Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(258)

Side by Side Diff: cc/CCMathUtil.cpp

Issue 11122003: [cc] Rename all cc/ filenames to Chromium style (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src
Patch Set: Created 8 years, 2 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « cc/CCMathUtil.h ('k') | cc/CCOcclusionTracker.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "config.h"
6
7 #include "CCMathUtil.h"
8
9 #include "FloatPoint.h"
10 #include "FloatQuad.h"
11 #include "IntRect.h"
12 #include <public/WebTransformationMatrix.h>
13
14 using WebKit::WebTransformationMatrix;
15
16 namespace cc {
17
18 static HomogeneousCoordinate projectHomogeneousPoint(const WebTransformationMatr ix& transform, const FloatPoint& p)
19 {
20 // In this case, the layer we are trying to project onto is perpendicular to ray
21 // (point p and z-axis direction) that we are trying to project. This happen s when the
22 // layer is rotated so that it is infinitesimally thin, or when it is co-pla nar with
23 // the camera origin -- i.e. when the layer is invisible anyway.
24 if (!transform.m33())
25 return HomogeneousCoordinate(0, 0, 0, 1);
26
27 double x = p.x();
28 double y = p.y();
29 double z = -(transform.m13() * x + transform.m23() * y + transform.m43()) / transform.m33();
30 // implicit definition of w = 1;
31
32 double outX = x * transform.m11() + y * transform.m21() + z * transform.m31( ) + transform.m41();
33 double outY = x * transform.m12() + y * transform.m22() + z * transform.m32( ) + transform.m42();
34 double outZ = x * transform.m13() + y * transform.m23() + z * transform.m33( ) + transform.m43();
35 double outW = x * transform.m14() + y * transform.m24() + z * transform.m34( ) + transform.m44();
36
37 return HomogeneousCoordinate(outX, outY, outZ, outW);
38 }
39
40 static HomogeneousCoordinate mapHomogeneousPoint(const WebTransformationMatrix& transform, const FloatPoint3D& p)
41 {
42 double x = p.x();
43 double y = p.y();
44 double z = p.z();
45 // implicit definition of w = 1;
46
47 double outX = x * transform.m11() + y * transform.m21() + z * transform.m31( ) + transform.m41();
48 double outY = x * transform.m12() + y * transform.m22() + z * transform.m32( ) + transform.m42();
49 double outZ = x * transform.m13() + y * transform.m23() + z * transform.m33( ) + transform.m43();
50 double outW = x * transform.m14() + y * transform.m24() + z * transform.m34( ) + transform.m44();
51
52 return HomogeneousCoordinate(outX, outY, outZ, outW);
53 }
54
55 static HomogeneousCoordinate computeClippedPointForEdge(const HomogeneousCoordin ate& h1, const HomogeneousCoordinate& h2)
56 {
57 // Points h1 and h2 form a line in 4d, and any point on that line can be rep resented
58 // as an interpolation between h1 and h2:
59 // p = (1-t) h1 + (t) h2
60 //
61 // We want to compute point p such that p.w == epsilon, where epsilon is a s mall
62 // non-zero number. (but the smaller the number is, the higher the risk of o verflow)
63 // To do this, we solve for t in the following equation:
64 // p.w = epsilon = (1-t) * h1.w + (t) * h2.w
65 //
66 // Once paramter t is known, the rest of p can be computed via p = (1-t) h1 + (t) h2.
67
68 // Technically this is a special case of the following assertion, but its a good idea to keep it an explicit sanity check here.
69 ASSERT(h2.w != h1.w);
70 // Exactly one of h1 or h2 (but not both) must be on the negative side of th e w plane when this is called.
