Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(298)

Unified Diff: experimental/Intersection/QuadraticImplicit.cpp

Issue 867213004: remove prototype pathops code (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: Created 5 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « experimental/Intersection/QuadraticBounds.cpp ('k') | experimental/Intersection/QuadraticIntersection.cpp » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: experimental/Intersection/QuadraticImplicit.cpp
diff --git a/experimental/Intersection/QuadraticImplicit.cpp b/experimental/Intersection/QuadraticImplicit.cpp
deleted file mode 100644
index f16ddd93703025a24c199e2e20ae1c7474b04020..0000000000000000000000000000000000000000
--- a/experimental/Intersection/QuadraticImplicit.cpp
+++ /dev/null
@@ -1,572 +0,0 @@
-// Another approach is to start with the implicit form of one curve and solve
-// (seek implicit coefficients in QuadraticParameter.cpp
-// by substituting in the parametric form of the other.
-// The downside of this approach is that early rejects are difficult to come by.
-// http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html#step
-
-
-#include "CubicUtilities.h"
-#include "CurveIntersection.h"
-#include "Intersections.h"
-#include "QuadraticParameterization.h"
-#include "QuarticRoot.h"
-#include "QuadraticUtilities.h"
-#include "TSearch.h"
-
-#ifdef SK_DEBUG
-#include "LineUtilities.h"
-#endif
-
-/* given the implicit form 0 = Ax^2 + Bxy + Cy^2 + Dx + Ey + F
- * and given x = at^2 + bt + c (the parameterized form)
- * y = dt^2 + et + f
- * then
- * 0 = A(at^2+bt+c)(at^2+bt+c)+B(at^2+bt+c)(dt^2+et+f)+C(dt^2+et+f)(dt^2+et+f)+D(at^2+bt+c)+E(dt^2+et+f)+F
- */
-
-static int findRoots(const QuadImplicitForm& i, const Quadratic& q2, double roots[4],
- bool oneHint, int firstCubicRoot) {
- double a, b, c;
- set_abc(&q2[0].x, a, b, c);
- double d, e, f;
- set_abc(&q2[0].y, d, e, f);
- const double t4 = i.x2() * a * a
- + i.xy() * a * d
- + i.y2() * d * d;
- const double t3 = 2 * i.x2() * a * b
- + i.xy() * (a * e + b * d)
- + 2 * i.y2() * d * e;
- const double t2 = i.x2() * (b * b + 2 * a * c)
- + i.xy() * (c * d + b * e + a * f)
- + i.y2() * (e * e + 2 * d * f)
- + i.x() * a
- + i.y() * d;
- const double t1 = 2 * i.x2() * b * c
- + i.xy() * (c * e + b * f)
- + 2 * i.y2() * e * f
- + i.x() * b
- + i.y() * e;
- const double t0 = i.x2() * c * c
- + i.xy() * c * f
- + i.y2() * f * f
- + i.x() * c
- + i.y() * f
- + i.c();
- int rootCount = reducedQuarticRoots(t4, t3, t2, t1, t0, oneHint, roots);
- if (rootCount >= 0) {
- return rootCount;
- }
- return quarticRootsReal(firstCubicRoot, t4, t3, t2, t1, t0, roots);
-}
-
-static int addValidRoots(const double roots[4], const int count, double valid[4]) {
- int result = 0;
- int index;
- for (index = 0; index < count; ++index) {
- if (!approximately_zero_or_more(roots[index]) || !approximately_one_or_less(roots[index])) {
- continue;
- }
- double t = 1 - roots[index];
- if (approximately_less_than_zero(t)) {
