Index: experimental/Intersection/QuadraticIntersection.cpp |
diff --git a/experimental/Intersection/QuadraticIntersection.cpp b/experimental/Intersection/QuadraticIntersection.cpp |
deleted file mode 100644 |
index 07b8ecf8f3ea4913bbff1a98eb9045aa60c77b8a..0000000000000000000000000000000000000000 |
--- a/experimental/Intersection/QuadraticIntersection.cpp |
+++ /dev/null |
@@ -1,403 +0,0 @@ |
-/* |
- * Copyright 2012 Google Inc. |
- * |
- * Use of this source code is governed by a BSD-style license that can be |
- * found in the LICENSE file. |
- */ |
-#include "CurveIntersection.h" |
-#include "Intersections.h" |
-#include "IntersectionUtilities.h" |
-#include "LineIntersection.h" |
-#include "LineUtilities.h" |
-#include "QuadraticLineSegments.h" |
-#include "QuadraticUtilities.h" |
-#include <algorithm> // for swap |
- |
-static const double tClipLimit = 0.8; // http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf see Multiple intersections |
- |
-class QuadraticIntersections { |
-public: |
- |
-QuadraticIntersections(const Quadratic& q1, const Quadratic& q2, Intersections& i) |
- : quad1(q1) |
- , quad2(q2) |
- , intersections(i) |
- , depth(0) |
- , splits(0) |
- , coinMinT1(-1) { |
-} |
- |
-bool intersect() { |
- double minT1, minT2, maxT1, maxT2; |
- if (!bezier_clip(quad2, quad1, minT1, maxT1)) { |
- return false; |
- } |
- if (!bezier_clip(quad1, quad2, minT2, maxT2)) { |
- return false; |
- } |
- quad1Divisions = 1 / subDivisions(quad1); |
- quad2Divisions = 1 / subDivisions(quad2); |
- int split; |
- if (maxT1 - minT1 < maxT2 - minT2) { |
- intersections.swap(); |
- minT2 = 0; |
- maxT2 = 1; |
- split = maxT1 - minT1 > tClipLimit; |
- } else { |
- minT1 = 0; |
- maxT1 = 1; |
- split = (maxT2 - minT2 > tClipLimit) << 1; |
- } |
- return chop(minT1, maxT1, minT2, maxT2, split); |
-} |
- |
-protected: |
- |
-bool intersect(double minT1, double maxT1, double minT2, double maxT2) { |
- bool t1IsLine = maxT1 - minT1 <= quad1Divisions; |
- bool t2IsLine = maxT2 - minT2 <= quad2Divisions; |
- if (t1IsLine | t2IsLine) { |
- return intersectAsLine(minT1, maxT1, minT2, maxT2, t1IsLine, t2IsLine); |
- } |
- Quadratic smaller, larger; |
- // FIXME: carry last subdivide and reduceOrder result with quad |
- sub_divide(quad1, minT1, maxT1, intersections.swapped() ? larger : smaller); |
- sub_divide(quad2, minT2, maxT2, intersections.swapped() ? smaller : larger); |
- double minT, maxT; |
- if (!bezier_clip(smaller, larger, minT, maxT)) { |
- if (approximately_equal(minT, maxT)) { |
- double smallT, largeT; |
- _Point q2pt, q1pt; |
- if (intersections.swapped()) { |
- largeT = interp(minT2, maxT2, minT); |
- xy_at_t(quad2, largeT, q2pt.x, q2pt.y); |
- xy_at_t(quad1, minT1, q1pt.x, q1pt.y); |
- if (AlmostEqualUlps(q2pt.x, q1pt.x) && AlmostEqualUlps(q2pt.y, q1pt.y)) { |
- smallT = minT1; |
- } else { |
- xy_at_t(quad1, maxT1, q1pt.x, q1pt.y); // FIXME: debug code |
- SkASSERT(AlmostEqualUlps(q2pt.x, q1pt.x) && AlmostEqualUlps(q2pt.y, q1pt.y)); |
- smallT = maxT1; |
- } |
- } else { |
- smallT = interp(minT1, maxT1, minT); |
- xy_at_t(quad1, smallT, q1pt.x, q1pt.y); |
- xy_at_t(quad2, minT2, q2pt.x, q2pt.y); |
- if (AlmostEqualUlps(q2pt.x, q1pt.x) && AlmostEqualUlps(q2pt.y, q1pt.y)) { |
- largeT = minT2; |
- } else { |
- xy_at_t(quad2, maxT2, q2pt.x, q2pt.y); // FIXME: debug code |
- SkASSERT(AlmostEqualUlps(q2pt.x, q1pt.x) && AlmostEqualUlps(q2pt.y, q1pt.y)); |
- largeT = maxT2; |
- } |
- } |
- intersections.add(smallT, largeT); |
