886 // unsigned |
| 3887 uint64_t r3_val = get_register(r3); |
| 3888 uint64_t alu_out = 0; |
| 3889 if (op == SLLG) { |
| 3890 alu_out = r3_val << shiftBits; |
| 3891 } else if (op == SRLG) { |
| 3892 alu_out = r3_val >> shiftBits; |
| 3893 } else { |
| 3894 UNREACHABLE(); |
| 3895 } |
| 3896 set_register(r1, alu_out); |
| 3897 break; |
| 3898 } |
| 3899 case SLAK: |
| 3900 case SRAK: { |
| 3901 // 32-bit non-clobbering shift-left/right arithmetic |
| 3902 int r1 = rsyInstr->R1Value(); |
| 3903 int r3 = rsyInstr->R3Value(); |
| 3904 int b2 = rsyInstr->B2Value(); |
| 3905 intptr_t d2 = rsyInstr->D2Value(); |
| 3906 // only takes rightmost 6 bits |
| 3907 int64_t b2_val = (b2 == 0) ? 0 : get_register(b2); |
| 3908 int shiftBits = (b2_val + d2) & 0x3F; |
| 3909 int32_t r3_val = get_low_register<int32_t>(r3); |
| 3910 int32_t alu_out = 0; |
| 3911 bool isOF = false; |
| 3912 if (op == SLAK) { |
| 3913 isOF = CheckOverflowForShiftLeft(r3_val, shiftBits); |
| 3914 alu_out = r3_val << shiftBits; |
| 3915 } else if (op == SRAK) { |
| 3916 alu_out = r3_val >> shiftBits; |
| 3917 } |
| 3918 set_low_register(r1, alu_out); |
| 3919 SetS390ConditionCode<int32_t>(alu_out, 0); |
| 3920 SetS390OverflowCode(isOF); |
| 3921 break; |
| 3922 } |
| 3923 case SLAG: |
| 3924 case SRAG: { |
| 3925 // 64-bit non-clobbering shift-left/right arithmetic |
| 3926 int r1 = rsyInstr->R1Value(); |
| 3927 int r3 = rsyInstr->R3Value(); |
| 3928 int b2 = rsyInstr->B2Value(); |
| 3929 intptr_t d2 = rsyInstr->D2Value(); |
| 3930 // only takes rightmost 6 bits |
| 3931 int64_t b2_val = (b2 == 0) ? 0 : get_register(b2); |
| 3932 int shiftBits = (b2_val + d2) & 0x3F; |
| 3933 int64_t r3_val = get_register(r3); |
| 3934 intptr_t alu_out = 0; |
| 3935 bool isOF = false; |
| 3936 if (op == SLAG) { |
| 3937 isOF = CheckOverflowForShiftLeft(r3_val, shiftBits); |
| 3938 alu_out = r3_val << shiftBits; |
| 3939 } else if (op == SRAG) { |
| 3940 alu_out = r3_val >> shiftBits; |
| 3941 } |
| 3942 set_register(r1, alu_out); |
| 3943 SetS390ConditionCode<intptr_t>(alu_out, 0); |
| 3944 SetS390OverflowCode(isOF); |
| 3945 break; |
| 3946 } |
| 3947 case LMY: |
| 3948 case STMY: { |
| 3949 RSYInstruction* rsyInstr = reinterpret_cast<RSYInstruction*>(instr); |
| 3950 // Load/Store Multiple (32) |
| 3951 int r1 = rsyInstr->R1Value(); |
| 3952 int r3 = rsyInstr->R3Value(); |
| 3953 int b2 = rsyInstr->B2Value(); |
| 3954 int offset = rsyInstr->D2Value(); |
| 3955 |
| 3956 // Regs roll around if r3 is less than r1. |
| 3957 // Artifically increase r3 by 16 so we can calculate |
| 3958 // the number of regs stored properly. |
| 3959 if (r3 < r1) r3 += 16; |
| 3960 |
| 3961 int32_t b2_val = (b2 == 0) ? 0 : get_low_register<int32_t>(b2); |
| 3962 |
| 3963 // Store each register in ascending order. |
| 3964 for (int i = 0; i <= r3 - r1; i++) { |
| 3965 if (op == LMY) { |
| 3966 int32_t value = ReadW(b2_val + offset + 4 * i, instr); |
| 3967 set_low_register((r1 + i) % 16, value); |
| 3968 } else { |
| 3969 int32_t value = get_low_register<int32_t>((r1 + i) % 16); |
| 3970 WriteW(b2_val + offset + 4 * i, value, instr); |
| 3971 } |
| 3972 } |
| 3973 break; |
| 3974 } |
| 3975 case LT: |
| 3976 case LTG: { |
| 3977 // Load and Test (32/64) |
| 3978 int r1 = rxyInstr->R1Value(); |
| 3979 int x2 = rxyInstr->X2Value(); |
| 3980 int b2 = rxyInstr->B2Value(); |
| 3981 int d2 = rxyInstr->D2Value(); |
| 3982 |
| 3983 int64_t x2_val = (x2 == 0) ? 0 : get_register(x2); |
| 3984 int64_t b2_val = (b2 == 0) ? 0 : get_register(b2); |
| 3985 intptr_t addr = x2_val + b2_val + d2; |
| 3986 |
| 3987 if (op == LT) { |
| 3988 int32_t value = ReadW(addr, instr); |
| 3989 set_low_register(r1, value); |
| 3990 SetS390ConditionCode<int32_t>(value, 0); |
| 3991 } else if (op == LTG) { |
| 3992 int64_t value = ReadDW(addr); |
| 3993 set_register(r1, value); |
| 3994 SetS390ConditionCode<int64_t>(value, 0); |
| 3995 } |
| 3996 break; |
| 3997 } |
| 3998 case LY: |
| 3999 case LB: |
| 4000 case LGB: |
| 4001 case LG: |
| 4002 case LGF: |
| 4003 case LGH: |
| 4004 case LLGF: |
| 4005 case STG: |
| 4006 case STY: |
| 4007 case STCY: |
| 4008 case STHY: |
| 4009 case STEY: |
| 4010 case LDY: |
| 4011 case LHY: |
| 4012 case STDY: |
| 4013 case LEY: { |
| 4014 // Miscellaneous Loads and Stores |
| 4015 int r1 = rxyInstr->R1Value(); |
| 4016 int x2 = rxyInstr->X2Value(); |
| 4017 int b2 = rxyInstr->B2Value(); |
| 4018 int d2 = rxyInstr->D2Value(); |
| 4019 int64_t x2_val = (x2 == 0) ? 0 : get_register(x2); |
| 4020 int64_t b2_val = (b2 == 0) ? 0 : get_register(b2); |
| 4021 intptr_t addr = x2_val + b2_val + d2; |
| 4022 if (op == LY) { |
| 4023 uint32_t mem_val = ReadWU(addr, instr); |
| 4024 set_low_register(r1, mem_val); |
| 4025 } else if (op == LB) { |
| 4026 int32_t mem_val = ReadB(addr); |
| 4027 set_low_register(r1, mem_val); |
| 4028 } else if (op == LGB) { |
| 4029 int64_t mem_val = ReadB(addr); |
| 4030 set_register(r1, mem_val); |
| 4031 } else if (op == LG) { |
| 4032 int64_t mem_val = ReadDW(addr); |
| 4033 set_register(r1, mem_val); |
| 4034 } else if (op == LGF) { |
| 4035 int64_t mem_val = static_cast<int64_t>(ReadW(addr, instr)); |
| 4036 set_register(r1, mem_val); |
| 4037 } else if (op == LGH) { |
