Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(113)

Side by Side Diff: experimental/Intersection/CubeRoot.cpp

Issue 867213004: remove prototype pathops code (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: Created 5 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 * Copyright 2012 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7 // http://metamerist.com/cbrt/CubeRoot.cpp
8 //
9
10 #include <math.h>
11 #include "CubicUtilities.h"
12
13 #define TEST_ALTERNATIVES 0
14 #if TEST_ALTERNATIVES
15 typedef float (*cuberootfnf) (float);
16 typedef double (*cuberootfnd) (double);
17
18 // estimate bits of precision (32-bit float case)
19 inline int bits_of_precision(float a, float b)
20 {
21 const double kd = 1.0 / log(2.0);
22
23 if (a==b)
24 return 23;
25
26 const double kdmin = pow(2.0, -23.0);
27
28 double d = fabs(a-b);
29 if (d < kdmin)
30 return 23;
31
32 return int(-log(d)*kd);
33 }
34
35 // estiamte bits of precision (64-bit double case)
36 inline int bits_of_precision(double a, double b)
37 {
38 const double kd = 1.0 / log(2.0);
39
40 if (a==b)
41 return 52;
42
43 const double kdmin = pow(2.0, -52.0);
44
45 double d = fabs(a-b);
46 if (d < kdmin)
47 return 52;
48
49 return int(-log(d)*kd);
50 }
51
52 // cube root via x^(1/3)
53 static float pow_cbrtf(float x)
54 {
55 return (float) pow(x, 1.0f/3.0f);
56 }
57
58 // cube root via x^(1/3)
59 static double pow_cbrtd(double x)
60 {
61 return pow(x, 1.0/3.0);
62 }
63
64 // cube root approximation using bit hack for 32-bit float
65 static float cbrt_5f(float f)
66 {
67 unsigned int* p = (unsigned int *) &f;
68 *p = *p/3 + 709921077;
69 return f;
70 }
71 #endif
72
73 // cube root approximation using bit hack for 64-bit float
74 // adapted from Kahan's cbrt
75 static double cbrt_5d(double d)
76 {
77 const unsigned int B1 = 715094163;
78 double t = 0.0;
79 unsigned int* pt = (unsigned int*) &t;
80 unsigned int* px = (unsigned int*) &d;
81 pt[1]=px[1]/3+B1;
82 return t;
83 }
84
85 #if TEST_ALTERNATIVES
86 // cube root approximation using bit hack for 64-bit float
87 // adapted from Kahan's cbrt
88 #if 0
89 static double quint_5d(double d)
90 {
91 return sqrt(sqrt(d));
92
93 const unsigned int B1 = 71509416*5/3;
94 double t = 0.0;
95 unsigned int* pt = (unsigned int*) &t;
96 unsigned int* px = (unsigned int*) &d;
97 pt[1]=px[1]/5+B1;
98 return t;
99 }
100 #endif
101
102 // iterative cube root approximation using Halley's method (float)
103 static float cbrta_halleyf(const float a, const float R)
104 {
105 const float a3 = a*a*a;
106 const float b= a * (a3 + R + R) / (a3 + a3 + R);
107 return b;
108 }
109 #endif
110
111 // iterative cube root approximation using Halley's method (double)
112 static double cbrta_halleyd(const double a, const double R)
113 {
114 const double a3 = a*a*a;
115 const double b= a * (a3 + R + R) / (a3 + a3 + R);
116 return b;
117 }
118
119 #if TEST_ALTERNATIVES
120 // iterative cube root approximation using Newton's method (float)
121 static float cbrta_newtonf(const float a, const float x)
122 {
123 // return (1.0 / 3.0) * ((a + a) + x / (a * a));
124 return a - (1.0f / 3.0f) * (a - x / (a*a));
125 }
126
127 // iterative cube root approximation using Newton's method (double)
128 static double cbrta_newtond(const double a, const double x)
129 {
130 return (1.0/3.0) * (x / (a*a) + 2*a);
131 }
132
133 // cube root approximation using 1 iteration of Halley's method (double)