- return true; |
- } |
- return false; |
- } |
- int split; |
- if (intersections.swapped()) { |
- double newMinT1 = interp(minT1, maxT1, minT); |
- double newMaxT1 = interp(minT1, maxT1, maxT); |
- split = (newMaxT1 - newMinT1 > (maxT1 - minT1) * tClipLimit) << 1; |
-#define VERBOSE 0 |
-#if VERBOSE |
- printf("%s d=%d s=%d new1=(%g,%g) old1=(%g,%g) split=%d\n", __FUNCTION__, depth, |
- splits, newMinT1, newMaxT1, minT1, maxT1, split); |
-#endif |
- minT1 = newMinT1; |
- maxT1 = newMaxT1; |
- } else { |
- double newMinT2 = interp(minT2, maxT2, minT); |
- double newMaxT2 = interp(minT2, maxT2, maxT); |
- split = newMaxT2 - newMinT2 > (maxT2 - minT2) * tClipLimit; |
-#if VERBOSE |
- printf("%s d=%d s=%d new2=(%g,%g) old2=(%g,%g) split=%d\n", __FUNCTION__, depth, |
- splits, newMinT2, newMaxT2, minT2, maxT2, split); |
-#endif |
- minT2 = newMinT2; |
- maxT2 = newMaxT2; |
- } |
- return chop(minT1, maxT1, minT2, maxT2, split); |
-} |
- |
-bool intersectAsLine(double minT1, double maxT1, double minT2, double maxT2, |
- bool treat1AsLine, bool treat2AsLine) |
-{ |
- _Line line1, line2; |
- if (intersections.swapped()) { |
- SkTSwap(treat1AsLine, treat2AsLine); |
- SkTSwap(minT1, minT2); |
- SkTSwap(maxT1, maxT2); |
- } |
- if (coinMinT1 >= 0) { |
- bool earlyExit; |
- if ((earlyExit = coinMaxT1 == minT1)) { |
- coinMaxT1 = maxT1; |
- } |
- if (coinMaxT2 == minT2) { |
- coinMaxT2 = maxT2; |
- return true; |
- } |
- if (earlyExit) { |
- return true; |
- } |
- coinMinT1 = -1; |
- } |
- // do line/quadratic or even line/line intersection instead |
- if (treat1AsLine) { |
- xy_at_t(quad1, minT1, line1[0].x, line1[0].y); |
- xy_at_t(quad1, maxT1, line1[1].x, line1[1].y); |
- } |
- if (treat2AsLine) { |
- xy_at_t(quad2, minT2, line2[0].x, line2[0].y); |
- xy_at_t(quad2, maxT2, line2[1].x, line2[1].y); |
- } |
- int pts; |
- double smallT1, largeT1, smallT2, largeT2; |
- if (treat1AsLine & treat2AsLine) { |
- double t1[2], t2[2]; |
- pts = ::intersect(line1, line2, t1, t2); |
- if (pts == 2) { |
- smallT1 = interp(minT1, maxT1, t1[0]); |
- largeT1 = interp(minT2, maxT2, t2[0]); |
- smallT2 = interp(minT1, maxT1, t1[1]); |
- largeT2 = interp(minT2, maxT2, t2[1]); |
- intersections.addCoincident(smallT1, smallT2, largeT1, largeT2); |
- } else { |
- smallT1 = interp(minT1, maxT1, t1[0]); |
- largeT1 = interp(minT2, maxT2, t2[0]); |
- intersections.add(smallT1, largeT1); |
- } |
- } else { |
- Intersections lq; |
- pts = ::intersect(treat1AsLine ? quad2 : quad1, |
- treat1AsLine ? line1 : line2, lq); |
- if (pts == 2) { // if the line and edge are coincident treat differently |
- _Point midQuad, midLine; |
- double midQuadT = (lq.fT[0][0] + lq.fT[0][1]) / 2; |
- xy_at_t(treat1AsLine ? quad2 : quad1, midQuadT, midQuad.x, midQuad.y); |
- double lineT = t_at(treat1AsLine ? line1 : line2, midQuad); |
- xy_at_t(treat1AsLine ? line1 : line2, lineT, midLine.x, midLine.y); |
- if (AlmostEqualUlps(midQuad.x, midLine.x) |
- && AlmostEqualUlps(midQuad.y, midLine.y)) { |
- smallT1 = lq.fT[0][0]; |
- largeT1 = lq.fT[1][0]; |
- smallT2 = lq.fT[0][1]; |
- largeT2 = lq.fT[1][1]; |
- if (treat2AsLine) { |
- smallT1 = interp(minT1, maxT1, smallT1); |
- smallT2 = interp(minT1, maxT1, smallT2); |
- } else { |
- largeT1 = interp(minT2, maxT2, largeT1); |
- largeT2 = interp(minT2, maxT2, largeT2); |
- } |
- intersections.addCoincident(smallT1, smallT2, largeT1, largeT2); |
- goto setCoinMinMax; |
- } |
- } |
- for (int index = 0; index < pts; ++index) { |