| 4038 int64_t mem_val = static_cast<int64_t>(ReadH(addr, instr)); |
| 4039 set_register(r1, mem_val); |
| 4040 } else if (op == LLGF) { |
| 4041 // int r1 = rreInst->R1Value(); |
| 4042 // int r2 = rreInst->R2Value(); |
| 4043 // int32_t r2_val = get_low_register<int32_t>(r2); |
| 4044 // uint64_t r2_finalval = (static_cast<uint64_t>(r2_val) |
| 4045 // & 0x00000000ffffffff); |
| 4046 // set_register(r1, r2_finalval); |
| 4047 // break; |
| 4048 uint64_t mem_val = static_cast<uint64_t>(ReadWU(addr, instr)); |
| 4049 set_register(r1, mem_val); |
| 4050 } else if (op == LDY) { |
| 4051 uint64_t dbl_val = *reinterpret_cast<uint64_t*>(addr); |
| 4052 set_d_register(r1, dbl_val); |
| 4053 } else if (op == STEY) { |
| 4054 int64_t frs_val = get_d_register(r1) >> 32; |
| 4055 WriteW(addr, static_cast<int32_t>(frs_val), instr); |
| 4056 } else if (op == LEY) { |
| 4057 float float_val = *reinterpret_cast<float*>(addr); |
| 4058 set_d_register_from_float32(r1, float_val); |
| 4059 } else if (op == STY) { |
| 4060 uint32_t value = get_low_register<uint32_t>(r1); |
| 4061 WriteW(addr, value, instr); |
| 4062 } else if (op == STG) { |
| 4063 uint64_t value = get_register(r1); |
| 4064 WriteDW(addr, value); |
| 4065 } else if (op == STDY) { |
| 4066 int64_t frs_val = get_d_register(r1); |
| 4067 WriteDW(addr, frs_val); |
| 4068 } else if (op == STCY) { |
| 4069 uint8_t value = get_low_register<uint32_t>(r1); |
| 4070 WriteB(addr, value); |
| 4071 } else if (op == STHY) { |
| 4072 uint16_t value = get_low_register<uint32_t>(r1); |
| 4073 WriteH(addr, value, instr); |
| 4074 } else if (op == LHY) { |
| 4075 int32_t result = static_cast<int32_t>(ReadH(addr, instr)); |
| 4076 set_low_register(r1, result); |
| 4077 } |
| 4078 break; |
| 4079 } |
| 4080 case MVC: { |
| 4081 // Move Character |
| 4082 int b1 = ssInstr->B1Value(); |
| 4083 intptr_t d1 = ssInstr->D1Value(); |
| 4084 int b2 = ssInstr->B2Value(); |
| 4085 intptr_t d2 = ssInstr->D2Value(); |
| 4086 int length = ssInstr->Length(); |
| 4087 int64_t b1_val = (b1 == 0) ? 0 : get_register(b1); |
| 4088 int64_t b2_val = (b2 == 0) ? 0 : get_register(b2); |
| 4089 intptr_t src_addr = b2_val + d2; |
| 4090 intptr_t dst_addr = b1_val + d1; |
| 4091 // remember that the length is the actual length - 1 |
| 4092 for (int i = 0; i < length + 1; ++i) { |
| 4093 WriteB(dst_addr++, ReadB(src_addr++)); |
| 4094 } |
| 4095 break; |
| 4096 } |
| 4097 case MVHI: { |
| 4098 // Move Integer (32) |
| 4099 int b1 = silInstr->B1Value(); |
| 4100 intptr_t d1 = silInstr->D1Value(); |
| 4101 int16_t i2 = silInstr->I2Value(); |
| 4102 int64_t b1_val = (b1 == 0) ? 0 : get_register(b1); |
| 4103 intptr_t src_addr = b1_val + d1; |
| 4104 WriteW(src_addr, i2, instr); |
| 4105 break; |
| 4106 } |
| 4107 case MVGHI: { |
| 4108 // Move Integer (64) |
| 4109 int b1 = silInstr->B1Value(); |
| 4110 intptr_t d1 = silInstr->D1Value(); |
| 4111 int16_t i2 = silInstr->I2Value(); |
| 4112 int64_t b1_val = (b1 == 0) ? 0 : get_register(b1); |
| 4113 intptr_t src_addr = b1_val + d1; |
| 4114 WriteDW(src_addr, i2); |
| 4115 break; |
| 4116 } |
| 4117 case LLH: |
| 4118 case LLGH: { |
| 4119 // Load Logical Halfworld |
| 4120 int r1 = rxyInstr->R1Value(); |
| 4121 int b2 = rxyInstr->B2Value(); |
| 4122 int x2 = rxyInstr->X2Value(); |
| 4123 int64_t b2_val = (b2 == 0) ? 0 : get_register(b2); |
| 4124 int64_t x2_val = (x2 == 0) ? 0 : get_register(x2); |
| 4125 intptr_t d2_val = rxyInstr->D2Value(); |
| 4126 uint16_t mem_val = ReadHU(b2_val + d2_val + x2_val, instr); |
| 4127 if (op == LLH) { |
| 4128 set_low_register(r1, mem_val); |
| 4129 } else if (op == LLGH) { |
| 4130 set_register(r1, mem_val); |
| 4131 } else { |
| 4132 UNREACHABLE(); |
| 4133 } |
| 4134 break; |
| 4135 } |
| 4136 case LLC: |
| 4137 case LLGC: { |
| 4138 // Load Logical Character - loads a byte and zero extends. |
| 4139 int r1 = rxyInstr->R1Value(); |
| 4140 int b2 = rxyInstr->B2Value(); |
| 4141 int x2 = rxyInstr->X2Value(); |
| 4142 int64_t b2_val = (b2 == 0) ? 0 : get_register(b2); |
| 4143 int64_t x2_val = (x2 == 0) ? 0 : get_register(x2); |
| 4144 intptr_t d2_val = rxyInstr->D2Value(); |
| 4145 uint8_t mem_val = ReadBU(b2_val + d2_val + x2_val); |
| 4146 if (op == LLC) { |
| 4147 set_low_register(r1, static_cast<uint32_t>(mem_val)); |
| 4148 } else if (op == LLGC) { |
| 4149 set_register(r1, static_cast<uint64_t>(mem_val)); |
| 4150 } else { |
| 4151 UNREACHABLE(); |
| 4152 } |
| 4153 break; |
| 4154 } |
| 4155 case XIHF: |
| 4156 case XILF: { |
| 4157 int r1 = rilInstr->R1Value(); |
| 4158 uint32_t imm = rilInstr->I2UnsignedValue(); |
| 4159 uint32_t alu_out = 0; |
| 4160 if (op == XILF) { |
| 4161 alu_out = get_low_register<uint32_t>(r1); |
| 4162 alu_out = alu_out ^ imm; |
| 4163 set_low_register(r1, alu_out); |
| 4164 } else if (op == XIHF) { |
| 4165 alu_out = get_high_register<uint32_t>(r1); |
| 4166 alu_out = alu_out ^ imm; |
| 4167 set_high_register(r1, alu_out); |
| 4168 } else { |
| 4169 UNREACHABLE(); |
| 4170 } |
| 4171 SetS390BitWiseConditionCode<uint32_t>(alu_out); |
| 4172 break; |
| 4173 } |
| 4174 case RISBG: { |
| 4175 // Rotate then insert selected bits |
| 4176 int r1 = rieInstr->R1Value(); |
| 4177 int r2 = rieInstr->R2Value(); |
