| Index: Source/platform/Timer.cpp
|
| diff --git a/Source/platform/Timer.cpp b/Source/platform/Timer.cpp
|
| index c6ad0cbd0593fcee2742973723d121da95aa4f71..5c523043a08a02f7416043b83adda129140368e3 100644
|
| --- a/Source/platform/Timer.cpp
|
| +++ b/Source/platform/Timer.cpp
|
| @@ -29,167 +29,15 @@
|
|
|
| #include "platform/PlatformThreadData.h"
|
| #include "platform/ThreadTimers.h"
|
| -#include "wtf/Atomics.h"
|
| +#include "platform/TimerHeap.h"
|
| #include "wtf/CurrentTime.h"
|
| -#include "wtf/HashSet.h"
|
| -#include <limits.h>
|
| -#include <math.h>
|
| -#include <limits>
|
|
|
| namespace blink {
|
|
|
| -class TimerHeapReference;
|
| -
|
| -// Timers are stored in a heap data structure, used to implement a priority queue.
|
| -// This allows us to efficiently determine which timer needs to fire the soonest.
|
| -// Then we set a single shared system timer to fire at that time.
|
| -//
|
| -// When a timer's "next fire time" changes, we need to move it around in the priority queue.
|
| -static Vector<TimerBase*>& threadGlobalTimerHeap()
|
| -{
|
| - return PlatformThreadData::current().threadTimers().timerHeap();
|
| -}
|
| -// ----------------
|
| -
|
| -class TimerHeapPointer {
|
| -public:
|
| - TimerHeapPointer(TimerBase** pointer) : m_pointer(pointer) { }
|
| - TimerHeapReference operator*() const;
|
| - TimerBase* operator->() const { return *m_pointer; }
|
| -private:
|
| - TimerBase** m_pointer;
|
| -};
|
| -
|
| -class TimerHeapReference {
|
| -public:
|
| - TimerHeapReference(TimerBase*& reference) : m_reference(reference) { }
|
| - operator TimerBase*() const { return m_reference; }
|
| - TimerHeapPointer operator&() const { return &m_reference; }
|
| - TimerHeapReference& operator=(TimerBase*);
|
| - TimerHeapReference& operator=(TimerHeapReference);
|
| -private:
|
| - TimerBase*& m_reference;
|
| -};
|
| -
|
| -inline TimerHeapReference TimerHeapPointer::operator*() const
|
| -{
|
| - return *m_pointer;
|
| -}
|
| -
|
| -inline TimerHeapReference& TimerHeapReference::operator=(TimerBase* timer)
|
| -{
|
| - m_reference = timer;
|
| - Vector<TimerBase*>& heap = timer->timerHeap();
|
| - if (&m_reference >= heap.data() && &m_reference < heap.data() + heap.size())
|
| - timer->m_heapIndex = &m_reference - heap.data();
|
| - return *this;
|
| -}
|
| -
|
| -inline TimerHeapReference& TimerHeapReference::operator=(TimerHeapReference b)
|
| -{
|
| - TimerBase* timer = b;
|
| - return *this = timer;
|
| -}
|
| -
|
| -inline void swap(TimerHeapReference a, TimerHeapReference b)
|
| -{
|
| - TimerBase* timerA = a;
|
| - TimerBase* timerB = b;
|
| -
|
| - // Invoke the assignment operator, since that takes care of updating m_heapIndex.
|
| - a = timerB;
|
| - b = timerA;
|
| -}
|
| -
|
| -// ----------------
|
| -
|
| -// Class to represent iterators in the heap when calling the standard library heap algorithms.
|
| -// Uses a custom pointer and reference type that update indices for pointers in the heap.
