OLD | NEW |
| (Empty) |
1 // Copyright 2012 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "cc/math_util.h" | |
6 | |
7 #include <cmath> | |
8 #include <limits> | |
9 | |
10 #include "base/values.h" | |
11 #include "ui/gfx/quad_f.h" | |
12 #include "ui/gfx/rect.h" | |
13 #include "ui/gfx/rect_conversions.h" | |
14 #include "ui/gfx/rect_f.h" | |
15 #include "ui/gfx/transform.h" | |
16 #include "ui/gfx/vector2d_f.h" | |
17 | |
18 namespace cc { | |
19 | |
20 const double MathUtil::PI_DOUBLE = 3.14159265358979323846; | |
21 const float MathUtil::PI_FLOAT = 3.14159265358979323846f; | |
22 const double MathUtil::EPSILON = 1e-9; | |
23 | |
24 static HomogeneousCoordinate projectHomogeneousPoint(const gfx::Transform& trans
form, const gfx::PointF& p) | |
25 { | |
26 // In this case, the layer we are trying to project onto is perpendicular to
ray | |
27 // (point p and z-axis direction) that we are trying to project. This happen
s when the | |
28 // layer is rotated so that it is infinitesimally thin, or when it is co-pla
nar with | |
29 // the camera origin -- i.e. when the layer is invisible anyway. | |
30 if (!transform.matrix().getDouble(2, 2)) | |
31 return HomogeneousCoordinate(0, 0, 0, 1); | |
32 | |
33 double x = p.x(); | |
34 double y = p.y(); | |
35 double z = -(transform.matrix().getDouble(2, 0) * x + transform.matrix().get
Double(2, 1) * y + transform.matrix().getDouble(2, 3)) / transform.matrix().getD
ouble(2, 2); | |
36 // implicit definition of w = 1; | |
37 | |
38 double outX = x * transform.matrix().getDouble(0, 0) + y * transform.matrix(
).getDouble(0, 1) + z * transform.matrix().getDouble(0, 2) + transform.matrix().
getDouble(0, 3); | |
39 double outY = x * transform.matrix().getDouble(1, 0) + y * transform.matrix(
).getDouble(1, 1) + z * transform.matrix().getDouble(1, 2) + transform.matrix().
getDouble(1, 3); | |
40 double outZ = x * transform.matrix().getDouble(2, 0) + y * transform.matrix(
).getDouble(2, 1) + z * transform.matrix().getDouble(2, 2) + transform.matrix().
getDouble(2, 3); | |
41 double outW = x * transform.matrix().getDouble(3, 0) + y * transform.matrix(
).getDouble(3, 1) + z * transform.matrix().getDouble(3, 2) + transform.matrix().
getDouble(3, 3); | |
42 | |
43 return HomogeneousCoordinate(outX, outY, outZ, outW); | |
44 } | |
45 | |
46 static HomogeneousCoordinate mapHomogeneousPoint(const gfx::Transform& transform
, const gfx::Point3F& p) | |
47 { | |
48 double x = p.x(); | |
49 double y = p.y(); | |
50 double z = p.z(); | |
51 // implicit definition of w = 1; | |
52 | |
53 double outX = x * transform.matrix().getDouble(0, 0) + y * transform.matrix(
).getDouble(0, 1) + z * transform.matrix().getDouble(0, 2) + transform.matrix().
getDouble(0, 3); | |
54 double outY = x * transform.matrix().getDouble(1, 0) + y * transform.matrix(
).getDouble(1, 1) + z * transform.matrix().getDouble(1, 2) + transform.matrix().
getDouble(1, 3); | |
55 double outZ = x * transform.matrix().getDouble(2, 0) + y * transform.matrix(
).getDouble(2, 1) + z * transform.matrix().getDouble(2, 2) + transform.matrix().
getDouble(2, 3); | |
56 double outW = x * transform.matrix().getDouble(3, 0) + y * transform.matrix(
).getDouble(3, 1) + z * transform.matrix().getDouble(3, 2) + transform.matrix().
