Index: cc/math_util.cc |
diff --git a/cc/math_util.cc b/cc/math_util.cc |
deleted file mode 100644 |
index f5c0cb4eae3f447f214018ba766bfa102ca7ea9d..0000000000000000000000000000000000000000 |
--- a/cc/math_util.cc |
+++ /dev/null |
@@ -1,422 +0,0 @@ |
-// Copyright 2012 The Chromium Authors. All rights reserved. |
-// Use of this source code is governed by a BSD-style license that can be |
-// found in the LICENSE file. |
- |
-#include "cc/math_util.h" |
- |
-#include <cmath> |
-#include <limits> |
- |
-#include "base/values.h" |
-#include "ui/gfx/quad_f.h" |
-#include "ui/gfx/rect.h" |
-#include "ui/gfx/rect_conversions.h" |
-#include "ui/gfx/rect_f.h" |
-#include "ui/gfx/transform.h" |
-#include "ui/gfx/vector2d_f.h" |
- |
-namespace cc { |
- |
-const double MathUtil::PI_DOUBLE = 3.14159265358979323846; |
-const float MathUtil::PI_FLOAT = 3.14159265358979323846f; |
-const double MathUtil::EPSILON = 1e-9; |
- |
-static HomogeneousCoordinate projectHomogeneousPoint(const gfx::Transform& transform, const gfx::PointF& p) |
-{ |
- // In this case, the layer we are trying to project onto is perpendicular to ray |
- // (point p and z-axis direction) that we are trying to project. This happens when the |
- // layer is rotated so that it is infinitesimally thin, or when it is co-planar with |
- // the camera origin -- i.e. when the layer is invisible anyway. |
- if (!transform.matrix().getDouble(2, 2)) |
- return HomogeneousCoordinate(0, 0, 0, 1); |
- |
- double x = p.x(); |
- double y = p.y(); |
- double z = -(transform.matrix().getDouble(2, 0) * x + transform.matrix().getDouble(2, 1) * y + transform.matrix().getDouble(2, 3)) / transform.matrix().getDouble(2, 2); |
- // implicit definition of w = 1; |
- |
- double outX = x * transform.matrix().getDouble(0, 0) + y * transform.matrix().getDouble(0, 1) + z * transform.matrix().getDouble(0, 2) + transform.matrix().getDouble(0, 3); |
- double outY = x * transform.matrix().getDouble(1, 0) + y * transform.matrix().getDouble(1, 1) + z * transform.matrix().getDouble(1, 2) + transform.matrix().getDouble(1, 3); |
- double outZ = x * transform.matrix().getDouble(2, 0) + y * transform.matrix().getDouble(2, 1) + z * transform.matrix().getDouble(2, 2) + transform.matrix().getDouble(2, 3); |
- double outW = x * transform.matrix().getDouble(3, 0) + y * transform.matrix().getDouble(3, 1) + z * transform.matrix().getDouble(3, 2) + transform.matrix().getDouble(3, 3); |
- |
- return HomogeneousCoordinate(outX, outY, outZ, outW); |
-} |
- |
-static HomogeneousCoordinate mapHomogeneousPoint(const gfx::Transform& transform, const gfx::Point3F& p) |
-{ |
- double x = p.x(); |
- double y = p.y(); |
- double z = p.z(); |
- // implicit definition of w = 1; |
- |
- double outX = x * transform.matrix().getDouble(0, 0) + y * transform.matrix().getDouble(0, 1) + z * transform.matrix().getDouble(0, 2) + transform.matrix().getDouble(0, 3); |
- double outY = x * transform.matrix().getDouble(1, 0) + y * transform.matrix().getDouble(1, 1) + z * transform.matrix().getDouble(1, 2) + transform.matrix().getDouble(1, 3); |
- double outZ = x * transform.matrix().getDouble(2, 0) + y * transform.matrix().getDouble(2, 1) + z * transform.matrix().getDouble(2, 2) + transform.matrix().getDouble(2, 3); |
- double outW = x * transform.matrix().getDouble(3, 0) + y * transform.matrix().getDouble(3, 1) + z * transform.matrix().getDouble(3, 2) + transform.matrix().getDouble(3, 3); |
- |
- return HomogeneousCoordinate(outX, outY, outZ, outW); |
-} |
- |
-static HomogeneousCoordinate computeClippedPointForEdge(const HomogeneousCoordinate& h1, const HomogeneousCoordinate& h2) |
-{ |
- // Points h1 and h2 form a line in 4d, and any point on that line can be represented |
- // as an interpolation between h1 and h2: |
- // p = (1-t) h1 + (t) h2 |
- // |
- // We want to compute point p such that p.w == epsilon, where epsilon is a small |