134 static double halley_cbrt1d(double d)
135 {
136 double a = cbrt_5d(d);
137 return cbrta_halleyd(a, d);
138 }
139
140 // cube root approximation using 1 iteration of Halley's method (float)
141 static float halley_cbrt1f(float d)
142 {
143 float a = cbrt_5f(d);
144 return cbrta_halleyf(a, d);
145 }
146
147 // cube root approximation using 2 iterations of Halley's method (double)
148 static double halley_cbrt2d(double d)
149 {
150 double a = cbrt_5d(d);
151 a = cbrta_halleyd(a, d);
152 return cbrta_halleyd(a, d);
153 }
154 #endif
155
156 // cube root approximation using 3 iterations of Halley's method (double)
157 static double halley_cbrt3d(double d)
158 {
159 double a = cbrt_5d(d);
160 a = cbrta_halleyd(a, d);
161 a = cbrta_halleyd(a, d);
162 return cbrta_halleyd(a, d);
163 }
164
165 #if TEST_ALTERNATIVES
166 // cube root approximation using 2 iterations of Halley's method (float)
167 static float halley_cbrt2f(float d)
168 {
169 float a = cbrt_5f(d);
170 a = cbrta_halleyf(a, d);
171 return cbrta_halleyf(a, d);
172 }
173
174 // cube root approximation using 1 iteration of Newton's method (double)
175 static double newton_cbrt1d(double d)
176 {
177 double a = cbrt_5d(d);
178 return cbrta_newtond(a, d);
179 }
180
181 // cube root approximation using 2 iterations of Newton's method (double)
182 static double newton_cbrt2d(double d)
183 {
184 double a = cbrt_5d(d);
185 a = cbrta_newtond(a, d);
186 return cbrta_newtond(a, d);
187 }
188
189 // cube root approximation using 3 iterations of Newton's method (double)
190 static double newton_cbrt3d(double d)
191 {
192 double a = cbrt_5d(d);
193 a = cbrta_newtond(a, d);
194 a = cbrta_newtond(a, d);
195 return cbrta_newtond(a, d);
196 }
197
198 // cube root approximation using 4 iterations of Newton's method (double)
199 static double newton_cbrt4d(double d)
200 {
201 double a = cbrt_5d(d);
202 a = cbrta_newtond(a, d);
203 a = cbrta_newtond(a, d);
204 a = cbrta_newtond(a, d);
205 return cbrta_newtond(a, d);
206 }
207
208 // cube root approximation using 2 iterations of Newton's method (float)
209 static float newton_cbrt1f(float d)
210 {
211 float a = cbrt_5f(d);
212 return cbrta_newtonf(a, d);
213 }
214
215 // cube root approximation using 2 iterations of Newton's method (float)
216 static float newton_cbrt2f(float d)
217 {
218 float a = cbrt_5f(d);
219 a = cbrta_newtonf(a, d);
220 return cbrta_newtonf(a, d);
221 }
222
223 // cube root approximation using 3 iterations of Newton's method (float)
224 static float newton_cbrt3f(float d)
225 {
226 float a = cbrt_5f(d);
227 a = cbrta_newtonf(a, d);
228 a = cbrta_newtonf(a, d);
229 return cbrta_newtonf(a, d);
230 }
231
232 // cube root approximation using 4 iterations of Newton's method (float)
233 static float newton_cbrt4f(float d)
234 {
235 float a = cbrt_5f(d);
236 a = cbrta_newtonf(a, d);
237 a = cbrta_newtonf(a, d);
238 a = cbrta_newtonf(a, d);
239 return cbrta_newtonf(a, d);
240 }
241
242 static double TestCubeRootf(const char* szName, cuberootfnf cbrt, double rA, dou ble rB, int rN)
243 {
244 const int N = rN;
245
246 float dd = float((rB-rA) / N);
247
248 // calculate 1M numbers
249 int i=0;
250 float d = (float) rA;
251
252 double s = 0.0;
253
254 for(d=(float) rA, i=0; i<N; i++, d += dd)
255 {
256 s += cbrt(d);
257 }
258
259 double bits = 0.0;
260 double worstx=0.0;
261 double worsty=0.0;
262 int minbits=64;
263
264 for(d=(float) rA, i=0; i<N; i++, d += dd)
265 {
