Index: runtime/vm/regexp.h |
diff --git a/runtime/vm/regexp.h b/runtime/vm/regexp.h |
new file mode 100644 |
index 0000000000000000000000000000000000000000..921ec20dff1741d7c1c6bd15c69100743cf53510 |
--- /dev/null |
+++ b/runtime/vm/regexp.h |
@@ -0,0 +1,1466 @@ |
+// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file |
+// for details. All rights reserved. Use of this source code is governed by a |
+// BSD-style license that can be found in the LICENSE file. |
+ |
+#ifndef VM_REGEXP_H_ |
+#define VM_REGEXP_H_ |
+ |
+// SNIP |
+ |
+namespace dart { |
+ |
+class NodeVisitor; |
+class RegExpCompiler; |
+class RegExpMacroAssembler; |
+class RegExpNode; |
+class RegExpTree; |
+class BoyerMooreLookahead; |
+ |
+// Represents the location of one element relative to the intersection of |
+// two sets. Corresponds to the four areas of a Venn diagram. |
+enum ElementInSetsRelation { |
+ kInsideNone = 0, |
+ kInsideFirst = 1, |
+ kInsideSecond = 2, |
+ kInsideBoth = 3 |
+}; |
+ |
+ |
+// Represents code units in the range from from_ to to_, both ends are |
+// inclusive. |
+class CharacterRange { |
+ public: |
+ CharacterRange() : from_(0), to_(0) { } |
+ // For compatibility with the CHECK_OK macro |
+ CharacterRange(void* null) { DCHECK_EQ(NULL, null); } //NOLINT |
+ CharacterRange(uc16 from, uc16 to) : from_(from), to_(to) { } |
+ static void AddClassEscape(uc16 type, ZoneList<CharacterRange>* ranges, |
+ Zone* zone); |
+ static Vector<const int> GetWordBounds(); |
+ static inline CharacterRange Singleton(uc16 value) { |
+ return CharacterRange(value, value); |
+ } |
+ static inline CharacterRange Range(uc16 from, uc16 to) { |
+ DCHECK(from <= to); |
+ return CharacterRange(from, to); |
+ } |
+ static inline CharacterRange Everything() { |
+ return CharacterRange(0, 0xFFFF); |
+ } |
+ bool Contains(uc16 i) { return from_ <= i && i <= to_; } |
+ uc16 from() const { return from_; } |
+ void set_from(uc16 value) { from_ = value; } |
+ uc16 to() const { return to_; } |
+ void set_to(uc16 value) { to_ = value; } |
+ bool is_valid() { return from_ <= to_; } |
+ bool IsEverything(uc16 max) { return from_ == 0 && to_ >= max; } |
+ bool IsSingleton() { return (from_ == to_); } |
+ void AddCaseEquivalents(ZoneList<CharacterRange>* ranges, bool is_one_byte, |
+ Zone* zone); |
+ static void Split(ZoneList<CharacterRange>* base, |
+ Vector<const int> overlay, |
+ ZoneList<CharacterRange>** included, |
+ ZoneList<CharacterRange>** excluded, |
+ Zone* zone); |
+ // Whether a range list is in canonical form: Ranges ordered by from value, |
+ // and ranges non-overlapping and non-adjacent. |
+ static bool IsCanonical(ZoneList<CharacterRange>* ranges); |
+ // Convert range list to canonical form. The characters covered by the ranges |
+ // will still be the same, but no character is in more than one range, and |
+ // adjacent ranges are merged. The resulting list may be shorter than the |
+ // original, but cannot be longer. |
+ static void Canonicalize(ZoneList<CharacterRange>* ranges); |
+ // Negate the contents of a character range in canonical form. |
+ static void Negate(ZoneList<CharacterRange>* src, |
+ ZoneList<CharacterRange>* dst, |
+ Zone* zone); |
+ static const int kStartMarker = (1 << 24); |
+ static const int kPayloadMask = (1 << 24) - 1; |
+ |
+ private: |
+ uc16 from_; |
+ uc16 to_; |
+}; |
+ |
+ |
+// A set of unsigned integers that behaves especially well on small |
+// integers (< 32). May do zone-allocation. |
+class OutSet: public ZoneObject { |
+ public: |
+ OutSet() : first_(0), remaining_(NULL), successors_(NULL) { } |
+ OutSet* Extend(unsigned value, Zone* zone); |
+ bool Get(unsigned value) const; |
+ static const unsigned kFirstLimit = 32; |
+ |
+ private: |
+ // Destructively set a value in this set. In most cases you want |
+ // to use Extend instead to ensure that only one instance exists |
+ // that contains the same values. |
+ void Set(unsigned value, Zone* zone); |
+ |
+ // The successors are a list of sets that contain the same values |
+ // as this set and the one more value that is not present in this |
+ // set. |
+ ZoneList<OutSet*>* successors(Zone* zone) { return successors_; } |
+ |
+ OutSet(uint32_t first, ZoneList<unsigned>* remaining) |
+ : first_(first), remaining_(remaining), successors_(NULL) { } |
+ uint32_t first_; |
+ ZoneList<unsigned>* remaining_; |
+ ZoneList<OutSet*>* successors_; |
+ friend class Trace; |
+}; |
+ |
+ |
+// A mapping from integers, specified as ranges, to a set of integers. |
+// Used for mapping character ranges to choices. |
+class DispatchTable : public ZoneObject { |
+ public: |
+ explicit DispatchTable(Zone* zone) : tree_(zone) { } |
+ |
+ class Entry { |
+ public: |
+ Entry() : from_(0), to_(0), out_set_(NULL) { } |