|
| -class TimerHeapIterator : public std::iterator<std::random_access_iterator_tag, TimerBase*, ptrdiff_t, TimerHeapPointer, TimerHeapReference> {
|
| -public:
|
| - explicit TimerHeapIterator(TimerBase** pointer) : m_pointer(pointer) { checkConsistency(); }
|
| -
|
| - TimerHeapIterator& operator++() { checkConsistency(); ++m_pointer; checkConsistency(); return *this; }
|
| - TimerHeapIterator operator++(int) { checkConsistency(1); return TimerHeapIterator(m_pointer++); }
|
| -
|
| - TimerHeapIterator& operator--() { checkConsistency(); --m_pointer; checkConsistency(); return *this; }
|
| - TimerHeapIterator operator--(int) { checkConsistency(-1); return TimerHeapIterator(m_pointer--); }
|
| -
|
| - TimerHeapIterator& operator+=(ptrdiff_t i) { checkConsistency(); m_pointer += i; checkConsistency(); return *this; }
|
| - TimerHeapIterator& operator-=(ptrdiff_t i) { checkConsistency(); m_pointer -= i; checkConsistency(); return *this; }
|
| -
|
| - TimerHeapReference operator*() const { return TimerHeapReference(*m_pointer); }
|
| - TimerHeapReference operator[](ptrdiff_t i) const { return TimerHeapReference(m_pointer[i]); }
|
| - TimerBase* operator->() const { return *m_pointer; }
|
| -
|
| -private:
|
| - void checkConsistency(ptrdiff_t offset = 0) const
|
| - {
|
| - ASSERT(m_pointer >= threadGlobalTimerHeap().data());
|
| - ASSERT(m_pointer <= threadGlobalTimerHeap().data() + threadGlobalTimerHeap().size());
|
| - ASSERT_UNUSED(offset, m_pointer + offset >= threadGlobalTimerHeap().data());
|
| - ASSERT_UNUSED(offset, m_pointer + offset <= threadGlobalTimerHeap().data() + threadGlobalTimerHeap().size());
|
| - }
|
| -
|
| - friend bool operator==(TimerHeapIterator, TimerHeapIterator);
|
| - friend bool operator!=(TimerHeapIterator, TimerHeapIterator);
|
| - friend bool operator<(TimerHeapIterator, TimerHeapIterator);
|
| - friend bool operator>(TimerHeapIterator, TimerHeapIterator);
|
| - friend bool operator<=(TimerHeapIterator, TimerHeapIterator);
|
| - friend bool operator>=(TimerHeapIterator, TimerHeapIterator);
|
| -
|
| - friend TimerHeapIterator operator+(TimerHeapIterator, size_t);
|
| - friend TimerHeapIterator operator+(size_t, TimerHeapIterator);
|
| -
|
| - friend TimerHeapIterator operator-(TimerHeapIterator, size_t);
|
| - friend ptrdiff_t operator-(TimerHeapIterator, TimerHeapIterator);
|
| -
|
| - TimerBase** m_pointer;
|
| -};
|
| -
|
| -inline bool operator==(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer == b.m_pointer; }
|
| -inline bool operator!=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer != b.m_pointer; }
|
| -inline bool operator<(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer < b.m_pointer; }
|
| -inline bool operator>(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer > b.m_pointer; }
|
| -inline bool operator<=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer <= b.m_pointer; }
|
| -inline bool operator>=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer >= b.m_pointer; }
|
| -
|
| -inline TimerHeapIterator operator+(TimerHeapIterator a, size_t b) { return TimerHeapIterator(a.m_pointer + b); }
|
| -inline TimerHeapIterator operator+(size_t a, TimerHeapIterator b) { return TimerHeapIterator(a + b.m_pointer); }
|
| -
|
| -inline TimerHeapIterator operator-(TimerHeapIterator a, size_t b) { return TimerHeapIterator(a.m_pointer - b); }
|
| -inline ptrdiff_t operator-(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer - b.m_pointer; }
|
| -
|
| -// ----------------
|
| -
|
| -class TimerHeapLessThanFunction {
|
| -public:
|
| - bool operator()(const TimerBase*, const TimerBase*) const;
|
| -};
|
| -
|
| -inline bool TimerHeapLessThanFunction::operator()(const TimerBase* a, const TimerBase* b) const
|
| -{
|
| - // The comparisons below are "backwards" because the heap puts the largest
|
| - // element first and we want the lowest time to be the first one in the heap.
|
| - double aFireTime = a->m_nextFireTime;
|
| - double bFireTime = b->m_nextFireTime;
|
| - if (bFireTime != aFireTime)
|
| - return bFireTime < aFireTime;
|
| -
|
| - // We need to look at the difference of the insertion orders instead of comparing the two
|
| - // outright in case of overflow.
