| Index: runtime/vm/regexp.h
|
| diff --git a/runtime/vm/regexp.h b/runtime/vm/regexp.h
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..921ec20dff1741d7c1c6bd15c69100743cf53510
|
| --- /dev/null
|
| +++ b/runtime/vm/regexp.h
|
| @@ -0,0 +1,1466 @@
|
| +// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
|
| +// for details. All rights reserved. Use of this source code is governed by a
|
| +// BSD-style license that can be found in the LICENSE file.
|
| +
|
| +#ifndef VM_REGEXP_H_
|
| +#define VM_REGEXP_H_
|
| +
|
| +// SNIP
|
| +
|
| +namespace dart {
|
| +
|
| +class NodeVisitor;
|
| +class RegExpCompiler;
|
| +class RegExpMacroAssembler;
|
| +class RegExpNode;
|
| +class RegExpTree;
|
| +class BoyerMooreLookahead;
|
| +
|
| +// Represents the location of one element relative to the intersection of
|
| +// two sets. Corresponds to the four areas of a Venn diagram.
|
| +enum ElementInSetsRelation {
|
| + kInsideNone = 0,
|
| + kInsideFirst = 1,
|
| + kInsideSecond = 2,
|
| + kInsideBoth = 3
|
| +};
|
| +
|
| +
|
| +// Represents code units in the range from from_ to to_, both ends are
|
| +// inclusive.
|
| +class CharacterRange {
|
| + public:
|
| + CharacterRange() : from_(0), to_(0) { }
|
| + // For compatibility with the CHECK_OK macro
|
| + CharacterRange(void* null) { DCHECK_EQ(NULL, null); } //NOLINT
|
| + CharacterRange(uc16 from, uc16 to) : from_(from), to_(to) { }
|
| + static void AddClassEscape(uc16 type, ZoneList<CharacterRange>* ranges,
|
| + Zone* zone);
|
| + static Vector<const int> GetWordBounds();
|
| + static inline CharacterRange Singleton(uc16 value) {
|
| + return CharacterRange(value, value);
|
| + }
|
| + static inline CharacterRange Range(uc16 from, uc16 to) {
|
| + DCHECK(from <= to);
|
| + return CharacterRange(from, to);
|
| + }
|
| + static inline CharacterRange Everything() {
|
| + return CharacterRange(0, 0xFFFF);
|
| + }
|
| + bool Contains(uc16 i) { return from_ <= i && i <= to_; }
|
| + uc16 from() const { return from_; }
|
| + void set_from(uc16 value) { from_ = value; }
|
| + uc16 to() const { return to_; }
|
| + void set_to(uc16 value) { to_ = value; }
|
| + bool is_valid() { return from_ <= to_; }
|
| + bool IsEverything(uc16 max) { return from_ == 0 && to_ >= max; }
|
| + bool IsSingleton() { return (from_ == to_); }
|
| + void AddCaseEquivalents(ZoneList<CharacterRange>* ranges, bool is_one_byte,
|
| + Zone* zone);
|
| + static void Split(ZoneList<CharacterRange>* base,
|
| + Vector<const int> overlay,
|
| + ZoneList<CharacterRange>** included,
|
| + ZoneList<CharacterRange>** excluded,
|
| + Zone* zone);
|
| + // Whether a range list is in canonical form: Ranges ordered by from value,
|
| + // and ranges non-overlapping and non-adjacent.
|
| + static bool IsCanonical(ZoneList<CharacterRange>* ranges);
|
| + // Convert range list to canonical form. The characters covered by the ranges
|
| + // will still be the same, but no character is in more than one range, and
|
| + // adjacent ranges are merged. The resulting list may be shorter than the
|
| + // original, but cannot be longer.
|
| + static void Canonicalize(ZoneList<CharacterRange>* ranges);
|
| + // Negate the contents of a character range in canonical form.
|
| + static void Negate(ZoneList<CharacterRange>* src,
|
| + ZoneList<CharacterRange>* dst,
|
| + Zone* zone);
|
| + static const int kStartMarker = (1 << 24);
|
| + static const int kPayloadMask = (1 << 24) - 1;
|
| +
|
| + private:
|
| + uc16 from_;
|
| + uc16 to_;
|
| +};
|
| +
|
| +
|
| +// A set of unsigned integers that behaves especially well on small
|
| +// integers (< 32). May do zone-allocation.
|
| +class OutSet: public ZoneObject {
|
| + public:
|
| + OutSet() : first_(0), remaining_(NULL), successors_(NULL) { }
|
| + OutSet* Extend(unsigned value, Zone* zone);
|
| + bool Get(unsigned value) const;
|
| + static const unsigned kFirstLimit = 32;
|
| +
|
| + private:
|
| + // Destructively set a value in this set. In most cases you want
|
| + // to use Extend instead to ensure that only one instance exists
|
| + // that contains the same values.
|
| + void Set(unsigned value, Zone* zone);
|
| +
|
| + // The successors are a list of sets that contain the same values
|
| + // as this set and the one more value that is not present in this
|
| + // set.
|
| + ZoneList<OutSet*>* successors(Zone* zone) { return successors_; }
|
| +
|
| + OutSet(uint32_t first, ZoneList<unsigned>* remaining)
|
| + : first_(first), remaining_(remaining), successors_(NULL) { }
|
| + uint32_t first_;
|
| + ZoneList<unsigned>* remaining_;
|
| + ZoneList<OutSet*>* successors_;
|
| + friend class Trace;
|
| +};
|
| +
|
| +
|
| +// A mapping from integers, specified as ranges, to a set of integers.
|
| +// Used for mapping character ranges to choices.
|
| +class DispatchTable : public ZoneObject {
|
| + public:
|
| + explicit DispatchTable(Zone* zone) : tree_(zone) { }
|
| +
|
| + class Entry {
|
| + public:
|
| + Entry() : from_(0), to_(0), out_set_(NULL) { }
|
| + Entry(uc16 from, uc16 to, OutSet* out_set)
|
| + : from_(from), to_(to), out_set_(out_set) { }
|
| + uc16 from() { return from_; }
|
| + uc16 to() { return to_; }
|
| + void set_to(uc16 value) { to_ = value; }
|
| + void AddValue(int value, Zone* zone) {
|
| + out_set_ = out_set_->Extend(value, zone);
|
| + }
|
| + OutSet* out_set() { return out_set_; }
|
| + private:
|
| + uc16 from_;
|
| + uc16 to_;
|
| + OutSet* out_set_;
|
| + };
|
| +
|
| + class Config {
|
| + public:
|
| + typedef uc16 Key;
|
| + typedef Entry Value;
|
| + static const uc16 kNoKey;
|
| + static const Entry NoValue() { return Value(); }
|
| + static inline int Compare(uc16 a, uc16 b) {
|
| + if (a == b)
|
| + return 0;
|
| + else if (a < b)
|
| + return -1;
|
| + else
|
| + return 1;
|
| + }
|
| + };
|
| +
|
| + void AddRange(CharacterRange range, int value, Zone* zone);
|
| + OutSet* Get(uc16 value);
|
| + void Dump();
|
| +
|
| + template <typename Callback>
|
| + void ForEach(Callback* callback) {
|
| + return tree()->ForEach(callback);
|
| + }
|
| +
|
| + private:
|
| + // There can't be a static empty set since it allocates its
|
| + // successors in a zone and caches them.
