| Index: experimental/Intersection/CubicBezierClip.cpp
|
| diff --git a/experimental/Intersection/CubicBezierClip.cpp b/experimental/Intersection/CubicBezierClip.cpp
|
| deleted file mode 100644
|
| index d4c50fb41c179adce087f4b0d0cc173f509bd8e2..0000000000000000000000000000000000000000
|
| --- a/experimental/Intersection/CubicBezierClip.cpp
|
| +++ /dev/null
|
| @@ -1,89 +0,0 @@
|
| -/*
|
| - * Copyright 2012 Google Inc.
|
| - *
|
| - * Use of this source code is governed by a BSD-style license that can be
|
| - * found in the LICENSE file.
|
| - */
|
| -#include "CurveIntersection.h"
|
| -#include "CurveUtilities.h"
|
| -#include "LineParameters.h"
|
| -
|
| -// return false if unable to clip (e.g., unable to create implicit line)
|
| -// caller should subdivide, or create degenerate if the values are too small
|
| -bool bezier_clip(const Cubic& cubic1, const Cubic& cubic2, double& minT, double& maxT) {
|
| - minT = 1;
|
| - maxT = 0;
|
| - // determine normalized implicit line equation for pt[0] to pt[3]
|
| - // of the form ax + by + c = 0, where a*a + b*b == 1
|
| -
|
| - // find the implicit line equation parameters
|
| - LineParameters endLine;
|
| - endLine.cubicEndPoints(cubic1);
|
| - if (!endLine.normalize()) {
|
| - printf("line cannot be normalized: need more code here\n");
|
| - return false;
|
| - }
|
| -
|
| - double distance[2];
|
| - distance[0] = endLine.controlPtDistance(cubic1, 1);
|
| - distance[1] = endLine.controlPtDistance(cubic1, 2);
|
| -
|
| - // find fat line
|
| - double top = distance[0];
|
| - double bottom = distance[1];
|
| - if (top > bottom) {
|
| - SkTSwap(top, bottom);
|
| - }
|
| - if (top * bottom >= 0) {
|
| - const double scale = 3/4.0; // http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf (13)
|
| - if (top < 0) {
|
| - top *= scale;
|
| - bottom = 0;
|
| - } else {
|
| - top = 0;
|
| - bottom *= scale;
|
| - }
|
| - } else {
|
| - const double scale = 4/9.0; // http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf (15)
|
| - top *= scale;
|
| - bottom *= scale;
|
| - }
|
| -
|
| - // compute intersecting candidate distance
|
| - Cubic distance2y; // points with X of (0, 1/3, 2/3, 1)
|
| - endLine.cubicDistanceY(cubic2, distance2y);
|
| -
|
| - int flags = 0;
|
| - if (approximately_lesser_or_equal(distance2y[0].y, top)) {
|
| - flags |= kFindTopMin;
|
| - } else if (approximately_greater_or_equal(distance2y[0].y, bottom)) {
|
| - flags |= kFindBottomMin;
|
| - } else {
|
| - minT = 0;
|
| - }
|
| -
|
| - if (approximately_lesser_or_equal(distance2y[3].y, top)) {
|
| - flags |= kFindTopMax;
|
| - } else if (approximately_greater_or_equal(distance2y[3].y, bottom)) {
|
| - flags |= kFindBottomMax;
|
| - } else {
|
| - maxT = 1;
|
| - }
|
| - // Find the intersection of distance convex hull and fat line.
|
| - char to_0[2];
|
| - char to_3[2];
|
| - bool do_1_2_edge = convex_x_hull(distance2y, to_0, to_3);
|
| - x_at(distance2y[0], distance2y[to_0[0]], top, bottom, flags, minT, maxT);
|
| - if (to_0[0] != to_0[1]) {
|
| - x_at(distance2y[0], distance2y[to_0[1]], top, bottom, flags, minT, maxT);
|
| - }
|
| - x_at(distance2y[to_3[0]], distance2y[3], top, bottom, flags, minT, maxT);
|
| - if (to_3[0] != to_3[1]) {
|
| - x_at(distance2y[to_3[1]], distance2y[3], top, bottom, flags, minT, maxT);
|
| - }
|
| - if (do_1_2_edge) {
|
| - x_at(distance2y[1], distance2y[2], top, bottom, flags, minT, maxT);
|
| - }
|
| -
|
| - return minT < maxT; // returns false if distance shows no intersection
|
| -}
|
|
|