+ Entry(uc16 from, uc16 to, OutSet* out_set) |
+ : from_(from), to_(to), out_set_(out_set) { } |
+ uc16 from() { return from_; } |
+ uc16 to() { return to_; } |
+ void set_to(uc16 value) { to_ = value; } |
+ void AddValue(int value, Zone* zone) { |
+ out_set_ = out_set_->Extend(value, zone); |
+ } |
+ OutSet* out_set() { return out_set_; } |
+ private: |
+ uc16 from_; |
+ uc16 to_; |
+ OutSet* out_set_; |
+ }; |
+ |
+ class Config { |
+ public: |
+ typedef uc16 Key; |
+ typedef Entry Value; |
+ static const uc16 kNoKey; |
+ static const Entry NoValue() { return Value(); } |
+ static inline int Compare(uc16 a, uc16 b) { |
+ if (a == b) |
+ return 0; |
+ else if (a < b) |
+ return -1; |
+ else |
+ return 1; |
+ } |
+ }; |
+ |
+ void AddRange(CharacterRange range, int value, Zone* zone); |
+ OutSet* Get(uc16 value); |
+ void Dump(); |
+ |
+ template <typename Callback> |
+ void ForEach(Callback* callback) { |
+ return tree()->ForEach(callback); |
+ } |
+ |
+ private: |
+ // There can't be a static empty set since it allocates its |
+ // successors in a zone and caches them. |
+ OutSet* empty() { return &empty_; } |
+ OutSet empty_; |
+ ZoneSplayTree<Config>* tree() { return &tree_; } |
+ ZoneSplayTree<Config> tree_; |
+}; |
+ |
+ |
+#define FOR_EACH_NODE_TYPE(VISIT) \ |
+ VISIT(End) \ |
+ VISIT(Action) \ |
+ VISIT(Choice) \ |
+ VISIT(BackReference) \ |
+ VISIT(Assertion) \ |
+ VISIT(Text) |
+ |
+ |
+#define FOR_EACH_REG_EXP_TREE_TYPE(VISIT) \ |
+ VISIT(Disjunction) \ |
+ VISIT(Alternative) \ |
+ VISIT(Assertion) \ |
+ VISIT(CharacterClass) \ |
+ VISIT(Atom) \ |
+ VISIT(Quantifier) \ |
+ VISIT(Capture) \ |
+ VISIT(Lookahead) \ |
+ VISIT(BackReference) \ |
+ VISIT(Empty) \ |
+ VISIT(Text) |
+ |
+ |
+#define FORWARD_DECLARE(Name) class RegExp##Name; |
+FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE) |
+#undef FORWARD_DECLARE |
+ |
+ |
+class TextElement FINAL BASE_EMBEDDED { |
+ public: |
+ enum TextType { |
+ ATOM, |
+ CHAR_CLASS |
+ }; |
+ |
+ static TextElement Atom(RegExpAtom* atom); |
+ static TextElement CharClass(RegExpCharacterClass* char_class); |
+ |
+ int cp_offset() const { return cp_offset_; } |
+ void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; } |
+ int length() const; |
+ |
+ TextType text_type() const { return text_type_; } |
+ |
+ RegExpTree* tree() const { return tree_; } |
+ |
+ RegExpAtom* atom() const { |
+ DCHECK(text_type() == ATOM); |
+ return reinterpret_cast<RegExpAtom*>(tree()); |
+ } |
+ |
+ RegExpCharacterClass* char_class() const { |
+ DCHECK(text_type() == CHAR_CLASS); |
+ return reinterpret_cast<RegExpCharacterClass*>(tree()); |
+ } |
+ |
+ private: |
+ TextElement(TextType text_type, RegExpTree* tree) |
+ : cp_offset_(-1), text_type_(text_type), tree_(tree) {} |
+ |
+ int cp_offset_; |
+ TextType text_type_; |
+ RegExpTree* tree_; |
+}; |
+ |
+ |
+class Trace; |
+struct PreloadState; |
+class GreedyLoopState; |
+class AlternativeGenerationList; |
+ |
+struct NodeInfo { |
+ NodeInfo() |
+ : being_analyzed(false), |
+ been_analyzed(false), |
+ follows_word_interest(false), |
+ follows_newline_interest(false), |
+ follows_start_interest(false), |
+ at_end(false), |
+ visited(false), |
+ replacement_calculated(false) { } |
+ |
+ // Returns true if the interests and assumptions of this node |
+ // matches the given one. |
+ bool Matches(NodeInfo* that) { |
+ return (at_end == that->at_end) && |
+ (follows_word_interest == that->follows_word_interest) && |
+ (follows_newline_interest == that->follows_newline_interest) && |
+ (follows_start_interest == that->follows_start_interest); |
+ } |
+ |
+ // Updates the interests of this node given the interests of the |
+ // node preceding it. |
+ void AddFromPreceding(NodeInfo* that) { |
+ at_end |= that->at_end; |
+ follows_word_interest |= that->follows_word_interest; |
+ follows_newline_interest |= that->follows_newline_interest; |
+ follows_start_interest |= that->follows_start_interest; |
+ } |
+ |
+ bool HasLookbehind() { |
+ return follows_word_interest || |
+ follows_newline_interest || |
+ follows_start_interest; |
+ } |
+ |
+ // Sets the interests of this node to include the interests of the |
+ // following node. |
+ void AddFromFollowing(NodeInfo* that) { |
+ follows_word_interest |= that->follows_word_interest; |
+ follows_newline_interest |= that->follows_newline_interest; |
+ follows_start_interest |= that->follows_start_interest; |
+ } |
+ |
+ void ResetCompilationState() { |
+ being_analyzed = false; |
+ been_analyzed = false; |
+ } |
+ |
+ bool being_analyzed: 1; |
+ bool been_analyzed: 1; |
+ |
+ // These bits are set of this node has to know what the preceding |
+ // character was. |
+ bool follows_word_interest: 1; |