|
| + OutSet* empty() { return &empty_; }
|
| + OutSet empty_;
|
| + ZoneSplayTree<Config>* tree() { return &tree_; }
|
| + ZoneSplayTree<Config> tree_;
|
| +};
|
| +
|
| +
|
| +#define FOR_EACH_NODE_TYPE(VISIT) \
|
| + VISIT(End) \
|
| + VISIT(Action) \
|
| + VISIT(Choice) \
|
| + VISIT(BackReference) \
|
| + VISIT(Assertion) \
|
| + VISIT(Text)
|
| +
|
| +
|
| +#define FOR_EACH_REG_EXP_TREE_TYPE(VISIT) \
|
| + VISIT(Disjunction) \
|
| + VISIT(Alternative) \
|
| + VISIT(Assertion) \
|
| + VISIT(CharacterClass) \
|
| + VISIT(Atom) \
|
| + VISIT(Quantifier) \
|
| + VISIT(Capture) \
|
| + VISIT(Lookahead) \
|
| + VISIT(BackReference) \
|
| + VISIT(Empty) \
|
| + VISIT(Text)
|
| +
|
| +
|
| +#define FORWARD_DECLARE(Name) class RegExp##Name;
|
| +FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)
|
| +#undef FORWARD_DECLARE
|
| +
|
| +
|
| +class TextElement FINAL BASE_EMBEDDED {
|
| + public:
|
| + enum TextType {
|
| + ATOM,
|
| + CHAR_CLASS
|
| + };
|
| +
|
| + static TextElement Atom(RegExpAtom* atom);
|
| + static TextElement CharClass(RegExpCharacterClass* char_class);
|
| +
|
| + int cp_offset() const { return cp_offset_; }
|
| + void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
|
| + int length() const;
|
| +
|
| + TextType text_type() const { return text_type_; }
|
| +
|
| + RegExpTree* tree() const { return tree_; }
|
| +
|
| + RegExpAtom* atom() const {
|
| + DCHECK(text_type() == ATOM);
|
| + return reinterpret_cast<RegExpAtom*>(tree());
|
| + }
|
| +
|
| + RegExpCharacterClass* char_class() const {
|
| + DCHECK(text_type() == CHAR_CLASS);
|
| + return reinterpret_cast<RegExpCharacterClass*>(tree());
|
| + }
|
| +
|
| + private:
|
| + TextElement(TextType text_type, RegExpTree* tree)
|
| + : cp_offset_(-1), text_type_(text_type), tree_(tree) {}
|
| +
|
| + int cp_offset_;
|
| + TextType text_type_;
|
| + RegExpTree* tree_;
|
| +};
|
| +
|
| +
|
| +class Trace;
|
| +struct PreloadState;
|
| +class GreedyLoopState;
|
| +class AlternativeGenerationList;
|
| +
|
| +struct NodeInfo {
|
| + NodeInfo()
|
| + : being_analyzed(false),
|
| + been_analyzed(false),
|
| + follows_word_interest(false),
|
| + follows_newline_interest(false),
|
| + follows_start_interest(false),
|
| + at_end(false),
|
| + visited(false),
|
| + replacement_calculated(false) { }
|
| +
|
| + // Returns true if the interests and assumptions of this node
|
| + // matches the given one.
|
| + bool Matches(NodeInfo* that) {
|
| + return (at_end == that->at_end) &&
|
| + (follows_word_interest == that->follows_word_interest) &&
|
| + (follows_newline_interest == that->follows_newline_interest) &&
|
| + (follows_start_interest == that->follows_start_interest);
|
| + }
|
| +
|
| + // Updates the interests of this node given the interests of the
|
| + // node preceding it.
|
| + void AddFromPreceding(NodeInfo* that) {
|
| + at_end |= that->at_end;
|
| + follows_word_interest |= that->follows_word_interest;
|
| + follows_newline_interest |= that->follows_newline_interest;
|
| + follows_start_interest |= that->follows_start_interest;
|
| + }
|
| +
|
| + bool HasLookbehind() {
|
| + return follows_word_interest ||
|
| + follows_newline_interest ||
|
| + follows_start_interest;
|
| + }
|
| +
|
| + // Sets the interests of this node to include the interests of the
|
| + // following node.
|
| + void AddFromFollowing(NodeInfo* that) {
|
| + follows_word_interest |= that->follows_word_interest;
|
| + follows_newline_interest |= that->follows_newline_interest;
|
| + follows_start_interest |= that->follows_start_interest;
|
| + }
|
| +
|
| + void ResetCompilationState() {
|
| + being_analyzed = false;
|
| + been_analyzed = false;
|
| + }
|
| +
|
| + bool being_analyzed: 1;
|
| + bool been_analyzed: 1;
|
| +
|
| + // These bits are set of this node has to know what the preceding
|
| + // character was.
|
| + bool follows_word_interest: 1;
|
| + bool follows_newline_interest: 1;
|
| + bool follows_start_interest: 1;
|
| +
|
| + bool at_end: 1;
|
| + bool visited: 1;
|
| + bool replacement_calculated: 1;
|
| +};
|
| +
|
| +
|
| +// Details of a quick mask-compare check that can look ahead in the
|
| +// input stream.
|
| +class QuickCheckDetails {
|
| + public:
|
| + QuickCheckDetails()
|
| + : characters_(0),
|
| + mask_(0),
|
| + value_(0),
|
| + cannot_match_(false) { }
|
| + explicit QuickCheckDetails(int characters)
|
| + : characters_(characters),
|
| + mask_(0),
|
| + value_(0),
|
| + cannot_match_(false) { }
|
| + bool Rationalize(bool one_byte);
|
| + // Merge in the information from another branch of an alternation.
|
| + void Merge(QuickCheckDetails* other, int from_index);
|
| + // Advance the current position by some amount.
|
| + void Advance(int by, bool one_byte);
|
| + void Clear();
|
| + bool cannot_match() { return cannot_match_; }
|
| + void set_cannot_match() { cannot_match_ = true; }
|
| + struct Position {
|
| + Position() : mask(0), value(0), determines_perfectly(false) { }
|
| + uc16 mask;
|
| + uc16 value;
|
| + bool determines_perfectly;
|
| + };
|
| + int characters() { return characters_; }
|
| + void set_characters(int characters) { characters_ = characters; }
|
| + Position* positions(int index) {
|
| + DCHECK(index >= 0);
|
| + DCHECK(index < characters_);
|
| + return positions_ + index;
|
| + }
|
| + uint32_t mask() { return mask_; }
|
| + uint32_t value() { return value_; }
|
| +
|
| + private:
|
| + // How many characters do we have quick check information from. This is
|
| + // the same for all branches of a choice node.
|
| + int characters_;
|
| + Position positions_[4];
|
| + // These values are the condensate of the above array after Rationalize().
|
| + uint32_t mask_;
|
| + uint32_t value_;
|
| + // If set to true, there is no way this quick check can match at all.
|
| + // E.g., if it requires to be at the start of the input, and isn't.
|
| + bool cannot_match_;
|
| +};
|
| +
|
| +
|
| +extern int kUninitializedRegExpNodePlaceHolder;
|
| +
|
| +
|
| +class RegExpNode: public ZoneObject {
|
| + public:
|
| + explicit RegExpNode(Zone* zone)
|
| + : replacement_(NULL), trace_count_(0), zone_(zone) {
|
| + bm_info_[0] = bm_info_[1] = NULL;
|
| + }
|
| + virtual ~RegExpNode();
|
| + virtual void Accept(NodeVisitor* visitor) = 0;
|
| + // Generates a goto to this node or actually generates the code at this point.