- t = 0;
- } else if (approximately_greater_than_one(t)) {
- t = 1;
- }
- valid[result++] = t;
- }
- return result;
-}
-
-static bool onlyEndPtsInCommon(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
-// the idea here is to see at minimum do a quick reject by rotating all points
-// to either side of the line formed by connecting the endpoints
-// if the opposite curves points are on the line or on the other side, the
-// curves at most intersect at the endpoints
- for (int oddMan = 0; oddMan < 3; ++oddMan) {
- const _Point* endPt[2];
- for (int opp = 1; opp < 3; ++opp) {
- int end = oddMan ^ opp;
- if (end == 3) {
- end = opp;
- }
- endPt[opp - 1] = &q1[end];
- }
- double origX = endPt[0]->x;
- double origY = endPt[0]->y;
- double adj = endPt[1]->x - origX;
- double opp = endPt[1]->y - origY;
- double sign = (q1[oddMan].y - origY) * adj - (q1[oddMan].x - origX) * opp;
- if (approximately_zero(sign)) {
- goto tryNextHalfPlane;
- }
- for (int n = 0; n < 3; ++n) {
- double test = (q2[n].y - origY) * adj - (q2[n].x - origX) * opp;
- if (test * sign > 0) {
- goto tryNextHalfPlane;
- }
- }
- for (int i1 = 0; i1 < 3; i1 += 2) {
- for (int i2 = 0; i2 < 3; i2 += 2) {
- if (q1[i1] == q2[i2]) {
- i.insert(i1 >> 1, i2 >> 1, q1[i1]);
- }
- }
- }
- SkASSERT(i.fUsed < 3);
- return true;
-tryNextHalfPlane:
- ;
- }
- return false;
-}
-
-// returns false if there's more than one intercept or the intercept doesn't match the point
-// returns true if the intercept was successfully added or if the
-// original quads need to be subdivided
-static bool addIntercept(const Quadratic& q1, const Quadratic& q2, double tMin, double tMax,
- Intersections& i, bool* subDivide) {
- double tMid = (tMin + tMax) / 2;
- _Point mid;
- xy_at_t(q2, tMid, mid.x, mid.y);
- _Line line;
- line[0] = line[1] = mid;
- _Vector dxdy = dxdy_at_t(q2, tMid);
- line[0] -= dxdy;
- line[1] += dxdy;
- Intersections rootTs;
- int roots = intersect(q1, line, rootTs);
- if (roots == 0) {
- if (subDivide) {
- *subDivide = true;
- }
- return true;
- }
- if (roots == 2) {
- return false;
- }
- _Point pt2;
- xy_at_t(q1, rootTs.fT[0][0], pt2.x, pt2.y);
- if (!pt2.approximatelyEqualHalf(mid)) {
- return false;
- }
- i.insertSwap(rootTs.fT[0][0], tMid, pt2);
- return true;
-}
-
-static bool isLinearInner(const Quadratic& q1, double t1s, double t1e, const Quadratic& q2,
- double t2s, double t2e, Intersections& i, bool* subDivide) {
- Quadratic hull;
- sub_divide(q1, t1s, t1e, hull);
- _Line line = {hull[2], hull[0]};
- const _Line* testLines[] = { &line, (const _Line*) &hull[0], (const _Line*) &hull[1] };
- size_t testCount = sizeof(testLines) / sizeof(testLines[0]);
- SkTDArray<double> tsFound;
- for (size_t index = 0; index < testCount; ++index) {
- Intersections rootTs;
- int roots = intersect(q2, *testLines[index], rootTs);
- for (int idx2 = 0; idx2 < roots; ++idx2) {
- double t = rootTs.fT[0][idx2];
-#ifdef SK_DEBUG
- _Point qPt, lPt;
- xy_at_t(q2, t, qPt.x, qPt.y);
