| Index: experimental/Intersection/CubeRoot.cpp
|
| diff --git a/experimental/Intersection/CubeRoot.cpp b/experimental/Intersection/CubeRoot.cpp
|
| deleted file mode 100644
|
| index 5f785a0358a96942dcd84a3c3845d53e7f6d3afb..0000000000000000000000000000000000000000
|
| --- a/experimental/Intersection/CubeRoot.cpp
|
| +++ /dev/null
|
| @@ -1,400 +0,0 @@
|
| -/*
|
| - * Copyright 2012 Google Inc.
|
| - *
|
| - * Use of this source code is governed by a BSD-style license that can be
|
| - * found in the LICENSE file.
|
| - */
|
| -// http://metamerist.com/cbrt/CubeRoot.cpp
|
| -//
|
| -
|
| -#include <math.h>
|
| -#include "CubicUtilities.h"
|
| -
|
| -#define TEST_ALTERNATIVES 0
|
| -#if TEST_ALTERNATIVES
|
| -typedef float (*cuberootfnf) (float);
|
| -typedef double (*cuberootfnd) (double);
|
| -
|
| -// estimate bits of precision (32-bit float case)
|
| -inline int bits_of_precision(float a, float b)
|
| -{
|
| - const double kd = 1.0 / log(2.0);
|
| -
|
| - if (a==b)
|
| - return 23;
|
| -
|
| - const double kdmin = pow(2.0, -23.0);
|
| -
|
| - double d = fabs(a-b);
|
| - if (d < kdmin)
|
| - return 23;
|
| -
|
| - return int(-log(d)*kd);
|
| -}
|
| -
|
| -// estiamte bits of precision (64-bit double case)
|
| -inline int bits_of_precision(double a, double b)
|
| -{
|
| - const double kd = 1.0 / log(2.0);
|
| -
|
| - if (a==b)
|
| - return 52;
|
| -
|
| - const double kdmin = pow(2.0, -52.0);
|
| -
|
| - double d = fabs(a-b);
|
| - if (d < kdmin)
|
| - return 52;
|
| -
|
| - return int(-log(d)*kd);
|
| -}
|
| -
|
| -// cube root via x^(1/3)
|
| -static float pow_cbrtf(float x)
|
| -{
|
| - return (float) pow(x, 1.0f/3.0f);
|
| -}
|
| -
|
| -// cube root via x^(1/3)
|
| -static double pow_cbrtd(double x)
|
| -{
|
| - return pow(x, 1.0/3.0);
|
| -}
|
| -
|
| -// cube root approximation using bit hack for 32-bit float
|
| -static float cbrt_5f(float f)
|
| -{
|
| - unsigned int* p = (unsigned int *) &f;
|
| - *p = *p/3 + 709921077;
|
| - return f;
|
| -}
|
| -#endif
|
| -
|
| -// cube root approximation using bit hack for 64-bit float
|
| -// adapted from Kahan's cbrt
|
| -static double cbrt_5d(double d)
|
| -{
|
| - const unsigned int B1 = 715094163;
|
| - double t = 0.0;
|
| - unsigned int* pt = (unsigned int*) &t;
|
| - unsigned int* px = (unsigned int*) &d;
|
| - pt[1]=px[1]/3+B1;
|
| - return t;
|
| -}
|
| -
|
| -#if TEST_ALTERNATIVES
|
| -// cube root approximation using bit hack for 64-bit float
|
| -// adapted from Kahan's cbrt
|
| -#if 0
|
| -static double quint_5d(double d)
|
| -{
|
| - return sqrt(sqrt(d));
|
| -
|
| - const unsigned int B1 = 71509416*5/3;
|
| - double t = 0.0;
|
| - unsigned int* pt = (unsigned int*) &t;
|
| - unsigned int* px = (unsigned int*) &d;
|
| - pt[1]=px[1]/5+B1;
|
| - return t;
|
| -}
|
| -#endif
|
| -
|
| -// iterative cube root approximation using Halley's method (float)
|
| -static float cbrta_halleyf(const float a, const float R)
|
| -{
|
| - const float a3 = a*a*a;
|
| - const float b= a * (a3 + R + R) / (a3 + a3 + R);
|
| - return b;
|
| -}
|
| -#endif
|
| -
|
| -// iterative cube root approximation using Halley's method (double)
|
| -static double cbrta_halleyd(const double a, const double R)
|
| -{
|
| - const double a3 = a*a*a;
|
| - const double b= a * (a3 + R + R) / (a3 + a3 + R);
|
| - return b;
|
| -}
|
| -
|
| -#if TEST_ALTERNATIVES
|
| -// iterative cube root approximation using Newton's method (float)
|
| -static float cbrta_newtonf(const float a, const float x)
|
| -{
|
| -// return (1.0 / 3.0) * ((a + a) + x / (a * a));
|
| - return a - (1.0f / 3.0f) * (a - x / (a*a));
|
| -}
|
| -
|
| -// iterative cube root approximation using Newton's method (double)