|
| + virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
|
| + // How many characters must this node consume at a minimum in order to
|
| + // succeed. If we have found at least 'still_to_find' characters that
|
| + // must be consumed there is no need to ask any following nodes whether
|
| + // they are sure to eat any more characters. The not_at_start argument is
|
| + // used to indicate that we know we are not at the start of the input. In
|
| + // this case anchored branches will always fail and can be ignored when
|
| + // determining how many characters are consumed on success.
|
| + virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start) = 0;
|
| + // Emits some quick code that checks whether the preloaded characters match.
|
| + // Falls through on certain failure, jumps to the label on possible success.
|
| + // If the node cannot make a quick check it does nothing and returns false.
|
| + bool EmitQuickCheck(RegExpCompiler* compiler,
|
| + Trace* bounds_check_trace,
|
| + Trace* trace,
|
| + bool preload_has_checked_bounds,
|
| + Label* on_possible_success,
|
| + QuickCheckDetails* details_return,
|
| + bool fall_through_on_failure);
|
| + // For a given number of characters this returns a mask and a value. The
|
| + // next n characters are anded with the mask and compared with the value.
|
| + // A comparison failure indicates the node cannot match the next n characters.
|
| + // A comparison success indicates the node may match.
|
| + virtual void GetQuickCheckDetails(QuickCheckDetails* details,
|
| + RegExpCompiler* compiler,
|
| + int characters_filled_in,
|
| + bool not_at_start) = 0;
|
| + static const int kNodeIsTooComplexForGreedyLoops = -1;
|
| + virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
|
| + // Only returns the successor for a text node of length 1 that matches any
|
| + // character and that has no guards on it.
|
| + virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
|
| + RegExpCompiler* compiler) {
|
| + return NULL;
|
| + }
|
| +
|
| + // Collects information on the possible code units (mod 128) that can match if
|
| + // we look forward. This is used for a Boyer-Moore-like string searching
|
| + // implementation. TODO(erikcorry): This should share more code with
|
| + // EatsAtLeast, GetQuickCheckDetails. The budget argument is used to limit
|
| + // the number of nodes we are willing to look at in order to create this data.
|
| + static const int kRecursionBudget = 200;
|
| + virtual void FillInBMInfo(int offset,
|
| + int budget,
|
| + BoyerMooreLookahead* bm,
|
| + bool not_at_start) {
|
| + UNREACHABLE();
|
| + }
|
| +
|
| + // If we know that the input is one-byte then there are some nodes that can
|
| + // never match. This method returns a node that can be substituted for
|
| + // itself, or NULL if the node can never match.
|
| + virtual RegExpNode* FilterOneByte(int depth, bool ignore_case) {
|
| + return this;
|
| + }
|
| + // Helper for FilterOneByte.
|
| + RegExpNode* replacement() {
|
| + DCHECK(info()->replacement_calculated);
|
| + return replacement_;
|
| + }
|
| + RegExpNode* set_replacement(RegExpNode* replacement) {
|
| + info()->replacement_calculated = true;
|
| + replacement_ = replacement;
|
| + return replacement; // For convenience.
|
| + }
|
| +
|
| + // We want to avoid recalculating the lookahead info, so we store it on the
|
| + // node. Only info that is for this node is stored. We can tell that the
|
| + // info is for this node when offset == 0, so the information is calculated
|
| + // relative to this node.
|
| + void SaveBMInfo(BoyerMooreLookahead* bm, bool not_at_start, int offset) {
|
| + if (offset == 0) set_bm_info(not_at_start, bm);
|
| + }
|
| +
|
| + Label* label() { return &label_; }
|
| + // If non-generic code is generated for a node (i.e. the node is not at the
|
| + // start of the trace) then it cannot be reused. This variable sets a limit
|
| + // on how often we allow that to happen before we insist on starting a new
|
| + // trace and generating generic code for a node that can be reused by flushing
|
| + // the deferred actions in the current trace and generating a goto.
|
| + static const int kMaxCopiesCodeGenerated = 10;
|
| +
|
| + NodeInfo* info() { return &info_; }
|
| +
|
| + BoyerMooreLookahead* bm_info(bool not_at_start) {
|
| + return bm_info_[not_at_start ? 1 : 0];
|
| + }
|
| +
|
| + Zone* zone() const { return zone_; }
|
| +
|
| + protected:
|
| + enum LimitResult { DONE, CONTINUE };
|
| + RegExpNode* replacement_;
|
| +
|
| + LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
|
| +
|
| + void set_bm_info(bool not_at_start, BoyerMooreLookahead* bm) {
|
| + bm_info_[not_at_start ? 1 : 0] = bm;
|
| + }
|
| +
|
| + private:
|
| + static const int kFirstCharBudget = 10;
|
| + Label label_;
|
| + NodeInfo info_;
|
| + // This variable keeps track of how many times code has been generated for
|
| + // this node (in different traces). We don't keep track of where the
|
| + // generated code is located unless the code is generated at the start of
|
| + // a trace, in which case it is generic and can be reused by flushing the
|
| + // deferred operations in the current trace and generating a goto.
|
| + int trace_count_;
|
| + BoyerMooreLookahead* bm_info_[2];
|
| +
|
| + Zone* zone_;
|
| +};
|
| +
|
| +
|
| +// A simple closed interval.
|
| +class Interval {
|
| + public:
|
| + Interval() : from_(kNone), to_(kNone) { }
|
| + Interval(int from, int to) : from_(from), to_(to) { }
|
| + Interval Union(Interval that) {
|
| + if (that.from_ == kNone)
|
| + return *this;
|
| + else if (from_ == kNone)
|
| + return that;
|
| + else
|
| + return Interval(Min(from_, that.from_), Max(to_, that.to_));
|
| + }
|
| + bool Contains(int value) {
|
| + return (from_ <= value) && (value <= to_);
|
| + }
|
| + bool is_empty() { return from_ == kNone; }
|
| + int from() const { return from_; }
|
| + int to() const { return to_; }
|
| + static Interval Empty() { return Interval(); }
|
| + static const int kNone = -1;
|
| + private:
|
| + int from_;
|
| + int to_;
|
| +};
|
| +
|
| +
|
| +class SeqRegExpNode: public RegExpNode {
|
| + public:
|
| + explicit SeqRegExpNode(RegExpNode* on_success)
|
| + : RegExpNode(on_success->zone()), on_success_(on_success) { }
|
| + RegExpNode* on_success() { return on_success_; }
|
| + void set_on_success(RegExpNode* node) { on_success_ = node; }
|
| + virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
|
| + virtual void FillInBMInfo(int offset,
|
| + int budget,
|
| + BoyerMooreLookahead* bm,
|
| + bool not_at_start) {
|
| + on_success_->FillInBMInfo(offset, budget - 1, bm, not_at_start);
|
| + if (offset == 0) set_bm_info(not_at_start, bm);
|
| + }
|
| +
|
| + protected:
|
| + RegExpNode* FilterSuccessor(int depth, bool ignore_case);
|
| +
|
| + private:
|
| + RegExpNode* on_success_;
|
| +};
|
| +
|
| +
|
| +class ActionNode: public SeqRegExpNode {
|
| + public:
|
| + enum ActionType {
|
| + SET_REGISTER,
|
| + INCREMENT_REGISTER,
|
| + STORE_POSITION,
|
| + BEGIN_SUBMATCH,
|
| + POSITIVE_SUBMATCH_SUCCESS,
|
| + EMPTY_MATCH_CHECK,
|
| + CLEAR_CAPTURES
|
| + };
|
| + static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success);
|
| + static ActionNode* IncrementRegister(int reg, RegExpNode* on_success);
|
| + static ActionNode* StorePosition(int reg,
|
| + bool is_capture,
|
| + RegExpNode* on_success);
|
| + static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
|
| + static ActionNode* BeginSubmatch(int stack_pointer_reg,
|
| + int position_reg,
|
| + RegExpNode* on_success);
|
| + static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg,
|
| + int restore_reg,
|
| + int clear_capture_count,
|
| + int clear_capture_from,
|
| + RegExpNode* on_success);
|
| + static ActionNode* EmptyMatchCheck(int start_register,
|
| + int repetition_register,
|
| + int repetition_limit,
|
| + RegExpNode* on_success);
|
| + virtual void Accept(NodeVisitor* visitor);
|
| + virtual void Emit(RegExpCompiler* compiler, Trace* trace);
|
| + virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
|
| + virtual void GetQuickCheckDetails(QuickCheckDetails* details,
|
| + RegExpCompiler* compiler,
|
| + int filled_in,
|
| + bool not_at_start) {
|
| + return on_success()->GetQuickCheckDetails(
|
| + details, compiler, filled_in, not_at_start);
|
| + }
|
| + virtual void FillInBMInfo(int offset,
|
| + int budget,
|
| + BoyerMooreLookahead* bm,
|
| + bool not_at_start);
|
| + ActionType action_type() { return action_type_; }
|
| + // TODO(erikcorry): We should allow some action nodes in greedy loops.