+ bool follows_newline_interest: 1; |
+ bool follows_start_interest: 1; |
+ |
+ bool at_end: 1; |
+ bool visited: 1; |
+ bool replacement_calculated: 1; |
+}; |
+ |
+ |
+// Details of a quick mask-compare check that can look ahead in the |
+// input stream. |
+class QuickCheckDetails { |
+ public: |
+ QuickCheckDetails() |
+ : characters_(0), |
+ mask_(0), |
+ value_(0), |
+ cannot_match_(false) { } |
+ explicit QuickCheckDetails(int characters) |
+ : characters_(characters), |
+ mask_(0), |
+ value_(0), |
+ cannot_match_(false) { } |
+ bool Rationalize(bool one_byte); |
+ // Merge in the information from another branch of an alternation. |
+ void Merge(QuickCheckDetails* other, int from_index); |
+ // Advance the current position by some amount. |
+ void Advance(int by, bool one_byte); |
+ void Clear(); |
+ bool cannot_match() { return cannot_match_; } |
+ void set_cannot_match() { cannot_match_ = true; } |
+ struct Position { |
+ Position() : mask(0), value(0), determines_perfectly(false) { } |
+ uc16 mask; |
+ uc16 value; |
+ bool determines_perfectly; |
+ }; |
+ int characters() { return characters_; } |
+ void set_characters(int characters) { characters_ = characters; } |
+ Position* positions(int index) { |
+ DCHECK(index >= 0); |
+ DCHECK(index < characters_); |
+ return positions_ + index; |
+ } |
+ uint32_t mask() { return mask_; } |
+ uint32_t value() { return value_; } |
+ |
+ private: |
+ // How many characters do we have quick check information from. This is |
+ // the same for all branches of a choice node. |
+ int characters_; |
+ Position positions_[4]; |
+ // These values are the condensate of the above array after Rationalize(). |
+ uint32_t mask_; |
+ uint32_t value_; |
+ // If set to true, there is no way this quick check can match at all. |
+ // E.g., if it requires to be at the start of the input, and isn't. |
+ bool cannot_match_; |
+}; |
+ |
+ |
+extern int kUninitializedRegExpNodePlaceHolder; |
+ |
+ |
+class RegExpNode: public ZoneObject { |
+ public: |
+ explicit RegExpNode(Zone* zone) |
+ : replacement_(NULL), trace_count_(0), zone_(zone) { |
+ bm_info_[0] = bm_info_[1] = NULL; |
+ } |
+ virtual ~RegExpNode(); |
+ virtual void Accept(NodeVisitor* visitor) = 0; |
+ // Generates a goto to this node or actually generates the code at this point. |
+ virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0; |
+ // How many characters must this node consume at a minimum in order to |
+ // succeed. If we have found at least 'still_to_find' characters that |
+ // must be consumed there is no need to ask any following nodes whether |
+ // they are sure to eat any more characters. The not_at_start argument is |
+ // used to indicate that we know we are not at the start of the input. In |
+ // this case anchored branches will always fail and can be ignored when |
+ // determining how many characters are consumed on success. |
+ virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start) = 0; |
+ // Emits some quick code that checks whether the preloaded characters match. |
+ // Falls through on certain failure, jumps to the label on possible success. |
+ // If the node cannot make a quick check it does nothing and returns false. |
+ bool EmitQuickCheck(RegExpCompiler* compiler, |
+ Trace* bounds_check_trace, |
+ Trace* trace, |
+ bool preload_has_checked_bounds, |
+ Label* on_possible_success, |
+ QuickCheckDetails* details_return, |
+ bool fall_through_on_failure); |
+ // For a given number of characters this returns a mask and a value. The |
+ // next n characters are anded with the mask and compared with the value. |
+ // A comparison failure indicates the node cannot match the next n characters. |
+ // A comparison success indicates the node may match. |
+ virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
+ RegExpCompiler* compiler, |
+ int characters_filled_in, |
+ bool not_at_start) = 0; |
+ static const int kNodeIsTooComplexForGreedyLoops = -1; |
+ virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; } |
+ // Only returns the successor for a text node of length 1 that matches any |
+ // character and that has no guards on it. |
+ virtual RegExpNode* GetSuccessorOfOmnivorousTextNode( |
+ RegExpCompiler* compiler) { |
+ return NULL; |
+ } |
+ |
+ // Collects information on the possible code units (mod 128) that can match if |
+ // we look forward. This is used for a Boyer-Moore-like string searching |
+ // implementation. TODO(erikcorry): This should share more code with |
+ // EatsAtLeast, GetQuickCheckDetails. The budget argument is used to limit |
+ // the number of nodes we are willing to look at in order to create this data. |
+ static const int kRecursionBudget = 200; |
+ virtual void FillInBMInfo(int offset, |
+ int budget, |
