| Index: cc/CCMathUtil.cpp
|
| diff --git a/cc/CCMathUtil.cpp b/cc/CCMathUtil.cpp
|
| deleted file mode 100644
|
| index d90eb090abef6fbc004f87cedc0a3188419486cf..0000000000000000000000000000000000000000
|
| --- a/cc/CCMathUtil.cpp
|
| +++ /dev/null
|
| @@ -1,379 +0,0 @@
|
| -// Copyright 2012 The Chromium Authors. All rights reserved.
|
| -// Use of this source code is governed by a BSD-style license that can be
|
| -// found in the LICENSE file.
|
| -
|
| -#include "config.h"
|
| -
|
| -#include "CCMathUtil.h"
|
| -
|
| -#include "FloatPoint.h"
|
| -#include "FloatQuad.h"
|
| -#include "IntRect.h"
|
| -#include <public/WebTransformationMatrix.h>
|
| -
|
| -using WebKit::WebTransformationMatrix;
|
| -
|
| -namespace cc {
|
| -
|
| -static HomogeneousCoordinate projectHomogeneousPoint(const WebTransformationMatrix& transform, const FloatPoint& p)
|
| -{
|
| - // In this case, the layer we are trying to project onto is perpendicular to ray
|
| - // (point p and z-axis direction) that we are trying to project. This happens when the
|
| - // layer is rotated so that it is infinitesimally thin, or when it is co-planar with
|
| - // the camera origin -- i.e. when the layer is invisible anyway.
|
| - if (!transform.m33())
|
| - return HomogeneousCoordinate(0, 0, 0, 1);
|
| -
|
| - double x = p.x();
|
| - double y = p.y();
|
| - double z = -(transform.m13() * x + transform.m23() * y + transform.m43()) / transform.m33();
|
| - // implicit definition of w = 1;
|
| -
|
| - double outX = x * transform.m11() + y * transform.m21() + z * transform.m31() + transform.m41();
|
| - double outY = x * transform.m12() + y * transform.m22() + z * transform.m32() + transform.m42();
|
| - double outZ = x * transform.m13() + y * transform.m23() + z * transform.m33() + transform.m43();
|
| - double outW = x * transform.m14() + y * transform.m24() + z * transform.m34() + transform.m44();
|
| -
|
| - return HomogeneousCoordinate(outX, outY, outZ, outW);
|
| -}
|
| -
|
| -static HomogeneousCoordinate mapHomogeneousPoint(const WebTransformationMatrix& transform, const FloatPoint3D& p)
|
| -{
|
| - double x = p.x();
|
| - double y = p.y();
|
| - double z = p.z();
|
| - // implicit definition of w = 1;
|
| -
|
| - double outX = x * transform.m11() + y * transform.m21() + z * transform.m31() + transform.m41();
|
| - double outY = x * transform.m12() + y * transform.m22() + z * transform.m32() + transform.m42();
|
| - double outZ = x * transform.m13() + y * transform.m23() + z * transform.m33() + transform.m43();
|
| - double outW = x * transform.m14() + y * transform.m24() + z * transform.m34() + transform.m44();
|
| -
|
| - return HomogeneousCoordinate(outX, outY, outZ, outW);
|
| -}
|
| -
|
| -static HomogeneousCoordinate computeClippedPointForEdge(const HomogeneousCoordinate& h1, const HomogeneousCoordinate& h2)
|
| -{
|
| - // Points h1 and h2 form a line in 4d, and any point on that line can be represented
|
| - // as an interpolation between h1 and h2:
|
| - // p = (1-t) h1 + (t) h2
|
| - //
|
| - // We want to compute point p such that p.w == epsilon, where epsilon is a small
|
| - // non-zero number. (but the smaller the number is, the higher the risk of overflow)
|
| - // To do this, we solve for t in the following equation:
|
| - // p.w = epsilon = (1-t) * h1.w + (t) * h2.w
|
| - //
|
| - // Once paramter t is known, the rest of p can be computed via p = (1-t) h1 + (t) h2.
|
| -
|
| - // Technically this is a special case of the following assertion, but its a good idea to keep it an explicit sanity check here.
