Index: experimental/Intersection/CubeRoot.cpp |
diff --git a/experimental/Intersection/CubeRoot.cpp b/experimental/Intersection/CubeRoot.cpp |
deleted file mode 100644 |
index 5f785a0358a96942dcd84a3c3845d53e7f6d3afb..0000000000000000000000000000000000000000 |
--- a/experimental/Intersection/CubeRoot.cpp |
+++ /dev/null |
@@ -1,400 +0,0 @@ |
-/* |
- * Copyright 2012 Google Inc. |
- * |
- * Use of this source code is governed by a BSD-style license that can be |
- * found in the LICENSE file. |
- */ |
-// http://metamerist.com/cbrt/CubeRoot.cpp |
-// |
- |
-#include <math.h> |
-#include "CubicUtilities.h" |
- |
-#define TEST_ALTERNATIVES 0 |
-#if TEST_ALTERNATIVES |
-typedef float (*cuberootfnf) (float); |
-typedef double (*cuberootfnd) (double); |
- |
-// estimate bits of precision (32-bit float case) |
-inline int bits_of_precision(float a, float b) |
-{ |
- const double kd = 1.0 / log(2.0); |
- |
- if (a==b) |
- return 23; |
- |
- const double kdmin = pow(2.0, -23.0); |
- |
- double d = fabs(a-b); |
- if (d < kdmin) |
- return 23; |
- |
- return int(-log(d)*kd); |
-} |
- |
-// estiamte bits of precision (64-bit double case) |
-inline int bits_of_precision(double a, double b) |
-{ |
- const double kd = 1.0 / log(2.0); |
- |
- if (a==b) |
- return 52; |
- |
- const double kdmin = pow(2.0, -52.0); |
- |
- double d = fabs(a-b); |
- if (d < kdmin) |
- return 52; |
- |
- return int(-log(d)*kd); |
-} |
- |
-// cube root via x^(1/3) |
-static float pow_cbrtf(float x) |
-{ |
- return (float) pow(x, 1.0f/3.0f); |
-} |
- |
-// cube root via x^(1/3) |
-static double pow_cbrtd(double x) |
-{ |
- return pow(x, 1.0/3.0); |
-} |
- |
-// cube root approximation using bit hack for 32-bit float |
-static float cbrt_5f(float f) |
-{ |
- unsigned int* p = (unsigned int *) &f; |
- *p = *p/3 + 709921077; |
- return f; |
-} |
-#endif |
- |
-// cube root approximation using bit hack for 64-bit float |
-// adapted from Kahan's cbrt |
-static double cbrt_5d(double d) |
-{ |
- const unsigned int B1 = 715094163; |
- double t = 0.0; |
- unsigned int* pt = (unsigned int*) &t; |
- unsigned int* px = (unsigned int*) &d; |
- pt[1]=px[1]/3+B1; |
- return t; |
-} |
- |
-#if TEST_ALTERNATIVES |
-// cube root approximation using bit hack for 64-bit float |
-// adapted from Kahan's cbrt |
-#if 0 |
-static double quint_5d(double d) |
-{ |
- return sqrt(sqrt(d)); |
- |
- const unsigned int B1 = 71509416*5/3; |
- double t = 0.0; |
- unsigned int* pt = (unsigned int*) &t; |
- unsigned int* px = (unsigned int*) &d; |
- pt[1]=px[1]/5+B1; |
- return t; |
-} |
-#endif |
- |
-// iterative cube root approximation using Halley's method (float) |
-static float cbrta_halleyf(const float a, const float R) |
-{ |
- const float a3 = a*a*a; |
- const float b= a * (a3 + R + R) / (a3 + a3 + R); |
- return b; |
-} |
-#endif |
- |
-// iterative cube root approximation using Halley's method (double) |
-static double cbrta_halleyd(const double a, const double R) |
-{ |
- const double a3 = a*a*a; |
- const double b= a * (a3 + R + R) / (a3 + a3 + R); |
- return b; |
-} |
- |
-#if TEST_ALTERNATIVES |
-// iterative cube root approximation using Newton's method (float) |
-static float cbrta_newtonf(const float a, const float x) |
-{ |
-// return (1.0 / 3.0) * ((a + a) + x / (a * a)); |
- return a - (1.0f / 3.0f) * (a - x / (a*a)); |
-} |
- |
-// iterative cube root approximation using Newton's method (double) |
