Index: Source/platform/Timer.cpp |
diff --git a/Source/platform/Timer.cpp b/Source/platform/Timer.cpp |
index c6ad0cbd0593fcee2742973723d121da95aa4f71..5c523043a08a02f7416043b83adda129140368e3 100644 |
--- a/Source/platform/Timer.cpp |
+++ b/Source/platform/Timer.cpp |
@@ -29,167 +29,15 @@ |
#include "platform/PlatformThreadData.h" |
#include "platform/ThreadTimers.h" |
-#include "wtf/Atomics.h" |
+#include "platform/TimerHeap.h" |
#include "wtf/CurrentTime.h" |
-#include "wtf/HashSet.h" |
-#include <limits.h> |
-#include <math.h> |
-#include <limits> |
namespace blink { |
-class TimerHeapReference; |
- |
-// Timers are stored in a heap data structure, used to implement a priority queue. |
-// This allows us to efficiently determine which timer needs to fire the soonest. |
-// Then we set a single shared system timer to fire at that time. |
-// |
-// When a timer's "next fire time" changes, we need to move it around in the priority queue. |
-static Vector<TimerBase*>& threadGlobalTimerHeap() |
-{ |
- return PlatformThreadData::current().threadTimers().timerHeap(); |
-} |
-// ---------------- |
- |
-class TimerHeapPointer { |
-public: |
- TimerHeapPointer(TimerBase** pointer) : m_pointer(pointer) { } |
- TimerHeapReference operator*() const; |
- TimerBase* operator->() const { return *m_pointer; } |
-private: |
- TimerBase** m_pointer; |
-}; |
- |
-class TimerHeapReference { |
-public: |
- TimerHeapReference(TimerBase*& reference) : m_reference(reference) { } |
- operator TimerBase*() const { return m_reference; } |
- TimerHeapPointer operator&() const { return &m_reference; } |
- TimerHeapReference& operator=(TimerBase*); |
- TimerHeapReference& operator=(TimerHeapReference); |
-private: |
- TimerBase*& m_reference; |
-}; |
- |
-inline TimerHeapReference TimerHeapPointer::operator*() const |
-{ |
- return *m_pointer; |
-} |
- |
-inline TimerHeapReference& TimerHeapReference::operator=(TimerBase* timer) |
-{ |
- m_reference = timer; |
- Vector<TimerBase*>& heap = timer->timerHeap(); |
- if (&m_reference >= heap.data() && &m_reference < heap.data() + heap.size()) |
- timer->m_heapIndex = &m_reference - heap.data(); |
- return *this; |
-} |
- |
-inline TimerHeapReference& TimerHeapReference::operator=(TimerHeapReference b) |
-{ |
- TimerBase* timer = b; |
- return *this = timer; |
-} |
- |
-inline void swap(TimerHeapReference a, TimerHeapReference b) |
-{ |
- TimerBase* timerA = a; |
- TimerBase* timerB = b; |
- |
- // Invoke the assignment operator, since that takes care of updating m_heapIndex. |
- a = timerB; |
- b = timerA; |
-} |
- |
-// ---------------- |
- |
-// Class to represent iterators in the heap when calling the standard library heap algorithms. |
-// Uses a custom pointer and reference type that update indices for pointers in the heap. |
-class TimerHeapIterator : public std::iterator<std::random_access_iterator_tag, TimerBase*, ptrdiff_t, TimerHeapPointer, TimerHeapReference> { |
-public: |
- explicit TimerHeapIterator(TimerBase** pointer) : m_pointer(pointer) { checkConsistency(); } |
- |
- TimerHeapIterator& operator++() { checkConsistency(); ++m_pointer; checkConsistency(); return *this; } |
- TimerHeapIterator operator++(int) { checkConsistency(1); return TimerHeapIterator(m_pointer++); } |
- |
