| Index: experimental/Intersection/QuadraticIntersection.cpp
 | 
| diff --git a/experimental/Intersection/QuadraticIntersection.cpp b/experimental/Intersection/QuadraticIntersection.cpp
 | 
| deleted file mode 100644
 | 
| index 07b8ecf8f3ea4913bbff1a98eb9045aa60c77b8a..0000000000000000000000000000000000000000
 | 
| --- a/experimental/Intersection/QuadraticIntersection.cpp
 | 
| +++ /dev/null
 | 
| @@ -1,403 +0,0 @@
 | 
| -/*
 | 
| - * Copyright 2012 Google Inc.
 | 
| - *
 | 
| - * Use of this source code is governed by a BSD-style license that can be
 | 
| - * found in the LICENSE file.
 | 
| - */
 | 
| -#include "CurveIntersection.h"
 | 
| -#include "Intersections.h"
 | 
| -#include "IntersectionUtilities.h"
 | 
| -#include "LineIntersection.h"
 | 
| -#include "LineUtilities.h"
 | 
| -#include "QuadraticLineSegments.h"
 | 
| -#include "QuadraticUtilities.h"
 | 
| -#include <algorithm> // for swap
 | 
| -
 | 
| -static const double tClipLimit = 0.8; // http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf see Multiple intersections
 | 
| -
 | 
| -class QuadraticIntersections {
 | 
| -public:
 | 
| -
 | 
| -QuadraticIntersections(const Quadratic& q1, const Quadratic& q2, Intersections& i)
 | 
| -    : quad1(q1)
 | 
| -    , quad2(q2)
 | 
| -    , intersections(i)
 | 
| -    , depth(0)
 | 
| -    , splits(0)
 | 
| -    , coinMinT1(-1) {
 | 
| -}
 | 
| -
 | 
| -bool intersect() {
 | 
| -    double minT1, minT2, maxT1, maxT2;
 | 
| -    if (!bezier_clip(quad2, quad1, minT1, maxT1)) {
 | 
| -        return false;
 | 
| -    }
 | 
| -    if (!bezier_clip(quad1, quad2, minT2, maxT2)) {
 | 
| -        return false;
 | 
| -    }
 | 
| -    quad1Divisions = 1 / subDivisions(quad1);
 | 
| -    quad2Divisions = 1 / subDivisions(quad2);
 | 
| -    int split;
 | 
| -    if (maxT1 - minT1 < maxT2 - minT2) {
 | 
| -        intersections.swap();
 | 
| -        minT2 = 0;
 | 
| -        maxT2 = 1;
 | 
| -        split = maxT1 - minT1 > tClipLimit;
 | 
| -    } else {
 | 
| -        minT1 = 0;
 | 
| -        maxT1 = 1;
 | 
| -        split = (maxT2 - minT2 > tClipLimit) << 1;
 | 
| -    }
 | 
| -    return chop(minT1, maxT1, minT2, maxT2, split);
 | 
| -}
 | 
| -
 | 
| -protected:
 | 
| -
 | 
| -bool intersect(double minT1, double maxT1, double minT2, double maxT2) {
 | 
| -    bool t1IsLine = maxT1 - minT1 <= quad1Divisions;
 | 
| -    bool t2IsLine = maxT2 - minT2 <= quad2Divisions;
 | 
| -    if (t1IsLine | t2IsLine) {
 | 
| -        return intersectAsLine(minT1, maxT1, minT2, maxT2, t1IsLine, t2IsLine);
 | 
| -    }
 | 
| -    Quadratic smaller, larger;
 | 
| -    // FIXME: carry last subdivide and reduceOrder result with quad
 | 
| -    sub_divide(quad1, minT1, maxT1, intersections.swapped() ? larger : smaller);
 | 
| -    sub_divide(quad2, minT2, maxT2, intersections.swapped() ? smaller : larger);
 | 
| -    double minT, maxT;
 | 
| -    if (!bezier_clip(smaller, larger, minT, maxT)) {
 | 
| -        if (approximately_equal(minT, maxT)) {
 | 
| -            double smallT, largeT;
 | 