|
| - ASSERT(h2.w != h1.w);
|
| - // Exactly one of h1 or h2 (but not both) must be on the negative side of the w plane when this is called.
|
| - ASSERT(h1.shouldBeClipped() ^ h2.shouldBeClipped());
|
| -
|
| - double w = 0.00001; // or any positive non-zero small epsilon
|
| -
|
| - double t = (w - h1.w) / (h2.w - h1.w);
|
| -
|
| - double x = (1-t) * h1.x + t * h2.x;
|
| - double y = (1-t) * h1.y + t * h2.y;
|
| - double z = (1-t) * h1.z + t * h2.z;
|
| -
|
| - return HomogeneousCoordinate(x, y, z, w);
|
| -}
|
| -
|
| -static inline void expandBoundsToIncludePoint(float& xmin, float& xmax, float& ymin, float& ymax, const FloatPoint& p)
|
| -{
|
| - xmin = std::min(p.x(), xmin);
|
| - xmax = std::max(p.x(), xmax);
|
| - ymin = std::min(p.y(), ymin);
|
| - ymax = std::max(p.y(), ymax);
|
| -}
|
| -
|
| -static inline void addVertexToClippedQuad(const FloatPoint& newVertex, FloatPoint clippedQuad[8], int& numVerticesInClippedQuad)
|
| -{
|
| - clippedQuad[numVerticesInClippedQuad] = newVertex;
|
| - numVerticesInClippedQuad++;
|
| -}
|
| -
|
| -IntRect CCMathUtil::mapClippedRect(const WebTransformationMatrix& transform, const IntRect& srcRect)
|
| -{
|
| - return enclosingIntRect(mapClippedRect(transform, FloatRect(srcRect)));
|
| -}
|
| -
|
| -FloatRect CCMathUtil::mapClippedRect(const WebTransformationMatrix& transform, const FloatRect& srcRect)
|
| -{
|
| - if (transform.isIdentityOrTranslation()) {
|
| - FloatRect mappedRect(srcRect);
|
| - mappedRect.move(static_cast<float>(transform.m41()), static_cast<float>(transform.m42()));
|
| - return mappedRect;
|
| - }
|
| -
|
| - // Apply the transform, but retain the result in homogeneous coordinates.
|
| - FloatQuad q = FloatQuad(FloatRect(srcRect));
|
| - HomogeneousCoordinate h1 = mapHomogeneousPoint(transform, q.p1());
|
| - HomogeneousCoordinate h2 = mapHomogeneousPoint(transform, q.p2());
|
| - HomogeneousCoordinate h3 = mapHomogeneousPoint(transform, q.p3());
|
| - HomogeneousCoordinate h4 = mapHomogeneousPoint(transform, q.p4());
|
| -
|
| - return computeEnclosingClippedRect(h1, h2, h3, h4);
|
| -}
|
| -
|
| -FloatRect CCMathUtil::projectClippedRect(const WebTransformationMatrix& transform, const FloatRect& srcRect)
|
| -{
|
| - // Perform the projection, but retain the result in homogeneous coordinates.
|
| - FloatQuad q = FloatQuad(FloatRect(srcRect));
|
| - HomogeneousCoordinate h1 = projectHomogeneousPoint(transform, q.p1());
|
| - HomogeneousCoordinate h2 = projectHomogeneousPoint(transform, q.p2());
|
| - HomogeneousCoordinate h3 = projectHomogeneousPoint(transform, q.p3());
|
| - HomogeneousCoordinate h4 = projectHomogeneousPoint(transform, q.p4());
|
| -
|
| - return computeEnclosingClippedRect(h1, h2, h3, h4);
|
| -}
|
| -
|
| -void CCMathUtil::mapClippedQuad(const WebTransformationMatrix& transform, const FloatQuad& srcQuad, FloatPoint clippedQuad[8], int& numVerticesInClippedQuad)
|
| -{
|
| - HomogeneousCoordinate h1 = mapHomogeneousPoint(transform, srcQuad.p1());
|
| - HomogeneousCoordinate h2 = mapHomogeneousPoint(transform, srcQuad.p2());
|
| - HomogeneousCoordinate h3 = mapHomogeneousPoint(transform, srcQuad.p3());
|
| - HomogeneousCoordinate h4 = mapHomogeneousPoint(transform, srcQuad.p4());
|
| -
|
| - // The order of adding the vertices to the array is chosen so that clockwise / counter-clockwise orientation is retained.
