Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(477)

Side by Side Diff: Source/platform/Timer.cpp

Issue 959263002: WIP - not ready for review (Closed) Base URL: svn://svn.chromium.org/blink/trunk
Patch Set: Decouple TimerHeap and ThreadTimers. Created 5 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « Source/platform/Timer.h ('k') | Source/platform/TimerHeap.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 /* 1 /*
2 * Copyright (C) 2006, 2008 Apple Inc. All rights reserved. 2 * Copyright (C) 2006, 2008 Apple Inc. All rights reserved.
3 * Copyright (C) 2009 Google Inc. All rights reserved. 3 * Copyright (C) 2009 Google Inc. All rights reserved.
4 * 4 *
5 * Redistribution and use in source and binary forms, with or without 5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions 6 * modification, are permitted provided that the following conditions
7 * are met: 7 * are met:
8 * 1. Redistributions of source code must retain the above copyright 8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer. 9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright 10 * 2. Redistributions in binary form must reproduce the above copyright
(...skipping 11 matching lines...) Expand all
22 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */ 25 */
26 26
27 #include "config.h" 27 #include "config.h"
28 #include "platform/Timer.h" 28 #include "platform/Timer.h"
29 29
30 #include "platform/PlatformThreadData.h" 30 #include "platform/PlatformThreadData.h"
31 #include "platform/ThreadTimers.h" 31 #include "platform/ThreadTimers.h"
32 #include "wtf/Atomics.h" 32 #include "platform/TimerHeap.h"
33 #include "wtf/CurrentTime.h" 33 #include "wtf/CurrentTime.h"
34 #include "wtf/HashSet.h"
35 #include <limits.h>
36 #include <math.h>
37 #include <limits>
38 34
39 namespace blink { 35 namespace blink {
40 36
41 class TimerHeapReference;
42
43 // Timers are stored in a heap data structure, used to implement a priority queu e.
44 // This allows us to efficiently determine which timer needs to fire the soonest .
45 // Then we set a single shared system timer to fire at that time.
46 //
47 // When a timer's "next fire time" changes, we need to move it around in the pri ority queue.
48 static Vector<TimerBase*>& threadGlobalTimerHeap()
49 {
50 return PlatformThreadData::current().threadTimers().timerHeap();
51 }
52 // ----------------
53
54 class TimerHeapPointer {
55 public:
56 TimerHeapPointer(TimerBase** pointer) : m_pointer(pointer) { }
57 TimerHeapReference operator*() const;
58 TimerBase* operator->() const { return *m_pointer; }
59 private:
60 TimerBase** m_pointer;
61 };
62
63 class TimerHeapReference {
64 public:
65 TimerHeapReference(TimerBase*& reference) : m_reference(reference) { }
66 operator TimerBase*() const { return m_reference; }
67 TimerHeapPointer operator&() const { return &m_reference; }
68 TimerHeapReference& operator=(TimerBase*);
69 TimerHeapReference& operator=(TimerHeapReference);
70 private:
71 TimerBase*& m_reference;
72 };
73
74 inline TimerHeapReference TimerHeapPointer::operator*() const
75 {
76 return *m_pointer;
77 }
78
79 inline TimerHeapReference& TimerHeapReference::operator=(TimerBase* timer)
80 {
81 m_reference = timer;
82 Vector<TimerBase*>& heap = timer->timerHeap();
83 if (&m_reference >= heap.data() && &m_reference < heap.data() + heap.size())
84 timer->m_heapIndex = &m_reference - heap.data();
85 return *this;
86 }
87
88 inline TimerHeapReference& TimerHeapReference::operator=(TimerHeapReference b)
89 {
90 TimerBase* timer = b;
91 return *this = timer;
92 }
93
94 inline void swap(TimerHeapReference a, TimerHeapReference b)
95 {
96 TimerBase* timerA = a;
97 TimerBase* timerB = b;
98
99 // Invoke the assignment operator, since that takes care of updating m_heapI ndex.