| -            _Point q2pt, q1pt;
 | 
| -            if (intersections.swapped()) {
 | 
| -                largeT = interp(minT2, maxT2, minT);
 | 
| -                xy_at_t(quad2, largeT, q2pt.x, q2pt.y);
 | 
| -                xy_at_t(quad1, minT1, q1pt.x, q1pt.y);
 | 
| -                if (AlmostEqualUlps(q2pt.x, q1pt.x) && AlmostEqualUlps(q2pt.y, q1pt.y)) {
 | 
| -                    smallT = minT1;
 | 
| -                } else {
 | 
| -                    xy_at_t(quad1, maxT1, q1pt.x, q1pt.y); // FIXME: debug code
 | 
| -                    SkASSERT(AlmostEqualUlps(q2pt.x, q1pt.x) && AlmostEqualUlps(q2pt.y, q1pt.y));
 | 
| -                    smallT = maxT1;
 | 
| -                }
 | 
| -            } else {
 | 
| -                smallT = interp(minT1, maxT1, minT);
 | 
| -                xy_at_t(quad1, smallT, q1pt.x, q1pt.y);
 | 
| -                xy_at_t(quad2, minT2, q2pt.x, q2pt.y);
 | 
| -                if (AlmostEqualUlps(q2pt.x, q1pt.x) && AlmostEqualUlps(q2pt.y, q1pt.y)) {
 | 
| -                    largeT = minT2;
 | 
| -                } else {
 | 
| -                    xy_at_t(quad2, maxT2, q2pt.x, q2pt.y); // FIXME: debug code
 | 
| -                    SkASSERT(AlmostEqualUlps(q2pt.x, q1pt.x) && AlmostEqualUlps(q2pt.y, q1pt.y));
 | 
| -                    largeT = maxT2;
 | 
| -                }
 | 
| -            }
 | 
| -            intersections.add(smallT, largeT);
 | 
| -            return true;
 | 
| -        }
 | 
| -        return false;
 | 
| -    }
 | 
| -    int split;
 | 
| -    if (intersections.swapped()) {
 | 
| -        double newMinT1 = interp(minT1, maxT1, minT);
 | 
| -        double newMaxT1 = interp(minT1, maxT1, maxT);
 | 
| -        split = (newMaxT1 - newMinT1 > (maxT1 - minT1) * tClipLimit) << 1;
 | 
| -#define VERBOSE 0
 | 
| -#if VERBOSE
 | 
| -        printf("%s d=%d s=%d new1=(%g,%g) old1=(%g,%g) split=%d\n", __FUNCTION__, depth,
 | 
| -            splits, newMinT1, newMaxT1, minT1, maxT1, split);
 | 
| -#endif
 | 
| -        minT1 = newMinT1;
 | 
| -        maxT1 = newMaxT1;
 | 
| -    } else {
 | 
| -        double newMinT2 = interp(minT2, maxT2, minT);
 | 
| -        double newMaxT2 = interp(minT2, maxT2, maxT);
 | 
| -        split = newMaxT2 - newMinT2 > (maxT2 - minT2) * tClipLimit;
 | 
| -#if VERBOSE
 | 
| -        printf("%s d=%d s=%d new2=(%g,%g) old2=(%g,%g) split=%d\n", __FUNCTION__, depth,
 | 
| -            splits, newMinT2, newMaxT2, minT2, maxT2, split);
 | 
| -#endif
 | 
| -        minT2 = newMinT2;
 | 
| -        maxT2 = newMaxT2;
 | 
| -    }
 | 
| -    return chop(minT1, maxT1, minT2, maxT2, split);
 | 
| -}
 | 
| -
 | 
| -bool intersectAsLine(double minT1, double maxT1, double minT2, double maxT2,
 | 
| -       bool treat1AsLine, bool treat2AsLine)
 | 
| -{
 | 
| -    _Line line1, line2;
 | 
| -    if (intersections.swapped()) {
 | 
| -        SkTSwap(treat1AsLine, treat2AsLine);
 | 
| -        SkTSwap(minT1, minT2);
 | 
| -        SkTSwap(maxT1, maxT2);
 | 
| -    }
 | 
| -    if (coinMinT1 >= 0) {
 | 
| -        bool earlyExit;