+ BoyerMooreLookahead* bm, |
+ bool not_at_start) { |
+ UNREACHABLE(); |
+ } |
+ |
+ // If we know that the input is one-byte then there are some nodes that can |
+ // never match. This method returns a node that can be substituted for |
+ // itself, or NULL if the node can never match. |
+ virtual RegExpNode* FilterOneByte(int depth, bool ignore_case) { |
+ return this; |
+ } |
+ // Helper for FilterOneByte. |
+ RegExpNode* replacement() { |
+ DCHECK(info()->replacement_calculated); |
+ return replacement_; |
+ } |
+ RegExpNode* set_replacement(RegExpNode* replacement) { |
+ info()->replacement_calculated = true; |
+ replacement_ = replacement; |
+ return replacement; // For convenience. |
+ } |
+ |
+ // We want to avoid recalculating the lookahead info, so we store it on the |
+ // node. Only info that is for this node is stored. We can tell that the |
+ // info is for this node when offset == 0, so the information is calculated |
+ // relative to this node. |
+ void SaveBMInfo(BoyerMooreLookahead* bm, bool not_at_start, int offset) { |
+ if (offset == 0) set_bm_info(not_at_start, bm); |
+ } |
+ |
+ Label* label() { return &label_; } |
+ // If non-generic code is generated for a node (i.e. the node is not at the |
+ // start of the trace) then it cannot be reused. This variable sets a limit |
+ // on how often we allow that to happen before we insist on starting a new |
+ // trace and generating generic code for a node that can be reused by flushing |
+ // the deferred actions in the current trace and generating a goto. |
+ static const int kMaxCopiesCodeGenerated = 10; |
+ |
+ NodeInfo* info() { return &info_; } |
+ |
+ BoyerMooreLookahead* bm_info(bool not_at_start) { |
+ return bm_info_[not_at_start ? 1 : 0]; |
+ } |
+ |
+ Zone* zone() const { return zone_; } |
+ |
+ protected: |
+ enum LimitResult { DONE, CONTINUE }; |
+ RegExpNode* replacement_; |
+ |
+ LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace); |
+ |
+ void set_bm_info(bool not_at_start, BoyerMooreLookahead* bm) { |
+ bm_info_[not_at_start ? 1 : 0] = bm; |
+ } |
+ |
+ private: |
+ static const int kFirstCharBudget = 10; |
+ Label label_; |
+ NodeInfo info_; |
+ // This variable keeps track of how many times code has been generated for |
+ // this node (in different traces). We don't keep track of where the |
+ // generated code is located unless the code is generated at the start of |
+ // a trace, in which case it is generic and can be reused by flushing the |
+ // deferred operations in the current trace and generating a goto. |
+ int trace_count_; |
+ BoyerMooreLookahead* bm_info_[2]; |
+ |
+ Zone* zone_; |
+}; |
+ |
+ |
+// A simple closed interval. |
+class Interval { |
+ public: |
+ Interval() : from_(kNone), to_(kNone) { } |
+ Interval(int from, int to) : from_(from), to_(to) { } |
+ Interval Union(Interval that) { |
+ if (that.from_ == kNone) |
+ return *this; |
+ else if (from_ == kNone) |
+ return that; |
+ else |
+ return Interval(Min(from_, that.from_), Max(to_, that.to_)); |
+ } |
+ bool Contains(int value) { |
+ return (from_ <= value) && (value <= to_); |
+ } |
+ bool is_empty() { return from_ == kNone; } |
+ int from() const { return from_; } |
+ int to() const { return to_; } |
+ static Interval Empty() { return Interval(); } |
+ static const int kNone = -1; |
+ private: |
+ int from_; |
+ int to_; |
+}; |
+ |
+ |
+class SeqRegExpNode: public RegExpNode { |
+ public: |
+ explicit SeqRegExpNode(RegExpNode* on_success) |
+ : RegExpNode(on_success->zone()), on_success_(on_success) { } |
+ RegExpNode* on_success() { return on_success_; } |
+ void set_on_success(RegExpNode* node) { on_success_ = node; } |
+ virtual RegExpNode* FilterOneByte(int depth, bool ignore_case); |
+ virtual void FillInBMInfo(int offset, |
+ int budget, |
+ BoyerMooreLookahead* bm, |
+ bool not_at_start) { |
+ on_success_->FillInBMInfo(offset, budget - 1, bm, not_at_start); |
+ if (offset == 0) set_bm_info(not_at_start, bm); |
+ } |
+ |
+ protected: |
+ RegExpNode* FilterSuccessor(int depth, bool ignore_case); |
+ |
+ private: |
+ RegExpNode* on_success_; |
+}; |
+ |
+ |
+class ActionNode: public SeqRegExpNode { |
+ public: |
+ enum ActionType { |
+ SET_REGISTER, |
+ INCREMENT_REGISTER, |
+ STORE_POSITION, |
+ BEGIN_SUBMATCH, |
+ POSITIVE_SUBMATCH_SUCCESS, |
+ EMPTY_MATCH_CHECK, |
+ CLEAR_CAPTURES |
+ }; |
+ static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success); |
+ static ActionNode* IncrementRegister(int reg, RegExpNode* on_success); |
+ static ActionNode* StorePosition(int reg, |
+ bool is_capture, |
+ RegExpNode* on_success); |
+ static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success); |
+ static ActionNode* BeginSubmatch(int stack_pointer_reg, |
+ int position_reg, |