71 ASSERT(h1.shouldBeClipped() ^ h2.shouldBeClipped());
72
73 double w = 0.00001; // or any positive non-zero small epsilon
74
75 double t = (w - h1.w) / (h2.w - h1.w);
76
77 double x = (1-t) * h1.x + t * h2.x;
78 double y = (1-t) * h1.y + t * h2.y;
79 double z = (1-t) * h1.z + t * h2.z;
80
81 return HomogeneousCoordinate(x, y, z, w);
82 }
83
84 static inline void expandBoundsToIncludePoint(float& xmin, float& xmax, float& y min, float& ymax, const FloatPoint& p)
85 {
86 xmin = std::min(p.x(), xmin);
87 xmax = std::max(p.x(), xmax);
88 ymin = std::min(p.y(), ymin);
89 ymax = std::max(p.y(), ymax);
90 }
91
92 static inline void addVertexToClippedQuad(const FloatPoint& newVertex, FloatPoin t clippedQuad[8], int& numVerticesInClippedQuad)
93 {
94 clippedQuad[numVerticesInClippedQuad] = newVertex;
95 numVerticesInClippedQuad++;
96 }
97
98 IntRect CCMathUtil::mapClippedRect(const WebTransformationMatrix& transform, con st IntRect& srcRect)
99 {
100 return enclosingIntRect(mapClippedRect(transform, FloatRect(srcRect)));
101 }
102
103 FloatRect CCMathUtil::mapClippedRect(const WebTransformationMatrix& transform, c onst FloatRect& srcRect)
104 {
105 if (transform.isIdentityOrTranslation()) {
106 FloatRect mappedRect(srcRect);
107 mappedRect.move(static_cast<float>(transform.m41()), static_cast<float>( transform.m42()));
108 return mappedRect;
109 }
110
111 // Apply the transform, but retain the result in homogeneous coordinates.
112 FloatQuad q = FloatQuad(FloatRect(srcRect));
113 HomogeneousCoordinate h1 = mapHomogeneousPoint(transform, q.p1());
114 HomogeneousCoordinate h2 = mapHomogeneousPoint(transform, q.p2());
115 HomogeneousCoordinate h3 = mapHomogeneousPoint(transform, q.p3());
116 HomogeneousCoordinate h4 = mapHomogeneousPoint(transform, q.p4());
117
118 return computeEnclosingClippedRect(h1, h2, h3, h4);
119 }
120
121 FloatRect CCMathUtil::projectClippedRect(const WebTransformationMatrix& transfor m, const FloatRect& srcRect)
122 {
123 // Perform the projection, but retain the result in homogeneous coordinates.
124 FloatQuad q = FloatQuad(FloatRect(srcRect));
125 HomogeneousCoordinate h1 = projectHomogeneousPoint(transform, q.p1());
126 HomogeneousCoordinate h2 = projectHomogeneousPoint(transform, q.p2());
127 HomogeneousCoordinate h3 = projectHomogeneousPoint(transform, q.p3());
128 HomogeneousCoordinate h4 = projectHomogeneousPoint(transform, q.p4());
129
130 return computeEnclosingClippedRect(h1, h2, h3, h4);
131 }
132
133 void CCMathUtil::mapClippedQuad(const WebTransformationMatrix& transform, const FloatQuad& srcQuad, FloatPoint clippedQuad[8], int& numVerticesInClippedQuad)
134 {
135 HomogeneousCoordinate h1 = mapHomogeneousPoint(transform, srcQuad.p1());
136 HomogeneousCoordinate h2 = mapHomogeneousPoint(transform, srcQuad.p2());
137 HomogeneousCoordinate h3 = mapHomogeneousPoint(transform, srcQuad.p3());
138 HomogeneousCoordinate h4 = mapHomogeneousPoint(transform, srcQuad.p4());
139
140 // The order of adding the vertices to the array is chosen so that clockwise / counter-clockwise orientation is retained.