|
| + virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
|
| +
|
| + private:
|
| + union {
|
| + struct {
|
| + int reg;
|
| + int value;
|
| + } u_store_register;
|
| + struct {
|
| + int reg;
|
| + } u_increment_register;
|
| + struct {
|
| + int reg;
|
| + bool is_capture;
|
| + } u_position_register;
|
| + struct {
|
| + int stack_pointer_register;
|
| + int current_position_register;
|
| + int clear_register_count;
|
| + int clear_register_from;
|
| + } u_submatch;
|
| + struct {
|
| + int start_register;
|
| + int repetition_register;
|
| + int repetition_limit;
|
| + } u_empty_match_check;
|
| + struct {
|
| + int range_from;
|
| + int range_to;
|
| + } u_clear_captures;
|
| + } data_;
|
| + ActionNode(ActionType action_type, RegExpNode* on_success)
|
| + : SeqRegExpNode(on_success),
|
| + action_type_(action_type) { }
|
| + ActionType action_type_;
|
| + friend class DotPrinter;
|
| +};
|
| +
|
| +
|
| +class TextNode: public SeqRegExpNode {
|
| + public:
|
| + TextNode(ZoneList<TextElement>* elms,
|
| + RegExpNode* on_success)
|
| + : SeqRegExpNode(on_success),
|
| + elms_(elms) { }
|
| + TextNode(RegExpCharacterClass* that,
|
| + RegExpNode* on_success)
|
| + : SeqRegExpNode(on_success),
|
| + elms_(new(zone()) ZoneList<TextElement>(1, zone())) {
|
| + elms_->Add(TextElement::CharClass(that), zone());
|
| + }
|
| + virtual void Accept(NodeVisitor* visitor);
|
| + virtual void Emit(RegExpCompiler* compiler, Trace* trace);
|
| + virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
|
| + virtual void GetQuickCheckDetails(QuickCheckDetails* details,
|
| + RegExpCompiler* compiler,
|
| + int characters_filled_in,
|
| + bool not_at_start);
|
| + ZoneList<TextElement>* elements() { return elms_; }
|
| + void MakeCaseIndependent(bool is_one_byte);
|
| + virtual int GreedyLoopTextLength();
|
| + virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
|
| + RegExpCompiler* compiler);
|
| + virtual void FillInBMInfo(int offset,
|
| + int budget,
|
| + BoyerMooreLookahead* bm,
|
| + bool not_at_start);
|
| + void CalculateOffsets();
|
| + virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
|
| +
|
| + private:
|
| + enum TextEmitPassType {
|
| + NON_LATIN1_MATCH, // Check for characters that can't match.
|
| + SIMPLE_CHARACTER_MATCH, // Case-dependent single character check.
|
| + NON_LETTER_CHARACTER_MATCH, // Check characters that have no case equivs.
|
| + CASE_CHARACTER_MATCH, // Case-independent single character check.
|
| + CHARACTER_CLASS_MATCH // Character class.
|
| + };
|
| + static bool SkipPass(int pass, bool ignore_case);
|
| + static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH;
|
| + static const int kLastPass = CHARACTER_CLASS_MATCH;
|
| + void TextEmitPass(RegExpCompiler* compiler,
|
| + TextEmitPassType pass,
|
| + bool preloaded,
|
| + Trace* trace,
|
| + bool first_element_checked,
|
| + int* checked_up_to);
|
| + int Length();
|
| + ZoneList<TextElement>* elms_;
|
| +};
|
| +
|
| +
|
| +class AssertionNode: public SeqRegExpNode {
|
| + public:
|
| + enum AssertionType {
|
| + AT_END,
|
| + AT_START,
|
| + AT_BOUNDARY,
|
| + AT_NON_BOUNDARY,
|
| + AFTER_NEWLINE
|
| + };
|
| + static AssertionNode* AtEnd(RegExpNode* on_success) {
|
| + return new(on_success->zone()) AssertionNode(AT_END, on_success);
|
| + }
|
| + static AssertionNode* AtStart(RegExpNode* on_success) {
|
| + return new(on_success->zone()) AssertionNode(AT_START, on_success);
|
| + }
|
| + static AssertionNode* AtBoundary(RegExpNode* on_success) {
|
| + return new(on_success->zone()) AssertionNode(AT_BOUNDARY, on_success);
|
| + }
|
| + static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
|
| + return new(on_success->zone()) AssertionNode(AT_NON_BOUNDARY, on_success);
|
| + }
|
| + static AssertionNode* AfterNewline(RegExpNode* on_success) {
|
| + return new(on_success->zone()) AssertionNode(AFTER_NEWLINE, on_success);
|
| + }
|
| + virtual void Accept(NodeVisitor* visitor);
|
| + virtual void Emit(RegExpCompiler* compiler, Trace* trace);
|
| + virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
|
| + virtual void GetQuickCheckDetails(QuickCheckDetails* details,
|
| + RegExpCompiler* compiler,
|
| + int filled_in,
|
| + bool not_at_start);
|
| + virtual void FillInBMInfo(int offset,
|
| + int budget,
|
| + BoyerMooreLookahead* bm,
|
| + bool not_at_start);
|
| + AssertionType assertion_type() { return assertion_type_; }
|
| +
|
| + private:
|
| + void EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace);
|
| + enum IfPrevious { kIsNonWord, kIsWord };
|
| + void BacktrackIfPrevious(RegExpCompiler* compiler,
|
| + Trace* trace,
|
| + IfPrevious backtrack_if_previous);
|
| + AssertionNode(AssertionType t, RegExpNode* on_success)
|
| + : SeqRegExpNode(on_success), assertion_type_(t) { }
|
| + AssertionType assertion_type_;
|
| +};
|
| +
|
| +
|
| +class BackReferenceNode: public SeqRegExpNode {
|
| + public:
|
| + BackReferenceNode(int start_reg,
|
| + int end_reg,
|
| + RegExpNode* on_success)
|
| + : SeqRegExpNode(on_success),
|
| + start_reg_(start_reg),
|
| + end_reg_(end_reg) { }
|
| + virtual void Accept(NodeVisitor* visitor);
|
| + int start_register() { return start_reg_; }
|
| + int end_register() { return end_reg_; }
|
| + virtual void Emit(RegExpCompiler* compiler, Trace* trace);
|
| + virtual int EatsAtLeast(int still_to_find,
|
| + int recursion_depth,
|
| + bool not_at_start);
|
| + virtual void GetQuickCheckDetails(QuickCheckDetails* details,
|
| + RegExpCompiler* compiler,
|
| + int characters_filled_in,
|
| + bool not_at_start) {
|
| + return;
|
| + }
|
| + virtual void FillInBMInfo(int offset,
|
| + int budget,
|
| + BoyerMooreLookahead* bm,
|
| + bool not_at_start);
|
| +
|
| + private:
|
| + int start_reg_;
|
| + int end_reg_;
|
| +};
|
| +
|
| +
|
| +class EndNode: public RegExpNode {
|
| + public:
|
| + enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
|
| + explicit EndNode(Action action, Zone* zone)
|
| + : RegExpNode(zone), action_(action) { }
|
| + virtual void Accept(NodeVisitor* visitor);
|
| + virtual void Emit(RegExpCompiler* compiler, Trace* trace);
|
| + virtual int EatsAtLeast(int still_to_find,
|
| + int recursion_depth,
|
| + bool not_at_start) { return 0; }
|
| + virtual void GetQuickCheckDetails(QuickCheckDetails* details,
|
| + RegExpCompiler* compiler,
|
| + int characters_filled_in,
|
| + bool not_at_start) {
|
| + // Returning 0 from EatsAtLeast should ensure we never get here.