+ RegExpNode* on_success); |
+ static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg, |
+ int restore_reg, |
+ int clear_capture_count, |
+ int clear_capture_from, |
+ RegExpNode* on_success); |
+ static ActionNode* EmptyMatchCheck(int start_register, |
+ int repetition_register, |
+ int repetition_limit, |
+ RegExpNode* on_success); |
+ virtual void Accept(NodeVisitor* visitor); |
+ virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
+ virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); |
+ virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
+ RegExpCompiler* compiler, |
+ int filled_in, |
+ bool not_at_start) { |
+ return on_success()->GetQuickCheckDetails( |
+ details, compiler, filled_in, not_at_start); |
+ } |
+ virtual void FillInBMInfo(int offset, |
+ int budget, |
+ BoyerMooreLookahead* bm, |
+ bool not_at_start); |
+ ActionType action_type() { return action_type_; } |
+ // TODO(erikcorry): We should allow some action nodes in greedy loops. |
+ virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; } |
+ |
+ private: |
+ union { |
+ struct { |
+ int reg; |
+ int value; |
+ } u_store_register; |
+ struct { |
+ int reg; |
+ } u_increment_register; |
+ struct { |
+ int reg; |
+ bool is_capture; |
+ } u_position_register; |
+ struct { |
+ int stack_pointer_register; |
+ int current_position_register; |
+ int clear_register_count; |
+ int clear_register_from; |
+ } u_submatch; |
+ struct { |
+ int start_register; |
+ int repetition_register; |
+ int repetition_limit; |
+ } u_empty_match_check; |
+ struct { |
+ int range_from; |
+ int range_to; |
+ } u_clear_captures; |
+ } data_; |
+ ActionNode(ActionType action_type, RegExpNode* on_success) |
+ : SeqRegExpNode(on_success), |
+ action_type_(action_type) { } |
+ ActionType action_type_; |
+ friend class DotPrinter; |
+}; |
+ |
+ |
+class TextNode: public SeqRegExpNode { |
+ public: |
+ TextNode(ZoneList<TextElement>* elms, |
+ RegExpNode* on_success) |
+ : SeqRegExpNode(on_success), |
+ elms_(elms) { } |
+ TextNode(RegExpCharacterClass* that, |
+ RegExpNode* on_success) |
+ : SeqRegExpNode(on_success), |
+ elms_(new(zone()) ZoneList<TextElement>(1, zone())) { |
+ elms_->Add(TextElement::CharClass(that), zone()); |
+ } |
+ virtual void Accept(NodeVisitor* visitor); |
+ virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
+ virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); |
+ virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
+ RegExpCompiler* compiler, |
+ int characters_filled_in, |
+ bool not_at_start); |
+ ZoneList<TextElement>* elements() { return elms_; } |
+ void MakeCaseIndependent(bool is_one_byte); |
+ virtual int GreedyLoopTextLength(); |
+ virtual RegExpNode* GetSuccessorOfOmnivorousTextNode( |
+ RegExpCompiler* compiler); |
+ virtual void FillInBMInfo(int offset, |
+ int budget, |
+ BoyerMooreLookahead* bm, |
+ bool not_at_start); |
+ void CalculateOffsets(); |
+ virtual RegExpNode* FilterOneByte(int depth, bool ignore_case); |
+ |
+ private: |
+ enum TextEmitPassType { |
+ NON_LATIN1_MATCH, // Check for characters that can't match. |
+ SIMPLE_CHARACTER_MATCH, // Case-dependent single character check. |
+ NON_LETTER_CHARACTER_MATCH, // Check characters that have no case equivs. |
+ CASE_CHARACTER_MATCH, // Case-independent single character check. |
+ CHARACTER_CLASS_MATCH // Character class. |
+ }; |
+ static bool SkipPass(int pass, bool ignore_case); |
+ static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH; |
+ static const int kLastPass = CHARACTER_CLASS_MATCH; |
+ void TextEmitPass(RegExpCompiler* compiler, |
+ TextEmitPassType pass, |
+ bool preloaded, |
+ Trace* trace, |
+ bool first_element_checked, |
+ int* checked_up_to); |
+ int Length(); |
+ ZoneList<TextElement>* elms_; |
+}; |
+ |
+ |
+class AssertionNode: public SeqRegExpNode { |
+ public: |
+ enum AssertionType { |
+ AT_END, |
+ AT_START, |
+ AT_BOUNDARY, |
+ AT_NON_BOUNDARY, |
+ AFTER_NEWLINE |
+ }; |
+ static AssertionNode* AtEnd(RegExpNode* on_success) { |
+ return new(on_success->zone()) AssertionNode(AT_END, on_success); |
+ } |
+ static AssertionNode* AtStart(RegExpNode* on_success) { |
+ return new(on_success->zone()) AssertionNode(AT_START, on_success); |
+ } |
+ static AssertionNode* AtBoundary(RegExpNode* on_success) { |
+ return new(on_success->zone()) AssertionNode(AT_BOUNDARY, on_success); |
+ } |
+ static AssertionNode* AtNonBoundary(RegExpNode* on_success) { |
+ return new(on_success->zone()) AssertionNode(AT_NON_BOUNDARY, on_success); |
+ } |
+ static AssertionNode* AfterNewline(RegExpNode* on_success) { |
+ return new(on_success->zone()) AssertionNode(AFTER_NEWLINE, on_success); |
+ } |
+ virtual void Accept(NodeVisitor* visitor); |
+ virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
+ virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); |
+ virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
+ RegExpCompiler* compiler, |
+ int filled_in, |
+ bool not_at_start); |
+ virtual void FillInBMInfo(int offset, |
+ int budget, |
+ BoyerMooreLookahead* bm, |
+ bool not_at_start); |
+ AssertionType assertion_type() { return assertion_type_; } |
+ |
+ private: |
+ void EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace); |
+ enum IfPrevious { kIsNonWord, kIsWord }; |
+ void BacktrackIfPrevious(RegExpCompiler* compiler, |
+ Trace* trace, |
+ IfPrevious backtrack_if_previous); |
+ AssertionNode(AssertionType t, RegExpNode* on_success) |
+ : SeqRegExpNode(on_success), assertion_type_(t) { } |
+ AssertionType assertion_type_; |
+}; |
+ |
+ |
+class BackReferenceNode: public SeqRegExpNode { |
+ public: |
+ BackReferenceNode(int start_reg, |
+ int end_reg, |
+ RegExpNode* on_success) |
+ : SeqRegExpNode(on_success), |
+ start_reg_(start_reg), |
+ end_reg_(end_reg) { } |
+ virtual void Accept(NodeVisitor* visitor); |
+ int start_register() { return start_reg_; } |
+ int end_register() { return end_reg_; } |
+ virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
+ virtual int EatsAtLeast(int still_to_find, |
+ int recursion_depth, |
+ bool not_at_start); |
+ virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
+ RegExpCompiler* compiler, |
+ int characters_filled_in, |
+ bool not_at_start) { |
+ return; |
+ } |
+ virtual void FillInBMInfo(int offset, |
+ int budget, |
+ BoyerMooreLookahead* bm, |
+ bool not_at_start); |
+ |
+ private: |
+ int start_reg_; |
+ int end_reg_; |
+}; |
+ |
+ |
+class EndNode: public RegExpNode { |
+ public: |
+ enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS }; |
+ explicit EndNode(Action action, Zone* zone) |
+ : RegExpNode(zone), action_(action) { } |
+ virtual void Accept(NodeVisitor* visitor); |
+ virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
+ virtual int EatsAtLeast(int still_to_find, |
+ int recursion_depth, |
+ bool not_at_start) { return 0; } |
+ virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
+ RegExpCompiler* compiler, |
+ int characters_filled_in, |
+ bool not_at_start) { |
+ // Returning 0 from EatsAtLeast should ensure we never get here. |
+ UNREACHABLE(); |
+ } |
+ virtual void FillInBMInfo(int offset, |
+ int budget, |
+ BoyerMooreLookahead* bm, |
+ bool not_at_start) { |
+ // Returning 0 from EatsAtLeast should ensure we never get here. |
+ UNREACHABLE(); |
+ } |
+ |
+ private: |
+ Action action_; |
+}; |
+ |
+ |
+class NegativeSubmatchSuccess: public EndNode { |
+ public: |
+ NegativeSubmatchSuccess(int stack_pointer_reg, |
+ int position_reg, |
+ int clear_capture_count, |
+ int clear_capture_start, |
+ Zone* zone) |
+ : EndNode(NEGATIVE_SUBMATCH_SUCCESS, zone), |
+ stack_pointer_register_(stack_pointer_reg), |
+ current_position_register_(position_reg), |
+ clear_capture_count_(clear_capture_count), |
+ clear_capture_start_(clear_capture_start) { } |
+ virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
+ |
+ private: |
+ int stack_pointer_register_; |
+ int current_position_register_; |
+ int clear_capture_count_; |
+ int clear_capture_start_; |
+}; |
+ |
+ |
+class Guard: public ZoneObject { |
+ public: |
+ enum Relation { LT, GEQ }; |
+ Guard(int reg, Relation op, int value) |
+ : reg_(reg), |
+ op_(op), |
+ value_(value) { } |
+ int reg() { return reg_; } |
+ Relation op() { return op_; } |
+ int value() { return value_; } |
+ |
+ private: |
+ int reg_; |
+ Relation op_; |
+ int value_; |
+}; |
+ |
+ |
+class GuardedAlternative { |
+ public: |
+ explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { } |
+ void AddGuard(Guard* guard, Zone* zone); |
+ RegExpNode* node() { return node_; } |
+ void set_node(RegExpNode* node) { node_ = node; } |
+ ZoneList<Guard*>* guards() { return guards_; } |
+ |
+ private: |
+ RegExpNode* node_; |
+ ZoneList<Guard*>* guards_; |
+}; |
+ |
+ |
+class AlternativeGeneration; |
+ |
+ |
+class ChoiceNode: public RegExpNode { |
+ public: |
+ explicit ChoiceNode(int expected_size, Zone* zone) |
+ : RegExpNode(zone), |
+ alternatives_(new(zone) |
+ ZoneList<GuardedAlternative>(expected_size, zone)), |
+ table_(NULL), |
+ not_at_start_(false), |
+ being_calculated_(false) { } |
+ virtual void Accept(NodeVisitor* visitor); |
+ void AddAlternative(GuardedAlternative node) { |
+ alternatives()->Add(node, zone()); |
+ } |
+ ZoneList<GuardedAlternative>* alternatives() { return alternatives_; } |
+ DispatchTable* GetTable(bool ignore_case); |
+ virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
+ virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); |
+ int EatsAtLeastHelper(int still_to_find, |