- smallT1 = lq.fT[0][index]; |
- largeT1 = lq.fT[1][index]; |
- if (treat2AsLine) { |
- smallT1 = interp(minT1, maxT1, smallT1); |
- } else { |
- largeT1 = interp(minT2, maxT2, largeT1); |
- } |
- intersections.add(smallT1, largeT1); |
- } |
- } |
- if (pts > 0) { |
-setCoinMinMax: |
- coinMinT1 = minT1; |
- coinMaxT1 = maxT1; |
- coinMinT2 = minT2; |
- coinMaxT2 = maxT2; |
- } |
- return pts > 0; |
-} |
- |
-bool chop(double minT1, double maxT1, double minT2, double maxT2, int split) { |
- ++depth; |
- intersections.swap(); |
- if (split) { |
- ++splits; |
- if (split & 2) { |
- double middle1 = (maxT1 + minT1) / 2; |
- intersect(minT1, middle1, minT2, maxT2); |
- intersect(middle1, maxT1, minT2, maxT2); |
- } else { |
- double middle2 = (maxT2 + minT2) / 2; |
- intersect(minT1, maxT1, minT2, middle2); |
- intersect(minT1, maxT1, middle2, maxT2); |
- } |
- --splits; |
- intersections.swap(); |
- --depth; |
- return intersections.intersected(); |
- } |
- bool result = intersect(minT1, maxT1, minT2, maxT2); |
- intersections.swap(); |
- --depth; |
- return result; |
-} |
- |
-private: |
- |
-const Quadratic& quad1; |
-const Quadratic& quad2; |
-Intersections& intersections; |
-int depth; |
-int splits; |
-double quad1Divisions; // line segments to approximate original within error |
-double quad2Divisions; |
-double coinMinT1; // range of Ts where approximate line intersected curve |
-double coinMaxT1; |
-double coinMinT2; |
-double coinMaxT2; |
-}; |
- |
-#include "LineParameters.h" |
- |
-static void hackToFixPartialCoincidence(const Quadratic& q1, const Quadratic& q2, Intersections& i) { |
- // look to see if non-coincident data basically has unsortable tangents |
- |
- // look to see if a point between non-coincident data is on the curve |
- int cIndex; |
- for (int uIndex = 0; uIndex < i.fUsed; ) { |
- double bestDist1 = 1; |
- double bestDist2 = 1; |
- int closest1 = -1; |
- int closest2 = -1; |
- for (cIndex = 0; cIndex < i.fCoincidentUsed; ++cIndex) { |
- double dist = fabs(i.fT[0][uIndex] - i.fCoincidentT[0][cIndex]); |
- if (bestDist1 > dist) { |
- bestDist1 = dist; |
- closest1 = cIndex; |
- } |
- dist = fabs(i.fT[1][uIndex] - i.fCoincidentT[1][cIndex]); |
- if (bestDist2 > dist) { |
- bestDist2 = dist; |
- closest2 = cIndex; |
- } |
- } |
- _Line ends; |
- _Point mid; |
- double t1 = i.fT[0][uIndex]; |
- xy_at_t(q1, t1, ends[0].x, ends[0].y); |
- xy_at_t(q1, i.fCoincidentT[0][closest1], ends[1].x, ends[1].y); |
- double midT = (t1 + i.fCoincidentT[0][closest1]) / 2; |
- xy_at_t(q1, midT, mid.x, mid.y); |
- LineParameters params; |
- params.lineEndPoints(ends); |
- double midDist = params.pointDistance(mid); |
- // Note that we prefer to always measure t error, which does not scale, |
- // instead of point error, which is scale dependent. FIXME |
- if (!approximately_zero(midDist)) { |
- ++uIndex; |
- continue; |
- } |
- double t2 = i.fT[1][uIndex]; |
- xy_at_t(q2, t2, ends[0].x, ends[0].y); |
- xy_at_t(q2, i.fCoincidentT[1][closest2], ends[1].x, ends[1].y); |
- midT = (t2 + i.fCoincidentT[1][closest2]) / 2; |
- xy_at_t(q2, midT, mid.x, mid.y); |
- params.lineEndPoints(ends); |
- midDist = params.pointDistance(mid); |
- if (!approximately_zero(midDist)) { |
- ++uIndex; |
- continue; |
- } |
- // if both midpoints are close to the line, lengthen coincident span |
- int cEnd = closest1 ^ 1; // assume coincidence always travels in pairs |
- if (!between(i.fCoincidentT[0][cEnd], t1, i.fCoincidentT[0][closest1])) { |