| 4178 // Starting Bit Position is Bits 2-7 of I3 field |
| 4179 uint32_t start_bit = rieInstr->I3Value() & 0x3F; |
| 4180 // Ending Bit Position is Bits 2-7 of I4 field |
| 4181 uint32_t end_bit = rieInstr->I4Value() & 0x3F; |
| 4182 // Shift Amount is Bits 2-7 of I5 field |
| 4183 uint32_t shift_amount = rieInstr->I5Value() & 0x3F; |
| 4184 // Zero out Remaining (unslected) bits if Bit 0 of I4 is 1. |
| 4185 bool zero_remaining = (0 != (rieInstr->I4Value() & 0x80)); |
| 4186 |
| 4187 uint64_t src_val = get_register(r2); |
| 4188 |
| 4189 // Rotate Left by Shift Amount first |
| 4190 uint64_t rotated_val = |
| 4191 (src_val << shift_amount) | (src_val >> (64 - shift_amount)); |
| 4192 int32_t width = end_bit - start_bit + 1; |
| 4193 |
| 4194 uint64_t selection_mask = 0; |
| 4195 if (width < 64) { |
| 4196 selection_mask = (static_cast<uint64_t>(1) << width) - 1; |
| 4197 } else { |
| 4198 selection_mask = static_cast<uint64_t>(static_cast<int64_t>(-1)); |
| 4199 } |
| 4200 selection_mask = selection_mask << (63 - end_bit); |
| 4201 |
| 4202 uint64_t selected_val = rotated_val & selection_mask; |
| 4203 |
| 4204 if (!zero_remaining) { |
| 4205 // Merged the unselected bits from the original value |
| 4206 selected_val = (src_val & ~selection_mask) | selected_val; |
| 4207 } |
| 4208 |
| 4209 // Condition code is set by treating result as 64-bit signed int |
| 4210 SetS390ConditionCode<int64_t>(selected_val, 0); |
| 4211 set_register(r1, selected_val); |
| 4212 break; |
| 4213 } |
| 4214 default: |
| 4215 return DecodeSixByteArithmetic(instr); |
| 4216 } |
| 4217 return true; |
| 4218 } |
| 4219 |
| 4220 /** |
| 4221 * Decodes and simulates six byte arithmetic instructions |
| 4222 */ |
| 4223 bool Simulator::DecodeSixByteArithmetic(Instruction* instr) { |
| 4224 Opcode op = instr->S390OpcodeValue(); |
| 4225 |
| 4226 // Pre-cast instruction to various types |
| 4227 SIYInstruction* siyInstr = reinterpret_cast<SIYInstruction*>(instr); |
| 4228 |
| 4229 switch (op) { |
| 4230 case CDB: |
| 4231 case ADB: |
| 4232 case SDB: |
| 4233 case MDB: |
| 4234 case DDB: |
| 4235 case SQDB: { |
| 4236 RXEInstruction* rxeInstr = reinterpret_cast<RXEInstruction*>(instr); |
| 4237 int b2 = rxeInstr->B2Value(); |
| 4238 int x2 = rxeInstr->X2Value(); |
| 4239 int64_t b2_val = (b2 == 0) ? 0 : get_register(b2); |
| 4240 int64_t x2_val = (x2 == 0) ? 0 : get_register(x2); |
| 4241 intptr_t d2_val = rxeInstr->D2Value(); |
| 4242 double r1_val = get_double_from_d_register(rxeInstr->R1Value()); |
| 4243 double dbl_val = ReadDouble(b2_val + x2_val + d2_val); |
| 4244 |
| 4245 switch (op) { |
| 4246 case CDB: |
| 4247 SetS390ConditionCode<double>(r1_val, dbl_val); |
| 4248 break; |
| 4249 case ADB: |
| 4250 r1_val += dbl_val; |
| 4251 set_d_register_from_double(r1, r1_val); |
| 4252 SetS390ConditionCode<double>(r1_val, 0); |
| 4253 break; |
| 4254 case SDB: |
| 4255 r1_val -= dbl_val; |
| 4256 set_d_register_from_double(r1, r1_val); |
| 4257 SetS390ConditionCode<double>(r1_val, 0); |
| 4258 break; |
| 4259 case MDB: |
| 4260 r1_val *= dbl_val; |
| 4261 set_d_register_from_double(r1, r1_val); |
| 4262 SetS390ConditionCode<double>(r1_val, 0); |
| 4263 break; |
| 4264 case DDB: |
| 4265 r1_val /= dbl_val; |
| 4266 set_d_register_from_double(r1, r1_val); |
| 4267 SetS390ConditionCode<double>(r1_val, 0); |
| 4268 break; |
| 4269 case SQDB: |
| 4270 r1_val = std::sqrt(dbl_val); |
| 4271 set_d_register_from_double(r1, r1_val); |
| 4272 default: |
| 4273 UNREACHABLE(); |
| 4274 break; |
| 4275 } |
| 4276 break; |
| 4277 } |
| 4278 case LRV: |
| 4279 case LRVH: |
| 4280 case STRV: |
| 4281 case STRVH: { |
| 4282 RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr); |
| 4283 int r1 = rxyInstr->R1Value(); |
| 4284 int x2 = rxyInstr->X2Value(); |
| 4285 int b2 = rxyInstr->B2Value(); |
| 4286 int d2 = rxyInstr->D2Value(); |
| 4287 int32_t r1_val = get_low_register<int32_t>(r1); |
| 4288 int64_t x2_val = (x2 == 0) ? 0 : get_register(x2); |
| 4289 int64_t b2_val = (b2 == 0) ? 0 : get_register(b2); |
| 4290 intptr_t mem_addr = b2_val + x2_val + d2; |
| 4291 |
| 4292 if (op == LRVH) { |
| 4293 int16_t mem_val = ReadH(mem_addr, instr); |
| 4294 int32_t result = ByteReverse(mem_val) & 0x0000ffff; |
| 4295 result |= r1_val & 0xffff0000; |
| 4296 set_low_register(r1, result); |
| 4297 } else if (op == LRV) { |
| 4298 int32_t mem_val = ReadW(mem_addr, instr); |
| 4299 set_low_register(r1, ByteReverse(mem_val)); |
| 4300 } else if (op == STRVH) { |
| 4301 int16_t result = static_cast<int16_t>(r1_val >> 16); |
| 4302 WriteH(mem_addr, ByteReverse(result), instr); |
| 4303 } else if (op == STRV) { |
| 4304 WriteW(mem_addr, ByteReverse(r1_val), instr); |
| 4305 } |
| 4306 |
| 4307 break; |
| 4308 } |
| 4309 case AHIK: |
| 4310 case AGHIK: { |
| 4311 // Non-clobbering Add Halfword Immediate |
| 4312 RIEInstruction* rieInst = reinterpret_cast<RIEInstruction*>(instr); |
| 4313 int r1 = rieInst->R1Value(); |
| 4314 int r2 = rieInst->R2Value(); |
| 4315 bool isOF = false; |
| 4316 if (AHIK == op) { |
| 4317 // 32-bit Add |
| 4318 int32_t r2_val = get_low_register<int32_t>(r2); |
| 4319 int32_t imm = rieInst->I6Value(); |
| 4320 isOF = CheckOverflowForIntAdd(r2_val, imm); |