141
142 numVerticesInClippedQuad = 0;
143
144 if (!h1.shouldBeClipped())
145 addVertexToClippedQuad(h1.cartesianPoint2d(), clippedQuad, numVerticesIn ClippedQuad);
146
147 if (h1.shouldBeClipped() ^ h2.shouldBeClipped())
148 addVertexToClippedQuad(computeClippedPointForEdge(h1, h2).cartesianPoint 2d(), clippedQuad, numVerticesInClippedQuad);
149
150 if (!h2.shouldBeClipped())
151 addVertexToClippedQuad(h2.cartesianPoint2d(), clippedQuad, numVerticesIn ClippedQuad);
152
153 if (h2.shouldBeClipped() ^ h3.shouldBeClipped())
154 addVertexToClippedQuad(computeClippedPointForEdge(h2, h3).cartesianPoint 2d(), clippedQuad, numVerticesInClippedQuad);
155
156 if (!h3.shouldBeClipped())
157 addVertexToClippedQuad(h3.cartesianPoint2d(), clippedQuad, numVerticesIn ClippedQuad);
158
159 if (h3.shouldBeClipped() ^ h4.shouldBeClipped())
160 addVertexToClippedQuad(computeClippedPointForEdge(h3, h4).cartesianPoint 2d(), clippedQuad, numVerticesInClippedQuad);
161
162 if (!h4.shouldBeClipped())
163 addVertexToClippedQuad(h4.cartesianPoint2d(), clippedQuad, numVerticesIn ClippedQuad);
164
165 if (h4.shouldBeClipped() ^ h1.shouldBeClipped())
166 addVertexToClippedQuad(computeClippedPointForEdge(h4, h1).cartesianPoint 2d(), clippedQuad, numVerticesInClippedQuad);
167
168 ASSERT(numVerticesInClippedQuad <= 8);
169 }
170
171 FloatRect CCMathUtil::computeEnclosingRectOfVertices(FloatPoint vertices[], int numVertices)
172 {
173 if (numVertices < 2)
174 return FloatRect();
175
176 float xmin = std::numeric_limits<float>::max();
177 float xmax = -std::numeric_limits<float>::max();
178 float ymin = std::numeric_limits<float>::max();
179 float ymax = -std::numeric_limits<float>::max();
180
181 for (int i = 0; i < numVertices; ++i)
182 expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, vertices[i]);
183
184 return FloatRect(FloatPoint(xmin, ymin), FloatSize(xmax - xmin, ymax - ymin) );
185 }
186
187 FloatRect CCMathUtil::computeEnclosingClippedRect(const HomogeneousCoordinate& h 1, const HomogeneousCoordinate& h2, const HomogeneousCoordinate& h3, const Homog eneousCoordinate& h4)
188 {
189 // This function performs clipping as necessary and computes the enclosing 2 d
190 // FloatRect of the vertices. Doing these two steps simultaneously allows us to avoid
191 // the overhead of storing an unknown number of clipped vertices.
192
193 // If no vertices on the quad are clipped, then we can simply return the enc losing rect directly.