-static double cbrta_newtond(const double a, const double x) |
-{ |
- return (1.0/3.0) * (x / (a*a) + 2*a); |
-} |
- |
-// cube root approximation using 1 iteration of Halley's method (double) |
-static double halley_cbrt1d(double d) |
-{ |
- double a = cbrt_5d(d); |
- return cbrta_halleyd(a, d); |
-} |
- |
-// cube root approximation using 1 iteration of Halley's method (float) |
-static float halley_cbrt1f(float d) |
-{ |
- float a = cbrt_5f(d); |
- return cbrta_halleyf(a, d); |
-} |
- |
-// cube root approximation using 2 iterations of Halley's method (double) |
-static double halley_cbrt2d(double d) |
-{ |
- double a = cbrt_5d(d); |
- a = cbrta_halleyd(a, d); |
- return cbrta_halleyd(a, d); |
-} |
-#endif |
- |
-// cube root approximation using 3 iterations of Halley's method (double) |
-static double halley_cbrt3d(double d) |
-{ |
- double a = cbrt_5d(d); |
- a = cbrta_halleyd(a, d); |
- a = cbrta_halleyd(a, d); |
- return cbrta_halleyd(a, d); |
-} |
- |
-#if TEST_ALTERNATIVES |
-// cube root approximation using 2 iterations of Halley's method (float) |
-static float halley_cbrt2f(float d) |
-{ |
- float a = cbrt_5f(d); |
- a = cbrta_halleyf(a, d); |
- return cbrta_halleyf(a, d); |
-} |
- |
-// cube root approximation using 1 iteration of Newton's method (double) |
-static double newton_cbrt1d(double d) |
-{ |
- double a = cbrt_5d(d); |
- return cbrta_newtond(a, d); |
-} |
- |
-// cube root approximation using 2 iterations of Newton's method (double) |
-static double newton_cbrt2d(double d) |
-{ |
- double a = cbrt_5d(d); |
- a = cbrta_newtond(a, d); |
- return cbrta_newtond(a, d); |
-} |
- |
-// cube root approximation using 3 iterations of Newton's method (double) |
-static double newton_cbrt3d(double d) |
-{ |
- double a = cbrt_5d(d); |
- a = cbrta_newtond(a, d); |
- a = cbrta_newtond(a, d); |
- return cbrta_newtond(a, d); |
-} |
- |
-// cube root approximation using 4 iterations of Newton's method (double) |
-static double newton_cbrt4d(double d) |
-{ |
- double a = cbrt_5d(d); |
- a = cbrta_newtond(a, d); |
- a = cbrta_newtond(a, d); |
- a = cbrta_newtond(a, d); |
- return cbrta_newtond(a, d); |
-} |
- |
-// cube root approximation using 2 iterations of Newton's method (float) |
-static float newton_cbrt1f(float d) |
-{ |
- float a = cbrt_5f(d); |
- return cbrta_newtonf(a, d); |
-} |
- |
-// cube root approximation using 2 iterations of Newton's method (float) |
-static float newton_cbrt2f(float d) |
-{ |
- float a = cbrt_5f(d); |
- a = cbrta_newtonf(a, d); |
- return cbrta_newtonf(a, d); |
-} |
- |
-// cube root approximation using 3 iterations of Newton's method (float) |
-static float newton_cbrt3f(float d) |
-{ |
- float a = cbrt_5f(d); |
- a = cbrta_newtonf(a, d); |
- a = cbrta_newtonf(a, d); |
- return cbrta_newtonf(a, d); |
-} |
- |
-// cube root approximation using 4 iterations of Newton's method (float) |
-static float newton_cbrt4f(float d) |
-{ |
- float a = cbrt_5f(d); |
- a = cbrta_newtonf(a, d); |
- a = cbrta_newtonf(a, d); |
- a = cbrta_newtonf(a, d); |
- return cbrta_newtonf(a, d); |
-} |
- |
-static double TestCubeRootf(const char* szName, cuberootfnf cbrt, double rA, double rB, int rN) |
-{ |
- const int N = rN; |
- |
- float dd = float((rB-rA) / N); |
- |
- // calculate 1M numbers |
- int i=0; |
- float d = (float) rA; |
- |
- double s = 0.0; |
- |
- for(d=(float) rA, i=0; i<N; i++, d += dd) |
