| OLD | NEW |
| (Empty) |
| 1 // Another approach is to start with the implicit form of one curve and solve | |
| 2 // (seek implicit coefficients in QuadraticParameter.cpp | |
| 3 // by substituting in the parametric form of the other. | |
| 4 // The downside of this approach is that early rejects are difficult to come by. | |
| 5 // http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormu
la.html#step | |
| 6 | |
| 7 | |
| 8 #include "CubicUtilities.h" | |
| 9 #include "CurveIntersection.h" | |
| 10 #include "Intersections.h" | |
| 11 #include "QuadraticParameterization.h" | |
| 12 #include "QuarticRoot.h" | |
| 13 #include "QuadraticUtilities.h" | |
| 14 #include "TSearch.h" | |
| 15 | |
| 16 #ifdef SK_DEBUG | |
| 17 #include "LineUtilities.h" | |
| 18 #endif | |
| 19 | |
| 20 /* given the implicit form 0 = Ax^2 + Bxy + Cy^2 + Dx + Ey + F | |
| 21 * and given x = at^2 + bt + c (the parameterized form) | |
| 22 * y = dt^2 + et + f | |
| 23 * then | |
| 24 * 0 = A(at^2+bt+c)(at^2+bt+c)+B(at^2+bt+c)(dt^2+et+f)+C(dt^2+et+f)(dt^2+et+f)+D
(at^2+bt+c)+E(dt^2+et+f)+F | |
| 25 */ | |
| 26 | |
| 27 static int findRoots(const QuadImplicitForm& i, const Quadratic& q2, double root
s[4], | |
| 28 bool oneHint, int firstCubicRoot) { | |
| 29 double a, b, c; | |
| 30 set_abc(&q2[0].x, a, b, c); | |
| 31 double d, e, f; | |
| 32 set_abc(&q2[0].y, d, e, f); | |
| 33 const double t4 = i.x2() * a * a | |
| 34 + i.xy() * a * d | |
| 35 + i.y2() * d * d; | |
| 36 const double t3 = 2 * i.x2() * a * b | |
| 37 + i.xy() * (a * e + b * d) | |
| 38 + 2 * i.y2() * d * e; | |
| 39 const double t2 = i.x2() * (b * b + 2 * a * c) | |
| 40 + i.xy() * (c * d + b * e + a * f) | |
| 41 + i.y2() * (e * e + 2 * d * f) | |
| 42 + i.x() * a | |
| 43 + i.y() * d; | |
| 44 const double t1 = 2 * i.x2() * b * c | |
| 45 + i.xy() * (c * e + b * f) | |
| 46 + 2 * i.y2() * e * f | |
| 47 + i.x() * b | |
| 48 + i.y() * e; | |
| 49 const double t0 = i.x2() * c * c | |
| 50 + i.xy() * c * f | |
| 51 + i.y2() * f * f | |
| 52 + i.x() * c | |
| 53 + i.y() * f | |
| 54 + i.c(); | |
| 55 int rootCount = reducedQuarticRoots(t4, t3, t2, t1, t0, oneHint, roots); | |
| 56 if (rootCount >= 0) { | |
| 57 return rootCount; | |
| 58 } | |
| 59 return quarticRootsReal(firstCubicRoot, t4, t3, t2, t1, t0, roots); | |
| 60 } | |
| 61 | |
| 62 static int addValidRoots(const double roots[4], const int count, double valid[4]
) { | |
| 63 int result = 0; | |
| 64 int index; | |
| 65 for (index = 0; index < count; ++index) { | |
| 66 if (!approximately_zero_or_more(roots[index]) || !approximately_one_or_l
ess(roots[index])) { | |
| 67 continue; | |
| 68 } | |
| 69 double t = 1 - roots[index]; | |
| 70 if (approximately_less_than_zero(t)) { | |
| 71 t = 0; | |
| 72 } else if (approximately_greater_than_one(t)) { | |
| 73 t = 1; | |
| 74 } | |
| 75 valid[result++] = t; | |
| 76 } | |
| 77 return result; | |
| 78 } | |
| 79 | |
| 80 static bool onlyEndPtsInCommon(const Quadratic& q1, const Quadratic& q2, Interse
ctions& i) { | |
| 81 // the idea here is to see at minimum do a quick reject by rotating all points | |