- // non-zero number. (but the smaller the number is, the higher the risk of overflow) |
- // To do this, we solve for t in the following equation: |
- // p.w = epsilon = (1-t) * h1.w + (t) * h2.w |
- // |
- // Once paramter t is known, the rest of p can be computed via p = (1-t) h1 + (t) h2. |
- |
- // Technically this is a special case of the following assertion, but its a good idea to keep it an explicit sanity check here. |
- DCHECK(h2.w != h1.w); |
- // Exactly one of h1 or h2 (but not both) must be on the negative side of the w plane when this is called. |
- DCHECK(h1.shouldBeClipped() ^ h2.shouldBeClipped()); |
- |
- double w = 0.00001; // or any positive non-zero small epsilon |
- |
- double t = (w - h1.w) / (h2.w - h1.w); |
- |
- double x = (1-t) * h1.x + t * h2.x; |
- double y = (1-t) * h1.y + t * h2.y; |
- double z = (1-t) * h1.z + t * h2.z; |
- |
- return HomogeneousCoordinate(x, y, z, w); |
-} |
- |
-static inline void expandBoundsToIncludePoint(float& xmin, float& xmax, float& ymin, float& ymax, const gfx::PointF& p) |
-{ |
- xmin = std::min(p.x(), xmin); |
- xmax = std::max(p.x(), xmax); |
- ymin = std::min(p.y(), ymin); |
- ymax = std::max(p.y(), ymax); |
-} |
- |
-static inline void addVertexToClippedQuad(const gfx::PointF& newVertex, gfx::PointF clippedQuad[8], int& numVerticesInClippedQuad) |
-{ |
- clippedQuad[numVerticesInClippedQuad] = newVertex; |
- numVerticesInClippedQuad++; |
-} |
- |
-gfx::Rect MathUtil::mapClippedRect(const gfx::Transform& transform, const gfx::Rect& srcRect) |
-{ |
- return gfx::ToEnclosingRect(mapClippedRect(transform, gfx::RectF(srcRect))); |
-} |
- |
-gfx::RectF MathUtil::mapClippedRect(const gfx::Transform& transform, const gfx::RectF& srcRect) |
-{ |
- if (transform.IsIdentityOrTranslation()) |
- return srcRect + gfx::Vector2dF(static_cast<float>(transform.matrix().getDouble(0, 3)), static_cast<float>(transform.matrix().getDouble(1, 3))); |
- |
- // Apply the transform, but retain the result in homogeneous coordinates. |
- |
- double quad[4 * 2]; // input: 4 x 2D points |
- quad[0] = srcRect.x(); |
- quad[1] = srcRect.y(); |
- quad[2] = srcRect.right(); |
- quad[3] = srcRect.y(); |
- quad[4] = srcRect.right(); |
- quad[5] = srcRect.bottom(); |
- quad[6] = srcRect.x(); |
- quad[7] = srcRect.bottom(); |
- |
- double result[4 * 4]; // output: 4 x 4D homogeneous points |
- transform.matrix().map2(quad, 4, result); |
- |
- HomogeneousCoordinate hc0(result[0], result[1], result[2], result[3]); |
- HomogeneousCoordinate hc1(result[4], result[5], result[6], result[7]); |
- HomogeneousCoordinate hc2(result[8], result[9], result[10], result[11]); |
- HomogeneousCoordinate hc3(result[12], result[13], result[14], result[15]); |
- return computeEnclosingClippedRect(hc0, hc1, hc2, hc3); |
-} |
- |
-gfx::RectF MathUtil::projectClippedRect(const gfx::Transform& transform, const gfx::RectF& srcRect) |
-{ |
- if (transform.IsIdentityOrTranslation()) |
- return srcRect + gfx::Vector2dF(static_cast<float>(transform.matrix().getDouble(0, 3)), static_cast<float>(transform.matrix().getDouble(1, 3))); |
- |
- // Perform the projection, but retain the result in homogeneous coordinates. |
- gfx::QuadF q = gfx::QuadF(srcRect); |
- HomogeneousCoordinate h1 = projectHomogeneousPoint(transform, q.p1()); |
- HomogeneousCoordinate h2 = projectHomogeneousPoint(transform, q.p2()); |
- HomogeneousCoordinate h3 = projectHomogeneousPoint(transform, q.p3()); |
- HomogeneousCoordinate h4 = projectHomogeneousPoint(transform, q.p4()); |
- |
- return computeEnclosingClippedRect(h1, h2, h3, h4); |
-} |
- |
-void MathUtil::mapClippedQuad(const gfx::Transform& transform, const gfx::QuadF& srcQuad, gfx::PointF clippedQuad[8], int& numVerticesInClippedQuad) |
-{ |
- HomogeneousCoordinate h1 = mapHomogeneousPoint(transform, gfx::Point3F(srcQuad.p1())); |