- { |
- s += cbrt(d); |
- } |
- |
- double bits = 0.0; |
- double worstx=0.0; |
- double worsty=0.0; |
- int minbits=64; |
- |
- for(d=(float) rA, i=0; i<N; i++, d += dd) |
- { |
- float a = cbrt((float) d); |
- float b = (float) pow((double) d, 1.0/3.0); |
- |
- int bc = bits_of_precision(a, b); |
- bits += bc; |
- |
- if (b > 1.0e-6) |
- { |
- if (bc < minbits) |
- { |
- minbits = bc; |
- worstx = d; |
- worsty = a; |
- } |
- } |
- } |
- |
- bits /= N; |
- |
- printf(" %3d mbp %6.3f abp\n", minbits, bits); |
- |
- return s; |
-} |
- |
- |
-static double TestCubeRootd(const char* szName, cuberootfnd cbrt, double rA, double rB, int rN) |
-{ |
- const int N = rN; |
- |
- double dd = (rB-rA) / N; |
- |
- int i=0; |
- |
- double s = 0.0; |
- double d = 0.0; |
- |
- for(d=rA, i=0; i<N; i++, d += dd) |
- { |
- s += cbrt(d); |
- } |
- |
- |
- double bits = 0.0; |
- double worstx = 0.0; |
- double worsty = 0.0; |
- int minbits = 64; |
- for(d=rA, i=0; i<N; i++, d += dd) |
- { |
- double a = cbrt(d); |
- double b = pow(d, 1.0/3.0); |
- |
- int bc = bits_of_precision(a, b); // min(53, count_matching_bitsd(a, b) - 12); |
- bits += bc; |
- |
- if (b > 1.0e-6) |
- { |
- if (bc < minbits) |
- { |
- bits_of_precision(a, b); |
- minbits = bc; |
- worstx = d; |
- worsty = a; |
- } |
- } |
- } |
- |
- bits /= N; |
- |
- printf(" %3d mbp %6.3f abp\n", minbits, bits); |
- |
- return s; |
-} |
- |
-static int _tmain() |
-{ |
- // a million uniform steps through the range from 0.0 to 1.0 |
- // (doing uniform steps in the log scale would be better) |
- double a = 0.0; |
- double b = 1.0; |
- int n = 1000000; |
- |
- printf("32-bit float tests\n"); |
- printf("----------------------------------------\n"); |
- TestCubeRootf("cbrt_5f", cbrt_5f, a, b, n); |
- TestCubeRootf("pow", pow_cbrtf, a, b, n); |
- TestCubeRootf("halley x 1", halley_cbrt1f, a, b, n); |
- TestCubeRootf("halley x 2", halley_cbrt2f, a, b, n); |
- TestCubeRootf("newton x 1", newton_cbrt1f, a, b, n); |
- TestCubeRootf("newton x 2", newton_cbrt2f, a, b, n); |
- TestCubeRootf("newton x 3", newton_cbrt3f, a, b, n); |
- TestCubeRootf("newton x 4", newton_cbrt4f, a, b, n); |
- printf("\n\n"); |
- |
- printf("64-bit double tests\n"); |
- printf("----------------------------------------\n"); |
- TestCubeRootd("cbrt_5d", cbrt_5d, a, b, n); |
- TestCubeRootd("pow", pow_cbrtd, a, b, n); |
- TestCubeRootd("halley x 1", halley_cbrt1d, a, b, n); |
- TestCubeRootd("halley x 2", halley_cbrt2d, a, b, n); |
- TestCubeRootd("halley x 3", halley_cbrt3d, a, b, n); |
- TestCubeRootd("newton x 1", newton_cbrt1d, a, b, n); |
- TestCubeRootd("newton x 2", newton_cbrt2d, a, b, n); |
- TestCubeRootd("newton x 3", newton_cbrt3d, a, b, n); |
- TestCubeRootd("newton x 4", newton_cbrt4d, a, b, n); |
- printf("\n\n"); |
- |
- return 0; |
-} |
-#endif |
- |
-double cube_root(double x) { |
- if (approximately_zero_cubed(x)) { |
- return 0; |
- } |
- double result = halley_cbrt3d(fabs(x)); |
- if (x < 0) { |
- result = -result; |
- } |
- return result; |
-} |
- |
-#if TEST_ALTERNATIVES |
-// http://bytes.com/topic/c/answers/754588-tips-find-cube-root-program-using-c |
-/* cube root */ |
-int icbrt(int n) { |
- int t=0, x=(n+2)/3; /* works for n=0 and n>=1 */ |
- for(; t!=x;) { |
- int x3=x*x*x; |
- t=x; |
- x*=(2*n + x3); |
- x/=(2*x3 + n); |
- } |
- return x ; /* always(?) equal to floor(n^(1/3)) */ |
-} |
-#endif |