Chromium Code Reviews| Index: src/s390/assembler-s390.h |
| diff --git a/src/s390/assembler-s390.h b/src/s390/assembler-s390.h |
| new file mode 100644 |
| index 0000000000000000000000000000000000000000..05999611d75c12e8a3fcbac26c6ab14a0276ebd1 |
| --- /dev/null |
| +++ b/src/s390/assembler-s390.h |
| @@ -0,0 +1,1467 @@ |
| +// Copyright (c) 1994-2006 Sun Microsystems Inc. |
| +// All Rights Reserved. |
| +// |
| +// Redistribution and use in source and binary forms, with or without |
| +// modification, are permitted provided that the following conditions |
| +// are met: |
| +// |
| +// - Redistributions of source code must retain the above copyright notice, |
| +// this list of conditions and the following disclaimer. |
| +// |
| +// - Redistribution in binary form must reproduce the above copyright |
| +// notice, this list of conditions and the following disclaimer in the |
| +// documentation and/or other materials provided with the |
| +// distribution. |
| +// |
| +// - Neither the name of Sun Microsystems or the names of contributors may |
| +// be used to endorse or promote products derived from this software without |
| +// specific prior written permission. |
| +// |
| +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| +// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| +// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| +// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| +// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| +// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| +// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| +// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| +// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| +// OF THE POSSIBILITY OF SUCH DAMAGE. |
| + |
| +// The original source code covered by the above license above has been |
| +// modified significantly by Google Inc. |
| +// Copyright 2014 the V8 project authors. All rights reserved. |
|
jochen (gone - plz use gerrit)
2016/02/26 12:11:14
please update the year in V8 copyright headers to
|
| + |
| +// A light-weight S390 Assembler |
| +// Generates user mode instructions for z/Architecture |
| + |
| +#ifndef V8_S390_ASSEMBLER_S390_H_ |
| +#define V8_S390_ASSEMBLER_S390_H_ |
| +#include <stdio.h> |
| +#if V8_HOST_ARCH_S390 |
| +// elf.h include is required for auxv check for STFLE facility used |
| +// for hardware detection, which is sensible only on s390 hosts. |
| +#include <elf.h> |
| +#endif |
| + |
| +#include <fcntl.h> |
| +#include <unistd.h> |
| +#include "src/assembler.h" |
| +#include "src/s390/constants-s390.h" |
| + |
| +#define ABI_USES_FUNCTION_DESCRIPTORS 0 |
| + |
| +#define ABI_PASSES_HANDLES_IN_REGS 1 |
| + |
| +// ObjectPair is defined under runtime/runtime-util.h. |
| +// On 31-bit, ObjectPair == uint64_t. ABI dictates long long |
| +// be returned with the lower addressed half in r2 |
| +// and the higher addressed half in r3. (Returns in Regs) |
| +// On 64-bit, ObjectPair is a Struct. ABI dictaes Structs be |
| +// returned in a storage buffer allocated by the caller, |
| +// with the address of this buffer passed as a hidden |
| +// argument in r2. (Does NOT return in Regs) |
| +// For x86 linux, ObjectPair is returned in registers. |
| +#if V8_TARGET_ARCH_S390X |
| +#define ABI_RETURNS_OBJECTPAIR_IN_REGS 0 |
| +#else |
| +#define ABI_RETURNS_OBJECTPAIR_IN_REGS 1 |
| +#endif |
| + |
| +#define ABI_CALL_VIA_IP 1 |
| + |
| +#define INSTR_AND_DATA_CACHE_COHERENCY LWSYNC |
| + |
| +namespace v8 { |
| +namespace internal { |
| + |
| +// clang-format off |
| +#define GENERAL_REGISTERS(V) \ |
| + V(r0) V(r1) V(r2) V(r3) V(r4) V(r5) V(r6) V(r7) \ |
| + V(r8) V(r9) V(r10) V(fp) V(ip) V(r13) V(r14) V(sp) |
| + |
| +#define ALLOCATABLE_GENERAL_REGISTERS(V) \ |
| + V(r2) V(r3) V(r4) V(r5) V(r6) V(r7) \ |
| + V(r8) V(r9) V(r13) |
| + |
| +#define DOUBLE_REGISTERS(V) \ |
| + V(d0) V(d1) V(d2) V(d3) V(d4) V(d5) V(d6) V(d7) \ |
| + V(d8) V(d9) V(d10) V(d11) V(d12) V(d13) V(d14) V(d15) |
| + |
| +#define ALLOCATABLE_DOUBLE_REGISTERS(V) \ |
| + V(d1) V(d2) V(d3) V(d4) V(d5) V(d6) V(d7) \ |
| + V(d8) V(d9) V(d10) V(d11) V(d12) V(d15) V(d0) |
| +// clang-format on |
| + |
| +// CPU Registers. |
| +// |
| +// 1) We would prefer to use an enum, but enum values are assignment- |
| +// compatible with int, which has caused code-generation bugs. |
| +// |
| +// 2) We would prefer to use a class instead of a struct but we don't like |
| +// the register initialization to depend on the particular initialization |
| +// order (which appears to be different on OS X, Linux, and Windows for the |
| +// installed versions of C++ we tried). Using a struct permits C-style |
| +// "initialization". Also, the Register objects cannot be const as this |
| +// forces initialization stubs in MSVC, making us dependent on initialization |
| +// order. |
| +// |
| +// 3) By not using an enum, we are possibly preventing the compiler from |
| +// doing certain constant folds, which may significantly reduce the |
| +// code generated for some assembly instructions (because they boil down |
| +// to a few constants). If this is a problem, we could change the code |
| +// such that we use an enum in optimized mode, and the struct in debug |
| +// mode. This way we get the compile-time error checking in debug mode |
| +// and best performance in optimized code. |
| + |
| +struct Register { |
| + enum Code { |
| +#define REGISTER_CODE(R) kCode_##R, |
| + GENERAL_REGISTERS(REGISTER_CODE) |
| +#undef REGISTER_CODE |
| + kAfterLast, |
| + kCode_no_reg = -1 |
| + }; |
| + static const int kNumRegisters = Code::kAfterLast; |
| + |
| +#define REGISTER_COUNT(R) 1 + |
| + static const int kNumAllocatable = |
| + ALLOCATABLE_GENERAL_REGISTERS(REGISTER_COUNT) 0; |
| +#undef REGISTER_COUNT |
| + |
| +#define REGISTER_BIT(R) 1 << kCode_##R | |
| + static const RegList kAllocatable = |
| + ALLOCATABLE_GENERAL_REGISTERS(REGISTER_BIT) 0; |
| +#undef REGISTER_BIT |
| + |
| + static Register from_code(int code) { |
| + DCHECK(code >= 0); |
| + DCHECK(code < kNumRegisters); |
| + Register r = {code}; |
| + return r; |
| + } |
| + |
| + const char* ToString(); |
| + bool IsAllocatable() const; |
| + bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; } |
| + bool is(Register reg) const { return reg_code == reg.reg_code; } |
| + int code() const { |
| + DCHECK(is_valid()); |
| + return reg_code; |
| + } |
| + int bit() const { |
| + DCHECK(is_valid()); |
| + return 1 << reg_code; |
| + } |
| + |
| + void set_code(int code) { |
| + reg_code = code; |
| + DCHECK(is_valid()); |
| + } |
| + |
| +#if V8_TARGET_LITTLE_ENDIAN |
| + static const int kMantissaOffset = 0; |
| + static const int kExponentOffset = 4; |
| +#else |
| + static const int kMantissaOffset = 4; |
| + static const int kExponentOffset = 0; |
| +#endif |
| + |
| + // Unfortunately we can't make this private in a struct. |
| + int reg_code; |
| +}; |
| + |
| +typedef struct Register Register; |
| + |
| +#define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R}; |
| +GENERAL_REGISTERS(DECLARE_REGISTER) |
| +#undef DECLARE_REGISTER |
| +const Register no_reg = {Register::kCode_no_reg}; |
| + |
| +// Register aliases |
| +const Register kLithiumScratch = r1; // lithium scratch. |
| +const Register kRootRegister = r10; // Roots array pointer. |