| 82 // to either side of the line formed by connecting the endpoints | |
| 83 // if the opposite curves points are on the line or on the other side, the | |
| 84 // curves at most intersect at the endpoints | |
| 85 for (int oddMan = 0; oddMan < 3; ++oddMan) { | |
| 86 const _Point* endPt[2]; | |
| 87 for (int opp = 1; opp < 3; ++opp) { | |
| 88 int end = oddMan ^ opp; | |
| 89 if (end == 3) { | |
| 90 end = opp; | |
| 91 } | |
| 92 endPt[opp - 1] = &q1[end]; | |
| 93 } | |
| 94 double origX = endPt[0]->x; | |
| 95 double origY = endPt[0]->y; | |
| 96 double adj = endPt[1]->x - origX; | |
| 97 double opp = endPt[1]->y - origY; | |
| 98 double sign = (q1[oddMan].y - origY) * adj - (q1[oddMan].x - origX) * op
p; | |
| 99 if (approximately_zero(sign)) { | |
| 100 goto tryNextHalfPlane; | |
| 101 } | |
| 102 for (int n = 0; n < 3; ++n) { | |
| 103 double test = (q2[n].y - origY) * adj - (q2[n].x - origX) * opp; | |
| 104 if (test * sign > 0) { | |
| 105 goto tryNextHalfPlane; | |
| 106 } | |
| 107 } | |
| 108 for (int i1 = 0; i1 < 3; i1 += 2) { | |
| 109 for (int i2 = 0; i2 < 3; i2 += 2) { | |
| 110 if (q1[i1] == q2[i2]) { | |
| 111 i.insert(i1 >> 1, i2 >> 1, q1[i1]); | |
| 112 } | |
| 113 } | |
| 114 } | |
| 115 SkASSERT(i.fUsed < 3); | |
| 116 return true; | |
| 117 tryNextHalfPlane: | |
| 118 ; | |
| 119 } | |
| 120 return false; | |
| 121 } | |
| 122 | |
| 123 // returns false if there's more than one intercept or the intercept doesn't mat
ch the point | |
| 124 // returns true if the intercept was successfully added or if the | |
| 125 // original quads need to be subdivided | |
| 126 static bool addIntercept(const Quadratic& q1, const Quadratic& q2, double tMin,
double tMax, | |
| 127 Intersections& i, bool* subDivide) { | |
| 128 double tMid = (tMin + tMax) / 2; | |
| 129 _Point mid; | |
| 130 xy_at_t(q2, tMid, mid.x, mid.y); | |
| 131 _Line line; | |
| 132 line[0] = line[1] = mid; | |
| 133 _Vector dxdy = dxdy_at_t(q2, tMid); | |
| 134 line[0] -= dxdy; | |
| 135 line[1] += dxdy; | |
| 136 Intersections rootTs; | |
| 137 int roots = intersect(q1, line, rootTs); | |
| 138 if (roots == 0) { | |
| 139 if (subDivide) { | |
| 140 *subDivide = true; | |
| 141 } | |
| 142 return true; | |
| 143 } | |
| 144 if (roots == 2) { | |
| 145 return false; | |
| 146 } | |
| 147 _Point pt2; | |
| 148 xy_at_t(q1, rootTs.fT[0][0], pt2.x, pt2.y); | |
| 149 if (!pt2.approximatelyEqualHalf(mid)) { | |
| 150 return false; | |
| 151 } | |
| 152 i.insertSwap(rootTs.fT[0][0], tMid, pt2); | |
| 153 return true; | |
| 154 } | |
| 155 | |
| 156 static bool isLinearInner(const Quadratic& q1, double t1s, double t1e, const Qua
dratic& q2, | |
| 157 double t2s, double t2e, Intersections& i, bool* subDivide) { | |
| 158 Quadratic hull; | |
| 159 sub_divide(q1, t1s, t1e, hull); | |
| 160 _Line line = {hull[2], hull[0]}; | |
| 161 const _Line* testLines[] = { &line, (const _Line*) &hull[0], (const _Line*)
&hull[1] }; | |
| 162 size_t testCount = sizeof(testLines) / sizeof(testLines[0]); | |
| 163 SkTDArray<double> tsFound; | |