 | 
| -        if ((earlyExit = coinMaxT1 == minT1)) {
 | 
| -            coinMaxT1 = maxT1;
 | 
| -        }
 | 
| -        if (coinMaxT2 == minT2) {
 | 
| -            coinMaxT2 = maxT2;
 | 
| -            return true;
 | 
| -        }
 | 
| -        if (earlyExit) {
 | 
| -            return true;
 | 
| -        }
 | 
| -        coinMinT1 = -1;
 | 
| -    }
 | 
| -    // do line/quadratic or even line/line intersection instead
 | 
| -    if (treat1AsLine) {
 | 
| -        xy_at_t(quad1, minT1, line1[0].x, line1[0].y);
 | 
| -        xy_at_t(quad1, maxT1, line1[1].x, line1[1].y);
 | 
| -    }
 | 
| -    if (treat2AsLine) {
 | 
| -        xy_at_t(quad2, minT2, line2[0].x, line2[0].y);
 | 
| -        xy_at_t(quad2, maxT2, line2[1].x, line2[1].y);
 | 
| -    }
 | 
| -    int pts;
 | 
| -    double smallT1, largeT1, smallT2, largeT2;
 | 
| -    if (treat1AsLine & treat2AsLine) {
 | 
| -        double t1[2], t2[2];
 | 
| -        pts = ::intersect(line1, line2, t1, t2);
 | 
| -        if (pts == 2) {
 | 
| -            smallT1 = interp(minT1, maxT1, t1[0]);
 | 
| -            largeT1 = interp(minT2, maxT2, t2[0]);
 | 
| -            smallT2 = interp(minT1, maxT1, t1[1]);
 | 
| -            largeT2 = interp(minT2, maxT2, t2[1]);
 | 
| -            intersections.addCoincident(smallT1, smallT2, largeT1, largeT2);
 | 
| -        } else {
 | 
| -            smallT1 = interp(minT1, maxT1, t1[0]);
 | 
| -            largeT1 = interp(minT2, maxT2, t2[0]);
 | 
| -            intersections.add(smallT1, largeT1);
 | 
| -        }
 | 
| -    } else {
 | 
| -        Intersections lq;
 | 
| -        pts = ::intersect(treat1AsLine ? quad2 : quad1,
 | 
| -                treat1AsLine ? line1 : line2, lq);
 | 
| -        if (pts == 2) { // if the line and edge are coincident treat differently
 | 
| -            _Point midQuad, midLine;
 | 
| -            double midQuadT = (lq.fT[0][0] + lq.fT[0][1]) / 2;
 | 
| -            xy_at_t(treat1AsLine ? quad2 : quad1, midQuadT, midQuad.x, midQuad.y);
 | 
| -            double lineT = t_at(treat1AsLine ? line1 : line2, midQuad);
 | 
| -            xy_at_t(treat1AsLine ? line1 : line2, lineT, midLine.x, midLine.y);
 | 
| -            if (AlmostEqualUlps(midQuad.x, midLine.x)
 | 
| -                    && AlmostEqualUlps(midQuad.y, midLine.y)) {
 | 
| -                smallT1 = lq.fT[0][0];
 | 
| -                largeT1 = lq.fT[1][0];
 | 
| -                smallT2 = lq.fT[0][1];
 | 
| -                largeT2 = lq.fT[1][1];
 | 
| -                if (treat2AsLine) {
 | 
| -                    smallT1 = interp(minT1, maxT1, smallT1);
 | 
| -                    smallT2 = interp(minT1, maxT1, smallT2);
 | 
| -                } else {
 | 
| -                    largeT1 = interp(minT2, maxT2, largeT1);
 | 
| -                    largeT2 = interp(minT2, maxT2, largeT2);
 | 
| -                }
 | 
| -                intersections.addCoincident(smallT1, smallT2, largeT1, largeT2);
 | 
| -                goto setCoinMinMax;
 | 
| -            }
 | 
| -        }
 | 