| +const Register cp = r13; // JavaScript context pointer. |
| + |
| +// Double word FP register. |
| +struct DoubleRegister { |
| + enum Code { |
| +#define REGISTER_CODE(R) kCode_##R, |
| + DOUBLE_REGISTERS(REGISTER_CODE) |
| +#undef REGISTER_CODE |
| + kAfterLast, |
| + kCode_no_reg = -1 |
| + }; |
| + |
| + static const int kNumRegisters = Code::kAfterLast; |
| + static const int kMaxNumRegisters = kNumRegisters; |
| + |
| + const char* ToString(); |
| + bool IsAllocatable() const; |
| + bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; } |
| + bool is(DoubleRegister reg) const { return reg_code == reg.reg_code; } |
| + |
| + int code() const { |
| + DCHECK(is_valid()); |
| + return reg_code; |
| + } |
| + |
| + int bit() const { |
| + DCHECK(is_valid()); |
| + return 1 << reg_code; |
| + } |
| + |
| + static DoubleRegister from_code(int code) { |
| + DoubleRegister r = {code}; |
| + return r; |
| + } |
| + |
| + int reg_code; |
| +}; |
| + |
| +typedef DoubleRegister DoubleRegister; |
| + |
| +#define DECLARE_REGISTER(R) \ |
| + const DoubleRegister R = {DoubleRegister::kCode_##R}; |
| +DOUBLE_REGISTERS(DECLARE_REGISTER) |
| +#undef DECLARE_REGISTER |
| +const Register no_dreg = {Register::kCode_no_reg}; |
| + |
| +// Aliases for double registers. Defined using #define instead of |
| +// "static const DoubleRegister&" because Clang complains otherwise when a |
| +// compilation unit that includes this header doesn't use the variables. |
| +#define kDoubleRegZero d14 |
| +#define kScratchDoubleReg d13 |
| + |
| +Register ToRegister(int num); |
| + |
| +// Coprocessor register |
| +struct CRegister { |
| + bool is_valid() const { return 0 <= reg_code && reg_code < 16; } |
| + bool is(CRegister creg) const { return reg_code == creg.reg_code; } |
| + int code() const { |
| + DCHECK(is_valid()); |
| + return reg_code; |
| + } |
| + int bit() const { |
| + DCHECK(is_valid()); |
| + return 1 << reg_code; |
| + } |
| + |
| + // Unfortunately we can't make this private in a struct. |
| + int reg_code; |
| +}; |
| + |
| +const CRegister no_creg = {-1}; |
| + |
| +const CRegister cr0 = {0}; |
| +const CRegister cr1 = {1}; |
| +const CRegister cr2 = {2}; |
| +const CRegister cr3 = {3}; |
| +const CRegister cr4 = {4}; |
| +const CRegister cr5 = {5}; |
| +const CRegister cr6 = {6}; |
| +const CRegister cr7 = {7}; |
| +const CRegister cr8 = {8}; |
| +const CRegister cr9 = {9}; |
| +const CRegister cr10 = {10}; |
| +const CRegister cr11 = {11}; |
| +const CRegister cr12 = {12}; |
| +const CRegister cr13 = {13}; |
| +const CRegister cr14 = {14}; |
| +const CRegister cr15 = {15}; |
| + |
| +// TODO(john.yan) Define SIMD registers. |
| +typedef DoubleRegister Simd128Register; |
| + |
| +// ----------------------------------------------------------------------------- |
| +// Machine instruction Operands |
| + |
| +#if V8_TARGET_ARCH_S390X |
| +const RelocInfo::Mode kRelocInfo_NONEPTR = RelocInfo::NONE64; |
| +#else |
| +const RelocInfo::Mode kRelocInfo_NONEPTR = RelocInfo::NONE32; |
| +#endif |
| + |
| +// Class Operand represents a shifter operand in data processing instructions |
| +// defining immediate numbers and masks |
| +typedef uint8_t Length; |
| + |
| +struct Mask { |
| + uint8_t mask; |
| + uint8_t value() { return mask; } |
| + static Mask from_value(uint8_t input) { |
| + DCHECK(input <= 0x0F); |
| + Mask m = {input}; |
| + return m; |
| + } |
| +}; |
| + |
| +class Operand BASE_EMBEDDED { |
| + public: |
| + // immediate |
| + INLINE(explicit Operand(intptr_t immediate, |
| + RelocInfo::Mode rmode = kRelocInfo_NONEPTR)); |
| + INLINE(static Operand Zero()) { return Operand(static_cast<intptr_t>(0)); } |
| + INLINE(explicit Operand(const ExternalReference& f)); |
| + explicit Operand(Handle<Object> handle); |
| + INLINE(explicit Operand(Smi* value)); |
| + |
| + // rm |
| + INLINE(explicit Operand(Register rm)); |
| + |
| + // Return true if this is a register operand. |
| + INLINE(bool is_reg() const); |
| + |
| + bool must_output_reloc_info(const Assembler* assembler) const; |
| + |
| + inline intptr_t immediate() const { |
| + DCHECK(!rm_.is_valid()); |
| + return imm_; |
| + } |
| + |
| + inline void setBits(int n) { |
| + imm_ = (static_cast<uint32_t>(imm_) << (32 - n)) >> (32 - n); |
| + } |
| + |
| + Register rm() const { return rm_; } |
| + |
| + private: |
| + Register rm_; |
| + intptr_t imm_; // valid if rm_ == no_reg |
| + RelocInfo::Mode rmode_; |
| + |
| + friend class Assembler; |
| + friend class MacroAssembler; |
| +}; |
| + |
| +typedef int32_t Disp; |
| + |
| +// Class MemOperand represents a memory operand in load and store instructions |
| +// On S390, we have various flavours of memory operands: |
| +// 1) a base register + 16 bit unsigned displacement |
| +// 2) a base register + index register + 16 bit unsigned displacement |
| +// 3) a base register + index register + 20 bit signed displacement |
| +class MemOperand BASE_EMBEDDED { |
| + public: |
| + explicit MemOperand(Register rx, Disp offset = 0); |
| + explicit MemOperand(Register rx, Register rb, Disp offset = 0); |
| + |
| + int32_t offset() const { return offset_; } |
| + uint32_t getDisplacement() const { return offset(); } |
| + |
| + // Base register |
| + Register rb() const { |
| + DCHECK(!baseRegister.is(no_reg)); |
| + return baseRegister; |
| + } |
| + |
| + Register getBaseRegister() const { return rb(); } |
| + |
| + // Index Register |
| + Register rx() const { |
| + DCHECK(!indexRegister.is(no_reg)); |
| + return indexRegister; |
| + } |
| + Register getIndexRegister() const { return rx(); } |
| + |
| + private: |
| + Register baseRegister; // base |
| + Register indexRegister; // index |
| + int32_t offset_; // offset |
| + |
| + friend class Assembler; |
| +}; |
| + |
| +class DeferredRelocInfo { |
| + public: |
| + DeferredRelocInfo() {} |
| + DeferredRelocInfo(int position, RelocInfo::Mode rmode, intptr_t data) |
| + : position_(position), rmode_(rmode), data_(data) {} |
| + |
| + int position() const { return position_; } |
| + RelocInfo::Mode rmode() const { return rmode_; } |
| + intptr_t data() const { return data_; } |
| + |
| + private: |
| + int position_; |
| + RelocInfo::Mode rmode_; |
| + intptr_t data_; |
| +}; |
| + |
| +class Assembler : public AssemblerBase { |
| + public: |
| + // Create an assembler. Instructions and relocation information are emitted |
| + // into a buffer, with the instructions starting from the beginning and the |
| + // relocation information starting from the end of the buffer. See CodeDesc |
| + // for a detailed comment on the layout (globals.h). |
| + // |
| + // If the provided buffer is NULL, the assembler allocates and grows its own |
| + // buffer, and buffer_size determines the initial buffer size. The buffer is |
| + // owned by the assembler and deallocated upon destruction of the assembler. |
| + // |
| + // If the provided buffer is not NULL, the assembler uses the provided buffer |
| + // for code generation and assumes its size to be buffer_size. If the buffer |
| + // is too small, a fatal error occurs. No deallocation of the buffer is done |
| + // upon destruction of the assembler. |
| + Assembler(Isolate* isolate, void* buffer, int buffer_size); |
| + virtual ~Assembler() {} |
| + |
| + // GetCode emits any pending (non-emitted) code and fills the descriptor |