100 a = timerB;
101 b = timerA;
102 }
103
104 // ----------------
105
106 // Class to represent iterators in the heap when calling the standard library he ap algorithms.
107 // Uses a custom pointer and reference type that update indices for pointers in the heap.
108 class TimerHeapIterator : public std::iterator<std::random_access_iterator_tag, TimerBase*, ptrdiff_t, TimerHeapPointer, TimerHeapReference> {
109 public:
110 explicit TimerHeapIterator(TimerBase** pointer) : m_pointer(pointer) { check Consistency(); }
111
112 TimerHeapIterator& operator++() { checkConsistency(); ++m_pointer; checkCons istency(); return *this; }
113 TimerHeapIterator operator++(int) { checkConsistency(1); return TimerHeapIte rator(m_pointer++); }
114
115 TimerHeapIterator& operator--() { checkConsistency(); --m_pointer; checkCons istency(); return *this; }
116 TimerHeapIterator operator--(int) { checkConsistency(-1); return TimerHeapIt erator(m_pointer--); }
117
118 TimerHeapIterator& operator+=(ptrdiff_t i) { checkConsistency(); m_pointer + = i; checkConsistency(); return *this; }
119 TimerHeapIterator& operator-=(ptrdiff_t i) { checkConsistency(); m_pointer - = i; checkConsistency(); return *this; }
120
121 TimerHeapReference operator*() const { return TimerHeapReference(*m_pointer) ; }
122 TimerHeapReference operator[](ptrdiff_t i) const { return TimerHeapReference (m_pointer[i]); }
123 TimerBase* operator->() const { return *m_pointer; }
124
125 private:
126 void checkConsistency(ptrdiff_t offset = 0) const
127 {
128 ASSERT(m_pointer >= threadGlobalTimerHeap().data());
129 ASSERT(m_pointer <= threadGlobalTimerHeap().data() + threadGlobalTimerHe ap().size());
130 ASSERT_UNUSED(offset, m_pointer + offset >= threadGlobalTimerHeap().data ());
131 ASSERT_UNUSED(offset, m_pointer + offset <= threadGlobalTimerHeap().data () + threadGlobalTimerHeap().size());
132 }
133
134 friend bool operator==(TimerHeapIterator, TimerHeapIterator);
135 friend bool operator!=(TimerHeapIterator, TimerHeapIterator);
136 friend bool operator<(TimerHeapIterator, TimerHeapIterator);
137 friend bool operator>(TimerHeapIterator, TimerHeapIterator);
138 friend bool operator<=(TimerHeapIterator, TimerHeapIterator);
139 friend bool operator>=(TimerHeapIterator, TimerHeapIterator);
140
141 friend TimerHeapIterator operator+(TimerHeapIterator, size_t);
142 friend TimerHeapIterator operator+(size_t, TimerHeapIterator);
143
144 friend TimerHeapIterator operator-(TimerHeapIterator, size_t);
145 friend ptrdiff_t operator-(TimerHeapIterator, TimerHeapIterator);
146
147 TimerBase** m_pointer;
148 };
149
150 inline bool operator==(TimerHeapIterator a, TimerHeapIterator b) { return a.m_po inter == b.m_pointer; }
151 inline bool operator!=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_po inter != b.m_pointer; }
152 inline bool operator<(TimerHeapIterator a, TimerHeapIterator b) { return a.m_poi nter < b.m_pointer; }
153 inline bool operator>(TimerHeapIterator a, TimerHeapIterator b) { return a.m_poi nter > b.m_pointer; }
154 inline bool operator<=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_po inter <= b.m_pointer; }
155 inline bool operator>=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_po inter >= b.m_pointer; }
156
157 inline TimerHeapIterator operator+(TimerHeapIterator a, size_t b) { return Timer HeapIterator(a.m_pointer + b); }
158 inline TimerHeapIterator operator+(size_t a, TimerHeapIterator b) { return Timer HeapIterator(a + b.m_pointer); }
159
160 inline TimerHeapIterator operator-(TimerHeapIterator a, size_t b) { return Timer HeapIterator(a.m_pointer - b); }
161 inline ptrdiff_t operator-(TimerHeapIterator a, TimerHeapIterator b) { return a. m_pointer - b.m_pointer; }
162
163 // ----------------
164
165 class TimerHeapLessThanFunction {
166 public:
167 bool operator()(const TimerBase*, const TimerBase*) const;
168 };
169
170 inline bool TimerHeapLessThanFunction::operator()(const TimerBase* a, const Time rBase* b) const
171 {
172 // The comparisons below are "backwards" because the heap puts the largest
173 // element first and we want the lowest time to be the first one in the heap .