- xy_at_t(*testLines[index], rootTs.fT[1][idx2], lPt.x, lPt.y);
- SkASSERT(qPt.approximatelyEqual(lPt));
-#endif
- if (approximately_negative(t - t2s) || approximately_positive(t - t2e)) {
- continue;
- }
- *tsFound.append() = rootTs.fT[0][idx2];
- }
- }
- int tCount = tsFound.count();
- if (!tCount) {
- return true;
- }
- double tMin, tMax;
- if (tCount == 1) {
- tMin = tMax = tsFound[0];
- } else if (tCount > 1) {
- QSort<double>(tsFound.begin(), tsFound.end() - 1);
- tMin = tsFound[0];
- tMax = tsFound[tsFound.count() - 1];
- }
- _Point end;
- xy_at_t(q2, t2s, end.x, end.y);
- bool startInTriangle = point_in_hull(hull, end);
- if (startInTriangle) {
- tMin = t2s;
- }
- xy_at_t(q2, t2e, end.x, end.y);
- bool endInTriangle = point_in_hull(hull, end);
- if (endInTriangle) {
- tMax = t2e;
- }
- int split = 0;
- _Vector dxy1, dxy2;
- if (tMin != tMax || tCount > 2) {
- dxy2 = dxdy_at_t(q2, tMin);
- for (int index = 1; index < tCount; ++index) {
- dxy1 = dxy2;
- dxy2 = dxdy_at_t(q2, tsFound[index]);
- double dot = dxy1.dot(dxy2);
- if (dot < 0) {
- split = index - 1;
- break;
- }
- }
-
- }
- if (split == 0) { // there's one point
- if (addIntercept(q1, q2, tMin, tMax, i, subDivide)) {
- return true;
- }
- i.swap();
- return isLinearInner(q2, tMin, tMax, q1, t1s, t1e, i, subDivide);
- }
- // At this point, we have two ranges of t values -- treat each separately at the split
- bool result;
- if (addIntercept(q1, q2, tMin, tsFound[split - 1], i, subDivide)) {
- result = true;
- } else {
- i.swap();
- result = isLinearInner(q2, tMin, tsFound[split - 1], q1, t1s, t1e, i, subDivide);
- }
- if (addIntercept(q1, q2, tsFound[split], tMax, i, subDivide)) {
- result = true;
- } else {
- i.swap();
- result |= isLinearInner(q2, tsFound[split], tMax, q1, t1s, t1e, i, subDivide);
- }
- return result;
-}
-
-static double flatMeasure(const Quadratic& q) {
- _Vector mid = q[1] - q[0];
- _Vector dxy = q[2] - q[0];
- double length = dxy.length(); // OPTIMIZE: get rid of sqrt
- return fabs(mid.cross(dxy) / length);
-}
-
-// FIXME ? should this measure both and then use the quad that is the flattest as the line?
-static bool isLinear(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
- double measure = flatMeasure(q1);
- // OPTIMIZE: (get rid of sqrt) use approximately_zero
- if (!approximately_zero_sqrt(measure)) {
- return false;
- }
- return isLinearInner(q1, 0, 1, q2, 0, 1, i, NULL);
-}
-
-// FIXME: if flat measure is sufficiently large, then probably the quartic solution failed
-static void relaxedIsLinear(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
- double m1 = flatMeasure(q1);
- double m2 = flatMeasure(q2);
-#ifdef SK_DEBUG
- double min = SkTMin(m1, m2);
- if (min > 5) {
- SkDebugf("%s maybe not flat enough.. %1.9g\n", __FUNCTION__, min);
- }
-#endif
- i.reset();
- const Quadratic& rounder = m2 < m1 ? q1 : q2;
- const Quadratic& flatter = m2 < m1 ? q2 : q1;
- bool subDivide = false;
- isLinearInner(flatter, 0, 1, rounder, 0, 1, i, &subDivide);