|
| + UNREACHABLE();
|
| + }
|
| + virtual void FillInBMInfo(int offset,
|
| + int budget,
|
| + BoyerMooreLookahead* bm,
|
| + bool not_at_start) {
|
| + // Returning 0 from EatsAtLeast should ensure we never get here.
|
| + UNREACHABLE();
|
| + }
|
| +
|
| + private:
|
| + Action action_;
|
| +};
|
| +
|
| +
|
| +class NegativeSubmatchSuccess: public EndNode {
|
| + public:
|
| + NegativeSubmatchSuccess(int stack_pointer_reg,
|
| + int position_reg,
|
| + int clear_capture_count,
|
| + int clear_capture_start,
|
| + Zone* zone)
|
| + : EndNode(NEGATIVE_SUBMATCH_SUCCESS, zone),
|
| + stack_pointer_register_(stack_pointer_reg),
|
| + current_position_register_(position_reg),
|
| + clear_capture_count_(clear_capture_count),
|
| + clear_capture_start_(clear_capture_start) { }
|
| + virtual void Emit(RegExpCompiler* compiler, Trace* trace);
|
| +
|
| + private:
|
| + int stack_pointer_register_;
|
| + int current_position_register_;
|
| + int clear_capture_count_;
|
| + int clear_capture_start_;
|
| +};
|
| +
|
| +
|
| +class Guard: public ZoneObject {
|
| + public:
|
| + enum Relation { LT, GEQ };
|
| + Guard(int reg, Relation op, int value)
|
| + : reg_(reg),
|
| + op_(op),
|
| + value_(value) { }
|
| + int reg() { return reg_; }
|
| + Relation op() { return op_; }
|
| + int value() { return value_; }
|
| +
|
| + private:
|
| + int reg_;
|
| + Relation op_;
|
| + int value_;
|
| +};
|
| +
|
| +
|
| +class GuardedAlternative {
|
| + public:
|
| + explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { }
|
| + void AddGuard(Guard* guard, Zone* zone);
|
| + RegExpNode* node() { return node_; }
|
| + void set_node(RegExpNode* node) { node_ = node; }
|
| + ZoneList<Guard*>* guards() { return guards_; }
|
| +
|
| + private:
|
| + RegExpNode* node_;
|
| + ZoneList<Guard*>* guards_;
|
| +};
|
| +
|
| +
|
| +class AlternativeGeneration;
|
| +
|
| +
|
| +class ChoiceNode: public RegExpNode {
|
| + public:
|
| + explicit ChoiceNode(int expected_size, Zone* zone)
|
| + : RegExpNode(zone),
|
| + alternatives_(new(zone)
|
| + ZoneList<GuardedAlternative>(expected_size, zone)),
|
| + table_(NULL),
|
| + not_at_start_(false),
|
| + being_calculated_(false) { }
|
| + virtual void Accept(NodeVisitor* visitor);
|
| + void AddAlternative(GuardedAlternative node) {
|
| + alternatives()->Add(node, zone());
|
| + }
|
| + ZoneList<GuardedAlternative>* alternatives() { return alternatives_; }
|
| + DispatchTable* GetTable(bool ignore_case);
|
| + virtual void Emit(RegExpCompiler* compiler, Trace* trace);
|
| + virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
|
| + int EatsAtLeastHelper(int still_to_find,
|
| + int budget,
|
| + RegExpNode* ignore_this_node,
|
| + bool not_at_start);
|
| + virtual void GetQuickCheckDetails(QuickCheckDetails* details,
|
| + RegExpCompiler* compiler,
|
| + int characters_filled_in,
|
| + bool not_at_start);
|
| + virtual void FillInBMInfo(int offset,
|
| + int budget,
|
| + BoyerMooreLookahead* bm,
|
| + bool not_at_start);
|
| +
|
| + bool being_calculated() { return being_calculated_; }
|
| + bool not_at_start() { return not_at_start_; }
|
| + void set_not_at_start() { not_at_start_ = true; }
|
| + void set_being_calculated(bool b) { being_calculated_ = b; }
|
| + virtual bool try_to_emit_quick_check_for_alternative(bool is_first) {
|
| + return true;
|
| + }
|
| + virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
|
| +
|
| + protected:
|
| + int GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative);
|
| + ZoneList<GuardedAlternative>* alternatives_;
|
| +
|
| + private:
|
| + friend class DispatchTableConstructor;
|
| + friend class Analysis;
|
| + void GenerateGuard(RegExpMacroAssembler* macro_assembler,
|
| + Guard* guard,
|
| + Trace* trace);
|
| + int CalculatePreloadCharacters(RegExpCompiler* compiler, int eats_at_least);
|
| + void EmitOutOfLineContinuation(RegExpCompiler* compiler,
|
| + Trace* trace,
|
| + GuardedAlternative alternative,
|
| + AlternativeGeneration* alt_gen,
|
| + int preload_characters,
|
| + bool next_expects_preload);
|
| + void SetUpPreLoad(RegExpCompiler* compiler,
|
| + Trace* current_trace,
|
| + PreloadState* preloads);
|
| + void AssertGuardsMentionRegisters(Trace* trace);
|
| + int EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, Trace* trace);
|
| + Trace* EmitGreedyLoop(RegExpCompiler* compiler,
|
| + Trace* trace,
|
| + AlternativeGenerationList* alt_gens,
|
| + PreloadState* preloads,
|
| + GreedyLoopState* greedy_loop_state,
|
| + int text_length);
|
| + void EmitChoices(RegExpCompiler* compiler,
|
| + AlternativeGenerationList* alt_gens,
|
| + int first_choice,
|
| + Trace* trace,
|
| + PreloadState* preloads);
|
| + DispatchTable* table_;
|
| + // If true, this node is never checked at the start of the input.
|
| + // Allows a new trace to start with at_start() set to false.