194 bool somethingClipped = h1.shouldBeClipped() || h2.shouldBeClipped() || h3.s houldBeClipped() || h4.shouldBeClipped();
195 if (!somethingClipped) {
196 FloatQuad mappedQuad = FloatQuad(h1.cartesianPoint2d(), h2.cartesianPoin t2d(), h3.cartesianPoint2d(), h4.cartesianPoint2d());
197 return mappedQuad.boundingBox();
198 }
199
200 bool everythingClipped = h1.shouldBeClipped() && h2.shouldBeClipped() && h3. shouldBeClipped() && h4.shouldBeClipped();
201 if (everythingClipped)
202 return FloatRect();
203
204
205 float xmin = std::numeric_limits<float>::max();
206 float xmax = -std::numeric_limits<float>::max();
207 float ymin = std::numeric_limits<float>::max();
208 float ymax = -std::numeric_limits<float>::max();
209
210 if (!h1.shouldBeClipped())
211 expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, h1.cartesianPoint2d() );
212
213 if (h1.shouldBeClipped() ^ h2.shouldBeClipped())
214 expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, computeClippedPointFo rEdge(h1, h2).cartesianPoint2d());
215
216 if (!h2.shouldBeClipped())
217 expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, h2.cartesianPoint2d() );
218
219 if (h2.shouldBeClipped() ^ h3.shouldBeClipped())
220 expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, computeClippedPointFo rEdge(h2, h3).cartesianPoint2d());
221
222 if (!h3.shouldBeClipped())
223 expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, h3.cartesianPoint2d() );
224
225 if (h3.shouldBeClipped() ^ h4.shouldBeClipped())
226 expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, computeClippedPointFo rEdge(h3, h4).cartesianPoint2d());
227
228 if (!h4.shouldBeClipped())
229 expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, h4.cartesianPoint2d() );
230
231 if (h4.shouldBeClipped() ^ h1.shouldBeClipped())
232 expandBoundsToIncludePoint(xmin, xmax, ymin, ymax, computeClippedPointFo rEdge(h4, h1).cartesianPoint2d());
233
234 return FloatRect(FloatPoint(xmin, ymin), FloatSize(xmax - xmin, ymax - ymin) );
235 }
236
237 FloatQuad CCMathUtil::mapQuad(const WebTransformationMatrix& transform, const Fl oatQuad& q, bool& clipped)
238 {
239 if (transform.isIdentityOrTranslation()) {
240 FloatQuad mappedQuad(q);
241 mappedQuad.move(static_cast<float>(transform.m41()), static_cast<float>( transform.m42()));
242 clipped = false;
243 return mappedQuad;
244 }
245
246 HomogeneousCoordinate h1 = mapHomogeneousPoint(transform, q.p1());
247 HomogeneousCoordinate h2 = mapHomogeneousPoint(transform, q.p2());
248 HomogeneousCoordinate h3 = mapHomogeneousPoint(transform, q.p3());
249 HomogeneousCoordinate h4 = mapHomogeneousPoint(transform, q.p4());
250
251 clipped = h1.shouldBeClipped() || h2.shouldBeClipped() || h3.shouldBeClipped () || h4.shouldBeClipped();
252
253 // Result will be invalid if clipped == true. But, compute it anyway just in case, to emulate existing behavior.
254 return FloatQuad(h1.cartesianPoint2d(), h2.cartesianPoint2d(), h3.cartesianP oint2d(), h4.cartesianPoint2d());
255 }
256
257 FloatPoint CCMathUtil::mapPoint(const WebTransformationMatrix& transform, const FloatPoint& p, bool& clipped)
258 {
259 HomogeneousCoordinate h = mapHomogeneousPoint(transform, p);
260
261 if (h.w > 0) {
262 clipped = false;
263 return h.cartesianPoint2d();
264 }
265
266 // The cartesian coordinates will be invalid after dividing by w.
267 clipped = true;
268
269 // Avoid dividing by w if w == 0.
270 if (!h.w)
271 return FloatPoint();
272
273 // This return value will be invalid because clipped == true, but (1) users of this
274 // code should be ignoring the return value when clipped == true anyway, and (2) this
275 // behavior is more consistent with existing behavior of WebKit transforms i f the user
276 // really does not ignore the return value.
277 return h.cartesianPoint2d();
278 }
279
280 FloatPoint3D CCMathUtil::mapPoint(const WebTransformationMatrix& transform, cons t FloatPoint3D& p, bool& clipped)
281 {
282 HomogeneousCoordinate h = mapHomogeneousPoint(transform, p);
283
284 if (h.w > 0) {
285 clipped = false;
286 return h.cartesianPoint3d();
287 }
288
289 // The cartesian coordinates will be invalid after dividing by w.
290 clipped = true;
291
292 // Avoid dividing by w if w == 0.