- HomogeneousCoordinate h2 = mapHomogeneousPoint(transform, gfx::Point3F(srcQuad.p2())); |
- HomogeneousCoordinate h3 = mapHomogeneousPoint(transform, gfx::Point3F(srcQuad.p3())); |
- HomogeneousCoordinate h4 = mapHomogeneousPoint(transform, gfx::Point3F(srcQuad.p4())); |
- |
- // The order of adding the vertices to the array is chosen so that clockwise / counter-clockwise orientation is retained. |
- |
- numVerticesInClippedQuad = 0; |
- |
- if (!h1.shouldBeClipped()) |
- addVertexToClippedQuad(h1.cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad); |
- |
- if (h1.shouldBeClipped() ^ h2.shouldBeClipped()) |
- addVertexToClippedQuad(computeClippedPointForEdge(h1, h2).cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad); |
- |
- if (!h2.shouldBeClipped()) |
- addVertexToClippedQuad(h2.cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad); |
- |
- if (h2.shouldBeClipped() ^ h3.shouldBeClipped()) |
- addVertexToClippedQuad(computeClippedPointForEdge(h2, h3).cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad); |
- |
- if (!h3.shouldBeClipped()) |
- addVertexToClippedQuad(h3.cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad); |
- |
- if (h3.shouldBeClipped() ^ h4.shouldBeClipped()) |
- addVertexToClippedQuad(computeClippedPointForEdge(h3, h4).cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad); |
- |
- if (!h4.shouldBeClipped()) |
- addVertexToClippedQuad(h4.cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad); |
- |
- if (h4.shouldBeClipped() ^ h1.shouldBeClipped()) |
- addVertexToClippedQuad(computeClippedPointForEdge(h4, h1).cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad); |
- |
- DCHECK(numVerticesInClippedQuad <= 8); |
-} |
- |
-gfx::RectF MathUtil::computeEnclosingRectOfVertices(gfx::PointF vertices[], int numVertices) |
-{ |
- if (numVertices < 2) |
- return gfx::RectF(); |
- |
- float xmin = std::numeric_limits<float>::max(); |
- float xmax = -std::numeric_limits<float>::max(); |
- float ymin = std::numeric_limits<float>::max(); |
- float ymax = -std::numeric_limits<float>::max(); |
- |
- for (int i = 0; i < numVertices; ++i) |
- expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, vertices[i]); |
- |
- return gfx::RectF(gfx::PointF(xmin, ymin), gfx::SizeF(xmax - xmin, ymax - ymin)); |
-} |
- |
-gfx::RectF MathUtil::computeEnclosingClippedRect(const HomogeneousCoordinate& h1, const HomogeneousCoordinate& h2, const HomogeneousCoordinate& h3, const HomogeneousCoordinate& h4) |
-{ |
- // This function performs clipping as necessary and computes the enclosing 2d |
- // gfx::RectF of the vertices. Doing these two steps simultaneously allows us to avoid |
- // the overhead of storing an unknown number of clipped vertices. |
- |
- // If no vertices on the quad are clipped, then we can simply return the enclosing rect directly. |
- bool somethingClipped = h1.shouldBeClipped() || h2.shouldBeClipped() || h3.shouldBeClipped() || h4.shouldBeClipped(); |
- if (!somethingClipped) { |
- gfx::QuadF mappedQuad = gfx::QuadF(h1.cartesianPoint2d(), h2.cartesianPoint2d(), h3.cartesianPoint2d(), h4.cartesianPoint2d()); |
- return mappedQuad.BoundingBox(); |
- } |
- |
- bool everythingClipped = h1.shouldBeClipped() && h2.shouldBeClipped() && h3.shouldBeClipped() && h4.shouldBeClipped(); |
- if (everythingClipped) |
- return gfx::RectF(); |
- |
- |
- float xmin = std::numeric_limits<float>::max(); |
- float xmax = -std::numeric_limits<float>::max(); |
- float ymin = std::numeric_limits<float>::max(); |
- float ymax = -std::numeric_limits<float>::max(); |
- |
- if (!h1.shouldBeClipped()) |
- expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, h1.cartesianPoint2d()); |
- |
- if (h1.shouldBeClipped() ^ h2.shouldBeClipped()) |
- expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, computeClippedPointForEdge(h1, h2).cartesianPoint2d()); |
- |
- if (!h2.shouldBeClipped()) |
- expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, h2.cartesianPoint2d()); |
- |
- if (h2.shouldBeClipped() ^ h3.shouldBeClipped()) |
- expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, computeClippedPointForEdge(h2, h3).cartesianPoint2d()); |
- |
- if (!h3.shouldBeClipped()) |
- expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, h3.cartesianPoint2d()); |
- |
- if (h3.shouldBeClipped() ^ h4.shouldBeClipped()) |
- expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, computeClippedPointForEdge(h3, h4).cartesianPoint2d()); |
- |
- if (!h4.shouldBeClipped()) |
- expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, h4.cartesianPoint2d()); |
- |
- if (h4.shouldBeClipped() ^ h1.shouldBeClipped()) |
- expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, computeClippedPointForEdge(h4, h1).cartesianPoint2d()); |
- |
- return gfx::RectF(gfx::PointF(xmin, ymin), gfx::SizeF(xmax - xmin, ymax - ymin)); |
-} |
- |
-gfx::QuadF MathUtil::mapQuad(const gfx::Transform& transform, const gfx::QuadF& q, bool& clipped) |
-{ |
- if (transform.IsIdentityOrTranslation()) { |
- gfx::QuadF mappedQuad(q); |
- mappedQuad += gfx::Vector2dF(static_cast<float>(transform.matrix().getDouble(0, 3)), static_cast<float>(transform.matrix().getDouble(1, 3))); |
- clipped = false; |
- return mappedQuad; |
- } |
- |
- HomogeneousCoordinate h1 = mapHomogeneousPoint(transform, gfx::Point3F(q.p1())); |
- HomogeneousCoordinate h2 = mapHomogeneousPoint(transform, gfx::Point3F(q.p2())); |
- HomogeneousCoordinate h3 = mapHomogeneousPoint(transform, gfx::Point3F(q.p3())); |
- HomogeneousCoordinate h4 = mapHomogeneousPoint(transform, gfx::Point3F(q.p4())); |
- |
- clipped = h1.shouldBeClipped() || h2.shouldBeClipped() || h3.shouldBeClipped() || h4.shouldBeClipped(); |
- |
- // Result will be invalid if clipped == true. But, compute it anyway just in case, to emulate existing behavior. |
- return gfx::QuadF(h1.cartesianPoint2d(), h2.cartesianPoint2d(), h3.cartesianPoint2d(), h4.cartesianPoint2d()); |
-} |
- |
-gfx::PointF MathUtil::mapPoint(const gfx::Transform& transform, const gfx::PointF& p, bool& clipped) |
-{ |
- HomogeneousCoordinate h = mapHomogeneousPoint(transform, gfx::Point3F(p)); |
- |
- if (h.w > 0) { |
- clipped = false; |
- return h.cartesianPoint2d(); |
- } |
- |
- // The cartesian coordinates will be invalid after dividing by w. |
- clipped = true; |
- |
- // Avoid dividing by w if w == 0. |
- if (!h.w) |
- return gfx::PointF(); |
- |
- // This return value will be invalid because clipped == true, but (1) users of this |
- // code should be ignoring the return value when clipped == true anyway, and (2) this |
- // behavior is more consistent with existing behavior of WebKit transforms if the user |
- // really does not ignore the return value. |
- return h.cartesianPoint2d(); |
-} |
- |
-gfx::Point3F MathUtil::mapPoint(const gfx::Transform& transform, const gfx::Point3F& p, bool& clipped) |
-{ |
- HomogeneousCoordinate h = mapHomogeneousPoint(transform, p); |
- |
- if (h.w > 0) { |
- clipped = false; |
- return h.cartesianPoint3d(); |
- } |
- |
- // The cartesian coordinates will be invalid after dividing by w. |
- clipped = true; |
- |
- // Avoid dividing by w if w == 0. |
- if (!h.w) |
- return gfx::Point3F(); |
- |
- // This return value will be invalid because clipped == true, but (1) users of this |
- // code should be ignoring the return value when clipped == true anyway, and (2) this |
- // behavior is more consistent with existing behavior of WebKit transforms if the user |
- // really does not ignore the return value. |
- return h.cartesianPoint3d(); |
-} |
- |
-gfx::QuadF MathUtil::projectQuad(const gfx::Transform& transform, const gfx::QuadF& q, bool& clipped) |
-{ |
- gfx::QuadF projectedQuad; |
- bool clippedPoint; |
- projectedQuad.set_p1(projectPoint(transform, q.p1(), clippedPoint)); |