getDouble(3, 3); | |
57 | |
58 return HomogeneousCoordinate(outX, outY, outZ, outW); | |
59 } | |
60 | |
61 static HomogeneousCoordinate computeClippedPointForEdge(const HomogeneousCoordin
ate& h1, const HomogeneousCoordinate& h2) | |
62 { | |
63 // Points h1 and h2 form a line in 4d, and any point on that line can be rep
resented | |
64 // as an interpolation between h1 and h2: | |
65 // p = (1-t) h1 + (t) h2 | |
66 // | |
67 // We want to compute point p such that p.w == epsilon, where epsilon is a s
mall | |
68 // non-zero number. (but the smaller the number is, the higher the risk of o
verflow) | |
69 // To do this, we solve for t in the following equation: | |
70 // p.w = epsilon = (1-t) * h1.w + (t) * h2.w | |
71 // | |
72 // Once paramter t is known, the rest of p can be computed via p = (1-t) h1
+ (t) h2. | |
73 | |
74 // Technically this is a special case of the following assertion, but its a
good idea to keep it an explicit sanity check here. | |
75 DCHECK(h2.w != h1.w); | |
76 // Exactly one of h1 or h2 (but not both) must be on the negative side of th
e w plane when this is called. | |
77 DCHECK(h1.shouldBeClipped() ^ h2.shouldBeClipped()); | |
78 | |
79 double w = 0.00001; // or any positive non-zero small epsilon | |
80 | |
81 double t = (w - h1.w) / (h2.w - h1.w); | |
82 | |
83 double x = (1-t) * h1.x + t * h2.x; | |
84 double y = (1-t) * h1.y + t * h2.y; | |
85 double z = (1-t) * h1.z + t * h2.z; | |
86 | |
87 return HomogeneousCoordinate(x, y, z, w); | |
88 } | |
89 | |
90 static inline void expandBoundsToIncludePoint(float& xmin, float& xmax, float& y
min, float& ymax, const gfx::PointF& p) | |
91 { | |
92 xmin = std::min(p.x(), xmin); | |
93 xmax = std::max(p.x(), xmax); | |
94 ymin = std::min(p.y(), ymin); | |
95 ymax = std::max(p.y(), ymax); | |
96 } | |
97 | |
98 static inline void addVertexToClippedQuad(const gfx::PointF& newVertex, gfx::Poi
ntF clippedQuad[8], int& numVerticesInClippedQuad) | |
99 { | |
100 clippedQuad[numVerticesInClippedQuad] = newVertex; | |
101 numVerticesInClippedQuad++; | |
102 } | |
103 | |
104 gfx::Rect MathUtil::mapClippedRect(const gfx::Transform& transform, const gfx::R
ect& srcRect) | |
105 { | |
106 return gfx::ToEnclosingRect(mapClippedRect(transform, gfx::RectF(srcRect))); | |
107 } | |
108 | |
109 gfx::RectF MathUtil::mapClippedRect(const gfx::Transform& transform, const gfx::
RectF& srcRect) | |
110 { | |
111 if (transform.IsIdentityOrTranslation()) | |
112 return srcRect + gfx::Vector2dF(static_cast<float>(transform.matrix().ge
tDouble(0, 3)), static_cast<float>(transform.matrix().getDouble(1, 3))); | |
113 | |
114 // Apply the transform, but retain the result in homogeneous coordinates. | |
115 | |
116 double quad[4 * 2]; // input: 4 x 2D points | |
117 quad[0] = srcRect.x(); | |
118 quad[1] = srcRect.y(); | |
119 quad[2] = srcRect.right(); | |
120 quad[3] = srcRect.y(); | |
121 quad[4] = srcRect.right(); | |
122 quad[5] = srcRect.bottom(); | |
123 quad[6] = srcRect.x(); | |
124 quad[7] = srcRect.bottom(); | |
125 | |
126 double result[4 * 4]; // output: 4 x 4D homogeneous points | |
127 transform.matrix().map2(quad, 4, result); | |
128 | |
129 HomogeneousCoordinate hc0(result[0], result[1], result[2], result[3]); | |
130 HomogeneousCoordinate hc1(result[4], result[5], result[6], result[7]); | |
131 HomogeneousCoordinate hc2(result[8], result[9], result[10], result[11]); | |
132 HomogeneousCoordinate hc3(result[12], result[13], result[14], result[15]); | |