|
| + bool not_at_start_;
|
| + bool being_calculated_;
|
| +};
|
| +
|
| +
|
| +class NegativeLookaheadChoiceNode: public ChoiceNode {
|
| + public:
|
| + explicit NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,
|
| + GuardedAlternative then_do_this,
|
| + Zone* zone)
|
| + : ChoiceNode(2, zone) {
|
| + AddAlternative(this_must_fail);
|
| + AddAlternative(then_do_this);
|
| + }
|
| + virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
|
| + virtual void GetQuickCheckDetails(QuickCheckDetails* details,
|
| + RegExpCompiler* compiler,
|
| + int characters_filled_in,
|
| + bool not_at_start);
|
| + virtual void FillInBMInfo(int offset,
|
| + int budget,
|
| + BoyerMooreLookahead* bm,
|
| + bool not_at_start) {
|
| + alternatives_->at(1).node()->FillInBMInfo(
|
| + offset, budget - 1, bm, not_at_start);
|
| + if (offset == 0) set_bm_info(not_at_start, bm);
|
| + }
|
| + // For a negative lookahead we don't emit the quick check for the
|
| + // alternative that is expected to fail. This is because quick check code
|
| + // starts by loading enough characters for the alternative that takes fewest
|
| + // characters, but on a negative lookahead the negative branch did not take
|
| + // part in that calculation (EatsAtLeast) so the assumptions don't hold.
|
| + virtual bool try_to_emit_quick_check_for_alternative(bool is_first) {
|
| + return !is_first;
|
| + }
|
| + virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
|
| +};
|
| +
|
| +
|
| +class LoopChoiceNode: public ChoiceNode {
|
| + public:
|
| + explicit LoopChoiceNode(bool body_can_be_zero_length, Zone* zone)
|
| + : ChoiceNode(2, zone),
|
| + loop_node_(NULL),
|
| + continue_node_(NULL),
|
| + body_can_be_zero_length_(body_can_be_zero_length)
|
| + { }
|
| + void AddLoopAlternative(GuardedAlternative alt);
|
| + void AddContinueAlternative(GuardedAlternative alt);
|
| + virtual void Emit(RegExpCompiler* compiler, Trace* trace);
|
| + virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
|
| + virtual void GetQuickCheckDetails(QuickCheckDetails* details,
|
| + RegExpCompiler* compiler,
|
| + int characters_filled_in,
|
| + bool not_at_start);
|
| + virtual void FillInBMInfo(int offset,
|
| + int budget,
|
| + BoyerMooreLookahead* bm,
|
| + bool not_at_start);
|
| + RegExpNode* loop_node() { return loop_node_; }
|
| + RegExpNode* continue_node() { return continue_node_; }
|
| + bool body_can_be_zero_length() { return body_can_be_zero_length_; }
|
| + virtual void Accept(NodeVisitor* visitor);
|
| + virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
|
| +
|
| + private:
|
| + // AddAlternative is made private for loop nodes because alternatives
|
| + // should not be added freely, we need to keep track of which node
|
| + // goes back to the node itself.
|
| + void AddAlternative(GuardedAlternative node) {
|
| + ChoiceNode::AddAlternative(node);
|
| + }
|
| +
|
| + RegExpNode* loop_node_;
|
| + RegExpNode* continue_node_;
|
| + bool body_can_be_zero_length_;
|
| +};
|
| +
|
| +
|
| +// Improve the speed that we scan for an initial point where a non-anchored
|
| +// regexp can match by using a Boyer-Moore-like table. This is done by
|
| +// identifying non-greedy non-capturing loops in the nodes that eat any
|
| +// character one at a time. For example in the middle of the regexp
|
| +// /foo[\s\S]*?bar/ we find such a loop. There is also such a loop implicitly
|
| +// inserted at the start of any non-anchored regexp.
|
| +//
|
| +// When we have found such a loop we look ahead in the nodes to find the set of
|
| +// characters that can come at given distances. For example for the regexp
|
| +// /.?foo/ we know that there are at least 3 characters ahead of us, and the
|
| +// sets of characters that can occur are [any, [f, o], [o]]. We find a range in
|
| +// the lookahead info where the set of characters is reasonably constrained. In
|
| +// our example this is from index 1 to 2 (0 is not constrained). We can now
|
| +// look 3 characters ahead and if we don't find one of [f, o] (the union of
|
| +// [f, o] and [o]) then we can skip forwards by the range size (in this case 2).
|
| +//
|
| +// For Unicode input strings we do the same, but modulo 128.
|
| +//
|
| +// We also look at the first string fed to the regexp and use that to get a hint
|
| +// of the character frequencies in the inputs. This affects the assessment of
|
| +// whether the set of characters is 'reasonably constrained'.
|
| +//
|
| +// We also have another lookahead mechanism (called quick check in the code),
|
| +// which uses a wide load of multiple characters followed by a mask and compare
|
| +// to determine whether a match is possible at this point.
|
| +enum ContainedInLattice {
|
| + kNotYet = 0,
|
| + kLatticeIn = 1,
|
| + kLatticeOut = 2,
|
| + kLatticeUnknown = 3 // Can also mean both in and out.
|
| +};
|
| +
|
| +
|
| +inline ContainedInLattice Combine(ContainedInLattice a, ContainedInLattice b) {
|
| + return static_cast<ContainedInLattice>(a | b);
|
| +}
|
| +
|
| +
|
| +ContainedInLattice AddRange(ContainedInLattice a,
|
| + const int* ranges,
|
| + int ranges_size,
|
| + Interval new_range);
|
| +
|
| +
|
| +class BoyerMoorePositionInfo : public ZoneObject {
|
| + public:
|
| + explicit BoyerMoorePositionInfo(Zone* zone)
|
| + : map_(new(zone) ZoneList<bool>(kMapSize, zone)),
|
| + map_count_(0),
|
| + w_(kNotYet),
|
| + s_(kNotYet),
|
| + d_(kNotYet),
|
| + surrogate_(kNotYet) {
|
| + for (int i = 0; i < kMapSize; i++) {
|
| + map_->Add(false, zone);
|
| + }
|
| + }
|
| +
|
| + bool& at(int i) { return map_->at(i); }
|
| +
|
| + static const int kMapSize = 128;
|
| + static const int kMask = kMapSize - 1;
|
| +
|
| + int map_count() const { return map_count_; }
|
| +
|
| + void Set(int character);
|
| + void SetInterval(const Interval& interval);
|
| + void SetAll();
|
| + bool is_non_word() { return w_ == kLatticeOut; }
|
| + bool is_word() { return w_ == kLatticeIn; }
|
| +
|
| + private:
|
| + ZoneList<bool>* map_;
|
| + int map_count_; // Number of set bits in the map.
|
| + ContainedInLattice w_; // The \w character class.
|
| + ContainedInLattice s_; // The \s character class.
|
| + ContainedInLattice d_; // The \d character class.
|
| + ContainedInLattice surrogate_; // Surrogate UTF-16 code units.
