Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(69)

Side by Side Diff: experimental/Intersection/QuadraticImplicit.cpp

Issue 867213004: remove prototype pathops code (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: Created 5 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 // Another approach is to start with the implicit form of one curve and solve
2 // (seek implicit coefficients in QuadraticParameter.cpp
3 // by substituting in the parametric form of the other.
4 // The downside of this approach is that early rejects are difficult to come by.
5 // http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormu la.html#step
6
7
8 #include "CubicUtilities.h"
9 #include "CurveIntersection.h"
10 #include "Intersections.h"
11 #include "QuadraticParameterization.h"
12 #include "QuarticRoot.h"
13 #include "QuadraticUtilities.h"
14 #include "TSearch.h"
15
16 #ifdef SK_DEBUG
17 #include "LineUtilities.h"
18 #endif
19
20 /* given the implicit form 0 = Ax^2 + Bxy + Cy^2 + Dx + Ey + F
21 * and given x = at^2 + bt + c (the parameterized form)
22 * y = dt^2 + et + f
23 * then
24 * 0 = A(at^2+bt+c)(at^2+bt+c)+B(at^2+bt+c)(dt^2+et+f)+C(dt^2+et+f)(dt^2+et+f)+D (at^2+bt+c)+E(dt^2+et+f)+F
25 */
26
27 static int findRoots(const QuadImplicitForm& i, const Quadratic& q2, double root s[4],
28 bool oneHint, int firstCubicRoot) {
29 double a, b, c;
30 set_abc(&q2[0].x, a, b, c);
31 double d, e, f;
32 set_abc(&q2[0].y, d, e, f);
33 const double t4 = i.x2() * a * a
34 + i.xy() * a * d
35 + i.y2() * d * d;
36 const double t3 = 2 * i.x2() * a * b
37 + i.xy() * (a * e + b * d)
38 + 2 * i.y2() * d * e;
39 const double t2 = i.x2() * (b * b + 2 * a * c)
40 + i.xy() * (c * d + b * e + a * f)
41 + i.y2() * (e * e + 2 * d * f)
42 + i.x() * a
43 + i.y() * d;
44 const double t1 = 2 * i.x2() * b * c
45 + i.xy() * (c * e + b * f)
46 + 2 * i.y2() * e * f
47 + i.x() * b
48 + i.y() * e;
49 const double t0 = i.x2() * c * c
50 + i.xy() * c * f
51 + i.y2() * f * f
52 + i.x() * c
53 + i.y() * f
54 + i.c();
55 int rootCount = reducedQuarticRoots(t4, t3, t2, t1, t0, oneHint, roots);
56 if (rootCount >= 0) {
57 return rootCount;
58 }
59 return quarticRootsReal(firstCubicRoot, t4, t3, t2, t1, t0, roots);
60 }
61
62 static int addValidRoots(const double roots[4], const int count, double valid[4] ) {
63 int result = 0;
64 int index;
65 for (index = 0; index < count; ++index) {
66 if (!approximately_zero_or_more(roots[index]) || !approximately_one_or_l ess(roots[index])) {
67 continue;
68 }
69 double t = 1 - roots[index];
70 if (approximately_less_than_zero(t)) {
71 t = 0;
72 } else if (approximately_greater_than_one(t)) {
73 t = 1;
74 }
75 valid[result++] = t;
76 }
77 return result;
78 }
79
80 static bool onlyEndPtsInCommon(const Quadratic& q1, const Quadratic& q2, Interse ctions& i) {
81 // the idea here is to see at minimum do a quick reject by rotating all points
82 // to either side of the line formed by connecting the endpoints
83 // if the opposite curves points are on the line or on the other side, the
84 // curves at most intersect at the endpoints