133 return computeEnclosingClippedRect(hc0, hc1, hc2, hc3); | |
134 } | |
135 | |
136 gfx::RectF MathUtil::projectClippedRect(const gfx::Transform& transform, const g
fx::RectF& srcRect) | |
137 { | |
138 if (transform.IsIdentityOrTranslation()) | |
139 return srcRect + gfx::Vector2dF(static_cast<float>(transform.matrix().ge
tDouble(0, 3)), static_cast<float>(transform.matrix().getDouble(1, 3))); | |
140 | |
141 // Perform the projection, but retain the result in homogeneous coordinates. | |
142 gfx::QuadF q = gfx::QuadF(srcRect); | |
143 HomogeneousCoordinate h1 = projectHomogeneousPoint(transform, q.p1()); | |
144 HomogeneousCoordinate h2 = projectHomogeneousPoint(transform, q.p2()); | |
145 HomogeneousCoordinate h3 = projectHomogeneousPoint(transform, q.p3()); | |
146 HomogeneousCoordinate h4 = projectHomogeneousPoint(transform, q.p4()); | |
147 | |
148 return computeEnclosingClippedRect(h1, h2, h3, h4); | |
149 } | |
150 | |
151 void MathUtil::mapClippedQuad(const gfx::Transform& transform, const gfx::QuadF&
srcQuad, gfx::PointF clippedQuad[8], int& numVerticesInClippedQuad) | |
152 { | |
153 HomogeneousCoordinate h1 = mapHomogeneousPoint(transform, gfx::Point3F(srcQu
ad.p1())); | |
154 HomogeneousCoordinate h2 = mapHomogeneousPoint(transform, gfx::Point3F(srcQu
ad.p2())); | |
155 HomogeneousCoordinate h3 = mapHomogeneousPoint(transform, gfx::Point3F(srcQu
ad.p3())); | |
156 HomogeneousCoordinate h4 = mapHomogeneousPoint(transform, gfx::Point3F(srcQu
ad.p4())); | |
157 | |
158 // The order of adding the vertices to the array is chosen so that clockwise
/ counter-clockwise orientation is retained. | |
159 | |
160 numVerticesInClippedQuad = 0; | |
161 | |
162 if (!h1.shouldBeClipped()) | |
163 addVertexToClippedQuad(h1.cartesianPoint2d(), clippedQuad, numVerticesIn
ClippedQuad); | |
164 | |
165 if (h1.shouldBeClipped() ^ h2.shouldBeClipped()) | |
166 addVertexToClippedQuad(computeClippedPointForEdge(h1, h2).cartesianPoint
2d(), clippedQuad, numVerticesInClippedQuad); | |
167 | |
168 if (!h2.shouldBeClipped()) | |
169 addVertexToClippedQuad(h2.cartesianPoint2d(), clippedQuad, numVerticesIn
ClippedQuad); | |
170 | |
171 if (h2.shouldBeClipped() ^ h3.shouldBeClipped()) | |
172 addVertexToClippedQuad(computeClippedPointForEdge(h2, h3).cartesianPoint
2d(), clippedQuad, numVerticesInClippedQuad); | |
173 | |
174 if (!h3.shouldBeClipped()) | |
175 addVertexToClippedQuad(h3.cartesianPoint2d(), clippedQuad, numVerticesIn
ClippedQuad); | |
176 | |
177 if (h3.shouldBeClipped() ^ h4.shouldBeClipped()) | |
178 addVertexToClippedQuad(computeClippedPointForEdge(h3, h4).cartesianPoint
2d(), clippedQuad, numVerticesInClippedQuad); | |
179 | |
180 if (!h4.shouldBeClipped()) | |
181 addVertexToClippedQuad(h4.cartesianPoint2d(), clippedQuad, numVerticesIn
ClippedQuad); | |
182 | |
183 if (h4.shouldBeClipped() ^ h1.shouldBeClipped()) | |
184 addVertexToClippedQuad(computeClippedPointForEdge(h4, h1).cartesianPoint
2d(), clippedQuad, numVerticesInClippedQuad); | |
185 | |
186 DCHECK(numVerticesInClippedQuad <= 8); | |
187 } | |
188 | |
189 gfx::RectF MathUtil::computeEnclosingRectOfVertices(gfx::PointF vertices[], int
numVertices) | |
190 { | |
191 if (numVertices < 2) | |
192 return gfx::RectF(); | |
193 | |
194 float xmin = std::numeric_limits<float>::max(); | |
195 float xmax = -std::numeric_limits<float>::max(); | |
196 float ymin = std::numeric_limits<float>::max(); | |
197 float ymax = -std::numeric_limits<float>::max(); | |
198 | |
199 for (int i = 0; i < numVertices; ++i) | |