|
| -
|
| - numVerticesInClippedQuad = 0;
|
| -
|
| - if (!h1.shouldBeClipped())
|
| - addVertexToClippedQuad(h1.cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad);
|
| -
|
| - if (h1.shouldBeClipped() ^ h2.shouldBeClipped())
|
| - addVertexToClippedQuad(computeClippedPointForEdge(h1, h2).cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad);
|
| -
|
| - if (!h2.shouldBeClipped())
|
| - addVertexToClippedQuad(h2.cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad);
|
| -
|
| - if (h2.shouldBeClipped() ^ h3.shouldBeClipped())
|
| - addVertexToClippedQuad(computeClippedPointForEdge(h2, h3).cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad);
|
| -
|
| - if (!h3.shouldBeClipped())
|
| - addVertexToClippedQuad(h3.cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad);
|
| -
|
| - if (h3.shouldBeClipped() ^ h4.shouldBeClipped())
|
| - addVertexToClippedQuad(computeClippedPointForEdge(h3, h4).cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad);
|
| -
|
| - if (!h4.shouldBeClipped())
|
| - addVertexToClippedQuad(h4.cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad);
|
| -
|
| - if (h4.shouldBeClipped() ^ h1.shouldBeClipped())
|
| - addVertexToClippedQuad(computeClippedPointForEdge(h4, h1).cartesianPoint2d(), clippedQuad, numVerticesInClippedQuad);
|
| -
|
| - ASSERT(numVerticesInClippedQuad <= 8);
|
| -}
|
| -
|
| -FloatRect CCMathUtil::computeEnclosingRectOfVertices(FloatPoint vertices[], int numVertices)
|
| -{
|
| - if (numVertices < 2)
|
| - return FloatRect();
|
| -
|
| - float xmin = std::numeric_limits<float>::max();
|
| - float xmax = -std::numeric_limits<float>::max();
|
| - float ymin = std::numeric_limits<float>::max();
|
| - float ymax = -std::numeric_limits<float>::max();
|
| -
|
| - for (int i = 0; i < numVertices; ++i)
|
| - expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, vertices[i]);
|
| -
|
| - return FloatRect(FloatPoint(xmin, ymin), FloatSize(xmax - xmin, ymax - ymin));
|
| -}
|
| -
|
| -FloatRect CCMathUtil::computeEnclosingClippedRect(const HomogeneousCoordinate& h1, const HomogeneousCoordinate& h2, const HomogeneousCoordinate& h3, const HomogeneousCoordinate& h4)
|
| -{
|
| - // This function performs clipping as necessary and computes the enclosing 2d
|
| - // FloatRect of the vertices. Doing these two steps simultaneously allows us to avoid
|
| - // the overhead of storing an unknown number of clipped vertices.
|
| -
|
| - // If no vertices on the quad are clipped, then we can simply return the enclosing rect directly.