85 for (int oddMan = 0; oddMan < 3; ++oddMan) {
86 const _Point* endPt[2];
87 for (int opp = 1; opp < 3; ++opp) {
88 int end = oddMan ^ opp;
89 if (end == 3) {
90 end = opp;
91 }
92 endPt[opp - 1] = &q1[end];
93 }
94 double origX = endPt[0]->x;
95 double origY = endPt[0]->y;
96 double adj = endPt[1]->x - origX;
97 double opp = endPt[1]->y - origY;
98 double sign = (q1[oddMan].y - origY) * adj - (q1[oddMan].x - origX) * op p;
99 if (approximately_zero(sign)) {
100 goto tryNextHalfPlane;
101 }
102 for (int n = 0; n < 3; ++n) {
103 double test = (q2[n].y - origY) * adj - (q2[n].x - origX) * opp;
104 if (test * sign > 0) {
105 goto tryNextHalfPlane;
106 }
107 }
108 for (int i1 = 0; i1 < 3; i1 += 2) {
109 for (int i2 = 0; i2 < 3; i2 += 2) {
110 if (q1[i1] == q2[i2]) {
111 i.insert(i1 >> 1, i2 >> 1, q1[i1]);
112 }
113 }
114 }
115 SkASSERT(i.fUsed < 3);
116 return true;
117 tryNextHalfPlane:
118 ;
119 }
120 return false;
121 }
122
123 // returns false if there's more than one intercept or the intercept doesn't mat ch the point
124 // returns true if the intercept was successfully added or if the
125 // original quads need to be subdivided
126 static bool addIntercept(const Quadratic& q1, const Quadratic& q2, double tMin, double tMax,
127 Intersections& i, bool* subDivide) {
128 double tMid = (tMin + tMax) / 2;
129 _Point mid;
130 xy_at_t(q2, tMid, mid.x, mid.y);
131 _Line line;
132 line[0] = line[1] = mid;
133 _Vector dxdy = dxdy_at_t(q2, tMid);
134 line[0] -= dxdy;
135 line[1] += dxdy;
136 Intersections rootTs;
137 int roots = intersect(q1, line, rootTs);
138 if (roots == 0) {
139 if (subDivide) {
140 *subDivide = true;
141 }
142 return true;
143 }
144 if (roots == 2) {
145 return false;
146 }
147 _Point pt2;
148 xy_at_t(q1, rootTs.fT[0][0], pt2.x, pt2.y);
149 if (!pt2.approximatelyEqualHalf(mid)) {
150 return false;
151 }
152 i.insertSwap(rootTs.fT[0][0], tMid, pt2);
153 return true;
154 }
155
156 static bool isLinearInner(const Quadratic& q1, double t1s, double t1e, const Qua dratic& q2,
157 double t2s, double t2e, Intersections& i, bool* subDivide) {
158 Quadratic hull;
159 sub_divide(q1, t1s, t1e, hull);
160 _Line line = {hull[2], hull[0]};
161 const _Line* testLines[] = { &line, (const _Line*) &hull[0], (const _Line*) &hull[1] };
162 size_t testCount = sizeof(testLines) / sizeof(testLines[0]);
163 SkTDArray<double> tsFound;
164 for (size_t index = 0; index < testCount; ++index) {
165 Intersections rootTs;
166 int roots = intersect(q2, *testLines[index], rootTs);
167 for (int idx2 = 0; idx2 < roots; ++idx2) {
168 double t = rootTs.fT[0][idx2];
169 #ifdef SK_DEBUG
170 _Point qPt, lPt;
171 xy_at_t(q2, t, qPt.x, qPt.y);
172 xy_at_t(*testLines[index], rootTs.fT[1][idx2], lPt.x, lPt.y);
173 SkASSERT(qPt.approximatelyEqual(lPt));
174 #endif
175 if (approximately_negative(t - t2s) || approximately_positive(t - t2 e)) {
176 continue;
177 }
178 *tsFound.append() = rootTs.fT[0][idx2];
179 }
180 }
181 int tCount = tsFound.count();
182 if (!tCount) {
183 return true;
184 }
185 double tMin, tMax;
186 if (tCount == 1) {
187 tMin = tMax = tsFound[0];
188 } else if (tCount > 1) {