200 expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, vertices[i]); | |
201 | |
202 return gfx::RectF(gfx::PointF(xmin, ymin), gfx::SizeF(xmax - xmin, ymax - ym
in)); | |
203 } | |
204 | |
205 gfx::RectF MathUtil::computeEnclosingClippedRect(const HomogeneousCoordinate& h1
, const HomogeneousCoordinate& h2, const HomogeneousCoordinate& h3, const Homoge
neousCoordinate& h4) | |
206 { | |
207 // This function performs clipping as necessary and computes the enclosing 2
d | |
208 // gfx::RectF of the vertices. Doing these two steps simultaneously allows u
s to avoid | |
209 // the overhead of storing an unknown number of clipped vertices. | |
210 | |
211 // If no vertices on the quad are clipped, then we can simply return the enc
losing rect directly. | |
212 bool somethingClipped = h1.shouldBeClipped() || h2.shouldBeClipped() || h3.s
houldBeClipped() || h4.shouldBeClipped(); | |
213 if (!somethingClipped) { | |
214 gfx::QuadF mappedQuad = gfx::QuadF(h1.cartesianPoint2d(), h2.cartesianPo
int2d(), h3.cartesianPoint2d(), h4.cartesianPoint2d()); | |
215 return mappedQuad.BoundingBox(); | |
216 } | |
217 | |
218 bool everythingClipped = h1.shouldBeClipped() && h2.shouldBeClipped() && h3.
shouldBeClipped() && h4.shouldBeClipped(); | |
219 if (everythingClipped) | |
220 return gfx::RectF(); | |
221 | |
222 | |
223 float xmin = std::numeric_limits<float>::max(); | |
224 float xmax = -std::numeric_limits<float>::max(); | |
225 float ymin = std::numeric_limits<float>::max(); | |
226 float ymax = -std::numeric_limits<float>::max(); | |
227 | |
228 if (!h1.shouldBeClipped()) | |
229 expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, h1.cartesianPoint2d()
); | |
230 | |
231 if (h1.shouldBeClipped() ^ h2.shouldBeClipped()) | |
232 expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, computeClippedPointFo
rEdge(h1, h2).cartesianPoint2d()); | |
233 | |
234 if (!h2.shouldBeClipped()) | |
235 expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, h2.cartesianPoint2d()
); | |
236 | |
237 if (h2.shouldBeClipped() ^ h3.shouldBeClipped()) | |
238 expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, computeClippedPointFo
rEdge(h2, h3).cartesianPoint2d()); | |
239 | |
240 if (!h3.shouldBeClipped()) | |
241 expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, h3.cartesianPoint2d()
); | |
242 | |
243 if (h3.shouldBeClipped() ^ h4.shouldBeClipped()) | |
244 expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, computeClippedPointFo
rEdge(h3, h4).cartesianPoint2d()); | |
245 | |
246 if (!h4.shouldBeClipped()) | |
247 expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, h4.cartesianPoint2d()
); | |
248 | |
249 if (h4.shouldBeClipped() ^ h1.shouldBeClipped()) | |
250 expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, computeClippedPointFo
rEdge(h4, h1).cartesianPoint2d()); | |
251 | |
252 return gfx::RectF(gfx::PointF(xmin, ymin), gfx::SizeF(xmax - xmin, ymax - ym
in)); | |
253 } | |
254 | |
255 gfx::QuadF MathUtil::mapQuad(const gfx::Transform& transform, const gfx::QuadF&
q, bool& clipped) | |
256 { | |
257 if (transform.IsIdentityOrTranslation()) { | |
258 gfx::QuadF mappedQuad(q); | |
259 mappedQuad += gfx::Vector2dF(static_cast<float>(transform.matrix().getDo
uble(0, 3)), static_cast<float>(transform.matrix().getDouble(1, 3))); | |
260 clipped = false; | |
261 return mappedQuad; | |
262 } | |
263 | |
264 HomogeneousCoordinate h1 = mapHomogeneousPoint(transform, gfx::Point3F(q.p1(
))); | |