| 164 for (size_t index = 0; index < testCount; ++index) { | |
| 165 Intersections rootTs; | |
| 166 int roots = intersect(q2, *testLines[index], rootTs); | |
| 167 for (int idx2 = 0; idx2 < roots; ++idx2) { | |
| 168 double t = rootTs.fT[0][idx2]; | |
| 169 #ifdef SK_DEBUG | |
| 170 _Point qPt, lPt; | |
| 171 xy_at_t(q2, t, qPt.x, qPt.y); | |
| 172 xy_at_t(*testLines[index], rootTs.fT[1][idx2], lPt.x, lPt.y); | |
| 173 SkASSERT(qPt.approximatelyEqual(lPt)); | |
| 174 #endif | |
| 175 if (approximately_negative(t - t2s) || approximately_positive(t - t2
e)) { | |
| 176 continue; | |
| 177 } | |
| 178 *tsFound.append() = rootTs.fT[0][idx2]; | |
| 179 } | |
| 180 } | |
| 181 int tCount = tsFound.count(); | |
| 182 if (!tCount) { | |
| 183 return true; | |
| 184 } | |
| 185 double tMin, tMax; | |
| 186 if (tCount == 1) { | |
| 187 tMin = tMax = tsFound[0]; | |
| 188 } else if (tCount > 1) { | |
| 189 QSort<double>(tsFound.begin(), tsFound.end() - 1); | |
| 190 tMin = tsFound[0]; | |
| 191 tMax = tsFound[tsFound.count() - 1]; | |
| 192 } | |
| 193 _Point end; | |
| 194 xy_at_t(q2, t2s, end.x, end.y); | |
| 195 bool startInTriangle = point_in_hull(hull, end); | |
| 196 if (startInTriangle) { | |
| 197 tMin = t2s; | |
| 198 } | |
| 199 xy_at_t(q2, t2e, end.x, end.y); | |
| 200 bool endInTriangle = point_in_hull(hull, end); | |
| 201 if (endInTriangle) { | |
| 202 tMax = t2e; | |
| 203 } | |
| 204 int split = 0; | |
| 205 _Vector dxy1, dxy2; | |
| 206 if (tMin != tMax || tCount > 2) { | |
| 207 dxy2 = dxdy_at_t(q2, tMin); | |
| 208 for (int index = 1; index < tCount; ++index) { | |
| 209 dxy1 = dxy2; | |
| 210 dxy2 = dxdy_at_t(q2, tsFound[index]); | |
| 211 double dot = dxy1.dot(dxy2); | |
| 212 if (dot < 0) { | |
| 213 split = index - 1; | |
| 214 break; | |
| 215 } | |
| 216 } | |
| 217 | |
| 218 } | |
| 219 if (split == 0) { // there's one point | |
| 220 if (addIntercept(q1, q2, tMin, tMax, i, subDivide)) { | |
| 221 return true; | |
| 222 } | |
| 223 i.swap(); | |
| 224 return isLinearInner(q2, tMin, tMax, q1, t1s, t1e, i, subDivide); | |
| 225 } | |
| 226 // At this point, we have two ranges of t values -- treat each separately at
the split | |
| 227 bool result; | |
| 228 if (addIntercept(q1, q2, tMin, tsFound[split - 1], i, subDivide)) { | |
| 229 result = true; | |
| 230 } else { | |
| 231 i.swap(); | |
| 232 result = isLinearInner(q2, tMin, tsFound[split - 1], q1, t1s, t1e, i, su
bDivide); | |
| 233 } | |
| 234 if (addIntercept(q1, q2, tsFound[split], tMax, i, subDivide)) { | |
| 235 result = true; | |
| 236 } else { | |
| 237 i.swap(); | |
| 238 result |= isLinearInner(q2, tsFound[split], tMax, q1, t1s, t1e, i, subDi
vide); | |
| 239 } | |
| 240 return result; | |
| 241 } | |
| 242 | |
| 243 static double flatMeasure(const Quadratic& q) { | |
| 244 _Vector mid = q[1] - q[0]; | |
| 245 _Vector dxy = q[2] - q[0]; | |
| 246 double length = dxy.length(); // OPTIMIZE: get rid of sqrt | |
| 247 return fabs(mid.cross(dxy) / length); | |
| 248 } | |
| 249 | |
| 250 // FIXME ? should this measure both and then use the quad that is the flattest a