|
| - bool somethingClipped = h1.shouldBeClipped() || h2.shouldBeClipped() || h3.shouldBeClipped() || h4.shouldBeClipped();
|
| - if (!somethingClipped) {
|
| - FloatQuad mappedQuad = FloatQuad(h1.cartesianPoint2d(), h2.cartesianPoint2d(), h3.cartesianPoint2d(), h4.cartesianPoint2d());
|
| - return mappedQuad.boundingBox();
|
| - }
|
| -
|
| - bool everythingClipped = h1.shouldBeClipped() && h2.shouldBeClipped() && h3.shouldBeClipped() && h4.shouldBeClipped();
|
| - if (everythingClipped)
|
| - return FloatRect();
|
| -
|
| -
|
| - float xmin = std::numeric_limits<float>::max();
|
| - float xmax = -std::numeric_limits<float>::max();
|
| - float ymin = std::numeric_limits<float>::max();
|
| - float ymax = -std::numeric_limits<float>::max();
|
| -
|
| - if (!h1.shouldBeClipped())
|
| - expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, h1.cartesianPoint2d());
|
| -
|
| - if (h1.shouldBeClipped() ^ h2.shouldBeClipped())
|
| - expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, computeClippedPointForEdge(h1, h2).cartesianPoint2d());
|
| -
|
| - if (!h2.shouldBeClipped())
|
| - expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, h2.cartesianPoint2d());
|
| -
|
| - if (h2.shouldBeClipped() ^ h3.shouldBeClipped())
|
| - expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, computeClippedPointForEdge(h2, h3).cartesianPoint2d());
|
| -
|
| - if (!h3.shouldBeClipped())
|
| - expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, h3.cartesianPoint2d());
|
| -
|
| - if (h3.shouldBeClipped() ^ h4.shouldBeClipped())
|
| - expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, computeClippedPointForEdge(h3, h4).cartesianPoint2d());
|
| -
|
| - if (!h4.shouldBeClipped())
|
| - expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, h4.cartesianPoint2d());
|
| -
|
| - if (h4.shouldBeClipped() ^ h1.shouldBeClipped())
|
| - expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, computeClippedPointForEdge(h4, h1).cartesianPoint2d());
|
| -
|
| - return FloatRect(FloatPoint(xmin, ymin), FloatSize(xmax - xmin, ymax - ymin));
|
| -}
|
| -
|
| -FloatQuad CCMathUtil::mapQuad(const WebTransformationMatrix& transform, const FloatQuad& q, bool& clipped)
|
| -{
|
| - if (transform.isIdentityOrTranslation()) {
|
| - FloatQuad mappedQuad(q);
|
| - mappedQuad.move(static_cast<float>(transform.m41()), static_cast<float>(transform.m42()));
|
| - clipped = false;
|
| - return mappedQuad;
|
| - }
|
| -
|
| - HomogeneousCoordinate h1 = mapHomogeneousPoint(transform, q.p1());
|
| - HomogeneousCoordinate h2 = mapHomogeneousPoint(transform, q.p2());
|
| - HomogeneousCoordinate h3 = mapHomogeneousPoint(transform, q.p3());
|
| - HomogeneousCoordinate h4 = mapHomogeneousPoint(transform, q.p4());
|
| -
|
| - clipped = h1.shouldBeClipped() || h2.shouldBeClipped() || h3.shouldBeClipped() || h4.shouldBeClipped();
|
| -
|
| - // Result will be invalid if clipped == true. But, compute it anyway just in case, to emulate existing behavior.
|
| - return FloatQuad(h1.cartesianPoint2d(), h2.cartesianPoint2d(), h3.cartesianPoint2d(), h4.cartesianPoint2d());
|
| -}
|
| -
|
| -FloatPoint CCMathUtil::mapPoint(const WebTransformationMatrix& transform, const FloatPoint& p, bool& clipped)
|
| -{
|
| - HomogeneousCoordinate h = mapHomogeneousPoint(transform, p);
|
| -
|
| - if (h.w > 0) {
|
| - clipped = false;
|
| - return h.cartesianPoint2d();
|
| - }
|
| -
|
| - // The cartesian coordinates will be invalid after dividing by w.
|
| - clipped = true;
|
| -
|
| - // Avoid dividing by w if w == 0.
|
| - if (!h.w)
|
| - return FloatPoint();
|
| -
|
| - // This return value will be invalid because clipped == true, but (1) users of this
|
| - // code should be ignoring the return value when clipped == true anyway, and (2) this
|
| - // behavior is more consistent with existing behavior of WebKit transforms if the user
|
| - // really does not ignore the return value.
|
| - return h.cartesianPoint2d();
|
| -}
|
| -
|
| -FloatPoint3D CCMathUtil::mapPoint(const WebTransformationMatrix& transform, const FloatPoint3D& p, bool& clipped)
|
| -{
|
| - HomogeneousCoordinate h = mapHomogeneousPoint(transform, p);
|
| -
|
| - if (h.w > 0) {
|
| - clipped = false;
|
| - return h.cartesianPoint3d();
|
| - }
|
| -
|
| - // The cartesian coordinates will be invalid after dividing by w.
|
| - clipped = true;
|
| -
|
| - // Avoid dividing by w if w == 0.