+ int budget, |
+ RegExpNode* ignore_this_node, |
+ bool not_at_start); |
+ virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
+ RegExpCompiler* compiler, |
+ int characters_filled_in, |
+ bool not_at_start); |
+ virtual void FillInBMInfo(int offset, |
+ int budget, |
+ BoyerMooreLookahead* bm, |
+ bool not_at_start); |
+ |
+ bool being_calculated() { return being_calculated_; } |
+ bool not_at_start() { return not_at_start_; } |
+ void set_not_at_start() { not_at_start_ = true; } |
+ void set_being_calculated(bool b) { being_calculated_ = b; } |
+ virtual bool try_to_emit_quick_check_for_alternative(bool is_first) { |
+ return true; |
+ } |
+ virtual RegExpNode* FilterOneByte(int depth, bool ignore_case); |
+ |
+ protected: |
+ int GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative); |
+ ZoneList<GuardedAlternative>* alternatives_; |
+ |
+ private: |
+ friend class DispatchTableConstructor; |
+ friend class Analysis; |
+ void GenerateGuard(RegExpMacroAssembler* macro_assembler, |
+ Guard* guard, |
+ Trace* trace); |
+ int CalculatePreloadCharacters(RegExpCompiler* compiler, int eats_at_least); |
+ void EmitOutOfLineContinuation(RegExpCompiler* compiler, |
+ Trace* trace, |
+ GuardedAlternative alternative, |
+ AlternativeGeneration* alt_gen, |
+ int preload_characters, |
+ bool next_expects_preload); |
+ void SetUpPreLoad(RegExpCompiler* compiler, |
+ Trace* current_trace, |
+ PreloadState* preloads); |
+ void AssertGuardsMentionRegisters(Trace* trace); |
+ int EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, Trace* trace); |
+ Trace* EmitGreedyLoop(RegExpCompiler* compiler, |
+ Trace* trace, |
+ AlternativeGenerationList* alt_gens, |
+ PreloadState* preloads, |
+ GreedyLoopState* greedy_loop_state, |
+ int text_length); |
+ void EmitChoices(RegExpCompiler* compiler, |
+ AlternativeGenerationList* alt_gens, |
+ int first_choice, |
+ Trace* trace, |
+ PreloadState* preloads); |
+ DispatchTable* table_; |
+ // If true, this node is never checked at the start of the input. |
+ // Allows a new trace to start with at_start() set to false. |
+ bool not_at_start_; |
+ bool being_calculated_; |
+}; |
+ |
+ |
+class NegativeLookaheadChoiceNode: public ChoiceNode { |
+ public: |
+ explicit NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail, |
+ GuardedAlternative then_do_this, |
+ Zone* zone) |
+ : ChoiceNode(2, zone) { |
+ AddAlternative(this_must_fail); |
+ AddAlternative(then_do_this); |
+ } |
+ virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); |
+ virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
+ RegExpCompiler* compiler, |
+ int characters_filled_in, |
+ bool not_at_start); |
+ virtual void FillInBMInfo(int offset, |
+ int budget, |
+ BoyerMooreLookahead* bm, |
+ bool not_at_start) { |
+ alternatives_->at(1).node()->FillInBMInfo( |
+ offset, budget - 1, bm, not_at_start); |
+ if (offset == 0) set_bm_info(not_at_start, bm); |
+ } |
+ // For a negative lookahead we don't emit the quick check for the |
+ // alternative that is expected to fail. This is because quick check code |
+ // starts by loading enough characters for the alternative that takes fewest |
+ // characters, but on a negative lookahead the negative branch did not take |
+ // part in that calculation (EatsAtLeast) so the assumptions don't hold. |
+ virtual bool try_to_emit_quick_check_for_alternative(bool is_first) { |
+ return !is_first; |
+ } |
+ virtual RegExpNode* FilterOneByte(int depth, bool ignore_case); |
+}; |
+ |
+ |
+class LoopChoiceNode: public ChoiceNode { |
+ public: |
+ explicit LoopChoiceNode(bool body_can_be_zero_length, Zone* zone) |
+ : ChoiceNode(2, zone), |
+ loop_node_(NULL), |
+ continue_node_(NULL), |
+ body_can_be_zero_length_(body_can_be_zero_length) |
+ { } |
+ void AddLoopAlternative(GuardedAlternative alt); |
+ void AddContinueAlternative(GuardedAlternative alt); |
+ virtual void Emit(RegExpCompiler* compiler, Trace* trace); |
+ virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); |
+ virtual void GetQuickCheckDetails(QuickCheckDetails* details, |
+ RegExpCompiler* compiler, |
+ int characters_filled_in, |
+ bool not_at_start); |
+ virtual void FillInBMInfo(int offset, |
+ int budget, |
+ BoyerMooreLookahead* bm, |
+ bool not_at_start); |
+ RegExpNode* loop_node() { return loop_node_; } |
+ RegExpNode* continue_node() { return continue_node_; } |
+ bool body_can_be_zero_length() { return body_can_be_zero_length_; } |
+ virtual void Accept(NodeVisitor* visitor); |
+ virtual RegExpNode* FilterOneByte(int depth, bool ignore_case); |
+ |
+ private: |
+ // AddAlternative is made private for loop nodes because alternatives |
+ // should not be added freely, we need to keep track of which node |
+ // goes back to the node itself. |