- i.fCoincidentT[0][closest1] = t1; |
- } |
- cEnd = closest2 ^ 1; |
- if (!between(i.fCoincidentT[0][cEnd], t2, i.fCoincidentT[0][closest2])) { |
- i.fCoincidentT[0][closest2] = t2; |
- } |
- int remaining = --i.fUsed - uIndex; |
- if (remaining > 0) { |
- memmove(&i.fT[0][uIndex], &i.fT[0][uIndex + 1], sizeof(i.fT[0][0]) * remaining); |
- memmove(&i.fT[1][uIndex], &i.fT[1][uIndex + 1], sizeof(i.fT[1][0]) * remaining); |
- } |
- } |
- // if coincident data is subjectively a tiny span, replace it with a single point |
- for (cIndex = 0; cIndex < i.fCoincidentUsed; ) { |
- double start1 = i.fCoincidentT[0][cIndex]; |
- double end1 = i.fCoincidentT[0][cIndex + 1]; |
- _Line ends1; |
- xy_at_t(q1, start1, ends1[0].x, ends1[0].y); |
- xy_at_t(q1, end1, ends1[1].x, ends1[1].y); |
- if (!AlmostEqualUlps(ends1[0].x, ends1[1].x) || AlmostEqualUlps(ends1[0].y, ends1[1].y)) { |
- cIndex += 2; |
- continue; |
- } |
- double start2 = i.fCoincidentT[1][cIndex]; |
- double end2 = i.fCoincidentT[1][cIndex + 1]; |
- _Line ends2; |
- xy_at_t(q2, start2, ends2[0].x, ends2[0].y); |
- xy_at_t(q2, end2, ends2[1].x, ends2[1].y); |
- // again, approximately should be used with T values, not points FIXME |
- if (!AlmostEqualUlps(ends2[0].x, ends2[1].x) || AlmostEqualUlps(ends2[0].y, ends2[1].y)) { |
- cIndex += 2; |
- continue; |
- } |
- if (approximately_less_than_zero(start1) || approximately_less_than_zero(end1)) { |
- start1 = 0; |
- } else if (approximately_greater_than_one(start1) || approximately_greater_than_one(end1)) { |
- start1 = 1; |
- } else { |
- start1 = (start1 + end1) / 2; |
- } |
- if (approximately_less_than_zero(start2) || approximately_less_than_zero(end2)) { |
- start2 = 0; |
- } else if (approximately_greater_than_one(start2) || approximately_greater_than_one(end2)) { |
- start2 = 1; |
- } else { |
- start2 = (start2 + end2) / 2; |
- } |
- i.insert(start1, start2); |
- i.fCoincidentUsed -= 2; |
- int remaining = i.fCoincidentUsed - cIndex; |
- if (remaining > 0) { |
- memmove(&i.fCoincidentT[0][cIndex], &i.fCoincidentT[0][cIndex + 2], sizeof(i.fCoincidentT[0][0]) * remaining); |
- memmove(&i.fCoincidentT[1][cIndex], &i.fCoincidentT[1][cIndex + 2], sizeof(i.fCoincidentT[1][0]) * remaining); |
- } |
- } |
-} |
- |
-bool intersect(const Quadratic& q1, const Quadratic& q2, Intersections& i) { |
- if (implicit_matches(q1, q2)) { |
- // FIXME: compute T values |
- // compute the intersections of the ends to find the coincident span |
- bool useVertical = fabs(q1[0].x - q1[2].x) < fabs(q1[0].y - q1[2].y); |
- double t; |
- if ((t = axialIntersect(q1, q2[0], useVertical)) >= 0) { |
- i.addCoincident(t, 0); |
- } |
- if ((t = axialIntersect(q1, q2[2], useVertical)) >= 0) { |
- i.addCoincident(t, 1); |
- } |
- useVertical = fabs(q2[0].x - q2[2].x) < fabs(q2[0].y - q2[2].y); |
- if ((t = axialIntersect(q2, q1[0], useVertical)) >= 0) { |
- i.addCoincident(0, t); |
- } |
- if ((t = axialIntersect(q2, q1[2], useVertical)) >= 0) { |
- i.addCoincident(1, t); |
- } |
- SkASSERT(i.fCoincidentUsed <= 2); |
- return i.fCoincidentUsed > 0; |
- } |
- QuadraticIntersections q(q1, q2, i); |
- bool result = q.intersect(); |
- // FIXME: partial coincidence detection is currently poor. For now, try |
- // to fix up the data after the fact. In the future, revisit the error |
- // term to try to avoid this kind of result in the first place. |
- if (i.fUsed && i.fCoincidentUsed) { |
- hackToFixPartialCoincidence(q1, q2, i); |
- } |
- return result; |
-} |