265 HomogeneousCoordinate h2 = mapHomogeneousPoint(transform, gfx::Point3F(q.p2(
))); | |
266 HomogeneousCoordinate h3 = mapHomogeneousPoint(transform, gfx::Point3F(q.p3(
))); | |
267 HomogeneousCoordinate h4 = mapHomogeneousPoint(transform, gfx::Point3F(q.p4(
))); | |
268 | |
269 clipped = h1.shouldBeClipped() || h2.shouldBeClipped() || h3.shouldBeClipped
() || h4.shouldBeClipped(); | |
270 | |
271 // Result will be invalid if clipped == true. But, compute it anyway just in
case, to emulate existing behavior. | |
272 return gfx::QuadF(h1.cartesianPoint2d(), h2.cartesianPoint2d(), h3.cartesian
Point2d(), h4.cartesianPoint2d()); | |
273 } | |
274 | |
275 gfx::PointF MathUtil::mapPoint(const gfx::Transform& transform, const gfx::Point
F& p, bool& clipped) | |
276 { | |
277 HomogeneousCoordinate h = mapHomogeneousPoint(transform, gfx::Point3F(p)); | |
278 | |
279 if (h.w > 0) { | |
280 clipped = false; | |
281 return h.cartesianPoint2d(); | |
282 } | |
283 | |
284 // The cartesian coordinates will be invalid after dividing by w. | |
285 clipped = true; | |
286 | |
287 // Avoid dividing by w if w == 0. | |
288 if (!h.w) | |
289 return gfx::PointF(); | |
290 | |
291 // This return value will be invalid because clipped == true, but (1) users
of this | |
292 // code should be ignoring the return value when clipped == true anyway, and
(2) this | |
293 // behavior is more consistent with existing behavior of WebKit transforms i
f the user | |
294 // really does not ignore the return value. | |
295 return h.cartesianPoint2d(); | |
296 } | |
297 | |
298 gfx::Point3F MathUtil::mapPoint(const gfx::Transform& transform, const gfx::Poin
t3F& p, bool& clipped) | |
299 { | |
300 HomogeneousCoordinate h = mapHomogeneousPoint(transform, p); | |
301 | |
302 if (h.w > 0) { | |
303 clipped = false; | |
304 return h.cartesianPoint3d(); | |
305 } | |
306 | |
307 // The cartesian coordinates will be invalid after dividing by w. | |
308 clipped = true; | |
309 | |
310 // Avoid dividing by w if w == 0. | |
311 if (!h.w) | |
312 return gfx::Point3F(); | |
313 | |
314 // This return value will be invalid because clipped == true, but (1) users
of this | |
315 // code should be ignoring the return value when clipped == true anyway, and
(2) this | |
316 // behavior is more consistent with existing behavior of WebKit transforms i
f the user | |
317 // really does not ignore the return value. | |
318 return h.cartesianPoint3d(); | |
319 } | |
320 | |
321 gfx::QuadF MathUtil::projectQuad(const gfx::Transform& transform, const gfx::Qua
dF& q, bool& clipped) | |
322 { | |
323 gfx::QuadF projectedQuad; | |
324 bool clippedPoint; | |
325 projectedQuad.set_p1(projectPoint(transform, q.p1(), clippedPoint)); | |
326 clipped = clippedPoint; | |
327 projectedQuad.set_p2(projectPoint(transform, q.p2(), clippedPoint)); | |
328 clipped |= clippedPoint; | |
329 projectedQuad.set_p3(projectPoint(transform, q.p3(), clippedPoint)); | |
330 clipped |= clippedPoint; | |
331 projectedQuad.set_p4(projectPoint(transform, q.p4(), clippedPoint)); | |
332 clipped |= clippedPoint; | |
333 | |
334 return projectedQuad; | |
335 } | |
336 | |
337 gfx::PointF MathUtil::projectPoint(const gfx::Transform& transform, const gfx::P
ointF& p, bool& clipped) | |
338 { | |
339 HomogeneousCoordinate h = projectHomogeneousPoint(transform, p); | |
340 | |
341 if (h.w > 0) { | |
342 // The cartesian coordinates will be valid in this case. | |
343 clipped = false; | |
344 return h.cartesianPoint2d(); | |
345 } | |
346 | |