| 4321 set_low_register(r1, r2_val + imm); |
| 4322 SetS390ConditionCode<int32_t>(r2_val + imm, 0); |
| 4323 } else if (AGHIK == op) { |
| 4324 // 64-bit Add |
| 4325 int64_t r2_val = get_register(r2); |
| 4326 int64_t imm = static_cast<int64_t>(rieInst->I6Value()); |
| 4327 isOF = CheckOverflowForIntAdd(r2_val, imm); |
| 4328 set_register(r1, r2_val + imm); |
| 4329 SetS390ConditionCode<int64_t>(r2_val + imm, 0); |
| 4330 } |
| 4331 SetS390OverflowCode(isOF); |
| 4332 break; |
| 4333 } |
| 4334 case ALFI: |
| 4335 case SLFI: { |
| 4336 RILInstruction* rilInstr = reinterpret_cast<RILInstruction*>(instr); |
| 4337 int r1 = rilInstr->R1Value(); |
| 4338 uint32_t imm = rilInstr->I2UnsignedValue(); |
| 4339 uint32_t alu_out = get_low_register<uint32_t>(r1); |
| 4340 if (op == ALFI) { |
| 4341 alu_out += imm; |
| 4342 } else if (op == SLFI) { |
| 4343 alu_out -= imm; |
| 4344 } |
| 4345 SetS390ConditionCode<uint32_t>(alu_out, 0); |
| 4346 set_low_register(r1, alu_out); |
| 4347 break; |
| 4348 } |
| 4349 case ML: { |
| 4350 UNIMPLEMENTED(); |
| 4351 break; |
| 4352 } |
| 4353 case AY: |
| 4354 case SY: |
| 4355 case NY: |
| 4356 case OY: |
| 4357 case XY: |
| 4358 case CY: { |
| 4359 RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr); |
| 4360 int r1 = rxyInstr->R1Value(); |
| 4361 int x2 = rxyInstr->X2Value(); |
| 4362 int b2 = rxyInstr->B2Value(); |
| 4363 int d2 = rxyInstr->D2Value(); |
| 4364 int64_t x2_val = (x2 == 0) ? 0 : get_register(x2); |
| 4365 int64_t b2_val = (b2 == 0) ? 0 : get_register(b2); |
| 4366 int32_t alu_out = get_low_register<int32_t>(r1); |
| 4367 int32_t mem_val = ReadW(b2_val + x2_val + d2, instr); |
| 4368 bool isOF = false; |
| 4369 if (op == AY) { |
| 4370 isOF = CheckOverflowForIntAdd(alu_out, mem_val); |
| 4371 alu_out += mem_val; |
| 4372 SetS390ConditionCode<int32_t>(alu_out, 0); |
| 4373 SetS390OverflowCode(isOF); |
| 4374 } else if (op == SY) { |
| 4375 isOF = CheckOverflowForIntSub(alu_out, mem_val); |
| 4376 alu_out -= mem_val; |
| 4377 SetS390ConditionCode<int32_t>(alu_out, 0); |
| 4378 SetS390OverflowCode(isOF); |
| 4379 } else if (op == NY) { |
| 4380 alu_out &= mem_val; |
| 4381 SetS390BitWiseConditionCode<uint32_t>(alu_out); |
| 4382 } else if (op == OY) { |
| 4383 alu_out |= mem_val; |
| 4384 SetS390BitWiseConditionCode<uint32_t>(alu_out); |
| 4385 } else if (op == XY) { |
| 4386 alu_out ^= mem_val; |
| 4387 SetS390BitWiseConditionCode<uint32_t>(alu_out); |
| 4388 } else if (op == CY) { |
| 4389 SetS390ConditionCode<int32_t>(alu_out, mem_val); |
| 4390 } |
| 4391 if (op != CY) { |
| 4392 set_low_register(r1, alu_out); |
| 4393 } |
| 4394 break; |
| 4395 } |
| 4396 case AHY: |
| 4397 case SHY: { |
| 4398 RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr); |
| 4399 int32_t r1_val = get_low_register<int32_t>(rxyInstr->R1Value()); |
| 4400 int b2 = rxyInstr->B2Value(); |
| 4401 int x2 = rxyInstr->X2Value(); |
| 4402 int64_t b2_val = (b2 == 0) ? 0 : get_register(b2); |
| 4403 int64_t x2_val = (x2 == 0) ? 0 : get_register(x2); |
| 4404 intptr_t d2_val = rxyInstr->D2Value(); |
| 4405 int16_t mem_val = ReadH(b2_val + d2_val + x2_val, instr); |
| 4406 int32_t alu_out = 0; |
| 4407 bool isOF = false; |
| 4408 switch (op) { |
| 4409 case AHY: |
| 4410 alu_out = r1_val + mem_val; |
| 4411 isOF = CheckOverflowForIntAdd(r1_val, mem_val); |
| 4412 break; |
| 4413 case SHY: |
| 4414 alu_out = r1_val - mem_val; |
| 4415 isOF = CheckOverflowForIntSub(r1_val, mem_val); |
| 4416 break; |
| 4417 default: |
| 4418 UNREACHABLE(); |
| 4419 break; |
| 4420 } |
| 4421 set_low_register(r1, alu_out); |
| 4422 SetS390ConditionCode<int32_t>(alu_out, 0); |
| 4423 SetS390OverflowCode(isOF); |
| 4424 break; |
| 4425 } |
| 4426 case AG: |
| 4427 case SG: |
| 4428 case NG: |
| 4429 case OG: |
| 4430 case XG: |
| 4431 case CG: |
| 4432 case CLG: { |
| 4433 RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr); |
| 4434 int r1 = rxyInstr->R1Value(); |
| 4435 int x2 = rxyInstr->X2Value(); |
| 4436 int b2 = rxyInstr->B2Value(); |
| 4437 int d2 = rxyInstr->D2Value(); |
| 4438 int64_t x2_val = (x2 == 0) ? 0 : get_register(x2); |
| 4439 int64_t b2_val = (b2 == 0) ? 0 : get_register(b2); |
| 4440 int64_t alu_out = get_register(r1); |
| 4441 int64_t mem_val = ReadDW(b2_val + x2_val + d2); |
| 4442 |
| 4443 switch (op) { |
| 4444 case AG: { |
| 4445 alu_out += mem_val; |
| 4446 SetS390ConditionCode<int32_t>(alu_out, 0); |
| 4447 break; |
| 4448 } |
| 4449 case SG: { |
| 4450 alu_out -= mem_val; |
| 4451 SetS390ConditionCode<int32_t>(alu_out, 0); |
| 4452 break; |
| 4453 } |
| 4454 case NG: { |
| 4455 alu_out &= mem_val; |
| 4456 SetS390BitWiseConditionCode<uint32_t>(alu_out); |
| 4457 break; |
| 4458 } |
| 4459 case OG: { |
| 4460 alu_out |= mem_val; |
| 4461 SetS390BitWiseConditionCode<uint32_t>(alu_out); |
| 4462 break; |
| 4463 } |
| 4464 case XG: { |
| 4465 alu_out ^= mem_val; |
| 4466 SetS390BitWiseConditionCode<uint32_t>(alu_out); |
| 4467 break; |
| 4468 } |
| 4469 case CG: { |
| 4470 SetS390ConditionCode<int64_t>(alu_out, mem_val); |
| 4471 break; |
| 4472 } |
| 4473 case CLG: { |
| 4474 SetS390ConditionCode<uint64_t>(alu_out, mem_val); |
| 4475 break; |
| 4476 } |
| 4477 default: { |
| 4478 DCHECK(false); |
| 4479 break; |