174 double aFireTime = a->m_nextFireTime;
175 double bFireTime = b->m_nextFireTime;
176 if (bFireTime != aFireTime)
177 return bFireTime < aFireTime;
178
179 // We need to look at the difference of the insertion orders instead of comp aring the two
180 // outright in case of overflow.
181 unsigned difference = a->m_heapInsertionOrder - b->m_heapInsertionOrder;
182 return difference < std::numeric_limits<unsigned>::max() / 2;
183 }
184
185 // ----------------
186
187 TimerBase::TimerBase() 37 TimerBase::TimerBase()
188 : m_nextFireTime(0) 38 : m_unalignedNextFireTime(0)
189 , m_unalignedNextFireTime(0)
190 , m_repeatInterval(0) 39 , m_repeatInterval(0)
191 , m_heapIndex(-1) 40 , m_heapEntry(&TimerHeap::get())
192 , m_cachedThreadGlobalTimerHeap(0)
193 #if ENABLE(ASSERT) 41 #if ENABLE(ASSERT)
194 , m_thread(currentThread()) 42 , m_thread(currentThread())
195 #endif 43 #endif
196 { 44 {
197 } 45 }
198 46
199 TimerBase::~TimerBase() 47 TimerBase::~TimerBase()
200 { 48 {
201 stop(); 49 stop();
202 ASSERT(!inHeap()); 50 ASSERT(!m_heapEntry.inHeap());
203 } 51 }
204 52
205 void TimerBase::start(double nextFireInterval, double repeatInterval, const WebT raceLocation& caller) 53 void TimerBase::start(double nextFireInterval, double repeatInterval, const WebT raceLocation& caller)
206 { 54 {
207 ASSERT(m_thread == currentThread()); 55 ASSERT(m_thread == currentThread());
208 56
209 m_location = caller; 57 m_location = caller;
210 m_repeatInterval = repeatInterval; 58 m_repeatInterval = repeatInterval;
211 setNextFireTime(monotonicallyIncreasingTime() + nextFireInterval); 59 setNextFireTime(monotonicallyIncreasingTime() + nextFireInterval);
212 } 60 }
213 61
214 void TimerBase::stop() 62 void TimerBase::stop()
215 { 63 {
216 ASSERT(m_thread == currentThread()); 64 ASSERT(m_thread == currentThread());
217 65
218 m_repeatInterval = 0; 66 m_repeatInterval = 0;
219 setNextFireTime(0); 67 setNextFireTime(0);
220 68
221 ASSERT(m_nextFireTime == 0); 69 ASSERT(nextFireTime() == 0);
222 ASSERT(m_repeatInterval == 0); 70 ASSERT(m_repeatInterval == 0);
223 ASSERT(!inHeap()); 71 ASSERT(!m_heapEntry.inHeap());
224 } 72 }
225 73
226 double TimerBase::nextFireInterval() const 74 double TimerBase::nextFireInterval() const
227 { 75 {
228 ASSERT(isActive()); 76 ASSERT(isActive());
229 double current = monotonicallyIncreasingTime(); 77 double current = monotonicallyIncreasingTime();
230 if (m_nextFireTime < current) 78 if (nextFireTime() < current)
231 return 0; 79 return 0;
232 return m_nextFireTime - current; 80 return nextFireTime() - current;
233 }
234
235 inline void TimerBase::checkHeapIndex() const
236 {
237 ASSERT(timerHeap() == threadGlobalTimerHeap());
238 ASSERT(!timerHeap().isEmpty());
239 ASSERT(m_heapIndex >= 0);
240 ASSERT(m_heapIndex < static_cast<int>(timerHeap().size()));
241 ASSERT(timerHeap()[m_heapIndex] == this);
242 }
243
244 inline void TimerBase::checkConsistency() const
245 {
246 // Timers should be in the heap if and only if they have a non-zero next fir e time.