| -        for (int index = 0; index < pts; ++index) {
 | 
| -            smallT1 = lq.fT[0][index];
 | 
| -            largeT1 = lq.fT[1][index];
 | 
| -            if (treat2AsLine) {
 | 
| -                smallT1 = interp(minT1, maxT1, smallT1);
 | 
| -            } else {
 | 
| -                largeT1 = interp(minT2, maxT2, largeT1);
 | 
| -            }
 | 
| -            intersections.add(smallT1, largeT1);
 | 
| -        }
 | 
| -    }
 | 
| -    if (pts > 0) {
 | 
| -setCoinMinMax:
 | 
| -        coinMinT1 = minT1;
 | 
| -        coinMaxT1 = maxT1;
 | 
| -        coinMinT2 = minT2;
 | 
| -        coinMaxT2 = maxT2;
 | 
| -    }
 | 
| -    return pts > 0;
 | 
| -}
 | 
| -
 | 
| -bool chop(double minT1, double maxT1, double minT2, double maxT2, int split) {
 | 
| -    ++depth;
 | 
| -    intersections.swap();
 | 
| -    if (split) {
 | 
| -        ++splits;
 | 
| -        if (split & 2) {
 | 
| -            double middle1 = (maxT1 + minT1) / 2;
 | 
| -            intersect(minT1, middle1, minT2, maxT2);
 | 
| -            intersect(middle1, maxT1, minT2, maxT2);
 | 
| -        } else {
 | 
| -            double middle2 = (maxT2 + minT2) / 2;
 | 
| -            intersect(minT1, maxT1, minT2, middle2);
 | 
| -            intersect(minT1, maxT1, middle2, maxT2);
 | 
| -        }
 | 
| -        --splits;
 | 
| -        intersections.swap();
 | 
| -        --depth;
 | 
| -        return intersections.intersected();
 | 
| -    }
 | 
| -    bool result = intersect(minT1, maxT1, minT2, maxT2);
 | 
| -    intersections.swap();
 | 
| -    --depth;
 | 
| -    return result;
 | 
| -}
 | 
| -
 | 
| -private:
 | 
| -
 | 
| -const Quadratic& quad1;
 | 
| -const Quadratic& quad2;
 | 
| -Intersections& intersections;
 | 
| -int depth;
 | 
| -int splits;
 | 
| -double quad1Divisions; // line segments to approximate original within error
 | 
| -double quad2Divisions;
 | 
| -double coinMinT1; // range of Ts where approximate line intersected curve
 | 
| -double coinMaxT1;
 | 
| -double coinMinT2;
 | 
| -double coinMaxT2;
 | 
| -};
 | 
| -
 | 
| -#include "LineParameters.h"
 | 
| -
 | 
| -static void hackToFixPartialCoincidence(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
 | 
| -    // look to see if non-coincident data basically has unsortable tangents
 | 
| -
 | 
| -    // look to see if a point between non-coincident data is on the curve
 | 
| -    int cIndex;
 | 
| -    for (int uIndex = 0; uIndex < i.fUsed; ) {
 | 
| -        double bestDist1 = 1;
 | 
| -        double bestDist2 = 1;
 | 
| -        int closest1 = -1;
 | 
| -        int closest2 = -1;
 | 
| -        for (cIndex = 0; cIndex < i.fCoincidentUsed; ++cIndex) {
 | 
| -            double dist = fabs(i.fT[0][uIndex] - i.fCoincidentT[0][cIndex]);
 | 
| -            if (bestDist1 > dist) {
 | 
| -                bestDist1 = dist;
 | 
| -                closest1 = cIndex;
 | 
| -            }
 | 
| -            dist = fabs(i.fT[1][uIndex] - i.fCoincidentT[1][cIndex]);
 | 
| -            if (bestDist2 > dist) {
 | 
| -                bestDist2 = dist;