- TimerHeapIterator& operator--() { checkConsistency(); --m_pointer; checkConsistency(); return *this; } |
- TimerHeapIterator operator--(int) { checkConsistency(-1); return TimerHeapIterator(m_pointer--); } |
- |
- TimerHeapIterator& operator+=(ptrdiff_t i) { checkConsistency(); m_pointer += i; checkConsistency(); return *this; } |
- TimerHeapIterator& operator-=(ptrdiff_t i) { checkConsistency(); m_pointer -= i; checkConsistency(); return *this; } |
- |
- TimerHeapReference operator*() const { return TimerHeapReference(*m_pointer); } |
- TimerHeapReference operator[](ptrdiff_t i) const { return TimerHeapReference(m_pointer[i]); } |
- TimerBase* operator->() const { return *m_pointer; } |
- |
-private: |
- void checkConsistency(ptrdiff_t offset = 0) const |
- { |
- ASSERT(m_pointer >= threadGlobalTimerHeap().data()); |
- ASSERT(m_pointer <= threadGlobalTimerHeap().data() + threadGlobalTimerHeap().size()); |
- ASSERT_UNUSED(offset, m_pointer + offset >= threadGlobalTimerHeap().data()); |
- ASSERT_UNUSED(offset, m_pointer + offset <= threadGlobalTimerHeap().data() + threadGlobalTimerHeap().size()); |
- } |
- |
- friend bool operator==(TimerHeapIterator, TimerHeapIterator); |
- friend bool operator!=(TimerHeapIterator, TimerHeapIterator); |
- friend bool operator<(TimerHeapIterator, TimerHeapIterator); |
- friend bool operator>(TimerHeapIterator, TimerHeapIterator); |
- friend bool operator<=(TimerHeapIterator, TimerHeapIterator); |
- friend bool operator>=(TimerHeapIterator, TimerHeapIterator); |
- |
- friend TimerHeapIterator operator+(TimerHeapIterator, size_t); |
- friend TimerHeapIterator operator+(size_t, TimerHeapIterator); |
- |
- friend TimerHeapIterator operator-(TimerHeapIterator, size_t); |
- friend ptrdiff_t operator-(TimerHeapIterator, TimerHeapIterator); |
- |
- TimerBase** m_pointer; |
-}; |
- |
-inline bool operator==(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer == b.m_pointer; } |
-inline bool operator!=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer != b.m_pointer; } |
-inline bool operator<(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer < b.m_pointer; } |
-inline bool operator>(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer > b.m_pointer; } |
-inline bool operator<=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer <= b.m_pointer; } |
-inline bool operator>=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer >= b.m_pointer; } |
- |
-inline TimerHeapIterator operator+(TimerHeapIterator a, size_t b) { return TimerHeapIterator(a.m_pointer + b); } |
-inline TimerHeapIterator operator+(size_t a, TimerHeapIterator b) { return TimerHeapIterator(a + b.m_pointer); } |
- |
-inline TimerHeapIterator operator-(TimerHeapIterator a, size_t b) { return TimerHeapIterator(a.m_pointer - b); } |
-inline ptrdiff_t operator-(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer - b.m_pointer; } |
- |
-// ---------------- |
- |
-class TimerHeapLessThanFunction { |
-public: |
- bool operator()(const TimerBase*, const TimerBase*) const; |
-}; |
- |
-inline bool TimerHeapLessThanFunction::operator()(const TimerBase* a, const TimerBase* b) const |
-{ |
- // The comparisons below are "backwards" because the heap puts the largest |
- // element first and we want the lowest time to be the first one in the heap. |
- double aFireTime = a->m_nextFireTime; |