| 4480 } |
| 4481 } |
| 4482 |
| 4483 if (op != CG) { |
| 4484 set_register(r1, alu_out); |
| 4485 } |
| 4486 break; |
| 4487 } |
| 4488 case ALY: |
| 4489 case SLY: |
| 4490 case CLY: { |
| 4491 RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr); |
| 4492 int r1 = rxyInstr->R1Value(); |
| 4493 int x2 = rxyInstr->X2Value(); |
| 4494 int b2 = rxyInstr->B2Value(); |
| 4495 int d2 = rxyInstr->D2Value(); |
| 4496 int64_t x2_val = (x2 == 0) ? 0 : get_register(x2); |
| 4497 int64_t b2_val = (b2 == 0) ? 0 : get_register(b2); |
| 4498 uint32_t alu_out = get_low_register<uint32_t>(r1); |
| 4499 uint32_t mem_val = ReadWU(b2_val + x2_val + d2, instr); |
| 4500 |
| 4501 if (op == ALY) { |
| 4502 alu_out += mem_val; |
| 4503 set_low_register(r1, alu_out); |
| 4504 SetS390ConditionCode<uint32_t>(alu_out, 0); |
| 4505 } else if (op == SLY) { |
| 4506 alu_out -= mem_val; |
| 4507 set_low_register(r1, alu_out); |
| 4508 SetS390ConditionCode<uint32_t>(alu_out, 0); |
| 4509 } else if (op == CLY) { |
| 4510 SetS390ConditionCode<uint32_t>(alu_out, mem_val); |
| 4511 } |
| 4512 break; |
| 4513 } |
| 4514 case AGFI: |
| 4515 case AFI: { |
| 4516 // Clobbering Add Word Immediate |
| 4517 RILInstruction* rilInstr = reinterpret_cast<RILInstruction*>(instr); |
| 4518 int r1 = rilInstr->R1Value(); |
| 4519 int i2 = rilInstr->I2Value(); |
| 4520 bool isOF = false; |
| 4521 if (AFI == op) { |
| 4522 // 32-bit Add (Register + 32-bit Immediate) |
| 4523 int32_t r1_val = get_low_register<int32_t>(r1); |
| 4524 isOF = CheckOverflowForIntAdd(r1_val, i2); |
| 4525 int32_t alu_out = r1_val + i2; |
| 4526 set_low_register(r1, alu_out); |
| 4527 SetS390ConditionCode<int32_t>(alu_out, 0); |
| 4528 } else if (AGFI == op) { |
| 4529 // 64-bit Add (Register + 32-bit Imm) |
| 4530 int64_t r1_val = get_register(r1); |
| 4531 isOF = CheckOverflowForIntAdd(r1_val, i2); |
| 4532 int64_t alu_out = r1_val + i2; |
| 4533 set_register(r1, alu_out); |
| 4534 SetS390ConditionCode<int64_t>(alu_out, 0); |
| 4535 } |
| 4536 SetS390OverflowCode(isOF); |
| 4537 break; |
| 4538 } |
| 4539 case ASI: { |
| 4540 int8_t i2 = static_cast<int8_t>(siyInstr->I2Value()); |
| 4541 int b1 = siyInstr->B1Value(); |
| 4542 intptr_t b1_val = (b1 == 0) ? 0 : get_register(b1); |
| 4543 |
| 4544 int d1_val = siyInstr->D1Value(); |
| 4545 intptr_t addr = b1_val + d1_val; |
| 4546 |
| 4547 int32_t mem_val = ReadW(addr, instr); |
| 4548 bool isOF = CheckOverflowForIntAdd(mem_val, i2); |
| 4549 int32_t alu_out = mem_val + i2; |
| 4550 SetS390ConditionCode<int32_t>(alu_out, 0); |
| 4551 SetS390OverflowCode(isOF); |
| 4552 WriteW(addr, alu_out, instr); |
| 4553 break; |
| 4554 } |
| 4555 case AGSI: { |
| 4556 int8_t i2 = static_cast<int8_t>(siyInstr->I2Value()); |
| 4557 int b1 = siyInstr->B1Value(); |
| 4558 intptr_t b1_val = (b1 == 0) ? 0 : get_register(b1); |
| 4559 |
| 4560 int d1_val = siyInstr->D1Value(); |
| 4561 intptr_t addr = b1_val + d1_val; |
| 4562 |
| 4563 int64_t mem_val = ReadDW(addr); |
| 4564 int isOF = CheckOverflowForIntAdd(mem_val, i2); |
| 4565 int64_t alu_out = mem_val + i2; |
| 4566 SetS390ConditionCode<uint64_t>(alu_out, 0); |
| 4567 SetS390OverflowCode(isOF); |
| 4568 WriteDW(addr, alu_out); |
| 4569 break; |
| 4570 } |
| 4571 case AGF: |
| 4572 case SGF: |
| 4573 case ALG: |
| 4574 case SLG: { |
| 4575 #ifndef V8_TARGET_ARCH_S390X |
| 4576 DCHECK(false); |
| 4577 #endif |
| 4578 RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr); |
| 4579 int r1 = rxyInstr->R1Value(); |
| 4580 uint64_t r1_val = get_register(rxyInstr->R1Value()); |
| 4581 int b2 = rxyInstr->B2Value(); |
| 4582 int x2 = rxyInstr->X2Value(); |
| 4583 int64_t b2_val = (b2 == 0) ? 0 : get_register(b2); |
| 4584 int64_t x2_val = (x2 == 0) ? 0 : get_register(x2); |
| 4585 intptr_t d2_val = rxyInstr->D2Value(); |
| 4586 uint64_t alu_out = r1_val; |
| 4587 if (op == ALG) { |
| 4588 uint64_t mem_val = |
| 4589 static_cast<uint64_t>(ReadDW(b2_val + d2_val + x2_val)); |
| 4590 alu_out += mem_val; |
| 4591 SetS390ConditionCode<uint64_t>(alu_out, 0); |
| 4592 } else if (op == SLG) { |
| 4593 uint64_t mem_val = |
| 4594 static_cast<uint64_t>(ReadDW(b2_val + d2_val + x2_val)); |
| 4595 alu_out -= mem_val; |
| 4596 SetS390ConditionCode<uint64_t>(alu_out, 0); |
| 4597 } else if (op == AGF) { |
| 4598 uint32_t mem_val = ReadW(b2_val + d2_val + x2_val, instr); |
| 4599 alu_out += mem_val; |
| 4600 SetS390ConditionCode<int64_t>(alu_out, 0); |
| 4601 } else if (op == SGF) { |
| 4602 uint32_t mem_val = ReadW(b2_val + d2_val + x2_val, instr); |
| 4603 alu_out -= mem_val; |
| 4604 SetS390ConditionCode<int64_t>(alu_out, 0); |
| 4605 } else { |
| 4606 DCHECK(false); |
| 4607 } |
| 4608 set_register(r1, alu_out); |
| 4609 break; |
| 4610 } |
| 4611 case ALGFI: |
| 4612 case SLGFI: { |
| 4613 #ifndef V8_TARGET_ARCH_S390X |
| 4614 // should only be called on 64bit |
| 4615 DCHECK(false); |
| 4616 #endif |
| 4617 RILInstruction* rilInstr = reinterpret_cast<RILInstruction*>(instr); |
| 4618 int r1 = rilInstr->R1Value(); |
| 4619 uint32_t i2 = rilInstr->I2UnsignedValue(); |
| 4620 uint64_t r1_val = (uint64_t)(get_register(r1)); |
| 4621 uint64_t alu_out; |
| 4622 if (op == ALGFI) |
| 4623 alu_out = r1_val + i2; |
| 4624 else |