s the line? | |
| 251 static bool isLinear(const Quadratic& q1, const Quadratic& q2, Intersections& i)
{ | |
| 252 double measure = flatMeasure(q1); | |
| 253 // OPTIMIZE: (get rid of sqrt) use approximately_zero | |
| 254 if (!approximately_zero_sqrt(measure)) { | |
| 255 return false; | |
| 256 } | |
| 257 return isLinearInner(q1, 0, 1, q2, 0, 1, i, NULL); | |
| 258 } | |
| 259 | |
| 260 // FIXME: if flat measure is sufficiently large, then probably the quartic solut
ion failed | |
| 261 static void relaxedIsLinear(const Quadratic& q1, const Quadratic& q2, Intersecti
ons& i) { | |
| 262 double m1 = flatMeasure(q1); | |
| 263 double m2 = flatMeasure(q2); | |
| 264 #ifdef SK_DEBUG | |
| 265 double min = SkTMin(m1, m2); | |
| 266 if (min > 5) { | |
| 267 SkDebugf("%s maybe not flat enough.. %1.9g\n", __FUNCTION__, min); | |
| 268 } | |
| 269 #endif | |
| 270 i.reset(); | |
| 271 const Quadratic& rounder = m2 < m1 ? q1 : q2; | |
| 272 const Quadratic& flatter = m2 < m1 ? q2 : q1; | |
| 273 bool subDivide = false; | |
| 274 isLinearInner(flatter, 0, 1, rounder, 0, 1, i, &subDivide); | |
| 275 if (subDivide) { | |
| 276 QuadraticPair pair; | |
| 277 chop_at(flatter, pair, 0.5); | |
| 278 Intersections firstI, secondI; | |
| 279 relaxedIsLinear(pair.first(), rounder, firstI); | |
| 280 for (int index = 0; index < firstI.used(); ++index) { | |
| 281 i.insert(firstI.fT[0][index] * 0.5, firstI.fT[1][index], firstI.fPt[
index]); | |
| 282 } | |
| 283 relaxedIsLinear(pair.second(), rounder, secondI); | |
| 284 for (int index = 0; index < secondI.used(); ++index) { | |
| 285 i.insert(0.5 + secondI.fT[0][index] * 0.5, secondI.fT[1][index], sec
ondI.fPt[index]); | |
| 286 } | |
| 287 } | |
| 288 if (m2 < m1) { | |
| 289 i.swapPts(); | |
| 290 } | |
| 291 } | |
| 292 | |
| 293 #if 0 | |
| 294 static void unsortableExpanse(const Quadratic& q1, const Quadratic& q2, Intersec
tions& i) { | |
| 295 const Quadratic* qs[2] = { &q1, &q2 }; | |
| 296 // need t values for start and end of unsortable expanse on both curves | |
| 297 // try projecting lines parallel to the end points | |
| 298 i.fT[0][0] = 0; | |
| 299 i.fT[0][1] = 1; | |
| 300 int flip = -1; // undecided | |
| 301 for (int qIdx = 0; qIdx < 2; qIdx++) { | |
| 302 for (int t = 0; t < 2; t++) { | |
| 303 _Point dxdy; | |
| 304 dxdy_at_t(*qs[qIdx], t, dxdy); | |
| 305 _Line perp; | |
| 306 perp[0] = perp[1] = (*qs[qIdx])[t == 0 ? 0 : 2]; | |
| 307 perp[0].x += dxdy.y; | |
| 308 perp[0].y -= dxdy.x; | |
| 309 perp[1].x -= dxdy.y; | |
| 310 perp[1].y += dxdy.x; | |
| 311 Intersections hitData; | |
| 312 int hits = intersectRay(*qs[qIdx ^ 1], perp, hitData); | |
| 313 SkASSERT(hits <= 1); | |
| 314 if (hits) { | |
| 315 if (flip < 0) { | |
| 316 _Point dxdy2; | |
| 317 dxdy_at_t(*qs[qIdx ^ 1], hitData.fT[0][0], dxdy2); | |
| 318 double dot = dxdy.dot(dxdy2); | |
| 319 flip = dot < 0; | |
| 320 i.fT[1][0] = flip; | |
| 321 i.fT[1][1] = !flip; | |
| 322 } | |
| 323 i.fT[qIdx ^ 1][t ^ flip] = hitData.fT[0][0]; | |
| 324 } | |
| 325 } | |
| 326 } | |