| + // desc. GetCode() is idempotent; it returns the same result if no other |
| + // Assembler functions are invoked in between GetCode() calls. |
| + void GetCode(CodeDesc* desc); |
| + |
| + // Label operations & relative jumps (PPUM Appendix D) |
| + // |
| + // Takes a branch opcode (cc) and a label (L) and generates |
| + // either a backward branch or a forward branch and links it |
| + // to the label fixup chain. Usage: |
| + // |
| + // Label L; // unbound label |
| + // j(cc, &L); // forward branch to unbound label |
| + // bind(&L); // bind label to the current pc |
| + // j(cc, &L); // backward branch to bound label |
| + // bind(&L); // illegal: a label may be bound only once |
| + // |
| + // Note: The same Label can be used for forward and backward branches |
| + // but it may be bound only once. |
| + |
| + void bind(Label* L); // binds an unbound label L to the current code position |
| + |
| + // Links a label at the current pc_offset(). If already bound, returns the |
| + // bound position. If already linked, returns the position of the prior link. |
| + // Otherwise, returns the current pc_offset(). |
| + int link(Label* L); |
| + |
| + // Determines if Label is bound and near enough so that a single |
| + // branch instruction can be used to reach it. |
| + bool is_near(Label* L, Condition cond); |
| + |
| + // Returns the branch offset to the given label from the current code position |
| + // Links the label to the current position if it is still unbound |
| + int branch_offset(Label* L) { return link(L) - pc_offset(); } |
| + |
| + // Puts a labels target address at the given position. |
| + // The high 8 bits are set to zero. |
| + void label_at_put(Label* L, int at_offset); |
| + void load_label_offset(Register r1, Label* L); |
| + |
| + // Read/Modify the code target address in the branch/call instruction at pc. |
| + INLINE(static Address target_address_at(Address pc, Address constant_pool)); |
| + INLINE(static void set_target_address_at( |
| + Isolate* isolate, Address pc, Address constant_pool, Address target, |
| + ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)); |
| + INLINE(static Address target_address_at(Address pc, Code* code)) { |
| + Address constant_pool = NULL; |
| + return target_address_at(pc, constant_pool); |
| + } |
| + INLINE(static void set_target_address_at( |
| + Isolate* isolate, Address pc, Code* code, Address target, |
| + ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) { |
| + Address constant_pool = NULL; |
| + set_target_address_at(isolate, pc, constant_pool, target, |
| + icache_flush_mode); |
| + } |
| + |
| + // Return the code target address at a call site from the return address |
| + // of that call in the instruction stream. |
| + inline static Address target_address_from_return_address(Address pc); |
| + |
| + // Given the address of the beginning of a call, return the address |
| + // in the instruction stream that the call will return to. |
| + INLINE(static Address return_address_from_call_start(Address pc)); |
| + |
| + inline Handle<Object> code_target_object_handle_at(Address pc); |
| + // This sets the branch destination. |
| + // This is for calls and branches within generated code. |
| + inline static void deserialization_set_special_target_at( |
| + Isolate* isolate, Address instruction_payload, Code* code, |
| + Address target); |
| + |
| + // This sets the internal reference at the pc. |
| + inline static void deserialization_set_target_internal_reference_at( |
| + Isolate* isolate, Address pc, Address target, |
| + RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE); |
| + |
| + // Here we are patching the address in the IIHF/IILF instruction pair. |
| + // These values are used in the serialization process and must be zero for |
| + // S390 platform, as Code, Embedded Object or External-reference pointers |
| + // are split across two consecutive instructions and don't exist separately |
| + // in the code, so the serializer should not step forwards in memory after |
| + // a target is resolved and written. |
| + static const int kSpecialTargetSize = 0; |
| + |
| +// Number of bytes for instructions used to store pointer sized constant. |
| +#if V8_TARGET_ARCH_S390X |
| + static const int kBytesForPtrConstant = 12; // IIHF + IILF |
| +#else |
| + static const int kBytesForPtrConstant = 6; // IILF |
| +#endif |
| + |
| + // Distance between the instruction referring to the address of the call |
| + // target and the return address. |
| + |
| + // Offset between call target address and return address |
| + // for BRASL calls |
| + // Patch will be appiled to other FIXED_SEQUENCE call |
| + static const int kCallTargetAddressOffset = 6; |
| + |
| +// The length of FIXED_SEQUENCE call |
| +// iihf r8, <address_hi> // <64-bit only> |
| +// iilf r8, <address_lo> |
| +// basr r14, r8 |
| +#if V8_TARGET_ARCH_S390X |
| + static const int kCallSequenceLength = 14; |
| +#else |
| + static const int kCallSequenceLength = 8; |
| +#endif |
| + |
| + // This is the length of the BreakLocationIterator::SetDebugBreakAtReturn() |
| + // code patch FIXED_SEQUENCE in bytes! |
| + // JS Return Sequence = Call Sequence + BKPT |
| + // static const int kJSReturnSequenceLength = kCallSequenceLength + 2; |
| + |
| + // This is the length of the code sequence from SetDebugBreakAtSlot() |
| + // FIXED_SEQUENCE in bytes! |
| + static const int kDebugBreakSlotLength = kCallSequenceLength; |
| + static const int kPatchDebugBreakSlotReturnOffset = kCallTargetAddressOffset; |
| + |
| + // Length to patch between the start of the JS return sequence |
| + // from SetDebugBreakAtReturn and the address from |
| + // break_address_from_return_address. |
| + // |
| + // frame->pc() in Debug::SetAfterBreakTarget will point to BKPT in |
| + // JS return sequence, so the length to patch will not include BKPT |
| + // instruction length. |
| + // static const int kPatchReturnSequenceAddressOffset = |
| + // kCallSequenceLength - kPatchDebugBreakSlotReturnOffset; |
| + |
| + // Length to patch between the start of the FIXED call sequence from |
| + // SetDebugBreakAtSlot() and the the address from |
| + // break_address_from_return_address. |
| + static const int kPatchDebugBreakSlotAddressOffset = |
| + kDebugBreakSlotLength - kPatchDebugBreakSlotReturnOffset; |
| + |
| + static inline int encode_crbit(const CRegister& cr, enum CRBit crbit) { |
| + return ((cr.code() * CRWIDTH) + crbit); |
| + } |
| + |
| + // --------------------------------------------------------------------------- |
| + // Code generation |
| + |
| + // Helper for unconditional branch to Label with update to save register |
| + void b(Register r, Label* l) { |
| + positions_recorder()->WriteRecordedPositions(); |
| + int32_t halfwords = branch_offset(l) / 2; |
| + brasl(r, Operand(halfwords)); |
| + } |
| + |
| + // Conditional Branch Instruction - Generates either BRC / BRCL |
| + void branchOnCond(Condition c, int branch_offset, bool is_bound = false); |
| + |
| + // Helpers for conditional branch to Label |
| + void b(Condition cond, Label* l, Label::Distance dist = Label::kFar) { |
| + branchOnCond(cond, branch_offset(l), |
| + l->is_bound() || (dist == Label::kNear)); |
| + } |
| + |
| + void bc_short(Condition cond, Label* l, Label::Distance dist = Label::kFar) { |