| 4625 alu_out = r1_val - i2; |
| 4626 set_register(r1, (intptr_t)alu_out); |
| 4627 SetS390ConditionCode<uint64_t>(alu_out, 0); |
| 4628 break; |
| 4629 } |
| 4630 case MSY: |
| 4631 case MSG: { |
| 4632 RXYInstruction* rxyInstr = reinterpret_cast<RXYInstruction*>(instr); |
| 4633 int r1 = rxyInstr->R1Value(); |
| 4634 int b2 = rxyInstr->B2Value(); |
| 4635 int x2 = rxyInstr->X2Value(); |
| 4636 int64_t b2_val = (b2 == 0) ? 0 : get_register(b2); |
| 4637 int64_t x2_val = (x2 == 0) ? 0 : get_register(x2); |
| 4638 intptr_t d2_val = rxyInstr->D2Value(); |
| 4639 if (op == MSY) { |
| 4640 int32_t mem_val = ReadW(b2_val + d2_val + x2_val, instr); |
| 4641 int32_t r1_val = get_low_register<int32_t>(r1); |
| 4642 set_low_register(r1, mem_val * r1_val); |
| 4643 } else if (op == MSG) { |
| 4644 int64_t mem_val = ReadDW(b2_val + d2_val + x2_val); |
| 4645 int64_t r1_val = get_register(r1); |
| 4646 set_register(r1, mem_val * r1_val); |
| 4647 } else { |
| 4648 UNREACHABLE(); |
| 4649 } |
| 4650 break; |
| 4651 } |
| 4652 case MSFI: |
| 4653 case MSGFI: { |
| 4654 RILInstruction* rilinst = reinterpret_cast<RILInstruction*>(instr); |
| 4655 int r1 = rilinst->R1Value(); |
| 4656 int32_t i2 = rilinst->I2Value(); |
| 4657 if (op == MSFI) { |
| 4658 int32_t alu_out = get_low_register<int32_t>(r1); |
| 4659 alu_out = alu_out * i2; |
| 4660 set_low_register(r1, alu_out); |
| 4661 } else if (op == MSGFI) { |
| 4662 int64_t alu_out = get_register(r1); |
| 4663 alu_out = alu_out * i2; |
| 4664 set_register(r1, alu_out); |
| 4665 } else { |
| 4666 UNREACHABLE(); |
| 4667 } |
| 4668 break; |
| 4669 } |
| 4670 default: |
| 4671 UNREACHABLE(); |
| 4672 return false; |
| 4673 } |
| 4674 return true; |
| 4675 } |
| 4676 |
| 4677 int16_t Simulator::ByteReverse(int16_t hword) { |
| 4678 return (hword << 8) | ((hword >> 8) & 0x00ff); |
| 4679 } |
| 4680 |
| 4681 int32_t Simulator::ByteReverse(int32_t word) { |
| 4682 int32_t result = word << 24; |
| 4683 result |= (word << 8) & 0x00ff0000; |
| 4684 result |= (word >> 8) & 0x0000ff00; |
| 4685 result |= (word >> 24) & 0x00000ff; |
| 4686 return result; |
| 4687 } |
| 4688 |
| 4689 // Executes the current instruction. |
| 4690 void Simulator::ExecuteInstruction(Instruction* instr, bool auto_incr_pc) { |
| 4691 if (v8::internal::FLAG_check_icache) { |
| 4692 CheckICache(isolate_->simulator_i_cache(), instr); |
| 4693 } |
| 4694 pc_modified_ = false; |
| 4695 if (::v8::internal::FLAG_trace_sim) { |
| 4696 disasm::NameConverter converter; |
| 4697 disasm::Disassembler dasm(converter); |
| 4698 // use a reasonably large buffer |
| 4699 v8::internal::EmbeddedVector<char, 256> buffer; |
| 4700 dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr)); |
| 4701 #ifdef V8_TARGET_ARCH_S390X |
| 4702 PrintF("%05ld %08" V8PRIxPTR " %s\n", icount_, |
| 4703 reinterpret_cast<intptr_t>(instr), buffer.start()); |
| 4704 #else |
| 4705 PrintF("%05lld %08" V8PRIxPTR " %s\n", icount_, |
| 4706 reinterpret_cast<intptr_t>(instr), buffer.start()); |
| 4707 #endif |
| 4708 // Flush stdout to prevent incomplete file output during abnormal exits |
| 4709 // This is caused by the output being buffered before being written to file |
| 4710 fflush(stdout); |
| 4711 } |
| 4712 |
| 4713 // Try to simulate as S390 Instruction first. |
| 4714 bool processed = true; |
| 4715 |
| 4716 int instrLength = instr->InstructionLength(); |
| 4717 if (instrLength == 2) |
| 4718 processed = DecodeTwoByte(instr); |
| 4719 else if (instrLength == 4) |
| 4720 processed = DecodeFourByte(instr); |
| 4721 else if (instrLength == 6) |
| 4722 processed = DecodeSixByte(instr); |
| 4723 |
| 4724 if (processed) { |
| 4725 if (!pc_modified_ && auto_incr_pc) { |
| 4726 set_pc(reinterpret_cast<intptr_t>(instr) + instrLength); |
| 4727 } |
| 4728 return; |
| 4729 } |
| 4730 } |
| 4731 |
| 4732 void Simulator::DebugStart() { |
| 4733 S390Debugger dbg(this); |
| 4734 dbg.Debug(); |
| 4735 } |
| 4736 |
| 4737 void Simulator::Execute() { |
| 4738 // Get the PC to simulate. Cannot use the accessor here as we need the |
| 4739 // raw PC value and not the one used as input to arithmetic instructions. |
| 4740 intptr_t program_counter = get_pc(); |
| 4741 |
| 4742 if (::v8::internal::FLAG_stop_sim_at == 0) { |
| 4743 // Fast version of the dispatch loop without checking whether the simulator |
| 4744 // should be stopping at a particular executed instruction. |
| 4745 while (program_counter != end_sim_pc) { |
| 4746 Instruction* instr = reinterpret_cast<Instruction*>(program_counter); |
| 4747 icount_++; |
| 4748 ExecuteInstruction(instr); |
| 4749 program_counter = get_pc(); |
| 4750 } |
| 4751 } else { |
| 4752 // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when |
| 4753 // we reach the particular instuction count. |
| 4754 while (program_counter != end_sim_pc) { |
| 4755 Instruction* instr = reinterpret_cast<Instruction*>(program_counter); |
| 4756 icount_++; |
| 4757 if (icount_ == ::v8::internal::FLAG_stop_sim_at) { |
| 4758 S390Debugger dbg(this); |
| 4759 dbg.Debug(); |
| 4760 } else { |
| 4761 ExecuteInstruction(instr); |
| 4762 } |
| 4763 program_counter = get_pc(); |
| 4764 } |
| 4765 } |
| 4766 } |
| 4767 |
| 4768 void Simulator::CallInternal(byte* entry, int reg_arg_count) { |