| 327 i.fUnsortable = true; // failed, probably coincident or near-coincident | |
| 328 i.fUsed = 2; | |
| 329 } | |
| 330 #endif | |
| 331 | |
| 332 // each time through the loop, this computes values it had from the last loop | |
| 333 // if i == j == 1, the center values are still good | |
| 334 // otherwise, for i != 1 or j != 1, four of the values are still good | |
| 335 // and if i == 1 ^ j == 1, an additional value is good | |
| 336 static bool binarySearch(const Quadratic& quad1, const Quadratic& quad2, double&
t1Seed, | |
| 337 double& t2Seed, _Point& pt) { | |
| 338 double tStep = ROUGH_EPSILON; | |
| 339 _Point t1[3], t2[3]; | |
| 340 int calcMask = ~0; | |
| 341 do { | |
| 342 if (calcMask & (1 << 1)) t1[1] = xy_at_t(quad1, t1Seed); | |
| 343 if (calcMask & (1 << 4)) t2[1] = xy_at_t(quad2, t2Seed); | |
| 344 if (t1[1].approximatelyEqual(t2[1])) { | |
| 345 pt = t1[1]; | |
| 346 #if ONE_OFF_DEBUG | |
| 347 SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) == (%1.9g,%1.9g)\n", __
FUNCTION__, | |
| 348 t1Seed, t2Seed, t1[1].x, t1[1].y, t1[2].x, t1[2].y); | |
| 349 #endif | |
| 350 return true; | |
| 351 } | |
| 352 if (calcMask & (1 << 0)) t1[0] = xy_at_t(quad1, t1Seed - tStep); | |
| 353 if (calcMask & (1 << 2)) t1[2] = xy_at_t(quad1, t1Seed + tStep); | |
| 354 if (calcMask & (1 << 3)) t2[0] = xy_at_t(quad2, t2Seed - tStep); | |
| 355 if (calcMask & (1 << 5)) t2[2] = xy_at_t(quad2, t2Seed + tStep); | |
| 356 double dist[3][3]; | |
| 357 // OPTIMIZE: using calcMask value permits skipping some distance calcuat
ions | |
| 358 // if prior loop's results are moved to correct slot for reuse | |
| 359 dist[1][1] = t1[1].distanceSquared(t2[1]); | |
| 360 int best_i = 1, best_j = 1; | |
| 361 for (int i = 0; i < 3; ++i) { | |
| 362 for (int j = 0; j < 3; ++j) { | |
| 363 if (i == 1 && j == 1) { | |
| 364 continue; | |
| 365 } | |
| 366 dist[i][j] = t1[i].distanceSquared(t2[j]); | |
| 367 if (dist[best_i][best_j] > dist[i][j]) { | |
| 368 best_i = i; | |
| 369 best_j = j; | |
| 370 } | |
| 371 } | |
| 372 } | |
| 373 if (best_i == 1 && best_j == 1) { | |
| 374 tStep /= 2; | |
| 375 if (tStep < FLT_EPSILON_HALF) { | |
| 376 break; | |
| 377 } | |
| 378 calcMask = (1 << 0) | (1 << 2) | (1 << 3) | (1 << 5); | |
| 379 continue; | |
| 380 } | |
| 381 if (best_i == 0) { | |
| 382 t1Seed -= tStep; | |
| 383 t1[2] = t1[1]; | |
| 384 t1[1] = t1[0]; | |
| 385 calcMask = 1 << 0; | |
| 386 } else if (best_i == 2) { | |
| 387 t1Seed += tStep; | |
| 388 t1[0] = t1[1]; | |
| 389 t1[1] = t1[2]; | |
| 390 calcMask = 1 << 2; | |
| 391 } else { | |
| 392 calcMask = 0; | |
| 393 } | |
| 394 if (best_j == 0) { | |
| 395 t2Seed -= tStep; | |
| 396 t2[2] = t2[1]; | |
| 397 t2[1] = t2[0]; | |
| 398 calcMask |= 1 << 3; | |
| 399 } else if (best_j == 2) { | |
| 400 t2Seed += tStep; | |
| 401 t2[0] = t2[1]; | |
| 402 t2[1] = t2[2]; | |
| 403 calcMask |= 1 << 5; | |
| 404 } | |
| 405 } while (true); | |
| 406 #if ONE_OFF_DEBUG | |
| 407 SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) != (%1.9g,%1.9g) %s\n", __FUNCT
ION__, | |
| 408 t1Seed, t2Seed, t1[1].x, t1[1].y, t1[2].x, t1[2].y); | |