|
| +};
|
| +
|
| +
|
| +class BoyerMooreLookahead : public ZoneObject {
|
| + public:
|
| + BoyerMooreLookahead(int length, RegExpCompiler* compiler, Zone* zone);
|
| +
|
| + int length() { return length_; }
|
| + int max_char() { return max_char_; }
|
| + RegExpCompiler* compiler() { return compiler_; }
|
| +
|
| + int Count(int map_number) {
|
| + return bitmaps_->at(map_number)->map_count();
|
| + }
|
| +
|
| + BoyerMoorePositionInfo* at(int i) { return bitmaps_->at(i); }
|
| +
|
| + void Set(int map_number, int character) {
|
| + if (character > max_char_) return;
|
| + BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
|
| + info->Set(character);
|
| + }
|
| +
|
| + void SetInterval(int map_number, const Interval& interval) {
|
| + if (interval.from() > max_char_) return;
|
| + BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
|
| + if (interval.to() > max_char_) {
|
| + info->SetInterval(Interval(interval.from(), max_char_));
|
| + } else {
|
| + info->SetInterval(interval);
|
| + }
|
| + }
|
| +
|
| + void SetAll(int map_number) {
|
| + bitmaps_->at(map_number)->SetAll();
|
| + }
|
| +
|
| + void SetRest(int from_map) {
|
| + for (int i = from_map; i < length_; i++) SetAll(i);
|
| + }
|
| + void EmitSkipInstructions(RegExpMacroAssembler* masm);
|
| +
|
| + private:
|
| + // This is the value obtained by EatsAtLeast. If we do not have at least this
|
| + // many characters left in the sample string then the match is bound to fail.
|
| + // Therefore it is OK to read a character this far ahead of the current match
|
| + // point.
|
| + int length_;
|
| + RegExpCompiler* compiler_;
|
| + // 0xff for Latin1, 0xffff for UTF-16.
|
| + int max_char_;
|
| + ZoneList<BoyerMoorePositionInfo*>* bitmaps_;
|
| +
|
| + int GetSkipTable(int min_lookahead,
|
| + int max_lookahead,
|
| + Handle<ByteArray> boolean_skip_table);
|
| + bool FindWorthwhileInterval(int* from, int* to);
|
| + int FindBestInterval(
|
| + int max_number_of_chars, int old_biggest_points, int* from, int* to);
|
| +};
|
| +
|
| +
|
| +// There are many ways to generate code for a node. This class encapsulates
|
| +// the current way we should be generating. In other words it encapsulates
|
| +// the current state of the code generator. The effect of this is that we
|
| +// generate code for paths that the matcher can take through the regular
|
| +// expression. A given node in the regexp can be code-generated several times
|
| +// as it can be part of several traces. For example for the regexp:
|
| +// /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
|
| +// of the foo-bar-baz trace and once as part of the foo-ip-baz trace. The code
|
| +// to match foo is generated only once (the traces have a common prefix). The
|
| +// code to store the capture is deferred and generated (twice) after the places
|
| +// where baz has been matched.
|
| +class Trace {
|
| + public:
|
| + // A value for a property that is either known to be true, know to be false,
|
| + // or not known.
|
| + enum TriBool {
|
| + UNKNOWN = -1, FALSE_VALUE = 0, TRUE_VALUE = 1
|
| + };
|
| +
|
| + class DeferredAction {
|
| + public:
|
| + DeferredAction(ActionNode::ActionType action_type, int reg)
|
| + : action_type_(action_type), reg_(reg), next_(NULL) { }
|
| + DeferredAction* next() { return next_; }
|
| + bool Mentions(int reg);
|
| + int reg() { return reg_; }
|
| + ActionNode::ActionType action_type() { return action_type_; }
|
| + private:
|
| + ActionNode::ActionType action_type_;
|
| + int reg_;
|
| + DeferredAction* next_;
|
| + friend class Trace;
|
| + };
|
| +
|
| + class DeferredCapture : public DeferredAction {
|
| + public:
|
| + DeferredCapture(int reg, bool is_capture, Trace* trace)
|
| + : DeferredAction(ActionNode::STORE_POSITION, reg),
|
| + cp_offset_(trace->cp_offset()),
|
| + is_capture_(is_capture) { }
|
| + int cp_offset() { return cp_offset_; }
|
| + bool is_capture() { return is_capture_; }
|
| + private:
|
| + int cp_offset_;
|
| + bool is_capture_;
|
| + void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
|
| + };
|
| +
|
| + class DeferredSetRegister : public DeferredAction {
|
| + public:
|
| + DeferredSetRegister(int reg, int value)
|
| + : DeferredAction(ActionNode::SET_REGISTER, reg),
|
| + value_(value) { }
|
| + int value() { return value_; }
|
| + private:
|
| + int value_;
|
| + };
|
| +
|
| + class DeferredClearCaptures : public DeferredAction {
|
| + public:
|
| + explicit DeferredClearCaptures(Interval range)
|
| + : DeferredAction(ActionNode::CLEAR_CAPTURES, -1),
|
| + range_(range) { }
|
| + Interval range() { return range_; }
|
| + private:
|
| + Interval range_;
|
| + };
|
| +
|
| + class DeferredIncrementRegister : public DeferredAction {
|
| + public:
|
| + explicit DeferredIncrementRegister(int reg)
|
| + : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { }
|
| + };
|
| +
|
| + Trace()
|
| + : cp_offset_(0),
|
| + actions_(NULL),
|
| + backtrack_(NULL),
|
| + stop_node_(NULL),
|
| + loop_label_(NULL),
|
| + characters_preloaded_(0),
|
| + bound_checked_up_to_(0),
|
| + flush_budget_(100),
|
| + at_start_(UNKNOWN) { }
|
| +
|
| + // End the trace. This involves flushing the deferred actions in the trace
|
| + // and pushing a backtrack location onto the backtrack stack. Once this is
|
| + // done we can start a new trace or go to one that has already been
|
| + // generated.
|
| + void Flush(RegExpCompiler* compiler, RegExpNode* successor);
|
| + int cp_offset() { return cp_offset_; }
|
| + DeferredAction* actions() { return actions_; }
|
| + // A trivial trace is one that has no deferred actions or other state that
|
| + // affects the assumptions used when generating code. There is no recorded
|
| + // backtrack location in a trivial trace, so with a trivial trace we will
|
| + // generate code that, on a failure to match, gets the backtrack location
|
| + // from the backtrack stack rather than using a direct jump instruction. We
|
| + // always start code generation with a trivial trace and non-trivial traces
|
| + // are created as we emit code for nodes or add to the list of deferred
|
| + // actions in the trace. The location of the code generated for a node using
|
| + // a trivial trace is recorded in a label in the node so that gotos can be
|
| + // generated to that code.
|
| + bool is_trivial() {
|
| + return backtrack_ == NULL &&
|
| + actions_ == NULL &&
|
| + cp_offset_ == 0 &&
|
| + characters_preloaded_ == 0 &&
|
| + bound_checked_up_to_ == 0 &&
|
| + quick_check_performed_.characters() == 0 &&
|
| + at_start_ == UNKNOWN;
|
| + }
|
| + TriBool at_start() { return at_start_; }
|
| + void set_at_start(bool at_start) {
|
| + at_start_ = at_start ? TRUE_VALUE : FALSE_VALUE;
|
| + }
|
| + Label* backtrack() { return backtrack_; }
|
| + Label* loop_label() { return loop_label_; }
|
| + RegExpNode* stop_node() { return stop_node_; }
|
| + int characters_preloaded() { return characters_preloaded_; }
|
| + int bound_checked_up_to() { return bound_checked_up_to_; }
|
| + int flush_budget() { return flush_budget_; }
|
| + QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
|
| + bool mentions_reg(int reg);
|
| + // Returns true if a deferred position store exists to the specified
|
| + // register and stores the offset in the out-parameter. Otherwise
|
| + // returns false.
|
| + bool GetStoredPosition(int reg, int* cp_offset);
|
| + // These set methods and AdvanceCurrentPositionInTrace should be used only on
|
| + // new traces - the intention is that traces are immutable after creation.