189 QSort<double>(tsFound.begin(), tsFound.end() - 1);
190 tMin = tsFound[0];
191 tMax = tsFound[tsFound.count() - 1];
192 }
193 _Point end;
194 xy_at_t(q2, t2s, end.x, end.y);
195 bool startInTriangle = point_in_hull(hull, end);
196 if (startInTriangle) {
197 tMin = t2s;
198 }
199 xy_at_t(q2, t2e, end.x, end.y);
200 bool endInTriangle = point_in_hull(hull, end);
201 if (endInTriangle) {
202 tMax = t2e;
203 }
204 int split = 0;
205 _Vector dxy1, dxy2;
206 if (tMin != tMax || tCount > 2) {
207 dxy2 = dxdy_at_t(q2, tMin);
208 for (int index = 1; index < tCount; ++index) {
209 dxy1 = dxy2;
210 dxy2 = dxdy_at_t(q2, tsFound[index]);
211 double dot = dxy1.dot(dxy2);
212 if (dot < 0) {
213 split = index - 1;
214 break;
215 }
216 }
217
218 }
219 if (split == 0) { // there's one point
220 if (addIntercept(q1, q2, tMin, tMax, i, subDivide)) {
221 return true;
222 }
223 i.swap();
224 return isLinearInner(q2, tMin, tMax, q1, t1s, t1e, i, subDivide);
225 }
226 // At this point, we have two ranges of t values -- treat each separately at the split
227 bool result;
228 if (addIntercept(q1, q2, tMin, tsFound[split - 1], i, subDivide)) {
229 result = true;
230 } else {
231 i.swap();
232 result = isLinearInner(q2, tMin, tsFound[split - 1], q1, t1s, t1e, i, su bDivide);
233 }
234 if (addIntercept(q1, q2, tsFound[split], tMax, i, subDivide)) {
235 result = true;
236 } else {
237 i.swap();
238 result |= isLinearInner(q2, tsFound[split], tMax, q1, t1s, t1e, i, subDi vide);
239 }
240 return result;
241 }
242
243 static double flatMeasure(const Quadratic& q) {
244 _Vector mid = q[1] - q[0];
245 _Vector dxy = q[2] - q[0];
246 double length = dxy.length(); // OPTIMIZE: get rid of sqrt
247 return fabs(mid.cross(dxy) / length);
248 }
249
250 // FIXME ? should this measure both and then use the quad that is the flattest a s the line?
251 static bool isLinear(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
252 double measure = flatMeasure(q1);
253 // OPTIMIZE: (get rid of sqrt) use approximately_zero
254 if (!approximately_zero_sqrt(measure)) {
255 return false;
256 }
257 return isLinearInner(q1, 0, 1, q2, 0, 1, i, NULL);
258 }
259
260 // FIXME: if flat measure is sufficiently large, then probably the quartic solut ion failed
261 static void relaxedIsLinear(const Quadratic& q1, const Quadratic& q2, Intersecti ons& i) {
262 double m1 = flatMeasure(q1);
263 double m2 = flatMeasure(q2);
264 #ifdef SK_DEBUG
265 double min = SkTMin(m1, m2);
266 if (min > 5) {
267 SkDebugf("%s maybe not flat enough.. %1.9g\n", __FUNCTION__, min);
268 }
269 #endif
270 i.reset();
271 const Quadratic& rounder = m2 < m1 ? q1 : q2;
272 const Quadratic& flatter = m2 < m1 ? q2 : q1;
273 bool subDivide = false;
274 isLinearInner(flatter, 0, 1, rounder, 0, 1, i, &subDivide);
275 if (subDivide) {
276 QuadraticPair pair;
277 chop_at(flatter, pair, 0.5);
278 Intersections firstI, secondI;
279 relaxedIsLinear(pair.first(), rounder, firstI);
280 for (int index = 0; index < firstI.used(); ++index) {
281 i.insert(firstI.fT[0][index] * 0.5, firstI.fT[1][index], firstI.fPt[ index]);
282 }