| 409 #endif | |
| 410 return false; | |
| 411 } | |
| 412 | |
| 413 bool intersect2(const Quadratic& q1, const Quadratic& q2, Intersections& i) { | |
| 414 // if the quads share an end point, check to see if they overlap | |
| 415 | |
| 416 if (onlyEndPtsInCommon(q1, q2, i)) { | |
| 417 return i.intersected(); | |
| 418 } | |
| 419 if (onlyEndPtsInCommon(q2, q1, i)) { | |
| 420 i.swapPts(); | |
| 421 return i.intersected(); | |
| 422 } | |
| 423 // see if either quad is really a line | |
| 424 if (isLinear(q1, q2, i)) { | |
| 425 return i.intersected(); | |
| 426 } | |
| 427 if (isLinear(q2, q1, i)) { | |
| 428 i.swapPts(); | |
| 429 return i.intersected(); | |
| 430 } | |
| 431 QuadImplicitForm i1(q1); | |
| 432 QuadImplicitForm i2(q2); | |
| 433 if (i1.implicit_match(i2)) { | |
| 434 // FIXME: compute T values | |
| 435 // compute the intersections of the ends to find the coincident span | |
| 436 bool useVertical = fabs(q1[0].x - q1[2].x) < fabs(q1[0].y - q1[2].y); | |
| 437 double t; | |
| 438 if ((t = axialIntersect(q1, q2[0], useVertical)) >= 0) { | |
| 439 i.insertCoincident(t, 0, q2[0]); | |
| 440 } | |
| 441 if ((t = axialIntersect(q1, q2[2], useVertical)) >= 0) { | |
| 442 i.insertCoincident(t, 1, q2[2]); | |
| 443 } | |
| 444 useVertical = fabs(q2[0].x - q2[2].x) < fabs(q2[0].y - q2[2].y); | |
| 445 if ((t = axialIntersect(q2, q1[0], useVertical)) >= 0) { | |
| 446 i.insertCoincident(0, t, q1[0]); | |
| 447 } | |
| 448 if ((t = axialIntersect(q2, q1[2], useVertical)) >= 0) { | |
| 449 i.insertCoincident(1, t, q1[2]); | |
| 450 } | |
| 451 SkASSERT(i.coincidentUsed() <= 2); | |
| 452 return i.coincidentUsed() > 0; | |
| 453 } | |
| 454 int index; | |
| 455 bool useCubic = q1[0] == q2[0] || q1[0] == q2[2] || q1[2] == q2[0]; | |
| 456 double roots1[4]; | |
| 457 int rootCount = findRoots(i2, q1, roots1, useCubic, 0); | |
| 458 // OPTIMIZATION: could short circuit here if all roots are < 0 or > 1 | |
| 459 double roots1Copy[4]; | |
| 460 int r1Count = addValidRoots(roots1, rootCount, roots1Copy); | |
| 461 _Point pts1[4]; | |
| 462 for (index = 0; index < r1Count; ++index) { | |
| 463 xy_at_t(q1, roots1Copy[index], pts1[index].x, pts1[index].y); | |
| 464 } | |
| 465 double roots2[4]; | |
| 466 int rootCount2 = findRoots(i1, q2, roots2, useCubic, 0); | |
| 467 double roots2Copy[4]; | |
| 468 int r2Count = addValidRoots(roots2, rootCount2, roots2Copy); | |
| 469 _Point pts2[4]; | |
| 470 for (index = 0; index < r2Count; ++index) { | |
| 471 xy_at_t(q2, roots2Copy[index], pts2[index].x, pts2[index].y); | |
| 472 } | |
| 473 if (r1Count == r2Count && r1Count <= 1) { | |
| 474 if (r1Count == 1) { | |
| 475 if (pts1[0].approximatelyEqualHalf(pts2[0])) { | |
| 476 i.insert(roots1Copy[0], roots2Copy[0], pts1[0]); | |
| 477 } else if (pts1[0].moreRoughlyEqual(pts2[0])) { | |
| 478 // experiment: see if a different cubic solution provides the co
rrect quartic answer | |
| 479 #if 0 | |
| 480 for (int cu1 = 0; cu1 < 3; ++cu1) { | |
| 481 rootCount = findRoots(i2, q1, roots1, useCubic, cu1); | |