| + b(cond, l, Label::kNear); |
| + } |
| + // Helpers for conditional branch to Label |
| + void beq(Label* l, Label::Distance dist = Label::kFar) { b(eq, l, dist); } |
| + void bne(Label* l, Label::Distance dist = Label::kFar) { b(ne, l, dist); } |
| + void blt(Label* l, Label::Distance dist = Label::kFar) { b(lt, l, dist); } |
| + void ble(Label* l, Label::Distance dist = Label::kFar) { b(le, l, dist); } |
| + void bgt(Label* l, Label::Distance dist = Label::kFar) { b(gt, l, dist); } |
| + void bge(Label* l, Label::Distance dist = Label::kFar) { b(ge, l, dist); } |
| + void b(Label* l, Label::Distance dist = Label::kFar) { b(al, l, dist); } |
| + void jmp(Label* l, Label::Distance dist = Label::kFar) { b(al, l, dist); } |
| + void bunordered(Label* l, Label::Distance dist = Label::kFar) { |
| + b(unordered, l, dist); |
| + } |
| + void bordered(Label* l, Label::Distance dist = Label::kFar) { |
| + b(ordered, l, dist); |
| + } |
| + |
| + // Helpers for conditional indirect branch off register |
| + void b(Condition cond, Register r) { bcr(cond, r); } |
| + void beq(Register r) { b(eq, r); } |
| + void bne(Register r) { b(ne, r); } |
| + void blt(Register r) { b(lt, r); } |
| + void ble(Register r) { b(le, r); } |
| + void bgt(Register r) { b(gt, r); } |
| + void bge(Register r) { b(ge, r); } |
| + void b(Register r) { b(al, r); } |
| + void jmp(Register r) { b(al, r); } |
| + void bunordered(Register r) { b(unordered, r); } |
| + void bordered(Register r) { b(ordered, r); } |
| + |
| + // --------------------------------------------------------------------------- |
| + // Code generation |
| + |
| + // Insert the smallest number of nop instructions |
| + // possible to align the pc offset to a multiple |
| + // of m. m must be a power of 2 (>= 4). |
| + void Align(int m); |
| + // Insert the smallest number of zero bytes possible to align the pc offset |
| + // to a mulitple of m. m must be a power of 2 (>= 2). |
| + void DataAlign(int m); |
| + // Aligns code to something that's optimal for a jump target for the platform. |
| + void CodeTargetAlign(); |
| + |
| + void breakpoint(bool do_print) { |
| + if (do_print) { |
| + printf("DebugBreak is inserted to %p\n", pc_); |
| + } |
| +#if V8_HOST_ARCH_64_BIT |
| + int64_t value = reinterpret_cast<uint64_t>(&v8::base::OS::DebugBreak); |
| + int32_t hi_32 = static_cast<int64_t>(value) >> 32; |
| + int32_t lo_32 = static_cast<int32_t>(value); |
| + |
| + iihf(r1, Operand(hi_32)); |
| + iilf(r1, Operand(lo_32)); |
| +#else |
| + iilf(r1, Operand(reinterpret_cast<uint32_t>(&v8::base::OS::DebugBreak))); |
| +#endif |
| + basr(r14, r1); |
| + } |
| + |
| + void call(Handle<Code> target, RelocInfo::Mode rmode, |
| + TypeFeedbackId ast_id = TypeFeedbackId::None()); |
| + void jump(Handle<Code> target, RelocInfo::Mode rmode, Condition cond); |
| + |
| +// S390 instruction generation |
| +#define I_FORM(name) void name(const Operand& i) |
| + |
| +#define RR_FORM(name) void name(Register r1, Register r2) |
| + |
| +#define RR2_FORM(name) void name(Condition m1, Register r2) |
| + |
| +#define RX_FORM(name) \ |
| + void name(Register r1, Register x2, Register b2, Disp d2); \ |
| + void name(Register r1, const MemOperand& opnd) |
| + |
| +#define RI1_FORM(name) void name(Register r, const Operand& i) |
| + |
| +#define RI2_FORM(name) void name(Condition m, const Operand& i) |
| + |
| +#define RIE_FORM(name) void name(Register r1, Register R3, const Operand& i) |
| + |
| +#define RIE_F_FORM(name) \ |
| + void name(Register r1, Register r2, const Operand& i3, const Operand& i4, \ |
| + const Operand& i5) |
| + |
| +#define RIL1_FORM(name) void name(Register r1, const Operand& i2) |
| + |
| +#define RIL2_FORM(name) void name(Condition m1, const Operand& i2) |
| + |
| +#define RXE_FORM(name) \ |
| + void name(Register r1, const MemOperand& opnd); \ |
| + void name(Register r1, Register b2, Register x2, Disp d2) |
| + |
| +#define RXF_FORM(name) \ |
| + void name(Register r1, Register r3, const MemOperand& opnd); \ |
| + void name(Register r1, Register r3, Register b2, Register x2, Disp d2) |
| + |
| +#define RXY_FORM(name) \ |
| + void name(Register r1, Register x2, Register b2, Disp d2); \ |
| + void name(Register r1, const MemOperand& opnd) |
| + |
| +#define RSI_FORM(name) void name(Register r1, Register r3, const Operand& i) |
| + |
| +#define RIS_FORM(name) \ |
| + void name(Register r1, Condition m3, Register b4, Disp d4, \ |
| + const Operand& i2); \ |
| + void name(Register r1, const Operand& i2, Condition m3, \ |
| + const MemOperand& opnd) |
| + |
| +#define SI_FORM(name) \ |
| + void name(const MemOperand& opnd, const Operand& i); \ |
| + void name(const Operand& i2, Register b1, Disp d1) |
| + |
| +#define SIL_FORM(name) \ |
| + void name(Register b1, Disp d1, const Operand& i2); \ |
| + void name(const MemOperand& opnd, const Operand& i2) |
| + |
| +#define RRE_FORM(name) void name(Register r1, Register r2) |
| + |
| +#define RRF1_FORM(name) void name(Register r1, Register r2, Register r3) |
| + |
| +#define RRF2_FORM(name) void name(Condition m1, Register r1, Register r2) |
| + |
| +#define RRF3_FORM(name) \ |
| + void name(Register r3, Condition m4, Register r1, Register r2) |
| + |
| +#define RS1_FORM(name) \ |
| + void name(Register r1, Register r3, const MemOperand& opnd); \ |
| + void name(Register r1, Register r3, Register b2, Disp d2) |
| + |
| +#define RS2_FORM(name) \ |
| + void name(Register r1, Condition m3, const MemOperand& opnd); \ |
| + void name(Register r1, Condition m3, Register b2, Disp d2) |
| + |
| +#define RSE_FORM(name) \ |
| + void name(Register r1, Register r3, const MemOperand& opnd); \ |
| + void name(Register r1, Register r3, Register b2, Disp d2) |
| + |
| +#define RSL_FORM(name) \ |
| + void name(Length l, Register b2, Disp d2); \ |
| + void name(const MemOperand& opnd) |
| + |
| +#define RSY1_FORM(name) \ |
| + void name(Register r1, Register r3, Register b2, Disp d2); \ |
| + void name(Register r1, Register r3, const MemOperand& opnd) |
| + |
| +#define RSY2_FORM(name) \ |
| + void name(Register r1, Condition m3, Register b2, Disp d2); \ |
| + void name(Register r1, Condition m3, const MemOperand& opnd) |
| + |
| +#define RRD_FORM(name) void name(Register r1, Register r3, Register r2) |
| + |
| +#define RRS_FORM(name) \ |
| + void name(Register r1, Register r2, Register b4, Disp d4, Condition m3); \ |
| + void name(Register r1, Register r2, Condition m3, const MemOperand& opnd) |
| + |
| +#define S_FORM(name) \ |
| + void name(Register b2, Disp d2); \ |
| + void name(const MemOperand& opnd) |
| + |
| +#define SIY_FORM(name) \ |
| + void name(const Operand& i2, Register b1, Disp d1); \ |
| + void name(const MemOperand& opnd, const Operand& i) |
| + |
| +#define SS1_FORM(name) \ |
| + void name(Register b1, Disp d1, Register b3, Disp d2, Length length); \ |
| + void name(const MemOperand& opnd1, const MemOperand& opnd2, Length length) |
| + |
| +#define SS2_FORM(name) \ |
| + void name(const MemOperand& opnd1, const MemOperand& opnd2, Length length1, \ |
| + Length length2); \ |
| + void name(Register b1, Disp d1, Register b2, Disp d2, Length l1, Length l2) |
| + |
| +#define SS3_FORM(name) \ |
| + void name(const MemOperand& opnd1, const MemOperand& opnd2, Length length); \ |
| + void name(const Operand& i3, Register b1, Disp d1, Register b2, Disp d2, \ |