- if (subDivide) {
- QuadraticPair pair;
- chop_at(flatter, pair, 0.5);
- Intersections firstI, secondI;
- relaxedIsLinear(pair.first(), rounder, firstI);
- for (int index = 0; index < firstI.used(); ++index) {
- i.insert(firstI.fT[0][index] * 0.5, firstI.fT[1][index], firstI.fPt[index]);
- }
- relaxedIsLinear(pair.second(), rounder, secondI);
- for (int index = 0; index < secondI.used(); ++index) {
- i.insert(0.5 + secondI.fT[0][index] * 0.5, secondI.fT[1][index], secondI.fPt[index]);
- }
- }
- if (m2 < m1) {
- i.swapPts();
- }
-}
-
-#if 0
-static void unsortableExpanse(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
- const Quadratic* qs[2] = { &q1, &q2 };
- // need t values for start and end of unsortable expanse on both curves
- // try projecting lines parallel to the end points
- i.fT[0][0] = 0;
- i.fT[0][1] = 1;
- int flip = -1; // undecided
- for (int qIdx = 0; qIdx < 2; qIdx++) {
- for (int t = 0; t < 2; t++) {
- _Point dxdy;
- dxdy_at_t(*qs[qIdx], t, dxdy);
- _Line perp;
- perp[0] = perp[1] = (*qs[qIdx])[t == 0 ? 0 : 2];
- perp[0].x += dxdy.y;
- perp[0].y -= dxdy.x;
- perp[1].x -= dxdy.y;
- perp[1].y += dxdy.x;
- Intersections hitData;
- int hits = intersectRay(*qs[qIdx ^ 1], perp, hitData);
- SkASSERT(hits <= 1);
- if (hits) {
- if (flip < 0) {
- _Point dxdy2;
- dxdy_at_t(*qs[qIdx ^ 1], hitData.fT[0][0], dxdy2);
- double dot = dxdy.dot(dxdy2);
- flip = dot < 0;
- i.fT[1][0] = flip;
- i.fT[1][1] = !flip;
- }
- i.fT[qIdx ^ 1][t ^ flip] = hitData.fT[0][0];
- }
- }
- }
- i.fUnsortable = true; // failed, probably coincident or near-coincident
- i.fUsed = 2;
-}
-#endif
-
-// each time through the loop, this computes values it had from the last loop
-// if i == j == 1, the center values are still good
-// otherwise, for i != 1 or j != 1, four of the values are still good
-// and if i == 1 ^ j == 1, an additional value is good
-static bool binarySearch(const Quadratic& quad1, const Quadratic& quad2, double& t1Seed,
- double& t2Seed, _Point& pt) {
- double tStep = ROUGH_EPSILON;
- _Point t1[3], t2[3];
- int calcMask = ~0;
- do {
- if (calcMask & (1 << 1)) t1[1] = xy_at_t(quad1, t1Seed);
- if (calcMask & (1 << 4)) t2[1] = xy_at_t(quad2, t2Seed);
- if (t1[1].approximatelyEqual(t2[1])) {
- pt = t1[1];
- #if ONE_OFF_DEBUG
- SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) == (%1.9g,%1.9g)\n", __FUNCTION__,
- t1Seed, t2Seed, t1[1].x, t1[1].y, t1[2].x, t1[2].y);
- #endif
- return true;
- }
- if (calcMask & (1 << 0)) t1[0] = xy_at_t(quad1, t1Seed - tStep);
- if (calcMask & (1 << 2)) t1[2] = xy_at_t(quad1, t1Seed + tStep);
- if (calcMask & (1 << 3)) t2[0] = xy_at_t(quad2, t2Seed - tStep);
- if (calcMask & (1 << 5)) t2[2] = xy_at_t(quad2, t2Seed + tStep);
- double dist[3][3];
- // OPTIMIZE: using calcMask value permits skipping some distance calcuations
- // if prior loop's results are moved to correct slot for reuse
- dist[1][1] = t1[1].distanceSquared(t2[1]);
- int best_i = 1, best_j = 1;
- for (int i = 0; i < 3; ++i) {