| 482 r1Count = addValidRoots(roots1, rootCount, roots1Copy); | |
| 483 if (r1Count == 0) { | |
| 484 continue; | |
| 485 } | |
| 486 for (int cu2 = 0; cu2 < 3; ++cu2) { | |
| 487 if (cu1 == 0 && cu2 == 0) { | |
| 488 continue; | |
| 489 } | |
| 490 rootCount2 = findRoots(i1, q2, roots2, useCubic, cu2); | |
| 491 r2Count = addValidRoots(roots2, rootCount2, roots2Copy); | |
| 492 if (r2Count == 0) { | |
| 493 continue; | |
| 494 } | |
| 495 SkASSERT(r1Count == 1 && r2Count == 1); | |
| 496 SkDebugf("*** [%d,%d] (%1.9g,%1.9g) %s (%1.9g,%1.9g)\n",
cu1, cu2, | |
| 497 pts1[0].x, pts1[0].y, pts1[0].approximatelyEqual
Half(pts2[0]) | |
| 498 ? "==" : "!=", pts2[0].x, pts2[0].y); | |
| 499 } | |
| 500 } | |
| 501 #endif | |
| 502 // experiment: try to find intersection by chasing t | |
| 503 rootCount = findRoots(i2, q1, roots1, useCubic, 0); | |
| 504 r1Count = addValidRoots(roots1, rootCount, roots1Copy); | |
| 505 rootCount2 = findRoots(i1, q2, roots2, useCubic, 0); | |
| 506 r2Count = addValidRoots(roots2, rootCount2, roots2Copy); | |
| 507 if (binarySearch(q1, q2, roots1Copy[0], roots2Copy[0], pts1[0]))
{ | |
| 508 i.insert(roots1Copy[0], roots2Copy[0], pts1[0]); | |
| 509 } | |
| 510 } | |
| 511 } | |
| 512 return i.intersected(); | |
| 513 } | |
| 514 int closest[4]; | |
| 515 double dist[4]; | |
| 516 bool foundSomething = false; | |
| 517 for (index = 0; index < r1Count; ++index) { | |
| 518 dist[index] = DBL_MAX; | |
| 519 closest[index] = -1; | |
| 520 for (int ndex2 = 0; ndex2 < r2Count; ++ndex2) { | |
| 521 if (!pts2[ndex2].approximatelyEqualHalf(pts1[index])) { | |
| 522 continue; | |
| 523 } | |
| 524 double dx = pts2[ndex2].x - pts1[index].x; | |
| 525 double dy = pts2[ndex2].y - pts1[index].y; | |
| 526 double distance = dx * dx + dy * dy; | |
| 527 if (dist[index] <= distance) { | |
| 528 continue; | |
| 529 } | |
| 530 for (int outer = 0; outer < index; ++outer) { | |
| 531 if (closest[outer] != ndex2) { | |
| 532 continue; | |
| 533 } | |
| 534 if (dist[outer] < distance) { | |
| 535 goto next; | |
| 536 } | |
| 537 closest[outer] = -1; | |
| 538 } | |
| 539 dist[index] = distance; | |
| 540 closest[index] = ndex2; | |
| 541 foundSomething = true; | |
| 542 next: | |
| 543 ; | |
| 544 } | |
| 545 } | |
| 546 if (r1Count && r2Count && !foundSomething) { | |
| 547 relaxedIsLinear(q1, q2, i); | |
| 548 return i.intersected(); | |
| 549 } | |
| 550 int used = 0; | |
| 551 do { | |
| 552 double lowest = DBL_MAX; | |
| 553 int lowestIndex = -1; | |
| 554 for (index = 0; index < r1Count; ++index) { | |
| 555 if (closest[index] < 0) { | |
| 556 continue; | |
| 557 } | |
| 558 if (roots1Copy[index] < lowest) { | |
| 559 lowestIndex = index; | |
| 560 lowest = roots1Copy[index]; | |
| 561 } | |
| 562 } | |
| 563 if (lowestIndex < 0) { | |
| 564 break; | |
| 565 } | |
| 566 i.insert(roots1Copy[lowestIndex], roots2Copy[closest[lowestIndex]], | |
| 567 pts1[lowestIndex]); | |
| 568 closest[lowestIndex] = -1; | |
| 569 } while (++used < r1Count); | |
| 570 i.fFlip = false; | |
| 571 return i.intersected(); | |
| 572 } | |
| OLD | NEW |