|
| + void add_action(DeferredAction* new_action) {
|
| + DCHECK(new_action->next_ == NULL);
|
| + new_action->next_ = actions_;
|
| + actions_ = new_action;
|
| + }
|
| + void set_backtrack(Label* backtrack) { backtrack_ = backtrack; }
|
| + void set_stop_node(RegExpNode* node) { stop_node_ = node; }
|
| + void set_loop_label(Label* label) { loop_label_ = label; }
|
| + void set_characters_preloaded(int count) { characters_preloaded_ = count; }
|
| + void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; }
|
| + void set_flush_budget(int to) { flush_budget_ = to; }
|
| + void set_quick_check_performed(QuickCheckDetails* d) {
|
| + quick_check_performed_ = *d;
|
| + }
|
| + void InvalidateCurrentCharacter();
|
| + void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler);
|
| +
|
| + private:
|
| + int FindAffectedRegisters(OutSet* affected_registers, Zone* zone);
|
| + void PerformDeferredActions(RegExpMacroAssembler* macro,
|
| + int max_register,
|
| + const OutSet& affected_registers,
|
| + OutSet* registers_to_pop,
|
| + OutSet* registers_to_clear,
|
| + Zone* zone);
|
| + void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
|
| + int max_register,
|
| + const OutSet& registers_to_pop,
|
| + const OutSet& registers_to_clear);
|
| + int cp_offset_;
|
| + DeferredAction* actions_;
|
| + Label* backtrack_;
|
| + RegExpNode* stop_node_;
|
| + Label* loop_label_;
|
| + int characters_preloaded_;
|
| + int bound_checked_up_to_;
|
| + QuickCheckDetails quick_check_performed_;
|
| + int flush_budget_;
|
| + TriBool at_start_;
|
| +};
|
| +
|
| +
|
| +class GreedyLoopState {
|
| + public:
|
| + explicit GreedyLoopState(bool not_at_start);
|
| +
|
| + Label* label() { return &label_; }
|
| + Trace* counter_backtrack_trace() { return &counter_backtrack_trace_; }
|
| +
|
| + private:
|
| + Label label_;
|
| + Trace counter_backtrack_trace_;
|
| +};
|
| +
|
| +
|
| +struct PreloadState {
|
| + static const int kEatsAtLeastNotYetInitialized = -1;
|
| + bool preload_is_current_;
|
| + bool preload_has_checked_bounds_;
|
| + int preload_characters_;
|
| + int eats_at_least_;
|
| + void init() {
|
| + eats_at_least_ = kEatsAtLeastNotYetInitialized;
|
| + }
|
| +};
|
| +
|
| +
|
| +class NodeVisitor {
|
| + public:
|
| + virtual ~NodeVisitor() { }
|
| +#define DECLARE_VISIT(Type) \
|
| + virtual void Visit##Type(Type##Node* that) = 0;
|
| +FOR_EACH_NODE_TYPE(DECLARE_VISIT)
|
| +#undef DECLARE_VISIT
|
| + virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
|
| +};
|
| +
|
| +
|
| +// Node visitor used to add the start set of the alternatives to the
|
| +// dispatch table of a choice node.
|
| +class DispatchTableConstructor: public NodeVisitor {
|
| + public:
|
| + DispatchTableConstructor(DispatchTable* table, bool ignore_case,
|
| + Zone* zone)
|
| + : table_(table),
|
| + choice_index_(-1),
|
| + ignore_case_(ignore_case),
|
| + zone_(zone) { }
|
| +
|
| + void BuildTable(ChoiceNode* node);
|
| +
|
| + void AddRange(CharacterRange range) {
|
| + table()->AddRange(range, choice_index_, zone_);
|
| + }
|
| +
|
| + void AddInverse(ZoneList<CharacterRange>* ranges);
|
| +
|
| +#define DECLARE_VISIT(Type) \
|
| + virtual void Visit##Type(Type##Node* that);
|
| +FOR_EACH_NODE_TYPE(DECLARE_VISIT)
|
| +#undef DECLARE_VISIT
|
| +
|
| + DispatchTable* table() { return table_; }
|
| + void set_choice_index(int value) { choice_index_ = value; }
|
| +
|
| + protected:
|
| + DispatchTable* table_;
|
| + int choice_index_;
|
| + bool ignore_case_;
|
| + Zone* zone_;
|
| +};
|
| +
|
| +
|
| +// Assertion propagation moves information about assertions such as
|
| +// \b to the affected nodes. For instance, in /.\b./ information must
|
| +// be propagated to the first '.' that whatever follows needs to know
|
| +// if it matched a word or a non-word, and to the second '.' that it
|
| +// has to check if it succeeds a word or non-word. In this case the
|
| +// result will be something like:
|
| +//
|
| +// +-------+ +------------+
|
| +// | . | | . |
|
| +// +-------+ ---> +------------+
|
| +// | word? | | check word |
|
| +// +-------+ +------------+
|
| +class Analysis: public NodeVisitor {
|
| + public:
|
| + Analysis(bool ignore_case, bool is_one_byte)
|
| + : ignore_case_(ignore_case),
|
| + is_one_byte_(is_one_byte),
|
| + error_message_(NULL) {}
|
| + void EnsureAnalyzed(RegExpNode* node);
|
| +
|
| +#define DECLARE_VISIT(Type) \
|
| + virtual void Visit##Type(Type##Node* that);
|
| +FOR_EACH_NODE_TYPE(DECLARE_VISIT)
|
| +#undef DECLARE_VISIT
|
| + virtual void VisitLoopChoice(LoopChoiceNode* that);
|
| +
|
| + bool has_failed() { return error_message_ != NULL; }
|
| + const char* error_message() {
|
| + DCHECK(error_message_ != NULL);
|
| + return error_message_;
|
| + }
|
| + void fail(const char* error_message) {
|
| + error_message_ = error_message;
|
| + }
|
| +
|
| + private:
|
| + bool ignore_case_;
|
| + bool is_one_byte_;
|
| + const char* error_message_;
|
| +
|
| + DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
|
| +};
|
| +
|
| +
|
| +struct RegExpCompileData {
|
| + RegExpCompileData()
|
| + : tree(NULL),
|
| + node(NULL),
|
| + simple(true),
|
| + contains_anchor(false),
|
| + capture_count(0) { }
|
| + RegExpTree* tree;
|
| + RegExpNode* node;
|
| + bool simple;
|
| + bool contains_anchor;
|
| + Handle<String> error;
|
| + int capture_count;
|
| +};
|
| +
|
| +
|
| +class RegExpEngine: public AllStatic {
|
| + public:
|
| + struct CompilationResult {
|
| + CompilationResult(Isolate* isolate, const char* error_message)
|
| + : error_message(error_message),
|
| + code(isolate->heap()->the_hole_value()),
|
| + num_registers(0) {}
|
| + CompilationResult(Object* code, int registers)
|
| + : error_message(NULL),
|
| + code(code),
|
| + num_registers(registers) {}
|
| + const char* error_message;
|
| + Object* code;
|
| + int num_registers;
|
| + };
|
| +
|
| + static CompilationResult Compile(RegExpCompileData* input, bool ignore_case,
|
| + bool global, bool multiline, bool sticky,
|
| + Handle<String> pattern,
|
| + Handle<String> sample_subject,
|
| + bool is_one_byte, Zone* zone);
|
| +
|
| + static void DotPrint(const char* label, RegExpNode* node, bool ignore_case);
|
| +};
|
| +
|
| +} // namespace dart
|
| +
|
| +#endif // VM_REGEXP_H_
|
|
|