283 relaxedIsLinear(pair.second(), rounder, secondI);
284 for (int index = 0; index < secondI.used(); ++index) {
285 i.insert(0.5 + secondI.fT[0][index] * 0.5, secondI.fT[1][index], sec ondI.fPt[index]);
286 }
287 }
288 if (m2 < m1) {
289 i.swapPts();
290 }
291 }
292
293 #if 0
294 static void unsortableExpanse(const Quadratic& q1, const Quadratic& q2, Intersec tions& i) {
295 const Quadratic* qs[2] = { &q1, &q2 };
296 // need t values for start and end of unsortable expanse on both curves
297 // try projecting lines parallel to the end points
298 i.fT[0][0] = 0;
299 i.fT[0][1] = 1;
300 int flip = -1; // undecided
301 for (int qIdx = 0; qIdx < 2; qIdx++) {
302 for (int t = 0; t < 2; t++) {
303 _Point dxdy;
304 dxdy_at_t(*qs[qIdx], t, dxdy);
305 _Line perp;
306 perp[0] = perp[1] = (*qs[qIdx])[t == 0 ? 0 : 2];
307 perp[0].x += dxdy.y;
308 perp[0].y -= dxdy.x;
309 perp[1].x -= dxdy.y;
310 perp[1].y += dxdy.x;
311 Intersections hitData;
312 int hits = intersectRay(*qs[qIdx ^ 1], perp, hitData);
313 SkASSERT(hits <= 1);
314 if (hits) {
315 if (flip < 0) {
316 _Point dxdy2;
317 dxdy_at_t(*qs[qIdx ^ 1], hitData.fT[0][0], dxdy2);
318 double dot = dxdy.dot(dxdy2);
319 flip = dot < 0;
320 i.fT[1][0] = flip;
321 i.fT[1][1] = !flip;
322 }
323 i.fT[qIdx ^ 1][t ^ flip] = hitData.fT[0][0];
324 }
325 }
326 }
327 i.fUnsortable = true; // failed, probably coincident or near-coincident
328 i.fUsed = 2;
329 }
330 #endif
331
332 // each time through the loop, this computes values it had from the last loop
333 // if i == j == 1, the center values are still good
334 // otherwise, for i != 1 or j != 1, four of the values are still good
335 // and if i == 1 ^ j == 1, an additional value is good
336 static bool binarySearch(const Quadratic& quad1, const Quadratic& quad2, double& t1Seed,
337 double& t2Seed, _Point& pt) {
338 double tStep = ROUGH_EPSILON;
339 _Point t1[3], t2[3];
340 int calcMask = ~0;
341 do {
342 if (calcMask & (1 << 1)) t1[1] = xy_at_t(quad1, t1Seed);
343 if (calcMask & (1 << 4)) t2[1] = xy_at_t(quad2, t2Seed);
344 if (t1[1].approximatelyEqual(t2[1])) {
345 pt = t1[1];
346 #if ONE_OFF_DEBUG
347 SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) == (%1.9g,%1.9g)\n", __ FUNCTION__,
348 t1Seed, t2Seed, t1[1].x, t1[1].y, t1[2].x, t1[2].y);
349 #endif
350 return true;
351 }
352 if (calcMask & (1 << 0)) t1[0] = xy_at_t(quad1, t1Seed - tStep);
353 if (calcMask & (1 << 2)) t1[2] = xy_at_t(quad1, t1Seed + tStep);
354 if (calcMask & (1 << 3)) t2[0] = xy_at_t(quad2, t2Seed - tStep);
355 if (calcMask & (1 << 5)) t2[2] = xy_at_t(quad2, t2Seed + tStep);
356 double dist[3][3];
357 // OPTIMIZE: using calcMask value permits skipping some distance calcuat ions
358 // if prior loop's results are moved to correct slot for reuse
359 dist[1][1] = t1[1].distanceSquared(t2[1]);
360 int best_i = 1, best_j = 1;
361 for (int i = 0; i < 3; ++i) {
362 for (int j = 0; j < 3; ++j) {
363 if (i == 1 && j == 1) {
364 continue;
365 }
366 dist[i][j] = t1[i].distanceSquared(t2[j]);
367 if (dist[best_i][best_j] > dist[i][j]) {
368 best_i = i;
369 best_j = j;
370 }
371 }
372 }