|
| - unsigned difference = a->m_heapInsertionOrder - b->m_heapInsertionOrder;
|
| - return difference < std::numeric_limits<unsigned>::max() / 2;
|
| -}
|
| -
|
| -// ----------------
|
| -
|
| TimerBase::TimerBase()
|
| - : m_nextFireTime(0)
|
| - , m_unalignedNextFireTime(0)
|
| + : m_unalignedNextFireTime(0)
|
| , m_repeatInterval(0)
|
| - , m_heapIndex(-1)
|
| - , m_cachedThreadGlobalTimerHeap(0)
|
| + , m_heapEntry(&TimerHeap::get())
|
| #if ENABLE(ASSERT)
|
| , m_thread(currentThread())
|
| #endif
|
| @@ -199,7 +47,7 @@ TimerBase::TimerBase()
|
| TimerBase::~TimerBase()
|
| {
|
| stop();
|
| - ASSERT(!inHeap());
|
| + ASSERT(!m_heapEntry.inHeap());
|
| }
|
|
|
| void TimerBase::start(double nextFireInterval, double repeatInterval, const WebTraceLocation& caller)
|
| @@ -218,148 +66,18 @@ void TimerBase::stop()
|
| m_repeatInterval = 0;
|
| setNextFireTime(0);
|
|
|
| - ASSERT(m_nextFireTime == 0);
|
| + ASSERT(nextFireTime() == 0);
|
| ASSERT(m_repeatInterval == 0);
|
| - ASSERT(!inHeap());
|
| + ASSERT(!m_heapEntry.inHeap());
|
| }
|
|
|
| double TimerBase::nextFireInterval() const
|
| {
|
| ASSERT(isActive());
|
| double current = monotonicallyIncreasingTime();
|
| - if (m_nextFireTime < current)
|
| + if (nextFireTime() < current)
|
| return 0;
|
| - return m_nextFireTime - current;
|
| -}
|
| -
|
| -inline void TimerBase::checkHeapIndex() const
|
| -{
|
| - ASSERT(timerHeap() == threadGlobalTimerHeap());
|
| - ASSERT(!timerHeap().isEmpty());
|
| - ASSERT(m_heapIndex >= 0);
|
| - ASSERT(m_heapIndex < static_cast<int>(timerHeap().size()));
|
| - ASSERT(timerHeap()[m_heapIndex] == this);
|
| -}
|
| -
|
| -inline void TimerBase::checkConsistency() const
|
| -{
|
| - // Timers should be in the heap if and only if they have a non-zero next fire time.
|
| - ASSERT(inHeap() == (m_nextFireTime != 0));
|
| - if (inHeap())
|
| - checkHeapIndex();
|
| -}
|
| -
|
| -void TimerBase::heapDecreaseKey()
|
| -{
|
| - ASSERT(m_nextFireTime != 0);
|
| - checkHeapIndex();
|
| - TimerBase** heapData = timerHeap().data();
|
| - push_heap(TimerHeapIterator(heapData), TimerHeapIterator(heapData + m_heapIndex + 1), TimerHeapLessThanFunction());
|
| - checkHeapIndex();
|
| -}
|
| -
|
| -inline void TimerBase::heapDelete()
|
| -{
|
| - ASSERT(m_nextFireTime == 0);
|
| - heapPop();
|
| - timerHeap().removeLast();
|
| - m_heapIndex = -1;
|
| -}
|
| -
|
| -void TimerBase::heapDeleteMin()
|
| -{
|
| - ASSERT(m_nextFireTime == 0);
|
| - heapPopMin();
|
| - timerHeap().removeLast();
|
| - m_heapIndex = -1;
|
| -}
|
| -
|
| -inline void TimerBase::heapIncreaseKey()
|
| -{
|
| - ASSERT(m_nextFireTime != 0);
|
| - heapPop();
|
| - heapDecreaseKey();
|
| -}
|
| -
|
| -inline void TimerBase::heapInsert()
|
| -{
|
| - ASSERT(!inHeap());
|
| - timerHeap().append(this);
|
| - m_heapIndex = timerHeap().size() - 1;
|
| - heapDecreaseKey();
|
| -}
|
| -
|
| -inline void TimerBase::heapPop()
|
| -{
|
| - // Temporarily force this timer to have the minimum key so we can pop it.