| + Length l1) |
| + |
| +#define SS4_FORM(name) \ |
| + void name(const MemOperand& opnd1, const MemOperand& opnd2); \ |
| + void name(Register r1, Register r3, Register b1, Disp d1, Register b2, \ |
| + Disp d2) |
| + |
| +#define SS5_FORM(name) \ |
| + void name(const MemOperand& opnd1, const MemOperand& opnd2); \ |
| + void name(Register r1, Register r3, Register b3, Disp d2, Register b4, \ |
| + Disp d4) |
| + |
| +#define SSE_FORM(name) \ |
| + void name(Register b1, Disp d1, Register b2, Disp d2); \ |
| + void name(const MemOperand& opnd1, const MemOperand& opnd2) |
| + |
| +#define SSF_FORM(name) \ |
| + void name(Register r3, Register b1, Disp d1, Register b2, Disp d2); \ |
| + void name(Register r3, const MemOperand& opnd1, const MemOperand& opnd2) |
| + |
| + // S390 instruction sets |
| + RX_FORM(bc); |
| + RR_FORM(bctr); |
| + RX_FORM(cd); |
| + RRE_FORM(cdr); |
| + RXE_FORM(cdb); |
| + RXE_FORM(ceb); |
| + RRE_FORM(cefbr); |
| + RXE_FORM(ddb); |
| + RRE_FORM(ddbr); |
| + SS1_FORM(ed); |
| + RRE_FORM(epair); |
| + RX_FORM(ex); |
| + RRF2_FORM(fidbr); |
| + RRE_FORM(flogr); |
| + RX_FORM(ic_z); |
| + RXY_FORM(icy); |
| + RIL1_FORM(iihf); |
| + RI1_FORM(iihh); |
| + RI1_FORM(iihl); |
| + RIL1_FORM(iilf); |
| + RI1_FORM(iilh); |
| + RI1_FORM(iill); |
| + RRE_FORM(lcgr); |
| + RR_FORM(lcr); |
| + RX_FORM(le_z); |
| + RXY_FORM(ley); |
| + RIL1_FORM(llihf); |
| + RIL1_FORM(llilf); |
| + RRE_FORM(lngr); |
| + RR_FORM(lnr); |
| + RSY1_FORM(loc); |
| + RXY_FORM(lrv); |
| + RXY_FORM(lrvh); |
| + RXE_FORM(mdb); |
| + RRE_FORM(mdbr); |
| + SS4_FORM(mvck); |
| + SSF_FORM(mvcos); |
| + SS4_FORM(mvcs); |
| + SS1_FORM(mvn); |
| + SS1_FORM(nc); |
| + SI_FORM(ni); |
| + RIL1_FORM(nihf); |
| + RIL1_FORM(nilf); |
| + RI1_FORM(nilh); |
| + RI1_FORM(nill); |
| + RIL1_FORM(oihf); |
| + RIL1_FORM(oilf); |
| + RI1_FORM(oill); |
| + RRE_FORM(popcnt); |
| + RXE_FORM(sdb); |
| + RRE_FORM(sdbr); |
| + RIL1_FORM(slfi); |
| + RXY_FORM(slgf); |
| + RIL1_FORM(slgfi); |
| + RS1_FORM(srdl); |
| + RX_FORM(ste); |
| + RXY_FORM(stey); |
| + RXY_FORM(strv); |
| + RI1_FORM(tmll); |
| + SS1_FORM(tr); |
| + S_FORM(ts); |
| + RIL1_FORM(xihf); |
| + RIL1_FORM(xilf); |
| + |
| + // Load Address Instructions |
| + void la(Register r, const MemOperand& opnd); |
| + void lay(Register r, const MemOperand& opnd); |
| + void larl(Register r1, const Operand& opnd); |
| + void larl(Register r, Label* l); |
| + |
| + // Load Instructions |
| + void lb(Register r, const MemOperand& src); |
| + void lbr(Register r1, Register r2); |
| + void lgb(Register r, const MemOperand& src); |
| + void lgbr(Register r1, Register r2); |
| + void lh(Register r, const MemOperand& src); |
| + void lhy(Register r, const MemOperand& src); |
| + void lhr(Register r1, Register r2); |
| + void lgh(Register r, const MemOperand& src); |
| + void lghr(Register r1, Register r2); |
| + void l(Register r, const MemOperand& src); |
| + void ly(Register r, const MemOperand& src); |
| + void lr(Register r1, Register r2); |
| + void lg(Register r, const MemOperand& src); |
| + void lgr(Register r1, Register r2); |
| + void lgf(Register r, const MemOperand& src); |
| + void lgfr(Register r1, Register r2); |
| + void lhi(Register r, const Operand& imm); |
| + void lghi(Register r, const Operand& imm); |
| + |
| + // Load And Test Instructions |
| + void lt_z(Register r, const MemOperand& src); |
| + void ltg(Register r, const MemOperand& src); |
| + void ltr(Register r1, Register r2); |
| + void ltgr(Register r1, Register r2); |
| + void ltgfr(Register r1, Register r2); |
| + |
| + // Load Logical Instructions |
| + void llc(Register r, const MemOperand& src); |
| + void llgc(Register r, const MemOperand& src); |
| + void llgf(Register r, const MemOperand& src); |
| + void llgfr(Register r1, Register r2); |
| + void llh(Register r, const MemOperand& src); |
| + void llgh(Register r, const MemOperand& src); |
| + void llhr(Register r1, Register r2); |
| + void llghr(Register r1, Register r2); |
| + |
| + // Load Multiple Instructions |
| + void lm(Register r1, Register r2, const MemOperand& src); |
| + void lmy(Register r1, Register r2, const MemOperand& src); |
| + void lmg(Register r1, Register r2, const MemOperand& src); |
| + |
| + // Store Instructions |
| + void st(Register r, const MemOperand& src); |
| + void stc(Register r, const MemOperand& src); |
| + void stcy(Register r, const MemOperand& src); |
| + void stg(Register r, const MemOperand& src); |
| + void sth(Register r, const MemOperand& src); |
| + void sthy(Register r, const MemOperand& src); |
| + void sty(Register r, const MemOperand& src); |
| + |
| + // Store Multiple Instructions |
| + void stm(Register r1, Register r2, const MemOperand& src); |
| + void stmy(Register r1, Register r2, const MemOperand& src); |
| + void stmg(Register r1, Register r2, const MemOperand& src); |
| + |
| + // Compare Instructions |
| + void c(Register r, const MemOperand& opnd); |
| + void cy(Register r, const MemOperand& opnd); |
| + void cr_z(Register r1, Register r2); |
| + void cg(Register r, const MemOperand& opnd); |
| + void cgr(Register r1, Register r2); |
| + void ch(Register r, const MemOperand& opnd); |
| + void chy(Register r, const MemOperand& opnd); |
| + void chi(Register r, const Operand& opnd); |
| + void cghi(Register r, const Operand& opnd); |
| + void cfi(Register r, const Operand& opnd); |
| + void cgfi(Register r, const Operand& opnd); |
| + |
| + // Compare Logical Instructions |
| + void cl(Register r, const MemOperand& opnd); |
| + void cly(Register r, const MemOperand& opnd); |
| + void clr(Register r1, Register r2); |
| + void clg(Register r, const MemOperand& opnd); |
| + void clgr(Register r1, Register r2); |
| + void clfi(Register r, const Operand& opnd); |
| + void clgfi(Register r, const Operand& opnd); |
| + void cli(const MemOperand& mem, const Operand& imm); |
| + void cliy(const MemOperand& mem, const Operand& imm); |
| + void clc(const MemOperand& opnd1, const MemOperand& opnd2, Length length); |
| + |
| + // Test Under Mask Instructions |
| + void tm(const MemOperand& mem, const Operand& imm); |
| + void tmy(const MemOperand& mem, const Operand& imm); |
| + |
| + // Rotate Instructions |
| + void rll(Register r1, Register r3, Register opnd); |
| + void rll(Register r1, Register r3, const Operand& opnd); |
| + void rll(Register r1, Register r3, Register r2, const Operand& opnd); |
| + void rllg(Register r1, Register r3, const Operand& opnd); |
| + void rllg(Register r1, Register r3, const Register opnd); |
| + void rllg(Register r1, Register r3, Register r2, const Operand& opnd); |
| + |
| + // Shift Instructions (32) |
| + void sll(Register r1, Register opnd); |
| + void sll(Register r1, const Operand& opnd); |
| + void sllk(Register r1, Register r3, Register opnd); |
| + void sllk(Register r1, Register r3, const Operand& opnd); |
| + void srl(Register r1, Register opnd); |
| + void srl(Register r1, const Operand& opnd); |
| + void srlk(Register r1, Register r3, Register opnd); |
| + void srlk(Register r1, Register r3, const Operand& opnd); |
| + void sra(Register r1, Register opnd); |
| + void sra(Register r1, const Operand& opnd); |
| + void srak(Register r1, Register r3, Register opnd); |
| + void srak(Register r1, Register r3, const Operand& opnd); |
