Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(3482)

Unified Diff: experimental/Intersection/CubeRoot.cpp

Issue 867213004: remove prototype pathops code (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: Created 5 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « experimental/Intersection/ConvexHull_Test.cpp ('k') | experimental/Intersection/CubicBezierClip.cpp » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: experimental/Intersection/CubeRoot.cpp
diff --git a/experimental/Intersection/CubeRoot.cpp b/experimental/Intersection/CubeRoot.cpp
deleted file mode 100644
index 5f785a0358a96942dcd84a3c3845d53e7f6d3afb..0000000000000000000000000000000000000000
--- a/experimental/Intersection/CubeRoot.cpp
+++ /dev/null
@@ -1,400 +0,0 @@
-/*
- * Copyright 2012 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can be
- * found in the LICENSE file.
- */
-// http://metamerist.com/cbrt/CubeRoot.cpp
-//
-
-#include <math.h>
-#include "CubicUtilities.h"
-
-#define TEST_ALTERNATIVES 0
-#if TEST_ALTERNATIVES
-typedef float (*cuberootfnf) (float);
-typedef double (*cuberootfnd) (double);
-
-// estimate bits of precision (32-bit float case)
-inline int bits_of_precision(float a, float b)
-{
- const double kd = 1.0 / log(2.0);
-
- if (a==b)
- return 23;
-
- const double kdmin = pow(2.0, -23.0);
-
- double d = fabs(a-b);
- if (d < kdmin)
- return 23;
-
- return int(-log(d)*kd);
-}
-
-// estiamte bits of precision (64-bit double case)
-inline int bits_of_precision(double a, double b)
-{
- const double kd = 1.0 / log(2.0);
-
- if (a==b)
- return 52;
-
- const double kdmin = pow(2.0, -52.0);
-
- double d = fabs(a-b);
- if (d < kdmin)
- return 52;
-
- return int(-log(d)*kd);
-}
-
-// cube root via x^(1/3)
-static float pow_cbrtf(float x)
-{
- return (float) pow(x, 1.0f/3.0f);
-}
-
-// cube root via x^(1/3)
-static double pow_cbrtd(double x)
-{
- return pow(x, 1.0/3.0);
-}
-
-// cube root approximation using bit hack for 32-bit float
-static float cbrt_5f(float f)
-{
- unsigned int* p = (unsigned int *) &f;
- *p = *p/3 + 709921077;
- return f;
-}
-#endif
-
-// cube root approximation using bit hack for 64-bit float
-// adapted from Kahan's cbrt
-static double cbrt_5d(double d)
-{
- const unsigned int B1 = 715094163;
- double t = 0.0;
- unsigned int* pt = (unsigned int*) &t;
- unsigned int* px = (unsigned int*) &d;
- pt[1]=px[1]/3+B1;
- return t;
-}
-
-#if TEST_ALTERNATIVES
-// cube root approximation using bit hack for 64-bit float
-// adapted from Kahan's cbrt
-#if 0
-static double quint_5d(double d)
-{
- return sqrt(sqrt(d));
-
- const unsigned int B1 = 71509416*5/3;
- double t = 0.0;
- unsigned int* pt = (unsigned int*) &t;
- unsigned int* px = (unsigned int*) &d;
- pt[1]=px[1]/5+B1;
- return t;
-}
-#endif
-
-// iterative cube root approximation using Halley's method (float)
-static float cbrta_halleyf(const float a, const float R)
-{
- const float a3 = a*a*a;
- const float b= a * (a3 + R + R) / (a3 + a3 + R);
- return b;
-}
-#endif
-
-// iterative cube root approximation using Halley's method (double)
-static double cbrta_halleyd(const double a, const double R)
-{
- const double a3 = a*a*a;
- const double b= a * (a3 + R + R) / (a3 + a3 + R);
- return b;
-}
-
-#if TEST_ALTERNATIVES
-// iterative cube root approximation using Newton's method (float)