- double bFireTime = b->m_nextFireTime; |
- if (bFireTime != aFireTime) |
- return bFireTime < aFireTime; |
- |
- // We need to look at the difference of the insertion orders instead of comparing the two |
- // outright in case of overflow. |
- unsigned difference = a->m_heapInsertionOrder - b->m_heapInsertionOrder; |
- return difference < std::numeric_limits<unsigned>::max() / 2; |
-} |
- |
-// ---------------- |
- |
TimerBase::TimerBase() |
- : m_nextFireTime(0) |
- , m_unalignedNextFireTime(0) |
+ : m_unalignedNextFireTime(0) |
, m_repeatInterval(0) |
- , m_heapIndex(-1) |
- , m_cachedThreadGlobalTimerHeap(0) |
+ , m_heapEntry(&TimerHeap::get()) |
#if ENABLE(ASSERT) |
, m_thread(currentThread()) |
#endif |
@@ -199,7 +47,7 @@ TimerBase::TimerBase() |
TimerBase::~TimerBase() |
{ |
stop(); |
- ASSERT(!inHeap()); |
+ ASSERT(!m_heapEntry.inHeap()); |
} |
void TimerBase::start(double nextFireInterval, double repeatInterval, const WebTraceLocation& caller) |
@@ -218,148 +66,18 @@ void TimerBase::stop() |
m_repeatInterval = 0; |
setNextFireTime(0); |
- ASSERT(m_nextFireTime == 0); |
+ ASSERT(nextFireTime() == 0); |
ASSERT(m_repeatInterval == 0); |
- ASSERT(!inHeap()); |
+ ASSERT(!m_heapEntry.inHeap()); |
} |
double TimerBase::nextFireInterval() const |
{ |
ASSERT(isActive()); |
double current = monotonicallyIncreasingTime(); |
- if (m_nextFireTime < current) |
+ if (nextFireTime() < current) |
return 0; |
- return m_nextFireTime - current; |
-} |
- |
-inline void TimerBase::checkHeapIndex() const |
-{ |
- ASSERT(timerHeap() == threadGlobalTimerHeap()); |
- ASSERT(!timerHeap().isEmpty()); |
- ASSERT(m_heapIndex >= 0); |
- ASSERT(m_heapIndex < static_cast<int>(timerHeap().size())); |
- ASSERT(timerHeap()[m_heapIndex] == this); |
-} |
- |
-inline void TimerBase::checkConsistency() const |
-{ |
- // Timers should be in the heap if and only if they have a non-zero next fire time. |
- ASSERT(inHeap() == (m_nextFireTime != 0)); |
- if (inHeap()) |
- checkHeapIndex(); |
-} |
- |
-void TimerBase::heapDecreaseKey() |
-{ |
- ASSERT(m_nextFireTime != 0); |
- checkHeapIndex(); |
- TimerBase** heapData = timerHeap().data(); |
- push_heap(TimerHeapIterator(heapData), TimerHeapIterator(heapData + m_heapIndex + 1), TimerHeapLessThanFunction()); |
- checkHeapIndex(); |
-} |
- |
-inline void TimerBase::heapDelete() |
-{ |
- ASSERT(m_nextFireTime == 0); |
- heapPop(); |
- timerHeap().removeLast(); |
- m_heapIndex = -1; |
-} |
- |
-void TimerBase::heapDeleteMin() |
-{ |
- ASSERT(m_nextFireTime == 0); |
- heapPopMin(); |
- timerHeap().removeLast(); |
- m_heapIndex = -1; |
-} |
- |
-inline void TimerBase::heapIncreaseKey() |
-{ |
- ASSERT(m_nextFireTime != 0); |
- heapPop(); |
- heapDecreaseKey(); |
-} |
- |
-inline void TimerBase::heapInsert() |
-{ |
- ASSERT(!inHeap()); |
- timerHeap().append(this); |
- m_heapIndex = timerHeap().size() - 1; |
- heapDecreaseKey(); |
-} |
- |
-inline void TimerBase::heapPop() |
-{ |
- // Temporarily force this timer to have the minimum key so we can pop it. |
- double fireTime = m_nextFireTime; |
- m_nextFireTime = -std::numeric_limits<double>::infinity(); |
- heapDecreaseKey(); |
- heapPopMin(); |
- m_nextFireTime = fireTime; |
-} |
- |
-void TimerBase::heapPopMin() |
-{ |
- ASSERT(this == timerHeap().first()); |
- checkHeapIndex(); |