|
| - double fireTime = m_nextFireTime;
|
| - m_nextFireTime = -std::numeric_limits<double>::infinity();
|
| - heapDecreaseKey();
|
| - heapPopMin();
|
| - m_nextFireTime = fireTime;
|
| -}
|
| -
|
| -void TimerBase::heapPopMin()
|
| -{
|
| - ASSERT(this == timerHeap().first());
|
| - checkHeapIndex();
|
| - Vector<TimerBase*>& heap = timerHeap();
|
| - TimerBase** heapData = heap.data();
|
| - pop_heap(TimerHeapIterator(heapData), TimerHeapIterator(heapData + heap.size()), TimerHeapLessThanFunction());
|
| - checkHeapIndex();
|
| - ASSERT(this == timerHeap().last());
|
| -}
|
| -
|
| -static inline bool parentHeapPropertyHolds(const TimerBase* current, const Vector<TimerBase*>& heap, unsigned currentIndex)
|
| -{
|
| - if (!currentIndex)
|
| - return true;
|
| - unsigned parentIndex = (currentIndex - 1) / 2;
|
| - TimerHeapLessThanFunction compareHeapPosition;
|
| - return compareHeapPosition(current, heap[parentIndex]);
|
| -}
|
| -
|
| -static inline bool childHeapPropertyHolds(const TimerBase* current, const Vector<TimerBase*>& heap, unsigned childIndex)
|
| -{
|
| - if (childIndex >= heap.size())
|
| - return true;
|
| - TimerHeapLessThanFunction compareHeapPosition;
|
| - return compareHeapPosition(heap[childIndex], current);
|
| -}
|
| -
|
| -bool TimerBase::hasValidHeapPosition() const
|
| -{
|
| - ASSERT(m_nextFireTime);
|
| - if (!inHeap())
|
| - return false;
|
| - // Check if the heap property still holds with the new fire time. If it does we don't need to do anything.
|
| - // This assumes that the STL heap is a standard binary heap. In an unlikely event it is not, the assertions
|
| - // in updateHeapIfNeeded() will get hit.
|
| - const Vector<TimerBase*>& heap = timerHeap();
|
| - if (!parentHeapPropertyHolds(this, heap, m_heapIndex))
|
| - return false;
|
| - unsigned childIndex1 = 2 * m_heapIndex + 1;
|
| - unsigned childIndex2 = childIndex1 + 1;
|
| - return childHeapPropertyHolds(this, heap, childIndex1) && childHeapPropertyHolds(this, heap, childIndex2);
|
| -}
|
| -
|
| -void TimerBase::updateHeapIfNeeded(double oldTime)
|
| -{
|
| - if (m_nextFireTime && hasValidHeapPosition())
|
| - return;
|
| -#if ENABLE(ASSERT)
|
| - int oldHeapIndex = m_heapIndex;
|
| -#endif
|
| - if (!oldTime)
|
| - heapInsert();
|
| - else if (!m_nextFireTime)
|
| - heapDelete();
|
| - else if (m_nextFireTime < oldTime)
|
| - heapDecreaseKey();
|
| - else
|
| - heapIncreaseKey();
|
| - ASSERT(m_heapIndex != oldHeapIndex);
|
| - ASSERT(!inHeap() || hasValidHeapPosition());
|
| + return nextFireTime() - current;
|
| }
|
|
|
| void TimerBase::setNextFireTime(double newUnalignedTime)
|
| @@ -369,29 +87,10 @@ void TimerBase::setNextFireTime(double newUnalignedTime)
|
| if (m_unalignedNextFireTime != newUnalignedTime)
|
| m_unalignedNextFireTime = newUnalignedTime;
|
|
|
| - // Accessing thread global data is slow. Cache the heap pointer.
|
| - if (!m_cachedThreadGlobalTimerHeap)
|
| - m_cachedThreadGlobalTimerHeap = &threadGlobalTimerHeap();
|
| -
|
| - // Keep heap valid while changing the next-fire time.
|
| - double oldTime = m_nextFireTime;
|
| + double oldTime = nextFireTime();
|
| double newTime = alignedFireTime(newUnalignedTime);
|
| - if (oldTime != newTime) {
|
| - m_nextFireTime = newTime;
|
| - static unsigned currentHeapInsertionOrder;
|
| - m_heapInsertionOrder = atomicAdd(¤tHeapInsertionOrder, 1);
|
| -
|
| - bool wasFirstTimerInHeap = m_heapIndex == 0;
|
| -
|
| - updateHeapIfNeeded(oldTime);
|
| -
|
| - bool isFirstTimerInHeap = m_heapIndex == 0;
|
| -
|
| - if (wasFirstTimerInHeap || isFirstTimerInHeap)
|
| - PlatformThreadData::current().threadTimers().updateSharedTimer();
|
| - }
|
| -
|
| - checkConsistency();
|
| + if (oldTime != newTime)
|
| + m_heapEntry.setValue(*this, newTime);
|
| }
|
|
|
| void TimerBase::fireTimersInNestedEventLoop()
|
|
|