 | 
| -                closest2 = cIndex;
 | 
| -            }
 | 
| -        }
 | 
| -        _Line ends;
 | 
| -        _Point mid;
 | 
| -        double t1 = i.fT[0][uIndex];
 | 
| -        xy_at_t(q1, t1, ends[0].x, ends[0].y);
 | 
| -        xy_at_t(q1, i.fCoincidentT[0][closest1], ends[1].x, ends[1].y);
 | 
| -        double midT = (t1 + i.fCoincidentT[0][closest1]) / 2;
 | 
| -        xy_at_t(q1, midT, mid.x, mid.y);
 | 
| -        LineParameters params;
 | 
| -        params.lineEndPoints(ends);
 | 
| -        double midDist = params.pointDistance(mid);
 | 
| -        // Note that we prefer to always measure t error, which does not scale,
 | 
| -        // instead of point error, which is scale dependent. FIXME
 | 
| -        if (!approximately_zero(midDist)) {
 | 
| -            ++uIndex;
 | 
| -            continue;
 | 
| -        }
 | 
| -        double t2 = i.fT[1][uIndex];
 | 
| -        xy_at_t(q2, t2, ends[0].x, ends[0].y);
 | 
| -        xy_at_t(q2, i.fCoincidentT[1][closest2], ends[1].x, ends[1].y);
 | 
| -        midT = (t2 + i.fCoincidentT[1][closest2]) / 2;
 | 
| -        xy_at_t(q2, midT, mid.x, mid.y);
 | 
| -        params.lineEndPoints(ends);
 | 
| -        midDist = params.pointDistance(mid);
 | 
| -        if (!approximately_zero(midDist)) {
 | 
| -            ++uIndex;
 | 
| -            continue;
 | 
| -        }
 | 
| -        // if both midpoints are close to the line, lengthen coincident span
 | 
| -        int cEnd = closest1 ^ 1; // assume coincidence always travels in pairs
 | 
| -        if (!between(i.fCoincidentT[0][cEnd], t1, i.fCoincidentT[0][closest1])) {
 | 
| -            i.fCoincidentT[0][closest1] = t1;
 | 
| -        }
 | 
| -        cEnd = closest2 ^ 1;
 | 
| -        if (!between(i.fCoincidentT[0][cEnd], t2, i.fCoincidentT[0][closest2])) {
 | 
| -            i.fCoincidentT[0][closest2] = t2;
 | 
| -        }
 | 
| -        int remaining = --i.fUsed - uIndex;
 | 
| -        if (remaining > 0) {
 | 
| -            memmove(&i.fT[0][uIndex], &i.fT[0][uIndex + 1], sizeof(i.fT[0][0]) * remaining);
 | 
| -            memmove(&i.fT[1][uIndex], &i.fT[1][uIndex + 1], sizeof(i.fT[1][0]) * remaining);
 | 
| -        }
 | 
| -    }
 | 
| -    // if coincident data is subjectively a tiny span, replace it with a single point
 | 
| -    for (cIndex = 0; cIndex < i.fCoincidentUsed; ) {
 | 
| -        double start1 = i.fCoincidentT[0][cIndex];
 | 
| -        double end1 = i.fCoincidentT[0][cIndex + 1];
 | 
| -        _Line ends1;
 | 
| -        xy_at_t(q1, start1, ends1[0].x, ends1[0].y);
 | 
| -        xy_at_t(q1, end1, ends1[1].x, ends1[1].y);
 | 
| -        if (!AlmostEqualUlps(ends1[0].x, ends1[1].x) || AlmostEqualUlps(ends1[0].y, ends1[1].y)) {
 | 
| -            cIndex += 2;
 | 
| -            continue;
 | 
| -        }
 | 
| -        double start2 = i.fCoincidentT[1][cIndex];
 | 
| -        double end2 = i.fCoincidentT[1][cIndex + 1];
 | 
| -        _Line ends2;
 | 
| -        xy_at_t(q2, start2, ends2[0].x, ends2[0].y);
 | 