- for (int j = 0; j < 3; ++j) {
- if (i == 1 && j == 1) {
- continue;
- }
- dist[i][j] = t1[i].distanceSquared(t2[j]);
- if (dist[best_i][best_j] > dist[i][j]) {
- best_i = i;
- best_j = j;
- }
- }
- }
- if (best_i == 1 && best_j == 1) {
- tStep /= 2;
- if (tStep < FLT_EPSILON_HALF) {
- break;
- }
- calcMask = (1 << 0) | (1 << 2) | (1 << 3) | (1 << 5);
- continue;
- }
- if (best_i == 0) {
- t1Seed -= tStep;
- t1[2] = t1[1];
- t1[1] = t1[0];
- calcMask = 1 << 0;
- } else if (best_i == 2) {
- t1Seed += tStep;
- t1[0] = t1[1];
- t1[1] = t1[2];
- calcMask = 1 << 2;
- } else {
- calcMask = 0;
- }
- if (best_j == 0) {
- t2Seed -= tStep;
- t2[2] = t2[1];
- t2[1] = t2[0];
- calcMask |= 1 << 3;
- } else if (best_j == 2) {
- t2Seed += tStep;
- t2[0] = t2[1];
- t2[1] = t2[2];
- calcMask |= 1 << 5;
- }
- } while (true);
-#if ONE_OFF_DEBUG
- SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) != (%1.9g,%1.9g) %s\n", __FUNCTION__,
- t1Seed, t2Seed, t1[1].x, t1[1].y, t1[2].x, t1[2].y);
-#endif
- return false;
-}
-
-bool intersect2(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
- // if the quads share an end point, check to see if they overlap
-
- if (onlyEndPtsInCommon(q1, q2, i)) {
- return i.intersected();
- }
- if (onlyEndPtsInCommon(q2, q1, i)) {
- i.swapPts();
- return i.intersected();
- }
- // see if either quad is really a line
- if (isLinear(q1, q2, i)) {
- return i.intersected();
- }
- if (isLinear(q2, q1, i)) {
- i.swapPts();
- return i.intersected();
- }
- QuadImplicitForm i1(q1);
- QuadImplicitForm i2(q2);
- if (i1.implicit_match(i2)) {
- // FIXME: compute T values
- // compute the intersections of the ends to find the coincident span
- bool useVertical = fabs(q1[0].x - q1[2].x) < fabs(q1[0].y - q1[2].y);
- double t;
- if ((t = axialIntersect(q1, q2[0], useVertical)) >= 0) {
- i.insertCoincident(t, 0, q2[0]);
- }
- if ((t = axialIntersect(q1, q2[2], useVertical)) >= 0) {
- i.insertCoincident(t, 1, q2[2]);
- }
- useVertical = fabs(q2[0].x - q2[2].x) < fabs(q2[0].y - q2[2].y);
- if ((t = axialIntersect(q2, q1[0], useVertical)) >= 0) {
- i.insertCoincident(0, t, q1[0]);
- }
- if ((t = axialIntersect(q2, q1[2], useVertical)) >= 0) {
- i.insertCoincident(1, t, q1[2]);
- }
- SkASSERT(i.coincidentUsed() <= 2);
- return i.coincidentUsed() > 0;
- }
- int index;
- bool useCubic = q1[0] == q2[0] || q1[0] == q2[2] || q1[2] == q2[0];
- double roots1[4];
- int rootCount = findRoots(i2, q1, roots1, useCubic, 0);
- // OPTIMIZATION: could short circuit here if all roots are < 0 or > 1
- double roots1Copy[4];
- int r1Count = addValidRoots(roots1, rootCount, roots1Copy);
- _Point pts1[4];
- for (index = 0; index < r1Count; ++index) {
- xy_at_t(q1, roots1Copy[index], pts1[index].x, pts1[index].y);
- }
- double roots2[4];
- int rootCount2 = findRoots(i1, q2, roots2, useCubic, 0);
- double roots2Copy[4];
- int r2Count = addValidRoots(roots2, rootCount2, roots2Copy);
- _Point pts2[4];
- for (index = 0; index < r2Count; ++index) {