| + void sla(Register r1, Register opnd); |
| + void sla(Register r1, const Operand& opnd); |
| + void slak(Register r1, Register r3, Register opnd); |
| + void slak(Register r1, Register r3, const Operand& opnd); |
| + |
| + // Shift Instructions (64) |
| + void sllg(Register r1, Register r3, const Operand& opnd); |
| + void sllg(Register r1, Register r3, const Register opnd); |
| + void srlg(Register r1, Register r3, const Operand& opnd); |
| + void srlg(Register r1, Register r3, const Register opnd); |
| + void srag(Register r1, Register r3, const Operand& opnd); |
| + void srag(Register r1, Register r3, const Register opnd); |
| + void srda(Register r1, const Operand& opnd); |
| + void srdl(Register r1, const Operand& opnd); |
| + void slag(Register r1, Register r3, const Operand& opnd); |
| + void slag(Register r1, Register r3, const Register opnd); |
| + |
| + // Rotate and Insert Selected Bits |
| + void risbg(Register dst, Register src, const Operand& startBit, |
| + const Operand& endBit, const Operand& shiftAmt, |
| + bool zeroBits = true); |
| + void risbgn(Register dst, Register src, const Operand& startBit, |
| + const Operand& endBit, const Operand& shiftAmt, |
| + bool zeroBits = true); |
| + |
| + // Move Character (Mem to Mem) |
| + void mvc(const MemOperand& opnd1, const MemOperand& opnd2, uint32_t length); |
| + |
| + // Branch Instructions |
| + void basr(Register r1, Register r2); |
| + void bcr(Condition m, Register target); |
| + void bct(Register r, const MemOperand& opnd); |
| + void bctg(Register r, const MemOperand& opnd); |
| + void bras(Register r, const Operand& opnd); |
| + void brasl(Register r, const Operand& opnd); |
| + void brc(Condition c, const Operand& opnd); |
| + void brcl(Condition m, const Operand& opnd, bool isCodeTarget = false); |
| + void brct(Register r1, const Operand& opnd); |
| + void brctg(Register r1, const Operand& opnd); |
| + |
| + // 32-bit Add Instructions |
| + void a(Register r1, const MemOperand& opnd); |
| + void ay(Register r1, const MemOperand& opnd); |
| + void afi(Register r1, const Operand& opnd); |
| + void ah(Register r1, const MemOperand& opnd); |
| + void ahy(Register r1, const MemOperand& opnd); |
| + void ahi(Register r1, const Operand& opnd); |
| + void ahik(Register r1, Register r3, const Operand& opnd); |
| + void ar(Register r1, Register r2); |
| + void ark(Register r1, Register r2, Register r3); |
| + void asi(const MemOperand&, const Operand&); |
| + |
| + // 64-bit Add Instructions |
| + void ag(Register r1, const MemOperand& opnd); |
| + void agf(Register r1, const MemOperand& opnd); |
| + void agfi(Register r1, const Operand& opnd); |
| + void agfr(Register r1, Register r2); |
| + void aghi(Register r1, const Operand& opnd); |
| + void aghik(Register r1, Register r3, const Operand& opnd); |
| + void agr(Register r1, Register r2); |
| + void agrk(Register r1, Register r2, Register r3); |
| + void agsi(const MemOperand&, const Operand&); |
| + |
| + // 32-bit Add Logical Instructions |
| + void al_z(Register r1, const MemOperand& opnd); |
| + void aly(Register r1, const MemOperand& opnd); |
| + void alfi(Register r1, const Operand& opnd); |
| + void alr(Register r1, Register r2); |
| + void alrk(Register r1, Register r2, Register r3); |
| + |
| + // 64-bit Add Logical Instructions |
| + void alg(Register r1, const MemOperand& opnd); |
| + void algfi(Register r1, const Operand& opnd); |
| + void algr(Register r1, Register r2); |
| + void algrk(Register r1, Register r2, Register r3); |
| + |
| + // 32-bit Subtract Instructions |
| + void s(Register r1, const MemOperand& opnd); |
| + void sy(Register r1, const MemOperand& opnd); |
| + void sh(Register r1, const MemOperand& opnd); |
| + void shy(Register r1, const MemOperand& opnd); |
| + void sr(Register r1, Register r2); |
| + void srk(Register r1, Register r2, Register r3); |
| + |
| + // 64-bit Subtract Instructions |
| + void sg(Register r1, const MemOperand& opnd); |
| + void sgf(Register r1, const MemOperand& opnd); |
| + void sgr(Register r1, Register r2); |
| + void sgfr(Register r1, Register r2); |
| + void sgrk(Register r1, Register r2, Register r3); |
| + |
| + // 32-bit Subtract Logical Instructions |
| + void sl(Register r1, const MemOperand& opnd); |
| + void sly(Register r1, const MemOperand& opnd); |
| + void slr(Register r1, Register r2); |
| + void slrk(Register r1, Register r2, Register r3); |
| + |
| + // 64-bit Subtract Logical Instructions |
| + void slg(Register r1, const MemOperand& opnd); |
| + void slgr(Register r1, Register r2); |
| + void slgrk(Register r1, Register r2, Register r3); |
| + |
| + // 32-bit Multiply Instructions |
| + void m(Register r1, const MemOperand& opnd); |
| + void mr_z(Register r1, Register r2); |
| + void ml(Register r1, const MemOperand& opnd); |
| + void mlr(Register r1, Register r2); |
| + void ms(Register r1, const MemOperand& opnd); |
| + void msy(Register r1, const MemOperand& opnd); |
| + void msfi(Register r1, const Operand& opnd); |
| + void msr(Register r1, Register r2); |
| + void mh(Register r1, const MemOperand& opnd); |
| + void mhy(Register r1, const MemOperand& opnd); |
| + void mhi(Register r1, const Operand& opnd); |
| + |
| + // 64-bit Multiply Instructions |
| + void mlg(Register r1, const MemOperand& opnd); |
| + void mlgr(Register r1, Register r2); |
| + void mghi(Register r1, const Operand& opnd); |
| + void msgfi(Register r1, const Operand& opnd); |
| + void msg(Register r1, const MemOperand& opnd); |
| + void msgr(Register r1, Register r2); |
| + |
| + // 32-bit Divide Instructions |
| + void d(Register r1, const MemOperand& opnd); |
| + void dr(Register r1, Register r2); |
| + void dl(Register r1, const MemOperand& opnd); |
| + void dlr(Register r1, Register r2); |
| + |
| + // 64-bit Divide Instructions |
| + void dlgr(Register r1, Register r2); |
| + void dsgr(Register r1, Register r2); |
| + |
| + // Bitwise Instructions (AND / OR / XOR) |
| + void n(Register r1, const MemOperand& opnd); |
| + void ny(Register r1, const MemOperand& opnd); |
| + void nr(Register r1, Register r2); |
| + void nrk(Register r1, Register r2, Register r3); |
| + void ng(Register r1, const MemOperand& opnd); |
| + void ngr(Register r1, Register r2); |
| + void ngrk(Register r1, Register r2, Register r3); |
| + void o(Register r1, const MemOperand& opnd); |
| + void oy(Register r1, const MemOperand& opnd); |
| + void or_z(Register r1, Register r2); |
| + void ork(Register r1, Register r2, Register r3); |
| + void og(Register r1, const MemOperand& opnd); |
| + void ogr(Register r1, Register r2); |
| + void ogrk(Register r1, Register r2, Register r3); |
| + void x(Register r1, const MemOperand& opnd); |
| + void xy(Register r1, const MemOperand& opnd); |
| + void xr(Register r1, Register r2); |
| + void xrk(Register r1, Register r2, Register r3); |
| + void xg(Register r1, const MemOperand& opnd); |
| + void xgr(Register r1, Register r2); |
| + void xgrk(Register r1, Register r2, Register r3); |
| + void xc(const MemOperand& opnd1, const MemOperand& opnd2, Length length); |
| + |
| + // Bitwise GPR <-> FPR Conversion Instructions |
| + void lgdr(Register r1, DoubleRegister f2); |
| + void ldgr(DoubleRegister f1, Register r2); |
| + |
| + // Floating Point Load / Store Instructions |
| + void ld(DoubleRegister r1, const MemOperand& opnd); |