347 // The cartesian coordinates will be invalid after dividing by w. | |
348 clipped = true; | |
349 | |
350 // Avoid dividing by w if w == 0. | |
351 if (!h.w) | |
352 return gfx::PointF(); | |
353 | |
354 // This return value will be invalid because clipped == true, but (1) users
of this | |
355 // code should be ignoring the return value when clipped == true anyway, and
(2) this | |
356 // behavior is more consistent with existing behavior of WebKit transforms i
f the user | |
357 // really does not ignore the return value. | |
358 return h.cartesianPoint2d(); | |
359 } | |
360 | |
361 static inline float scaleOnAxis(double a, double b, double c) | |
362 { | |
363 return std::sqrt(a * a + b * b + c * c); | |
364 } | |
365 | |
366 gfx::Vector2dF MathUtil::computeTransform2dScaleComponents(const gfx::Transform&
transform, float fallbackValue) | |
367 { | |
368 if (transform.HasPerspective()) | |
369 return gfx::Vector2dF(fallbackValue, fallbackValue); | |
370 float xScale = scaleOnAxis(transform.matrix().getDouble(0, 0), transform.mat
rix().getDouble(1, 0), transform.matrix().getDouble(2, 0)); | |
371 float yScale = scaleOnAxis(transform.matrix().getDouble(0, 1), transform.mat
rix().getDouble(1, 1), transform.matrix().getDouble(2, 1)); | |
372 return gfx::Vector2dF(xScale, yScale); | |
373 } | |
374 | |
375 float MathUtil::smallestAngleBetweenVectors(gfx::Vector2dF v1, gfx::Vector2dF v2
) | |
376 { | |
377 double dotProduct = gfx::DotProduct(v1, v2) / v1.Length() / v2.Length(); | |
378 // Clamp to compensate for rounding errors. | |
379 dotProduct = std::max(-1.0, std::min(1.0, dotProduct)); | |
380 return static_cast<float>(Rad2Deg(std::acos(dotProduct))); | |
381 } | |
382 | |
383 gfx::Vector2dF MathUtil::projectVector(gfx::Vector2dF source, gfx::Vector2dF des
tination) | |
384 { | |
385 float projectedLength = gfx::DotProduct(source, destination) / destination.L
engthSquared(); | |
386 return gfx::Vector2dF(projectedLength * destination.x(), projectedLength * d
estination.y()); | |
387 } | |
388 | |
389 scoped_ptr<base::Value> MathUtil::asValue(gfx::Size s) { | |
390 scoped_ptr<base::DictionaryValue> res(new base::DictionaryValue()); | |
391 res->SetDouble("width", s.width()); | |
392 res->SetDouble("height", s.height()); | |
393 return res.PassAs<base::Value>(); | |
394 } | |
395 | |
396 scoped_ptr<base::Value> MathUtil::asValue(gfx::PointF pt) { | |
397 scoped_ptr<base::DictionaryValue> res(new base::DictionaryValue()); | |
398 res->SetDouble("x", pt.x()); | |
399 res->SetDouble("y", pt.y()); | |
400 return res.PassAs<base::Value>(); | |
401 } | |
402 | |
403 scoped_ptr<base::Value> MathUtil::asValue(gfx::QuadF q) { | |
404 scoped_ptr<base::DictionaryValue> res(new base::DictionaryValue()); | |
405 res->Set("p1", asValue(q.p1()).release()); | |
406 res->Set("p2", asValue(q.p2()).release()); | |
407 res->Set("p3", asValue(q.p3()).release()); | |
408 res->Set("p4", asValue(q.p4()).release()); | |
409 return res.PassAs<base::Value>(); | |
410 } | |
411 | |
412 scoped_ptr<base::Value> MathUtil::asValueSafely(double value) { | |
413 return scoped_ptr<base::Value>(base::Value::CreateDoubleValue( | |
414 std::min(value, std::numeric_limits<double>::max()))); | |
415 } | |
416 | |
417 scoped_ptr<base::Value> MathUtil::asValueSafely(float value) { | |
418 return scoped_ptr<base::Value>(base::Value::CreateDoubleValue( | |
419 std::min(value, std::numeric_limits<float>::max()))); | |
420 } | |
421 | |
422 } // namespace cc | |
OLD | NEW |