-static float cbrta_newtonf(const float a, const float x)
-{
-// return (1.0 / 3.0) * ((a + a) + x / (a * a));
- return a - (1.0f / 3.0f) * (a - x / (a*a));
-}
-
-// iterative cube root approximation using Newton's method (double)
-static double cbrta_newtond(const double a, const double x)
-{
- return (1.0/3.0) * (x / (a*a) + 2*a);
-}
-
-// cube root approximation using 1 iteration of Halley's method (double)
-static double halley_cbrt1d(double d)
-{
- double a = cbrt_5d(d);
- return cbrta_halleyd(a, d);
-}
-
-// cube root approximation using 1 iteration of Halley's method (float)
-static float halley_cbrt1f(float d)
-{
- float a = cbrt_5f(d);
- return cbrta_halleyf(a, d);
-}
-
-// cube root approximation using 2 iterations of Halley's method (double)
-static double halley_cbrt2d(double d)
-{
- double a = cbrt_5d(d);
- a = cbrta_halleyd(a, d);
- return cbrta_halleyd(a, d);
-}
-#endif
-
-// cube root approximation using 3 iterations of Halley's method (double)
-static double halley_cbrt3d(double d)
-{
- double a = cbrt_5d(d);
- a = cbrta_halleyd(a, d);
- a = cbrta_halleyd(a, d);
- return cbrta_halleyd(a, d);
-}
-
-#if TEST_ALTERNATIVES
-// cube root approximation using 2 iterations of Halley's method (float)
-static float halley_cbrt2f(float d)
-{
- float a = cbrt_5f(d);
- a = cbrta_halleyf(a, d);
- return cbrta_halleyf(a, d);
-}
-
-// cube root approximation using 1 iteration of Newton's method (double)
-static double newton_cbrt1d(double d)
-{
- double a = cbrt_5d(d);
- return cbrta_newtond(a, d);
-}
-
-// cube root approximation using 2 iterations of Newton's method (double)
-static double newton_cbrt2d(double d)
-{
- double a = cbrt_5d(d);
- a = cbrta_newtond(a, d);
- return cbrta_newtond(a, d);
-}
-
-// cube root approximation using 3 iterations of Newton's method (double)
-static double newton_cbrt3d(double d)
-{
- double a = cbrt_5d(d);
- a = cbrta_newtond(a, d);
- a = cbrta_newtond(a, d);
- return cbrta_newtond(a, d);
-}
-
-// cube root approximation using 4 iterations of Newton's method (double)
-static double newton_cbrt4d(double d)
-{
- double a = cbrt_5d(d);
- a = cbrta_newtond(a, d);
- a = cbrta_newtond(a, d);
- a = cbrta_newtond(a, d);
- return cbrta_newtond(a, d);
-}
-
-// cube root approximation using 2 iterations of Newton's method (float)
-static float newton_cbrt1f(float d)
-{
- float a = cbrt_5f(d);
- return cbrta_newtonf(a, d);
-}
-
-// cube root approximation using 2 iterations of Newton's method (float)
-static float newton_cbrt2f(float d)
-{
- float a = cbrt_5f(d);
- a = cbrta_newtonf(a, d);
- return cbrta_newtonf(a, d);
-}
-
-// cube root approximation using 3 iterations of Newton's method (float)
-static float newton_cbrt3f(float d)
-{
- float a = cbrt_5f(d);
- a = cbrta_newtonf(a, d);
- a = cbrta_newtonf(a, d);
- return cbrta_newtonf(a, d);
-}
-
-// cube root approximation using 4 iterations of Newton's method (float)
-static float newton_cbrt4f(float d)
-{
- float a = cbrt_5f(d);
- a = cbrta_newtonf(a, d);
- a = cbrta_newtonf(a, d);
- a = cbrta_newtonf(a, d);
- return cbrta_newtonf(a, d);
-}
-
-static double TestCubeRootf(const char* szName, cuberootfnf cbrt, double rA, double rB, int rN)
-{
- const int N = rN;
-
- float dd = float((rB-rA) / N);
-
- // calculate 1M numbers
- int i=0;
- float d = (float) rA;
-
- double s = 0.0;
-