247 ASSERT(inHeap() == (m_nextFireTime != 0));
248 if (inHeap())
249 checkHeapIndex();
250 }
251
252 void TimerBase::heapDecreaseKey()
253 {
254 ASSERT(m_nextFireTime != 0);
255 checkHeapIndex();
256 TimerBase** heapData = timerHeap().data();
257 push_heap(TimerHeapIterator(heapData), TimerHeapIterator(heapData + m_heapIn dex + 1), TimerHeapLessThanFunction());
258 checkHeapIndex();
259 }
260
261 inline void TimerBase::heapDelete()
262 {
263 ASSERT(m_nextFireTime == 0);
264 heapPop();
265 timerHeap().removeLast();
266 m_heapIndex = -1;
267 }
268
269 void TimerBase::heapDeleteMin()
270 {
271 ASSERT(m_nextFireTime == 0);
272 heapPopMin();
273 timerHeap().removeLast();
274 m_heapIndex = -1;
275 }
276
277 inline void TimerBase::heapIncreaseKey()
278 {
279 ASSERT(m_nextFireTime != 0);
280 heapPop();
281 heapDecreaseKey();
282 }
283
284 inline void TimerBase::heapInsert()
285 {
286 ASSERT(!inHeap());
287 timerHeap().append(this);
288 m_heapIndex = timerHeap().size() - 1;
289 heapDecreaseKey();
290 }
291
292 inline void TimerBase::heapPop()
293 {
294 // Temporarily force this timer to have the minimum key so we can pop it.
295 double fireTime = m_nextFireTime;
296 m_nextFireTime = -std::numeric_limits<double>::infinity();
297 heapDecreaseKey();
298 heapPopMin();
299 m_nextFireTime = fireTime;
300 }
301
302 void TimerBase::heapPopMin()
303 {
304 ASSERT(this == timerHeap().first());
305 checkHeapIndex();
306 Vector<TimerBase*>& heap = timerHeap();
307 TimerBase** heapData = heap.data();
308 pop_heap(TimerHeapIterator(heapData), TimerHeapIterator(heapData + heap.size ()), TimerHeapLessThanFunction());
309 checkHeapIndex();
310 ASSERT(this == timerHeap().last());
311 }
312
313 static inline bool parentHeapPropertyHolds(const TimerBase* current, const Vecto r<TimerBase*>& heap, unsigned currentIndex)
314 {
315 if (!currentIndex)
316 return true;
317 unsigned parentIndex = (currentIndex - 1) / 2;
318 TimerHeapLessThanFunction compareHeapPosition;
319 return compareHeapPosition(current, heap[parentIndex]);
320 }
321
322 static inline bool childHeapPropertyHolds(const TimerBase* current, const Vector <TimerBase*>& heap, unsigned childIndex)
323 {
324 if (childIndex >= heap.size())
325 return true;
326 TimerHeapLessThanFunction compareHeapPosition;
327 return compareHeapPosition(heap[childIndex], current);
328 }
329
330 bool TimerBase::hasValidHeapPosition() const
331 {
332 ASSERT(m_nextFireTime);
333 if (!inHeap())
334 return false;
335 // Check if the heap property still holds with the new fire time. If it does we don't need to do anything.
336 // This assumes that the STL heap is a standard binary heap. In an unlikely event it is not, the assertions
337 // in updateHeapIfNeeded() will get hit.