| + void ldy(DoubleRegister r1, const MemOperand& opnd); |
| + void le_z(DoubleRegister r1, const MemOperand& opnd); |
| + void ley(DoubleRegister r1, const MemOperand& opnd); |
| + void ldr(DoubleRegister r1, DoubleRegister r2); |
| + void ltdbr(DoubleRegister r1, DoubleRegister r2); |
| + void ltebr(DoubleRegister r1, DoubleRegister r2); |
| + void std(DoubleRegister r1, const MemOperand& opnd); |
| + void stdy(DoubleRegister r1, const MemOperand& opnd); |
| + void ste(DoubleRegister r1, const MemOperand& opnd); |
| + void stey(DoubleRegister r1, const MemOperand& opnd); |
| + |
| + // Floating Point Load Rounded/Positive Instructions |
| + void ledbr(DoubleRegister r1, DoubleRegister r2); |
| + void ldebr(DoubleRegister r1, DoubleRegister r2); |
| + void lpebr(DoubleRegister r1, DoubleRegister r2); |
| + void lpdbr(DoubleRegister r1, DoubleRegister r2); |
| + |
| + // Floating <-> Fixed Point Conversion Instructions |
| + void cdlfbr(Condition m3, Condition m4, DoubleRegister fltReg, |
| + Register fixReg); |
| + void cdlgbr(Condition m3, Condition m4, DoubleRegister fltReg, |
| + Register fixReg); |
| + void celgbr(Condition m3, Condition m4, DoubleRegister fltReg, |
| + Register fixReg); |
| + void celfbr(Condition m3, Condition m4, DoubleRegister fltReg, |
| + Register fixReg); |
| + void clfdbr(Condition m3, Condition m4, Register fixReg, |
| + DoubleRegister fltReg); |
| + void clfebr(Condition m3, Condition m4, Register fixReg, |
| + DoubleRegister fltReg); |
| + void clgdbr(Condition m3, Condition m4, Register fixReg, |
| + DoubleRegister fltReg); |
| + void clgebr(Condition m3, Condition m4, Register fixReg, |
| + DoubleRegister fltReg); |
| + void cfdbr(Condition m, Register fixReg, DoubleRegister fltReg); |
| + void cdfbr(DoubleRegister fltReg, Register fixReg); |
| + void cgebr(Condition m, Register fixReg, DoubleRegister fltReg); |
| + void cgdbr(Condition m, Register fixReg, DoubleRegister fltReg); |
| + void cegbr(DoubleRegister fltReg, Register fixReg); |
| + void cdgbr(DoubleRegister fltReg, Register fixReg); |
| + void cfebr(Condition m3, Register fixReg, DoubleRegister fltReg); |
| + void cefbr(DoubleRegister fltReg, Register fixReg); |
| + |
| + // Floating Point Compare Instructions |
| + void cebr(DoubleRegister r1, DoubleRegister r2); |
| + void cdb(DoubleRegister r1, const MemOperand& opnd); |
| + void cdbr(DoubleRegister r1, DoubleRegister r2); |
| + |
| + // Floating Point Arithmetic Instructions |
| + void aebr(DoubleRegister r1, DoubleRegister r2); |
| + void adb(DoubleRegister r1, const MemOperand& opnd); |
| + void adbr(DoubleRegister r1, DoubleRegister r2); |
| + void lzdr(DoubleRegister r1); |
| + void sebr(DoubleRegister r1, DoubleRegister r2); |
| + void sdb(DoubleRegister r1, const MemOperand& opnd); |
| + void sdbr(DoubleRegister r1, DoubleRegister r2); |
| + void meebr(DoubleRegister r1, DoubleRegister r2); |
| + void mdb(DoubleRegister r1, const MemOperand& opnd); |
| + void mdbr(DoubleRegister r1, DoubleRegister r2); |
| + void debr(DoubleRegister r1, DoubleRegister r2); |
| + void ddb(DoubleRegister r1, const MemOperand& opnd); |
| + void ddbr(DoubleRegister r1, DoubleRegister r2); |
| + void madbr(DoubleRegister r1, DoubleRegister r2, DoubleRegister r3); |
| + void msdbr(DoubleRegister r1, DoubleRegister r2, DoubleRegister r3); |
| + void sqebr(DoubleRegister r1, DoubleRegister r2); |
| + void sqdb(DoubleRegister r1, const MemOperand& opnd); |
| + void sqdbr(DoubleRegister r1, DoubleRegister r2); |
| + void lcdbr(DoubleRegister r1, DoubleRegister r2); |
| + void ldeb(DoubleRegister r1, const MemOperand& opnd); |
| + |
| + enum FIDBRA_MASK3 { |
| + FIDBRA_CURRENT_ROUNDING_MODE = 0, |
| + FIDBRA_ROUND_TO_NEAREST_AWAY_FROM_0 = 1, |
| + // ... |
| + FIDBRA_ROUND_TOWARD_0 = 5, |
| + FIDBRA_ROUND_TOWARD_POS_INF = 6, |
| + FIDBRA_ROUND_TOWARD_NEG_INF = 7 |
| + }; |
| + void fiebra(DoubleRegister d1, DoubleRegister d2, FIDBRA_MASK3 m3); |
| + void fidbra(DoubleRegister d1, DoubleRegister d2, FIDBRA_MASK3 m3); |
| + |
| + // Move integer |
| + void mvhi(const MemOperand& opnd1, const Operand& i2); |
| + void mvghi(const MemOperand& opnd1, const Operand& i2); |
| + |
| + // Exception-generating instructions and debugging support |
| + void stop(const char* msg, Condition cond = al, |
| + int32_t code = kDefaultStopCode, CRegister cr = cr7); |
| + |
| + void bkpt(uint32_t imm16); // v5 and above |
| + |
| + // Different nop operations are used by the code generator to detect certain |
| + // states of the generated code. |
| + enum NopMarkerTypes { |
| + NON_MARKING_NOP = 0, |
| + GROUP_ENDING_NOP, |
| + DEBUG_BREAK_NOP, |
| + // IC markers. |
| + PROPERTY_ACCESS_INLINED, |
| + PROPERTY_ACCESS_INLINED_CONTEXT, |
| + PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE, |
| + // Helper values. |
| + LAST_CODE_MARKER, |
| + FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED |
| + }; |
| + |
| + void nop(int type = 0); // 0 is the default non-marking type. |
| + |
| + // Check the code size generated from label to here. |
| + int SizeOfCodeGeneratedSince(Label* label) { |
| + return pc_offset() - label->pos(); |
| + } |
| + |
| + // Debugging |
| + |
| + // Mark generator continuation. |
| + void RecordGeneratorContinuation(); |
| + |
| + // Mark address of a debug break slot. |
| + void RecordDebugBreakSlot(RelocInfo::Mode mode); |
| + |
| + // Record the AST id of the CallIC being compiled, so that it can be placed |
| + // in the relocation information. |
| + void SetRecordedAstId(TypeFeedbackId ast_id) { recorded_ast_id_ = ast_id; } |
| + |
| + TypeFeedbackId RecordedAstId() { |
| + // roohack - another issue??? DCHECK(!recorded_ast_id_.IsNone()); |
| + return recorded_ast_id_; |
| + } |
| + |
| + void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); } |
| + |
| + // Record a comment relocation entry that can be used by a disassembler. |
| + // Use --code-comments to enable. |
| + void RecordComment(const char* msg); |
| + |
| + // Record a deoptimization reason that can be used by a log or cpu profiler. |
| + // Use --trace-deopt to enable. |
| + void RecordDeoptReason(const int reason, int raw_position); |
| + |
| + // Writes a single byte or word of data in the code stream. Used |
| + // for inline tables, e.g., jump-tables. |
| + void db(uint8_t data); |
| + void dd(uint32_t data); |
| + void dq(uint64_t data); |
| + void dp(uintptr_t data); |
| + |
| + PositionsRecorder* positions_recorder() { return &positions_recorder_; } |
| + |
| + void PatchConstantPoolAccessInstruction(int pc_offset, int offset, |
| + ConstantPoolEntry::Access access, |
| + ConstantPoolEntry::Type type) { |
| + // No embedded constant pool support. |
| + UNREACHABLE(); |
| + } |
| + |
| + // Read/patch instructions |
| + SixByteInstr instr_at(int pos) { |
| + return Instruction::InstructionBits(buffer_ + pos); |
| + } |
| + template <typename T> |
| + void instr_at_put(int pos, T instr) { |
| + Instruction::SetInstructionBits<T>(buffer_ + pos, instr); |
| + } |
| + |
| + // Decodes instruction at pos, and returns its length |
| + int32_t instr_length_at(int pos) { |
| + return Instruction::InstructionLength(buffer_ + pos); |
| + } |
| + |
| + static SixByteInstr instr_at(byte* pc) { |
| + return Instruction::InstructionBits(pc); |
| + } |
| + |
| + static Condition GetCondition(Instr instr); |