266 float a = cbrt((float) d);
267 float b = (float) pow((double) d, 1.0/3.0);
268
269 int bc = bits_of_precision(a, b);
270 bits += bc;
271
272 if (b > 1.0e-6)
273 {
274 if (bc < minbits)
275 {
276 minbits = bc;
277 worstx = d;
278 worsty = a;
279 }
280 }
281 }
282
283 bits /= N;
284
285 printf(" %3d mbp %6.3f abp\n", minbits, bits);
286
287 return s;
288 }
289
290
291 static double TestCubeRootd(const char* szName, cuberootfnd cbrt, double rA, dou ble rB, int rN)
292 {
293 const int N = rN;
294
295 double dd = (rB-rA) / N;
296
297 int i=0;
298
299 double s = 0.0;
300 double d = 0.0;
301
302 for(d=rA, i=0; i<N; i++, d += dd)
303 {
304 s += cbrt(d);
305 }
306
307
308 double bits = 0.0;
309 double worstx = 0.0;
310 double worsty = 0.0;
311 int minbits = 64;
312 for(d=rA, i=0; i<N; i++, d += dd)
313 {
314 double a = cbrt(d);
315 double b = pow(d, 1.0/3.0);
316
317 int bc = bits_of_precision(a, b); // min(53, count_matching_bitsd(a, b) - 12);
318 bits += bc;
319
320 if (b > 1.0e-6)
321 {
322 if (bc < minbits)
323 {
324 bits_of_precision(a, b);
325 minbits = bc;
326 worstx = d;
327 worsty = a;
328 }
329 }
330 }
331
332 bits /= N;
333
334 printf(" %3d mbp %6.3f abp\n", minbits, bits);
335
336 return s;
337 }
338
339 static int _tmain()
340 {
341 // a million uniform steps through the range from 0.0 to 1.0
342 // (doing uniform steps in the log scale would be better)
343 double a = 0.0;
344 double b = 1.0;
345 int n = 1000000;
346
347 printf("32-bit float tests\n");
348 printf("----------------------------------------\n");
349 TestCubeRootf("cbrt_5f", cbrt_5f, a, b, n);
350 TestCubeRootf("pow", pow_cbrtf, a, b, n);
351 TestCubeRootf("halley x 1", halley_cbrt1f, a, b, n);
352 TestCubeRootf("halley x 2", halley_cbrt2f, a, b, n);
353 TestCubeRootf("newton x 1", newton_cbrt1f, a, b, n);
354 TestCubeRootf("newton x 2", newton_cbrt2f, a, b, n);
355 TestCubeRootf("newton x 3", newton_cbrt3f, a, b, n);
356 TestCubeRootf("newton x 4", newton_cbrt4f, a, b, n);
357 printf("\n\n");
358
359 printf("64-bit double tests\n");
360 printf("----------------------------------------\n");
361 TestCubeRootd("cbrt_5d", cbrt_5d, a, b, n);
362 TestCubeRootd("pow", pow_cbrtd, a, b, n);
363 TestCubeRootd("halley x 1", halley_cbrt1d, a, b, n);
364 TestCubeRootd("halley x 2", halley_cbrt2d, a, b, n);
365 TestCubeRootd("halley x 3", halley_cbrt3d, a, b, n);
366 TestCubeRootd("newton x 1", newton_cbrt1d, a, b, n);
367 TestCubeRootd("newton x 2", newton_cbrt2d, a, b, n);
368 TestCubeRootd("newton x 3", newton_cbrt3d, a, b, n);
369 TestCubeRootd("newton x 4", newton_cbrt4d, a, b, n);
370 printf("\n\n");
371
372 return 0;
373 }
374 #endif
375
376 double cube_root(double x) {
377 if (approximately_zero_cubed(x)) {
378 return 0;
379 }
380 double result = halley_cbrt3d(fabs(x));
381 if (x < 0) {
382 result = -result;
383 }
384 return result;
385 }
386
387 #if TEST_ALTERNATIVES
388 // http://bytes.com/topic/c/answers/754588-tips-find-cube-root-program-using-c
389 /* cube root */
390 int icbrt(int n) {
391 int t=0, x=(n+2)/3; /* works for n=0 and n>=1 */
392 for(; t!=x;) {
393 int x3=x*x*x;
394 t=x;
395 x*=(2*n + x3);
396 x/=(2*x3 + n);
397 }
398 return x ; /* always(?) equal to floor(n^(1/3)) */
399 }
400 #endif
OLDNEW
« no previous file with comments | « experimental/Intersection/ConvexHull_Test.cpp ('k') | experimental/Intersection/CubicBezierClip.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698