- for(d=(float) rA, i=0; i<N; i++, d += dd)
- {
- s += cbrt(d);
- }
-
- double bits = 0.0;
- double worstx=0.0;
- double worsty=0.0;
- int minbits=64;
-
- for(d=(float) rA, i=0; i<N; i++, d += dd)
- {
- float a = cbrt((float) d);
- float b = (float) pow((double) d, 1.0/3.0);
-
- int bc = bits_of_precision(a, b);
- bits += bc;
-
- if (b > 1.0e-6)
- {
- if (bc < minbits)
- {
- minbits = bc;
- worstx = d;
- worsty = a;
- }
- }
- }
-
- bits /= N;
-
- printf(" %3d mbp %6.3f abp\n", minbits, bits);
-
- return s;
-}
-
-
-static double TestCubeRootd(const char* szName, cuberootfnd cbrt, double rA, double rB, int rN)
-{
- const int N = rN;
-
- double dd = (rB-rA) / N;
-
- int i=0;
-
- double s = 0.0;
- double d = 0.0;
-
- for(d=rA, i=0; i<N; i++, d += dd)
- {
- s += cbrt(d);
- }
-
-
- double bits = 0.0;
- double worstx = 0.0;
- double worsty = 0.0;
- int minbits = 64;
- for(d=rA, i=0; i<N; i++, d += dd)
- {
- double a = cbrt(d);
- double b = pow(d, 1.0/3.0);
-
- int bc = bits_of_precision(a, b); // min(53, count_matching_bitsd(a, b) - 12);
- bits += bc;
-
- if (b > 1.0e-6)
- {
- if (bc < minbits)
- {
- bits_of_precision(a, b);
- minbits = bc;
- worstx = d;
- worsty = a;
- }
- }
- }
-
- bits /= N;
-
- printf(" %3d mbp %6.3f abp\n", minbits, bits);
-
- return s;
-}
-
-static int _tmain()
-{
- // a million uniform steps through the range from 0.0 to 1.0
- // (doing uniform steps in the log scale would be better)
- double a = 0.0;
- double b = 1.0;
- int n = 1000000;
-
- printf("32-bit float tests\n");
- printf("----------------------------------------\n");
- TestCubeRootf("cbrt_5f", cbrt_5f, a, b, n);
- TestCubeRootf("pow", pow_cbrtf, a, b, n);
- TestCubeRootf("halley x 1", halley_cbrt1f, a, b, n);
- TestCubeRootf("halley x 2", halley_cbrt2f, a, b, n);
- TestCubeRootf("newton x 1", newton_cbrt1f, a, b, n);
- TestCubeRootf("newton x 2", newton_cbrt2f, a, b, n);
- TestCubeRootf("newton x 3", newton_cbrt3f, a, b, n);
- TestCubeRootf("newton x 4", newton_cbrt4f, a, b, n);
- printf("\n\n");
-
- printf("64-bit double tests\n");
- printf("----------------------------------------\n");
- TestCubeRootd("cbrt_5d", cbrt_5d, a, b, n);
- TestCubeRootd("pow", pow_cbrtd, a, b, n);
- TestCubeRootd("halley x 1", halley_cbrt1d, a, b, n);
- TestCubeRootd("halley x 2", halley_cbrt2d, a, b, n);
- TestCubeRootd("halley x 3", halley_cbrt3d, a, b, n);
- TestCubeRootd("newton x 1", newton_cbrt1d, a, b, n);
- TestCubeRootd("newton x 2", newton_cbrt2d, a, b, n);
- TestCubeRootd("newton x 3", newton_cbrt3d, a, b, n);
- TestCubeRootd("newton x 4", newton_cbrt4d, a, b, n);
- printf("\n\n");
-
- return 0;
-}
-#endif
-
-double cube_root(double x) {
- if (approximately_zero_cubed(x)) {
- return 0;
- }
- double result = halley_cbrt3d(fabs(x));
- if (x < 0) {
- result = -result;
- }
- return result;
-}
-
-#if TEST_ALTERNATIVES
-// http://bytes.com/topic/c/answers/754588-tips-find-cube-root-program-using-c
-/* cube root */
-int icbrt(int n) {
- int t=0, x=(n+2)/3; /* works for n=0 and n>=1 */
- for(; t!=x;) {
- int x3=x*x*x;
- t=x;
- x*=(2*n + x3);
- x/=(2*x3 + n);
- }
- return x ; /* always(?) equal to floor(n^(1/3)) */
-}
-#endif
« no previous file with comments | « experimental/Intersection/ConvexHull_Test.cpp ('k') | experimental/Intersection/CubicBezierClip.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698