| 4769 // Prepare to execute the code at entry |
| 4770 if (ABI_USES_FUNCTION_DESCRIPTORS) { |
| 4771 // entry is the function descriptor |
| 4772 set_pc(*(reinterpret_cast<intptr_t*>(entry))); |
| 4773 } else { |
| 4774 // entry is the instruction address |
| 4775 set_pc(reinterpret_cast<intptr_t>(entry)); |
| 4776 } |
| 4777 // Remember the values of non-volatile registers. |
| 4778 int64_t r6_val = get_register(r6); |
| 4779 int64_t r7_val = get_register(r7); |
| 4780 int64_t r8_val = get_register(r8); |
| 4781 int64_t r9_val = get_register(r9); |
| 4782 int64_t r10_val = get_register(r10); |
| 4783 int64_t r11_val = get_register(r11); |
| 4784 int64_t r12_val = get_register(r12); |
| 4785 int64_t r13_val = get_register(r13); |
| 4786 |
| 4787 if (ABI_CALL_VIA_IP) { |
| 4788 // Put target address in ip (for JS prologue). |
| 4789 set_register(ip, get_pc()); |
| 4790 } |
| 4791 |
| 4792 // Put down marker for end of simulation. The simulator will stop simulation |
| 4793 // when the PC reaches this value. By saving the "end simulation" value into |
| 4794 // the LR the simulation stops when returning to this call point. |
| 4795 registers_[14] = end_sim_pc; |
| 4796 |
| 4797 // Set up the non-volatile registers with a known value. To be able to check |
| 4798 // that they are preserved properly across JS execution. |
| 4799 intptr_t callee_saved_value = icount_; |
| 4800 if (reg_arg_count < 5) { |
| 4801 set_register(r6, callee_saved_value + 6); |
| 4802 } |
| 4803 set_register(r7, callee_saved_value + 7); |
| 4804 set_register(r8, callee_saved_value + 8); |
| 4805 set_register(r9, callee_saved_value + 9); |
| 4806 set_register(r10, callee_saved_value + 10); |
| 4807 set_register(r11, callee_saved_value + 11); |
| 4808 set_register(r12, callee_saved_value + 12); |
| 4809 set_register(r13, callee_saved_value + 13); |
| 4810 |
| 4811 // Start the simulation |
| 4812 Execute(); |
| 4813 |
| 4814 // Check that the non-volatile registers have been preserved. |
| 4815 #ifndef V8_TARGET_ARCH_S390X |
| 4816 if (reg_arg_count < 5) { |
| 4817 DCHECK_EQ(callee_saved_value + 6, get_low_register<int32_t>(r6)); |
| 4818 } |
| 4819 DCHECK_EQ(callee_saved_value + 7, get_low_register<int32_t>(r7)); |
| 4820 DCHECK_EQ(callee_saved_value + 8, get_low_register<int32_t>(r8)); |
| 4821 DCHECK_EQ(callee_saved_value + 9, get_low_register<int32_t>(r9)); |
| 4822 DCHECK_EQ(callee_saved_value + 10, get_low_register<int32_t>(r10)); |
| 4823 DCHECK_EQ(callee_saved_value + 11, get_low_register<int32_t>(r11)); |
| 4824 DCHECK_EQ(callee_saved_value + 12, get_low_register<int32_t>(r12)); |
| 4825 DCHECK_EQ(callee_saved_value + 13, get_low_register<int32_t>(r13)); |
| 4826 #else |
| 4827 if (reg_arg_count < 5) { |
| 4828 DCHECK_EQ(callee_saved_value + 6, get_register(r6)); |
| 4829 } |
| 4830 DCHECK_EQ(callee_saved_value + 7, get_register(r7)); |
| 4831 DCHECK_EQ(callee_saved_value + 8, get_register(r8)); |
| 4832 DCHECK_EQ(callee_saved_value + 9, get_register(r9)); |
| 4833 DCHECK_EQ(callee_saved_value + 10, get_register(r10)); |
| 4834 DCHECK_EQ(callee_saved_value + 11, get_register(r11)); |
| 4835 DCHECK_EQ(callee_saved_value + 12, get_register(r12)); |
| 4836 DCHECK_EQ(callee_saved_value + 13, get_register(r13)); |
| 4837 #endif |
| 4838 |
| 4839 // Restore non-volatile registers with the original value. |
| 4840 set_register(r6, r6_val); |
| 4841 set_register(r7, r7_val); |
| 4842 set_register(r8, r8_val); |
| 4843 set_register(r9, r9_val); |
| 4844 set_register(r10, r10_val); |
| 4845 set_register(r11, r11_val); |
| 4846 set_register(r12, r12_val); |
| 4847 set_register(r13, r13_val); |
| 4848 } |
| 4849 |
| 4850 intptr_t Simulator::Call(byte* entry, int argument_count, ...) { |
| 4851 // Remember the values of non-volatile registers. |
| 4852 int64_t r6_val = get_register(r6); |
| 4853 int64_t r7_val = get_register(r7); |
| 4854 int64_t r8_val = get_register(r8); |
| 4855 int64_t r9_val = get_register(r9); |
| 4856 int64_t r10_val = get_register(r10); |
| 4857 int64_t r11_val = get_register(r11); |
| 4858 int64_t r12_val = get_register(r12); |
| 4859 int64_t r13_val = get_register(r13); |
| 4860 |
| 4861 va_list parameters; |
| 4862 va_start(parameters, argument_count); |
| 4863 // Set up arguments |
| 4864 |
| 4865 // First 5 arguments passed in registers r2-r6. |
| 4866 int reg_arg_count = (argument_count > 5) ? 5 : argument_count; |
| 4867 int stack_arg_count = argument_count - reg_arg_count; |
| 4868 for (int i = 0; i < reg_arg_count; i++) { |
| 4869 intptr_t value = va_arg(parameters, intptr_t); |
| 4870 set_register(i + 2, value); |
| 4871 } |
| 4872 |
| 4873 // Remaining arguments passed on stack. |
| 4874 int64_t original_stack = get_register(sp); |
| 4875 // Compute position of stack on entry to generated code. |
| 4876 intptr_t entry_stack = |
| 4877 (original_stack - |
| 4878 (kCalleeRegisterSaveAreaSize + stack_arg_count * sizeof(intptr_t))); |
| 4879 if (base::OS::ActivationFrameAlignment() != 0) { |
| 4880 entry_stack &= -base::OS::ActivationFrameAlignment(); |
| 4881 } |
| 4882 |
| 4883 // Store remaining arguments on stack, from low to high memory. |
| 4884 intptr_t* stack_argument = |