338 const Vector<TimerBase*>& heap = timerHeap();
339 if (!parentHeapPropertyHolds(this, heap, m_heapIndex))
340 return false;
341 unsigned childIndex1 = 2 * m_heapIndex + 1;
342 unsigned childIndex2 = childIndex1 + 1;
343 return childHeapPropertyHolds(this, heap, childIndex1) && childHeapPropertyH olds(this, heap, childIndex2);
344 }
345
346 void TimerBase::updateHeapIfNeeded(double oldTime)
347 {
348 if (m_nextFireTime && hasValidHeapPosition())
349 return;
350 #if ENABLE(ASSERT)
351 int oldHeapIndex = m_heapIndex;
352 #endif
353 if (!oldTime)
354 heapInsert();
355 else if (!m_nextFireTime)
356 heapDelete();
357 else if (m_nextFireTime < oldTime)
358 heapDecreaseKey();
359 else
360 heapIncreaseKey();
361 ASSERT(m_heapIndex != oldHeapIndex);
362 ASSERT(!inHeap() || hasValidHeapPosition());
363 } 81 }
364 82
365 void TimerBase::setNextFireTime(double newUnalignedTime) 83 void TimerBase::setNextFireTime(double newUnalignedTime)
366 { 84 {
367 ASSERT(m_thread == currentThread()); 85 ASSERT(m_thread == currentThread());
368 86
369 if (m_unalignedNextFireTime != newUnalignedTime) 87 if (m_unalignedNextFireTime != newUnalignedTime)
370 m_unalignedNextFireTime = newUnalignedTime; 88 m_unalignedNextFireTime = newUnalignedTime;
371 89
372 // Accessing thread global data is slow. Cache the heap pointer. 90 double oldTime = nextFireTime();
373 if (!m_cachedThreadGlobalTimerHeap)
374 m_cachedThreadGlobalTimerHeap = &threadGlobalTimerHeap();
375
376 // Keep heap valid while changing the next-fire time.
377 double oldTime = m_nextFireTime;
378 double newTime = alignedFireTime(newUnalignedTime); 91 double newTime = alignedFireTime(newUnalignedTime);
379 if (oldTime != newTime) { 92 if (oldTime != newTime)
380 m_nextFireTime = newTime; 93 m_heapEntry.setValue(*this, newTime);
381 static unsigned currentHeapInsertionOrder;
382 m_heapInsertionOrder = atomicAdd(&currentHeapInsertionOrder, 1);
383
384 bool wasFirstTimerInHeap = m_heapIndex == 0;
385
386 updateHeapIfNeeded(oldTime);
387
388 bool isFirstTimerInHeap = m_heapIndex == 0;
389
390 if (wasFirstTimerInHeap || isFirstTimerInHeap)
391 PlatformThreadData::current().threadTimers().updateSharedTimer();
392 }
393
394 checkConsistency();
395 } 94 }
396 95
397 void TimerBase::fireTimersInNestedEventLoop() 96 void TimerBase::fireTimersInNestedEventLoop()
398 { 97 {
399 // Redirect to ThreadTimers. 98 // Redirect to ThreadTimers.
400 PlatformThreadData::current().threadTimers().fireTimersInNestedEventLoop(); 99 PlatformThreadData::current().threadTimers().fireTimersInNestedEventLoop();
401 } 100 }
402 101
403 void TimerBase::didChangeAlignmentInterval() 102 void TimerBase::didChangeAlignmentInterval()
404 { 103 {
405 setNextFireTime(m_unalignedNextFireTime); 104 setNextFireTime(m_unalignedNextFireTime);
406 } 105 }
407 106
408 double TimerBase::nextUnalignedFireInterval() const 107 double TimerBase::nextUnalignedFireInterval() const
409 { 108 {
410 ASSERT(isActive()); 109 ASSERT(isActive());
411 return std::max(m_unalignedNextFireTime - monotonicallyIncreasingTime(), 0.0 ); 110 return std::max(m_unalignedNextFireTime - monotonicallyIncreasingTime(), 0.0 );
412 } 111 }
413 112
414 } // namespace blink 113 } // namespace blink
OLDNEW
« no previous file with comments | « Source/platform/Timer.h ('k') | Source/platform/TimerHeap.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698