| + |
| + static bool IsBranch(Instr instr); |
| +#if V8_TARGET_ARCH_S390X |
| + static bool Is64BitLoadIntoIP(SixByteInstr instr1, SixByteInstr instr2); |
| +#else |
| + static bool Is32BitLoadIntoIP(SixByteInstr instr); |
| +#endif |
| + |
| + static bool IsCmpRegister(Instr instr); |
| + static bool IsCmpImmediate(Instr instr); |
| + static bool IsNop(SixByteInstr instr, int type = NON_MARKING_NOP); |
| + |
| + // The code currently calls CheckBuffer() too often. This has the side |
| + // effect of randomly growing the buffer in the middle of multi-instruction |
| + // sequences. |
| + // |
| + // This function allows outside callers to check and grow the buffer |
| + void EnsureSpaceFor(int space_needed); |
| + |
| + void EmitRelocations(); |
| + void emit_label_addr(Label* label); |
| + |
| + public: |
| + byte* buffer_pos() const { return buffer_; } |
| + |
| + protected: |
| + // Relocation for a type-recording IC has the AST id added to it. This |
| + // member variable is a way to pass the information from the call site to |
| + // the relocation info. |
| + TypeFeedbackId recorded_ast_id_; |
| + |
| + int buffer_space() const { return reloc_info_writer.pos() - pc_; } |
| + |
| + // Decode instruction(s) at pos and return backchain to previous |
| + // label reference or kEndOfChain. |
| + int target_at(int pos); |
| + |
| + // Patch instruction(s) at pos to target target_pos (e.g. branch) |
| + void target_at_put(int pos, int target_pos, bool* is_branch = nullptr); |
| + |
| + // Record reloc info for current pc_ |
| + void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0); |
| + |
| + private: |
| + // Code generation |
| + // The relocation writer's position is at least kGap bytes below the end of |
| + // the generated instructions. This is so that multi-instruction sequences do |
| + // not have to check for overflow. The same is true for writes of large |
| + // relocation info entries. |
| + static const int kGap = 32; |
| + |
| + // Relocation info generation |
| + // Each relocation is encoded as a variable size value |
| + static const int kMaxRelocSize = RelocInfoWriter::kMaxSize; |
| + RelocInfoWriter reloc_info_writer; |
| + std::vector<DeferredRelocInfo> relocations_; |
| + |
| + // The bound position, before this we cannot do instruction elimination. |
| + int last_bound_pos_; |
| + |
| + // Code emission |
| + inline void CheckBuffer(); |
| + void GrowBuffer(int needed = 0); |
| + inline void TrackBranch(); |
| + inline void UntrackBranch(); |
| + |
| + inline int32_t emit_code_target( |
| + Handle<Code> target, RelocInfo::Mode rmode, |
| + TypeFeedbackId ast_id = TypeFeedbackId::None()); |
| + |
| + // Helpers to emit binary encoding of 2/4/6 byte instructions. |
| + inline void emit2bytes(uint16_t x); |
| + inline void emit4bytes(uint32_t x); |
| + inline void emit6bytes(uint64_t x); |
| + |
| + // Helpers to emit binary encoding for various instruction formats. |
| + |
| + inline void rr_form(Opcode op, Register r1, Register r2); |
| + inline void rr_form(Opcode op, DoubleRegister r1, DoubleRegister r2); |
| + inline void rr_form(Opcode op, Condition m1, Register r2); |
| + inline void rr2_form(uint8_t op, Condition m1, Register r2); |
| + |
| + inline void rx_form(Opcode op, Register r1, Register x2, Register b2, |
| + Disp d2); |
| + inline void rx_form(Opcode op, DoubleRegister r1, Register x2, Register b2, |
| + Disp d2); |
| + |
| + inline void ri_form(Opcode op, Register r1, const Operand& i2); |
| + inline void ri_form(Opcode op, Condition m1, const Operand& i2); |
| + |
| + inline void rie_form(Opcode op, Register r1, Register r3, const Operand& i2); |
| + inline void rie_f_form(Opcode op, Register r1, Register r2, const Operand& i3, |
| + const Operand& i4, const Operand& i5); |
| + |
| + inline void ril_form(Opcode op, Register r1, const Operand& i2); |
| + inline void ril_form(Opcode op, Condition m1, const Operand& i2); |
| + |
| + inline void ris_form(Opcode op, Register r1, Condition m3, Register b4, |
| + Disp d4, const Operand& i2); |
| + |
| + inline void rrd_form(Opcode op, Register r1, Register r3, Register r2); |
| + |
| + inline void rre_form(Opcode op, Register r1, Register r2); |
| + inline void rre_form(Opcode op, DoubleRegister r1, DoubleRegister r2); |
| + |
| + inline void rrf1_form(Opcode op, Register r1, Register r2, Register r3); |
| + inline void rrf1_form(uint32_t x); |
| + inline void rrf2_form(uint32_t x); |
| + inline void rrf3_form(uint32_t x); |
| + inline void rrfe_form(Opcode op, Condition m3, Condition m4, Register r1, |
| + Register r2); |
| + |
| + inline void rrs_form(Opcode op, Register r1, Register r2, Register b4, |
| + Disp d4, Condition m3); |
| + |
| + inline void rs_form(Opcode op, Register r1, Condition m3, Register b2, |
| + const Disp d2); |
| + inline void rs_form(Opcode op, Register r1, Register r3, Register b2, |
| + const Disp d2); |
| + |
| + inline void rsi_form(Opcode op, Register r1, Register r3, const Operand& i2); |
| + inline void rsl_form(Opcode op, Length l1, Register b2, Disp d2); |
| + |
| + inline void rsy_form(Opcode op, Register r1, Register r3, Register b2, |
| + const Disp d2); |
| + inline void rsy_form(Opcode op, Register r1, Condition m3, Register b2, |
| + const Disp d2); |
| + |
| + inline void rxe_form(Opcode op, Register r1, Register x2, Register b2, |
| + Disp d2); |
| + |
| + inline void rxf_form(Opcode op, Register r1, Register r3, Register b2, |
| + Register x2, Disp d2); |
| + |
| + inline void rxy_form(Opcode op, Register r1, Register x2, Register b2, |
| + Disp d2); |
| + inline void rxy_form(Opcode op, DoubleRegister r1, Register x2, Register b2, |
| + Disp d2); |
| + |
| + inline void s_form(Opcode op, Register b1, Disp d2); |
| + |
| + inline void si_form(Opcode op, const Operand& i2, Register b1, Disp d1); |
| + inline void siy_form(Opcode op, const Operand& i2, Register b1, Disp d1); |
| + |
| + inline void sil_form(Opcode op, Register b1, Disp d1, const Operand& i2); |
| + |
| + inline void ss_form(Opcode op, Length l, Register b1, Disp d1, Register b2, |
| + Disp d2); |
| + inline void ss_form(Opcode op, Length l1, Length l2, Register b1, Disp d1, |
| + Register b2, Disp d2); |
| + inline void ss_form(Opcode op, Length l1, const Operand& i3, Register b1, |
| + Disp d1, Register b2, Disp d2); |
| + inline void ss_form(Opcode op, Register r1, Register r2, Register b1, Disp d1, |
| + Register b2, Disp d2); |
| + inline void sse_form(Opcode op, Register b1, Disp d1, Register b2, Disp d2); |
| + inline void ssf_form(Opcode op, Register r3, Register b1, Disp d1, |
| + Register b2, Disp d2); |
| + |
| + // Labels |
| + void print(Label* L); |
| + int max_reach_from(int pos); |
| + void bind_to(Label* L, int pos); |
| + void next(Label* L); |
| + |
| + friend class RegExpMacroAssemblerS390; |
| + friend class RelocInfo; |
| + friend class CodePatcher; |
| + |
| + List<Handle<Code> > code_targets_; |
| + |
| + PositionsRecorder positions_recorder_; |
| + friend class PositionsRecorder; |
| + friend class EnsureSpace; |
| +}; |
| + |
| +class EnsureSpace BASE_EMBEDDED { |
| + public: |
| + explicit EnsureSpace(Assembler* assembler) { assembler->CheckBuffer(); } |
| +}; |
| + |
| +} // namespace internal |
| +} // namespace v8 |
| + |
| +#endif // V8_S390_ASSEMBLER_S390_H_ |