373 if (best_i == 1 && best_j == 1) {
374 tStep /= 2;
375 if (tStep < FLT_EPSILON_HALF) {
376 break;
377 }
378 calcMask = (1 << 0) | (1 << 2) | (1 << 3) | (1 << 5);
379 continue;
380 }
381 if (best_i == 0) {
382 t1Seed -= tStep;
383 t1[2] = t1[1];
384 t1[1] = t1[0];
385 calcMask = 1 << 0;
386 } else if (best_i == 2) {
387 t1Seed += tStep;
388 t1[0] = t1[1];
389 t1[1] = t1[2];
390 calcMask = 1 << 2;
391 } else {
392 calcMask = 0;
393 }
394 if (best_j == 0) {
395 t2Seed -= tStep;
396 t2[2] = t2[1];
397 t2[1] = t2[0];
398 calcMask |= 1 << 3;
399 } else if (best_j == 2) {
400 t2Seed += tStep;
401 t2[0] = t2[1];
402 t2[1] = t2[2];
403 calcMask |= 1 << 5;
404 }
405 } while (true);
406 #if ONE_OFF_DEBUG
407 SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) != (%1.9g,%1.9g) %s\n", __FUNCT ION__,
408 t1Seed, t2Seed, t1[1].x, t1[1].y, t1[2].x, t1[2].y);
409 #endif
410 return false;
411 }
412
413 bool intersect2(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
414 // if the quads share an end point, check to see if they overlap
415
416 if (onlyEndPtsInCommon(q1, q2, i)) {
417 return i.intersected();
418 }
419 if (onlyEndPtsInCommon(q2, q1, i)) {
420 i.swapPts();
421 return i.intersected();
422 }
423 // see if either quad is really a line
424 if (isLinear(q1, q2, i)) {
425 return i.intersected();
426 }
427 if (isLinear(q2, q1, i)) {
428 i.swapPts();
429 return i.intersected();
430 }
431 QuadImplicitForm i1(q1);
432 QuadImplicitForm i2(q2);
433 if (i1.implicit_match(i2)) {
434 // FIXME: compute T values
435 // compute the intersections of the ends to find the coincident span
436 bool useVertical = fabs(q1[0].x - q1[2].x) < fabs(q1[0].y - q1[2].y);
437 double t;
438 if ((t = axialIntersect(q1, q2[0], useVertical)) >= 0) {
439 i.insertCoincident(t, 0, q2[0]);
440 }
441 if ((t = axialIntersect(q1, q2[2], useVertical)) >= 0) {
442 i.insertCoincident(t, 1, q2[2]);
443 }
444 useVertical = fabs(q2[0].x - q2[2].x) < fabs(q2[0].y - q2[2].y);
445 if ((t = axialIntersect(q2, q1[0], useVertical)) >= 0) {
446 i.insertCoincident(0, t, q1[0]);
447 }
448 if ((t = axialIntersect(q2, q1[2], useVertical)) >= 0) {
449 i.insertCoincident(1, t, q1[2]);
450 }
451 SkASSERT(i.coincidentUsed() <= 2);
452 return i.coincidentUsed() > 0;
453 }
454 int index;
455 bool useCubic = q1[0] == q2[0] || q1[0] == q2[2] || q1[2] == q2[0];
456 double roots1[4];
457 int rootCount = findRoots(i2, q1, roots1, useCubic, 0);
458 // OPTIMIZATION: could short circuit here if all roots are < 0 or > 1
459 double roots1Copy[4];
460 int r1Count = addValidRoots(roots1, rootCount, roots1Copy);
461 _Point pts1[4];
462 for (index = 0; index < r1Count; ++index) {
463 xy_at_t(q1, roots1Copy[index], pts1[index].x, pts1[index].y);
464 }
465 double roots2[4];
466 int rootCount2 = findRoots(i1, q2, roots2, useCubic, 0);
467 double roots2Copy[4];
468 int r2Count = addValidRoots(roots2, rootCount2, roots2Copy);
469 _Point pts2[4];
470 for (index = 0; index < r2Count; ++index) {
471 xy_at_t(q2, roots2Copy[index], pts2[index].x, pts2[index].y);
472 }
473 if (r1Count == r2Count && r1Count <= 1) {
474 if (r1Count == 1) {