- clipped = clippedPoint; |
- projectedQuad.set_p2(projectPoint(transform, q.p2(), clippedPoint)); |
- clipped |= clippedPoint; |
- projectedQuad.set_p3(projectPoint(transform, q.p3(), clippedPoint)); |
- clipped |= clippedPoint; |
- projectedQuad.set_p4(projectPoint(transform, q.p4(), clippedPoint)); |
- clipped |= clippedPoint; |
- |
- return projectedQuad; |
-} |
- |
-gfx::PointF MathUtil::projectPoint(const gfx::Transform& transform, const gfx::PointF& p, bool& clipped) |
-{ |
- HomogeneousCoordinate h = projectHomogeneousPoint(transform, p); |
- |
- if (h.w > 0) { |
- // The cartesian coordinates will be valid in this case. |
- clipped = false; |
- return h.cartesianPoint2d(); |
- } |
- |
- // The cartesian coordinates will be invalid after dividing by w. |
- clipped = true; |
- |
- // Avoid dividing by w if w == 0. |
- if (!h.w) |
- return gfx::PointF(); |
- |
- // This return value will be invalid because clipped == true, but (1) users of this |
- // code should be ignoring the return value when clipped == true anyway, and (2) this |
- // behavior is more consistent with existing behavior of WebKit transforms if the user |
- // really does not ignore the return value. |
- return h.cartesianPoint2d(); |
-} |
- |
-static inline float scaleOnAxis(double a, double b, double c) |
-{ |
- return std::sqrt(a * a + b * b + c * c); |
-} |
- |
-gfx::Vector2dF MathUtil::computeTransform2dScaleComponents(const gfx::Transform& transform, float fallbackValue) |
-{ |
- if (transform.HasPerspective()) |
- return gfx::Vector2dF(fallbackValue, fallbackValue); |
- float xScale = scaleOnAxis(transform.matrix().getDouble(0, 0), transform.matrix().getDouble(1, 0), transform.matrix().getDouble(2, 0)); |
- float yScale = scaleOnAxis(transform.matrix().getDouble(0, 1), transform.matrix().getDouble(1, 1), transform.matrix().getDouble(2, 1)); |
- return gfx::Vector2dF(xScale, yScale); |
-} |
- |
-float MathUtil::smallestAngleBetweenVectors(gfx::Vector2dF v1, gfx::Vector2dF v2) |
-{ |
- double dotProduct = gfx::DotProduct(v1, v2) / v1.Length() / v2.Length(); |
- // Clamp to compensate for rounding errors. |
- dotProduct = std::max(-1.0, std::min(1.0, dotProduct)); |
- return static_cast<float>(Rad2Deg(std::acos(dotProduct))); |
-} |
- |
-gfx::Vector2dF MathUtil::projectVector(gfx::Vector2dF source, gfx::Vector2dF destination) |
-{ |
- float projectedLength = gfx::DotProduct(source, destination) / destination.LengthSquared(); |
- return gfx::Vector2dF(projectedLength * destination.x(), projectedLength * destination.y()); |
-} |
- |
-scoped_ptr<base::Value> MathUtil::asValue(gfx::Size s) { |
- scoped_ptr<base::DictionaryValue> res(new base::DictionaryValue()); |
- res->SetDouble("width", s.width()); |
- res->SetDouble("height", s.height()); |
- return res.PassAs<base::Value>(); |
-} |
- |
-scoped_ptr<base::Value> MathUtil::asValue(gfx::PointF pt) { |
- scoped_ptr<base::DictionaryValue> res(new base::DictionaryValue()); |
- res->SetDouble("x", pt.x()); |
- res->SetDouble("y", pt.y()); |
- return res.PassAs<base::Value>(); |
-} |
- |
-scoped_ptr<base::Value> MathUtil::asValue(gfx::QuadF q) { |
- scoped_ptr<base::DictionaryValue> res(new base::DictionaryValue()); |
- res->Set("p1", asValue(q.p1()).release()); |
- res->Set("p2", asValue(q.p2()).release()); |
- res->Set("p3", asValue(q.p3()).release()); |
- res->Set("p4", asValue(q.p4()).release()); |
- return res.PassAs<base::Value>(); |
-} |
- |
-scoped_ptr<base::Value> MathUtil::asValueSafely(double value) { |
- return scoped_ptr<base::Value>(base::Value::CreateDoubleValue( |
- std::min(value, std::numeric_limits<double>::max()))); |
-} |
- |
-scoped_ptr<base::Value> MathUtil::asValueSafely(float value) { |
- return scoped_ptr<base::Value>(base::Value::CreateDoubleValue( |
- std::min(value, std::numeric_limits<float>::max()))); |
-} |
- |
-} // namespace cc |