- Vector<TimerBase*>& heap = timerHeap(); |
- TimerBase** heapData = heap.data(); |
- pop_heap(TimerHeapIterator(heapData), TimerHeapIterator(heapData + heap.size()), TimerHeapLessThanFunction()); |
- checkHeapIndex(); |
- ASSERT(this == timerHeap().last()); |
-} |
- |
-static inline bool parentHeapPropertyHolds(const TimerBase* current, const Vector<TimerBase*>& heap, unsigned currentIndex) |
-{ |
- if (!currentIndex) |
- return true; |
- unsigned parentIndex = (currentIndex - 1) / 2; |
- TimerHeapLessThanFunction compareHeapPosition; |
- return compareHeapPosition(current, heap[parentIndex]); |
-} |
- |
-static inline bool childHeapPropertyHolds(const TimerBase* current, const Vector<TimerBase*>& heap, unsigned childIndex) |
-{ |
- if (childIndex >= heap.size()) |
- return true; |
- TimerHeapLessThanFunction compareHeapPosition; |
- return compareHeapPosition(heap[childIndex], current); |
-} |
- |
-bool TimerBase::hasValidHeapPosition() const |
-{ |
- ASSERT(m_nextFireTime); |
- if (!inHeap()) |
- return false; |
- // Check if the heap property still holds with the new fire time. If it does we don't need to do anything. |
- // This assumes that the STL heap is a standard binary heap. In an unlikely event it is not, the assertions |
- // in updateHeapIfNeeded() will get hit. |
- const Vector<TimerBase*>& heap = timerHeap(); |
- if (!parentHeapPropertyHolds(this, heap, m_heapIndex)) |
- return false; |
- unsigned childIndex1 = 2 * m_heapIndex + 1; |
- unsigned childIndex2 = childIndex1 + 1; |
- return childHeapPropertyHolds(this, heap, childIndex1) && childHeapPropertyHolds(this, heap, childIndex2); |
-} |
- |
-void TimerBase::updateHeapIfNeeded(double oldTime) |
-{ |
- if (m_nextFireTime && hasValidHeapPosition()) |
- return; |
-#if ENABLE(ASSERT) |
- int oldHeapIndex = m_heapIndex; |
-#endif |
- if (!oldTime) |
- heapInsert(); |
- else if (!m_nextFireTime) |
- heapDelete(); |
- else if (m_nextFireTime < oldTime) |
- heapDecreaseKey(); |
- else |
- heapIncreaseKey(); |
- ASSERT(m_heapIndex != oldHeapIndex); |
- ASSERT(!inHeap() || hasValidHeapPosition()); |
+ return nextFireTime() - current; |
} |
void TimerBase::setNextFireTime(double newUnalignedTime) |
@@ -369,29 +87,10 @@ void TimerBase::setNextFireTime(double newUnalignedTime) |
if (m_unalignedNextFireTime != newUnalignedTime) |
m_unalignedNextFireTime = newUnalignedTime; |
- // Accessing thread global data is slow. Cache the heap pointer. |
- if (!m_cachedThreadGlobalTimerHeap) |
- m_cachedThreadGlobalTimerHeap = &threadGlobalTimerHeap(); |
- |
- // Keep heap valid while changing the next-fire time. |
- double oldTime = m_nextFireTime; |
+ double oldTime = nextFireTime(); |
double newTime = alignedFireTime(newUnalignedTime); |
- if (oldTime != newTime) { |
- m_nextFireTime = newTime; |
- static unsigned currentHeapInsertionOrder; |
- m_heapInsertionOrder = atomicAdd(¤tHeapInsertionOrder, 1); |
- |
- bool wasFirstTimerInHeap = m_heapIndex == 0; |
- |
- updateHeapIfNeeded(oldTime); |
- |
- bool isFirstTimerInHeap = m_heapIndex == 0; |
- |
- if (wasFirstTimerInHeap || isFirstTimerInHeap) |
- PlatformThreadData::current().threadTimers().updateSharedTimer(); |
- } |
- |
- checkConsistency(); |
+ if (oldTime != newTime) |
+ m_heapEntry.setValue(*this, newTime); |
} |
void TimerBase::fireTimersInNestedEventLoop() |