|
| - if (!h.w)
|
| - return FloatPoint3D();
|
| -
|
| - // This return value will be invalid because clipped == true, but (1) users of this
|
| - // code should be ignoring the return value when clipped == true anyway, and (2) this
|
| - // behavior is more consistent with existing behavior of WebKit transforms if the user
|
| - // really does not ignore the return value.
|
| - return h.cartesianPoint3d();
|
| -}
|
| -
|
| -FloatQuad CCMathUtil::projectQuad(const WebTransformationMatrix& transform, const FloatQuad& q, bool& clipped)
|
| -{
|
| - FloatQuad projectedQuad;
|
| - bool clippedPoint;
|
| - projectedQuad.setP1(projectPoint(transform, q.p1(), clippedPoint));
|
| - clipped = clippedPoint;
|
| - projectedQuad.setP2(projectPoint(transform, q.p2(), clippedPoint));
|
| - clipped |= clippedPoint;
|
| - projectedQuad.setP3(projectPoint(transform, q.p3(), clippedPoint));
|
| - clipped |= clippedPoint;
|
| - projectedQuad.setP4(projectPoint(transform, q.p4(), clippedPoint));
|
| - clipped |= clippedPoint;
|
| -
|
| - return projectedQuad;
|
| -}
|
| -
|
| -FloatPoint CCMathUtil::projectPoint(const WebTransformationMatrix& transform, const FloatPoint& p, bool& clipped)
|
| -{
|
| - HomogeneousCoordinate h = projectHomogeneousPoint(transform, p);
|
| -
|
| - if (h.w > 0) {
|
| - // The cartesian coordinates will be valid in this case.
|
| - clipped = false;
|
| - return h.cartesianPoint2d();
|
| - }
|
| -
|
| - // The cartesian coordinates will be invalid after dividing by w.
|
| - clipped = true;
|
| -
|
| - // Avoid dividing by w if w == 0.
|
| - if (!h.w)
|
| - return FloatPoint();
|
| -
|
| - // This return value will be invalid because clipped == true, but (1) users of this
|
| - // code should be ignoring the return value when clipped == true anyway, and (2) this
|
| - // behavior is more consistent with existing behavior of WebKit transforms if the user
|
| - // really does not ignore the return value.
|
| - return h.cartesianPoint2d();
|
| -}
|
| -
|
| -void CCMathUtil::flattenTransformTo2d(WebTransformationMatrix& transform)
|
| -{
|
| - // Set both the 3rd row and 3rd column to (0, 0, 1, 0).
|
| - //
|
| - // One useful interpretation of doing this operation:
|
| - // - For x and y values, the new transform behaves effectively like an orthographic
|
| - // projection was added to the matrix sequence.
|
| - // - For z values, the new transform overrides any effect that the transform had on
|
| - // z, and instead it preserves the z value for any points that are transformed.
|
| - // - Because of linearity of transforms, this flattened transform also preserves the
|
| - // effect that any subsequent (post-multiplied) transforms would have on z values.
|
| - //
|
| - transform.setM13(0);
|
| - transform.setM23(0);
|
| - transform.setM31(0);
|
| - transform.setM32(0);
|
| - transform.setM33(1);
|
| - transform.setM34(0);
|
| - transform.setM43(0);
|
| -}
|
| -
|
| -float CCMathUtil::smallestAngleBetweenVectors(const FloatSize& v1, const FloatSize& v2)
|
| -{
|
| - float dotProduct = (v1.width() * v2.width() + v1.height() * v2.height()) / (v1.diagonalLength() * v2.diagonalLength());
|
| - // Clamp to compensate for rounding errors.
|
| - dotProduct = std::max(-1.f, std::min(1.f, dotProduct));
|
| - return rad2deg(acosf(dotProduct));
|
| -}
|
| -
|
| -FloatSize CCMathUtil::projectVector(const FloatSize& source, const FloatSize& destination)
|
| -{
|
| - float sourceDotDestination = source.width() * destination.width() + source.height() * destination.height();
|
| - float projectedLength = sourceDotDestination / destination.diagonalLengthSquared();
|
| - return FloatSize(projectedLength * destination.width(), projectedLength * destination.height());
|
| -}
|
| -
|
| -} // namespace cc
|
|
|