293 if (!h.w)
294 return FloatPoint3D();
295
296 // This return value will be invalid because clipped == true, but (1) users of this
297 // code should be ignoring the return value when clipped == true anyway, and (2) this
298 // behavior is more consistent with existing behavior of WebKit transforms i f the user
299 // really does not ignore the return value.
300 return h.cartesianPoint3d();
301 }
302
303 FloatQuad CCMathUtil::projectQuad(const WebTransformationMatrix& transform, cons t FloatQuad& q, bool& clipped)
304 {
305 FloatQuad projectedQuad;
306 bool clippedPoint;
307 projectedQuad.setP1(projectPoint(transform, q.p1(), clippedPoint));
308 clipped = clippedPoint;
309 projectedQuad.setP2(projectPoint(transform, q.p2(), clippedPoint));
310 clipped |= clippedPoint;
311 projectedQuad.setP3(projectPoint(transform, q.p3(), clippedPoint));
312 clipped |= clippedPoint;
313 projectedQuad.setP4(projectPoint(transform, q.p4(), clippedPoint));
314 clipped |= clippedPoint;
315
316 return projectedQuad;
317 }
318
319 FloatPoint CCMathUtil::projectPoint(const WebTransformationMatrix& transform, co nst FloatPoint& p, bool& clipped)
320 {
321 HomogeneousCoordinate h = projectHomogeneousPoint(transform, p);
322
323 if (h.w > 0) {
324 // The cartesian coordinates will be valid in this case.
325 clipped = false;
326 return h.cartesianPoint2d();
327 }
328
329 // The cartesian coordinates will be invalid after dividing by w.
330 clipped = true;
331
332 // Avoid dividing by w if w == 0.
333 if (!h.w)
334 return FloatPoint();
335
336 // This return value will be invalid because clipped == true, but (1) users of this
337 // code should be ignoring the return value when clipped == true anyway, and (2) this
338 // behavior is more consistent with existing behavior of WebKit transforms i f the user
339 // really does not ignore the return value.
340 return h.cartesianPoint2d();
341 }
342
343 void CCMathUtil::flattenTransformTo2d(WebTransformationMatrix& transform)
344 {
345 // Set both the 3rd row and 3rd column to (0, 0, 1, 0).
346 //
347 // One useful interpretation of doing this operation:
348 // - For x and y values, the new transform behaves effectively like an orth ographic
349 // projection was added to the matrix sequence.
350 // - For z values, the new transform overrides any effect that the transfor m had on
351 // z, and instead it preserves the z value for any points that are transf ormed.
352 // - Because of linearity of transforms, this flattened transform also pres erves the
353 // effect that any subsequent (post-multiplied) transforms would have on z values.
354 //
355 transform.setM13(0);
356 transform.setM23(0);
357 transform.setM31(0);
358 transform.setM32(0);
359 transform.setM33(1);
360 transform.setM34(0);
361 transform.setM43(0);
362 }
363
364 float CCMathUtil::smallestAngleBetweenVectors(const FloatSize& v1, const FloatSi ze& v2)
365 {
366 float dotProduct = (v1.width() * v2.width() + v1.height() * v2.height()) / ( v1.diagonalLength() * v2.diagonalLength());
367 // Clamp to compensate for rounding errors.
368 dotProduct = std::max(-1.f, std::min(1.f, dotProduct));
369 return rad2deg(acosf(dotProduct));
370 }
371
372 FloatSize CCMathUtil::projectVector(const FloatSize& source, const FloatSize& de stination)
373 {
374 float sourceDotDestination = source.width() * destination.width() + source.h eight() * destination.height();
375 float projectedLength = sourceDotDestination / destination.diagonalLengthSqu ared();
376 return FloatSize(projectedLength * destination.width(), projectedLength * de stination.height());
377 }
378
379 } // namespace cc
OLDNEW
« no previous file with comments | « cc/CCMathUtil.h ('k') | cc/CCOcclusionTracker.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698