|
| -static double cbrta_newtond(const double a, const double x)
|
| -{
|
| - return (1.0/3.0) * (x / (a*a) + 2*a);
|
| -}
|
| -
|
| -// cube root approximation using 1 iteration of Halley's method (double)
|
| -static double halley_cbrt1d(double d)
|
| -{
|
| - double a = cbrt_5d(d);
|
| - return cbrta_halleyd(a, d);
|
| -}
|
| -
|
| -// cube root approximation using 1 iteration of Halley's method (float)
|
| -static float halley_cbrt1f(float d)
|
| -{
|
| - float a = cbrt_5f(d);
|
| - return cbrta_halleyf(a, d);
|
| -}
|
| -
|
| -// cube root approximation using 2 iterations of Halley's method (double)
|
| -static double halley_cbrt2d(double d)
|
| -{
|
| - double a = cbrt_5d(d);
|
| - a = cbrta_halleyd(a, d);
|
| - return cbrta_halleyd(a, d);
|
| -}
|
| -#endif
|
| -
|
| -// cube root approximation using 3 iterations of Halley's method (double)
|
| -static double halley_cbrt3d(double d)
|
| -{
|
| - double a = cbrt_5d(d);
|
| - a = cbrta_halleyd(a, d);
|
| - a = cbrta_halleyd(a, d);
|
| - return cbrta_halleyd(a, d);
|
| -}
|
| -
|
| -#if TEST_ALTERNATIVES
|
| -// cube root approximation using 2 iterations of Halley's method (float)
|
| -static float halley_cbrt2f(float d)
|
| -{
|
| - float a = cbrt_5f(d);
|
| - a = cbrta_halleyf(a, d);
|
| - return cbrta_halleyf(a, d);
|
| -}
|
| -
|
| -// cube root approximation using 1 iteration of Newton's method (double)
|
| -static double newton_cbrt1d(double d)
|
| -{
|
| - double a = cbrt_5d(d);
|
| - return cbrta_newtond(a, d);
|
| -}
|
| -
|
| -// cube root approximation using 2 iterations of Newton's method (double)
|
| -static double newton_cbrt2d(double d)
|
| -{
|
| - double a = cbrt_5d(d);
|
| - a = cbrta_newtond(a, d);
|
| - return cbrta_newtond(a, d);
|
| -}
|
| -
|
| -// cube root approximation using 3 iterations of Newton's method (double)
|
| -static double newton_cbrt3d(double d)
|
| -{
|
| - double a = cbrt_5d(d);
|
| - a = cbrta_newtond(a, d);
|
| - a = cbrta_newtond(a, d);
|
| - return cbrta_newtond(a, d);
|
| -}
|
| -
|
| -// cube root approximation using 4 iterations of Newton's method (double)
|
| -static double newton_cbrt4d(double d)
|
| -{
|
| - double a = cbrt_5d(d);
|
| - a = cbrta_newtond(a, d);
|
| - a = cbrta_newtond(a, d);
|
| - a = cbrta_newtond(a, d);
|
| - return cbrta_newtond(a, d);
|
| -}
|
| -
|
| -// cube root approximation using 2 iterations of Newton's method (float)
|
| -static float newton_cbrt1f(float d)
|
| -{
|
| - float a = cbrt_5f(d);
|
| - return cbrta_newtonf(a, d);
|
| -}
|
| -
|
| -// cube root approximation using 2 iterations of Newton's method (float)
|
| -static float newton_cbrt2f(float d)
|
| -{
|
| - float a = cbrt_5f(d);
|
| - a = cbrta_newtonf(a, d);
|
| - return cbrta_newtonf(a, d);
|
| -}
|
| -
|
| -// cube root approximation using 3 iterations of Newton's method (float)
|
| -static float newton_cbrt3f(float d)
|
| -{
|
| - float a = cbrt_5f(d);
|
| - a = cbrta_newtonf(a, d);
|
| - a = cbrta_newtonf(a, d);
|
| - return cbrta_newtonf(a, d);
|
| -}
|
| -
|
| -// cube root approximation using 4 iterations of Newton's method (float)
|
| -static float newton_cbrt4f(float d)
|
| -{
|
| - float a = cbrt_5f(d);
|
| - a = cbrta_newtonf(a, d);
|
| - a = cbrta_newtonf(a, d);
|
| - a = cbrta_newtonf(a, d);
|
| - return cbrta_newtonf(a, d);
|
| -}
|
| -
|
| -static double TestCubeRootf(const char* szName, cuberootfnf cbrt, double rA, double rB, int rN)
|
| -{
|
| - const int N = rN;
|
| -
|
| - float dd = float((rB-rA) / N);
|
| -
|
| - // calculate 1M numbers
|
| - int i=0;
|
| - float d = (float) rA;
|
| -
|
| - double s = 0.0;
|
| -
|
| - for(d=(float) rA, i=0; i<N; i++, d += dd)
|
| - {
|
| - s += cbrt(d);