| 4885 reinterpret_cast<intptr_t*>(entry_stack + kCalleeRegisterSaveAreaSize); |
| 4886 for (int i = 0; i < stack_arg_count; i++) { |
| 4887 intptr_t value = va_arg(parameters, intptr_t); |
| 4888 stack_argument[i] = value; |
| 4889 } |
| 4890 va_end(parameters); |
| 4891 set_register(sp, entry_stack); |
| 4892 |
| 4893 // Prepare to execute the code at entry |
| 4894 #if ABI_USES_FUNCTION_DESCRIPTORS |
| 4895 // entry is the function descriptor |
| 4896 set_pc(*(reinterpret_cast<intptr_t*>(entry))); |
| 4897 #else |
| 4898 // entry is the instruction address |
| 4899 set_pc(reinterpret_cast<intptr_t>(entry)); |
| 4900 #endif |
| 4901 |
| 4902 // Put target address in ip (for JS prologue). |
| 4903 set_register(r12, get_pc()); |
| 4904 |
| 4905 // Put down marker for end of simulation. The simulator will stop simulation |
| 4906 // when the PC reaches this value. By saving the "end simulation" value into |
| 4907 // the LR the simulation stops when returning to this call point. |
| 4908 registers_[14] = end_sim_pc; |
| 4909 |
| 4910 // Set up the non-volatile registers with a known value. To be able to check |
| 4911 // that they are preserved properly across JS execution. |
| 4912 intptr_t callee_saved_value = icount_; |
| 4913 if (reg_arg_count < 5) { |
| 4914 set_register(r6, callee_saved_value + 6); |
| 4915 } |
| 4916 set_register(r7, callee_saved_value + 7); |
| 4917 set_register(r8, callee_saved_value + 8); |
| 4918 set_register(r9, callee_saved_value + 9); |
| 4919 set_register(r10, callee_saved_value + 10); |
| 4920 set_register(r11, callee_saved_value + 11); |
| 4921 set_register(r12, callee_saved_value + 12); |
| 4922 set_register(r13, callee_saved_value + 13); |
| 4923 |
| 4924 // Start the simulation |
| 4925 Execute(); |
| 4926 |
| 4927 // Check that the non-volatile registers have been preserved. |
| 4928 #ifndef V8_TARGET_ARCH_S390X |
| 4929 if (reg_arg_count < 5) { |
| 4930 DCHECK_EQ(callee_saved_value + 6, get_low_register<int32_t>(r6)); |
| 4931 } |
| 4932 DCHECK_EQ(callee_saved_value + 7, get_low_register<int32_t>(r7)); |
| 4933 DCHECK_EQ(callee_saved_value + 8, get_low_register<int32_t>(r8)); |
| 4934 DCHECK_EQ(callee_saved_value + 9, get_low_register<int32_t>(r9)); |
| 4935 DCHECK_EQ(callee_saved_value + 10, get_low_register<int32_t>(r10)); |
| 4936 DCHECK_EQ(callee_saved_value + 11, get_low_register<int32_t>(r11)); |
| 4937 DCHECK_EQ(callee_saved_value + 12, get_low_register<int32_t>(r12)); |
| 4938 DCHECK_EQ(callee_saved_value + 13, get_low_register<int32_t>(r13)); |
| 4939 #else |
| 4940 if (reg_arg_count < 5) { |
| 4941 DCHECK_EQ(callee_saved_value + 6, get_register(r6)); |
| 4942 } |
| 4943 DCHECK_EQ(callee_saved_value + 7, get_register(r7)); |
| 4944 DCHECK_EQ(callee_saved_value + 8, get_register(r8)); |
| 4945 DCHECK_EQ(callee_saved_value + 9, get_register(r9)); |
| 4946 DCHECK_EQ(callee_saved_value + 10, get_register(r10)); |
| 4947 DCHECK_EQ(callee_saved_value + 11, get_register(r11)); |
| 4948 DCHECK_EQ(callee_saved_value + 12, get_register(r12)); |
| 4949 DCHECK_EQ(callee_saved_value + 13, get_register(r13)); |
| 4950 #endif |
| 4951 |
| 4952 // Restore non-volatile registers with the original value. |
| 4953 set_register(r6, r6_val); |
| 4954 set_register(r7, r7_val); |
| 4955 set_register(r8, r8_val); |
| 4956 set_register(r9, r9_val); |
| 4957 set_register(r10, r10_val); |
| 4958 set_register(r11, r11_val); |
| 4959 set_register(r12, r12_val); |
| 4960 set_register(r13, r13_val); |
| 4961 // Pop stack passed arguments. |
| 4962 |
| 4963 #ifndef V8_TARGET_ARCH_S390X |
| 4964 DCHECK_EQ(entry_stack, get_low_register<int32_t>(sp)); |
| 4965 #else |
| 4966 DCHECK_EQ(entry_stack, get_register(sp)); |
| 4967 #endif |
| 4968 set_register(sp, original_stack); |
| 4969 |
| 4970 // Return value register |
| 4971 intptr_t result = get_register(r2); |
| 4972 return result; |
| 4973 } |
| 4974 |
| 4975 void Simulator::CallFP(byte* entry, double d0, double d1) { |
| 4976 set_d_register_from_double(0, d0); |
| 4977 set_d_register_from_double(1, d1); |
| 4978 CallInternal(entry); |
| 4979 } |
| 4980 |
| 4981 int32_t Simulator::CallFPReturnsInt(byte* entry, double d0, double d1) { |
| 4982 CallFP(entry, d0, d1); |
| 4983 int32_t result = get_register(r2); |
| 4984 return result; |
| 4985 } |
| 4986 |
| 4987 double Simulator::CallFPReturnsDouble(byte* entry, double d0, double d1) { |
| 4988 CallFP(entry, d0, d1); |
| 4989 return get_double_from_d_register(0); |
| 4990 } |
| 4991 |
| 4992 uintptr_t Simulator::PushAddress(uintptr_t address) { |
| 4993 uintptr_t new_sp = get_register(sp) - sizeof(uintptr_t); |
| 4994 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp); |
| 4995 *stack_slot = address; |
| 4996 set_register(sp, new_sp); |
| 4997 return new_sp; |
| 4998 } |
| 4999 |
| 5000 uintptr_t Simulator::PopAddress() { |
| 5001 uintptr_t current_sp = get_register(sp); |
| 5002 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp); |
| 5003 uintptr_t address = *stack_slot; |
| 5004 set_register(sp, current_sp + sizeof(uintptr_t)); |
| 5005 return address; |
| 5006 } |
| 5007 |
| 5008 } // namespace internal |
| 5009 } // namespace v8 |
| 5010 |
| 5011 #endif // USE_SIMULATOR |
| 5012 #endif // V8_TARGET_ARCH_S390 |
OLD | NEW |