| -        xy_at_t(q2, end2, ends2[1].x, ends2[1].y);
 | 
| -        // again, approximately should be used with T values, not points FIXME
 | 
| -        if (!AlmostEqualUlps(ends2[0].x, ends2[1].x) || AlmostEqualUlps(ends2[0].y, ends2[1].y)) {
 | 
| -            cIndex += 2;
 | 
| -            continue;
 | 
| -        }
 | 
| -        if (approximately_less_than_zero(start1) || approximately_less_than_zero(end1)) {
 | 
| -            start1 = 0;
 | 
| -        } else if (approximately_greater_than_one(start1) || approximately_greater_than_one(end1)) {
 | 
| -            start1 = 1;
 | 
| -        } else {
 | 
| -            start1 = (start1 + end1) / 2;
 | 
| -        }
 | 
| -        if (approximately_less_than_zero(start2) || approximately_less_than_zero(end2)) {
 | 
| -            start2 = 0;
 | 
| -        } else if (approximately_greater_than_one(start2) || approximately_greater_than_one(end2)) {
 | 
| -            start2 = 1;
 | 
| -        } else {
 | 
| -            start2 = (start2 + end2) / 2;
 | 
| -        }
 | 
| -        i.insert(start1, start2);
 | 
| -        i.fCoincidentUsed -= 2;
 | 
| -        int remaining = i.fCoincidentUsed - cIndex;
 | 
| -        if (remaining > 0) {
 | 
| -            memmove(&i.fCoincidentT[0][cIndex], &i.fCoincidentT[0][cIndex + 2], sizeof(i.fCoincidentT[0][0]) * remaining);
 | 
| -            memmove(&i.fCoincidentT[1][cIndex], &i.fCoincidentT[1][cIndex + 2], sizeof(i.fCoincidentT[1][0]) * remaining);
 | 
| -        }
 | 
| -    }
 | 
| -}
 | 
| -
 | 
| -bool intersect(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
 | 
| -    if (implicit_matches(q1, q2)) {
 | 
| -        // FIXME: compute T values
 | 
| -        // compute the intersections of the ends to find the coincident span
 | 
| -        bool useVertical = fabs(q1[0].x - q1[2].x) < fabs(q1[0].y - q1[2].y);
 | 
| -        double t;
 | 
| -        if ((t = axialIntersect(q1, q2[0], useVertical)) >= 0) {
 | 
| -            i.addCoincident(t, 0);
 | 
| -        }
 | 
| -        if ((t = axialIntersect(q1, q2[2], useVertical)) >= 0) {
 | 
| -            i.addCoincident(t, 1);
 | 
| -        }
 | 
| -        useVertical = fabs(q2[0].x - q2[2].x) < fabs(q2[0].y - q2[2].y);
 | 
| -        if ((t = axialIntersect(q2, q1[0], useVertical)) >= 0) {
 | 
| -            i.addCoincident(0, t);
 | 
| -        }
 | 
| -        if ((t = axialIntersect(q2, q1[2], useVertical)) >= 0) {
 | 
| -            i.addCoincident(1, t);
 | 
| -        }
 | 
| -        SkASSERT(i.fCoincidentUsed <= 2);
 | 
| -        return i.fCoincidentUsed > 0;
 | 
| -    }
 | 
| -    QuadraticIntersections q(q1, q2, i);
 | 
| -    bool result = q.intersect();
 | 
| -    // FIXME: partial coincidence detection is currently poor. For now, try
 | 
| -    // to fix up the data after the fact. In the future, revisit the error
 | 
| -    // term to try to avoid this kind of result in the first place.
 | 
| -    if (i.fUsed && i.fCoincidentUsed) {
 | 
| -        hackToFixPartialCoincidence(q1, q2, i);
 | 
| -    }
 | 
| -    return result;
 | 
| -}
 | 
| 
 |