|
| - }
|
| -
|
| - double bits = 0.0;
|
| - double worstx=0.0;
|
| - double worsty=0.0;
|
| - int minbits=64;
|
| -
|
| - for(d=(float) rA, i=0; i<N; i++, d += dd)
|
| - {
|
| - float a = cbrt((float) d);
|
| - float b = (float) pow((double) d, 1.0/3.0);
|
| -
|
| - int bc = bits_of_precision(a, b);
|
| - bits += bc;
|
| -
|
| - if (b > 1.0e-6)
|
| - {
|
| - if (bc < minbits)
|
| - {
|
| - minbits = bc;
|
| - worstx = d;
|
| - worsty = a;
|
| - }
|
| - }
|
| - }
|
| -
|
| - bits /= N;
|
| -
|
| - printf(" %3d mbp %6.3f abp\n", minbits, bits);
|
| -
|
| - return s;
|
| -}
|
| -
|
| -
|
| -static double TestCubeRootd(const char* szName, cuberootfnd cbrt, double rA, double rB, int rN)
|
| -{
|
| - const int N = rN;
|
| -
|
| - double dd = (rB-rA) / N;
|
| -
|
| - int i=0;
|
| -
|
| - double s = 0.0;
|
| - double d = 0.0;
|
| -
|
| - for(d=rA, i=0; i<N; i++, d += dd)
|
| - {
|
| - s += cbrt(d);
|
| - }
|
| -
|
| -
|
| - double bits = 0.0;
|
| - double worstx = 0.0;
|
| - double worsty = 0.0;
|
| - int minbits = 64;
|
| - for(d=rA, i=0; i<N; i++, d += dd)
|
| - {
|
| - double a = cbrt(d);
|
| - double b = pow(d, 1.0/3.0);
|
| -
|
| - int bc = bits_of_precision(a, b); // min(53, count_matching_bitsd(a, b) - 12);
|
| - bits += bc;
|
| -
|
| - if (b > 1.0e-6)
|
| - {
|
| - if (bc < minbits)
|
| - {
|
| - bits_of_precision(a, b);
|
| - minbits = bc;
|
| - worstx = d;
|
| - worsty = a;
|
| - }
|
| - }
|
| - }
|
| -
|
| - bits /= N;
|
| -
|
| - printf(" %3d mbp %6.3f abp\n", minbits, bits);
|
| -
|
| - return s;
|
| -}
|
| -
|
| -static int _tmain()
|
| -{
|
| - // a million uniform steps through the range from 0.0 to 1.0
|
| - // (doing uniform steps in the log scale would be better)
|
| - double a = 0.0;
|
| - double b = 1.0;
|
| - int n = 1000000;
|
| -
|
| - printf("32-bit float tests\n");
|
| - printf("----------------------------------------\n");
|
| - TestCubeRootf("cbrt_5f", cbrt_5f, a, b, n);
|
| - TestCubeRootf("pow", pow_cbrtf, a, b, n);
|
| - TestCubeRootf("halley x 1", halley_cbrt1f, a, b, n);
|
| - TestCubeRootf("halley x 2", halley_cbrt2f, a, b, n);
|
| - TestCubeRootf("newton x 1", newton_cbrt1f, a, b, n);
|
| - TestCubeRootf("newton x 2", newton_cbrt2f, a, b, n);
|
| - TestCubeRootf("newton x 3", newton_cbrt3f, a, b, n);
|
| - TestCubeRootf("newton x 4", newton_cbrt4f, a, b, n);
|
| - printf("\n\n");
|
| -
|
| - printf("64-bit double tests\n");
|
| - printf("----------------------------------------\n");
|
| - TestCubeRootd("cbrt_5d", cbrt_5d, a, b, n);
|
| - TestCubeRootd("pow", pow_cbrtd, a, b, n);
|
| - TestCubeRootd("halley x 1", halley_cbrt1d, a, b, n);
|
| - TestCubeRootd("halley x 2", halley_cbrt2d, a, b, n);
|
| - TestCubeRootd("halley x 3", halley_cbrt3d, a, b, n);
|
| - TestCubeRootd("newton x 1", newton_cbrt1d, a, b, n);
|
| - TestCubeRootd("newton x 2", newton_cbrt2d, a, b, n);
|
| - TestCubeRootd("newton x 3", newton_cbrt3d, a, b, n);
|
| - TestCubeRootd("newton x 4", newton_cbrt4d, a, b, n);
|
| - printf("\n\n");
|
| -
|
| - return 0;
|
| -}
|
| -#endif
|
| -
|
| -double cube_root(double x) {
|
| - if (approximately_zero_cubed(x)) {
|
| - return 0;
|
| - }
|
| - double result = halley_cbrt3d(fabs(x));
|
| - if (x < 0) {
|
| - result = -result;
|
| - }
|
| - return result;
|
| -}
|
| -
|
| -#if TEST_ALTERNATIVES
|
| -// http://bytes.com/topic/c/answers/754588-tips-find-cube-root-program-using-c
|
| -/* cube root */
|
| -int icbrt(int n) {
|
| - int t=0, x=(n+2)/3; /* works for n=0 and n>=1 */
|
| - for(; t!=x;) {
|
| - int x3=x*x*x;
|
| - t=x;
|
| - x*=(2*n + x3);
|
| - x/=(2*x3 + n);
|
| - }
|
| - return x ; /* always(?) equal to floor(n^(1/3)) */
|
| -}
|
| -#endif
|
|
|