- xy_at_t(q2, roots2Copy[index], pts2[index].x, pts2[index].y);
- }
- if (r1Count == r2Count && r1Count <= 1) {
- if (r1Count == 1) {
- if (pts1[0].approximatelyEqualHalf(pts2[0])) {
- i.insert(roots1Copy[0], roots2Copy[0], pts1[0]);
- } else if (pts1[0].moreRoughlyEqual(pts2[0])) {
- // experiment: see if a different cubic solution provides the correct quartic answer
- #if 0
- for (int cu1 = 0; cu1 < 3; ++cu1) {
- rootCount = findRoots(i2, q1, roots1, useCubic, cu1);
- r1Count = addValidRoots(roots1, rootCount, roots1Copy);
- if (r1Count == 0) {
- continue;
- }
- for (int cu2 = 0; cu2 < 3; ++cu2) {
- if (cu1 == 0 && cu2 == 0) {
- continue;
- }
- rootCount2 = findRoots(i1, q2, roots2, useCubic, cu2);
- r2Count = addValidRoots(roots2, rootCount2, roots2Copy);
- if (r2Count == 0) {
- continue;
- }
- SkASSERT(r1Count == 1 && r2Count == 1);
- SkDebugf("*** [%d,%d] (%1.9g,%1.9g) %s (%1.9g,%1.9g)\n", cu1, cu2,
- pts1[0].x, pts1[0].y, pts1[0].approximatelyEqualHalf(pts2[0])
- ? "==" : "!=", pts2[0].x, pts2[0].y);
- }
- }
- #endif
- // experiment: try to find intersection by chasing t
- rootCount = findRoots(i2, q1, roots1, useCubic, 0);
- r1Count = addValidRoots(roots1, rootCount, roots1Copy);
- rootCount2 = findRoots(i1, q2, roots2, useCubic, 0);
- r2Count = addValidRoots(roots2, rootCount2, roots2Copy);
- if (binarySearch(q1, q2, roots1Copy[0], roots2Copy[0], pts1[0])) {
- i.insert(roots1Copy[0], roots2Copy[0], pts1[0]);
- }
- }
- }
- return i.intersected();
- }
- int closest[4];
- double dist[4];
- bool foundSomething = false;
- for (index = 0; index < r1Count; ++index) {
- dist[index] = DBL_MAX;
- closest[index] = -1;
- for (int ndex2 = 0; ndex2 < r2Count; ++ndex2) {
- if (!pts2[ndex2].approximatelyEqualHalf(pts1[index])) {
- continue;
- }
- double dx = pts2[ndex2].x - pts1[index].x;
- double dy = pts2[ndex2].y - pts1[index].y;
- double distance = dx * dx + dy * dy;
- if (dist[index] <= distance) {
- continue;
- }
- for (int outer = 0; outer < index; ++outer) {
- if (closest[outer] != ndex2) {
- continue;
- }
- if (dist[outer] < distance) {
- goto next;
- }
- closest[outer] = -1;
- }
- dist[index] = distance;
- closest[index] = ndex2;
- foundSomething = true;
- next:
- ;
- }
- }
- if (r1Count && r2Count && !foundSomething) {
- relaxedIsLinear(q1, q2, i);
- return i.intersected();
- }
- int used = 0;
- do {
- double lowest = DBL_MAX;
- int lowestIndex = -1;
- for (index = 0; index < r1Count; ++index) {
- if (closest[index] < 0) {
- continue;
- }
- if (roots1Copy[index] < lowest) {
- lowestIndex = index;
- lowest = roots1Copy[index];
- }
- }
- if (lowestIndex < 0) {
- break;
- }
- i.insert(roots1Copy[lowestIndex], roots2Copy[closest[lowestIndex]],
- pts1[lowestIndex]);
- closest[lowestIndex] = -1;
- } while (++used < r1Count);
- i.fFlip = false;
- return i.intersected();
-}
« no previous file with comments | « experimental/Intersection/QuadraticBounds.cpp ('k') | experimental/Intersection/QuadraticIntersection.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698