475 if (pts1[0].approximatelyEqualHalf(pts2[0])) {
476 i.insert(roots1Copy[0], roots2Copy[0], pts1[0]);
477 } else if (pts1[0].moreRoughlyEqual(pts2[0])) {
478 // experiment: see if a different cubic solution provides the co rrect quartic answer
479 #if 0
480 for (int cu1 = 0; cu1 < 3; ++cu1) {
481 rootCount = findRoots(i2, q1, roots1, useCubic, cu1);
482 r1Count = addValidRoots(roots1, rootCount, roots1Copy);
483 if (r1Count == 0) {
484 continue;
485 }
486 for (int cu2 = 0; cu2 < 3; ++cu2) {
487 if (cu1 == 0 && cu2 == 0) {
488 continue;
489 }
490 rootCount2 = findRoots(i1, q2, roots2, useCubic, cu2);
491 r2Count = addValidRoots(roots2, rootCount2, roots2Copy);
492 if (r2Count == 0) {
493 continue;
494 }
495 SkASSERT(r1Count == 1 && r2Count == 1);
496 SkDebugf("*** [%d,%d] (%1.9g,%1.9g) %s (%1.9g,%1.9g)\n", cu1, cu2,
497 pts1[0].x, pts1[0].y, pts1[0].approximatelyEqual Half(pts2[0])
498 ? "==" : "!=", pts2[0].x, pts2[0].y);
499 }
500 }
501 #endif
502 // experiment: try to find intersection by chasing t
503 rootCount = findRoots(i2, q1, roots1, useCubic, 0);
504 r1Count = addValidRoots(roots1, rootCount, roots1Copy);
505 rootCount2 = findRoots(i1, q2, roots2, useCubic, 0);
506 r2Count = addValidRoots(roots2, rootCount2, roots2Copy);
507 if (binarySearch(q1, q2, roots1Copy[0], roots2Copy[0], pts1[0])) {
508 i.insert(roots1Copy[0], roots2Copy[0], pts1[0]);
509 }
510 }
511 }
512 return i.intersected();
513 }
514 int closest[4];
515 double dist[4];
516 bool foundSomething = false;
517 for (index = 0; index < r1Count; ++index) {
518 dist[index] = DBL_MAX;
519 closest[index] = -1;
520 for (int ndex2 = 0; ndex2 < r2Count; ++ndex2) {
521 if (!pts2[ndex2].approximatelyEqualHalf(pts1[index])) {
522 continue;
523 }
524 double dx = pts2[ndex2].x - pts1[index].x;
525 double dy = pts2[ndex2].y - pts1[index].y;
526 double distance = dx * dx + dy * dy;
527 if (dist[index] <= distance) {
528 continue;
529 }
530 for (int outer = 0; outer < index; ++outer) {
531 if (closest[outer] != ndex2) {
532 continue;
533 }
534 if (dist[outer] < distance) {
535 goto next;
536 }
537 closest[outer] = -1;
538 }
539 dist[index] = distance;
540 closest[index] = ndex2;
541 foundSomething = true;
542 next:
543 ;
544 }
545 }
546 if (r1Count && r2Count && !foundSomething) {
547 relaxedIsLinear(q1, q2, i);
548 return i.intersected();
549 }
550 int used = 0;
551 do {
552 double lowest = DBL_MAX;
553 int lowestIndex = -1;
554 for (index = 0; index < r1Count; ++index) {
555 if (closest[index] < 0) {
556 continue;
557 }
558 if (roots1Copy[index] < lowest) {
559 lowestIndex = index;
560 lowest = roots1Copy[index];
561 }
562 }
563 if (lowestIndex < 0) {
564 break;
565 }
566 i.insert(roots1Copy[lowestIndex], roots2Copy[closest[lowestIndex]],
567 pts1[lowestIndex]);
568 closest[lowestIndex] = -1;
569 } while (++used < r1Count);
570 i.fFlip = false;
571 return i.intersected();
572 }
OLDNEW
« no previous file with comments | « experimental/Intersection/QuadraticBounds.cpp ('k') | experimental/Intersection/QuadraticIntersection.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698