+ void AddAlternative(GuardedAlternative node) { |
+ ChoiceNode::AddAlternative(node); |
+ } |
+ |
+ RegExpNode* loop_node_; |
+ RegExpNode* continue_node_; |
+ bool body_can_be_zero_length_; |
+}; |
+ |
+ |
+// Improve the speed that we scan for an initial point where a non-anchored |
+// regexp can match by using a Boyer-Moore-like table. This is done by |
+// identifying non-greedy non-capturing loops in the nodes that eat any |
+// character one at a time. For example in the middle of the regexp |
+// /foo[\s\S]*?bar/ we find such a loop. There is also such a loop implicitly |
+// inserted at the start of any non-anchored regexp. |
+// |
+// When we have found such a loop we look ahead in the nodes to find the set of |
+// characters that can come at given distances. For example for the regexp |
+// /.?foo/ we know that there are at least 3 characters ahead of us, and the |
+// sets of characters that can occur are [any, [f, o], [o]]. We find a range in |
+// the lookahead info where the set of characters is reasonably constrained. In |
+// our example this is from index 1 to 2 (0 is not constrained). We can now |
+// look 3 characters ahead and if we don't find one of [f, o] (the union of |
+// [f, o] and [o]) then we can skip forwards by the range size (in this case 2). |
+// |
+// For Unicode input strings we do the same, but modulo 128. |
+// |
+// We also look at the first string fed to the regexp and use that to get a hint |
+// of the character frequencies in the inputs. This affects the assessment of |
+// whether the set of characters is 'reasonably constrained'. |
+// |
+// We also have another lookahead mechanism (called quick check in the code), |
+// which uses a wide load of multiple characters followed by a mask and compare |
+// to determine whether a match is possible at this point. |
+enum ContainedInLattice { |
+ kNotYet = 0, |
+ kLatticeIn = 1, |
+ kLatticeOut = 2, |
+ kLatticeUnknown = 3 // Can also mean both in and out. |
+}; |
+ |
+ |
+inline ContainedInLattice Combine(ContainedInLattice a, ContainedInLattice b) { |
+ return static_cast<ContainedInLattice>(a | b); |
+} |
+ |
+ |
+ContainedInLattice AddRange(ContainedInLattice a, |
+ const int* ranges, |
+ int ranges_size, |
+ Interval new_range); |
+ |
+ |
+class BoyerMoorePositionInfo : public ZoneObject { |
+ public: |
+ explicit BoyerMoorePositionInfo(Zone* zone) |
+ : map_(new(zone) ZoneList<bool>(kMapSize, zone)), |
+ map_count_(0), |
+ w_(kNotYet), |
+ s_(kNotYet), |
+ d_(kNotYet), |
+ surrogate_(kNotYet) { |
+ for (int i = 0; i < kMapSize; i++) { |
+ map_->Add(false, zone); |
+ } |
+ } |
+ |
+ bool& at(int i) { return map_->at(i); } |
+ |
+ static const int kMapSize = 128; |
+ static const int kMask = kMapSize - 1; |
+ |
+ int map_count() const { return map_count_; } |
+ |
+ void Set(int character); |
+ void SetInterval(const Interval& interval); |
+ void SetAll(); |
+ bool is_non_word() { return w_ == kLatticeOut; } |
+ bool is_word() { return w_ == kLatticeIn; } |
+ |
+ private: |
+ ZoneList<bool>* map_; |
+ int map_count_; // Number of set bits in the map. |
+ ContainedInLattice w_; // The \w character class. |
+ ContainedInLattice s_; // The \s character class. |
+ ContainedInLattice d_; // The \d character class. |
+ ContainedInLattice surrogate_; // Surrogate UTF-16 code units. |
+}; |
+ |
+ |
+class BoyerMooreLookahead : public ZoneObject { |
+ public: |
+ BoyerMooreLookahead(int length, RegExpCompiler* compiler, Zone* zone); |
+ |
+ int length() { return length_; } |
+ int max_char() { return max_char_; } |
+ RegExpCompiler* compiler() { return compiler_; } |
+ |
+ int Count(int map_number) { |
+ return bitmaps_->at(map_number)->map_count(); |
+ } |
+ |
+ BoyerMoorePositionInfo* at(int i) { return bitmaps_->at(i); } |
+ |
+ void Set(int map_number, int character) { |
+ if (character > max_char_) return; |
+ BoyerMoorePositionInfo* info = bitmaps_->at(map_number); |
+ info->Set(character); |
+ } |
+ |
+ void SetInterval(int map_number, const Interval& interval) { |
+ if (interval.from() > max_char_) return; |
+ BoyerMoorePositionInfo* info = bitmaps_->at(map_number); |
+ if (interval.to() > max_char_) { |
+ info->SetInterval(Interval(interval.from(), max_char_)); |
+ } else { |
+ info->SetInterval(interval); |
+ } |
+ } |
+ |
+ void SetAll(int map_number) { |
+ bitmaps_->at(map_number)->SetAll(); |
+ } |
+ |
+ void SetRest(int from_map) { |
+ for (int i = from_map; i < length_; i++) SetAll(i); |
+ } |
+ void EmitSkipInstructions(RegExpMacroAssembler* masm); |
+ |
+ private: |
+ // This is the value obtained by EatsAtLeast. If we do not have at least this |
+ // many characters left in the sample string then the match is bound to fail. |
+ // Therefore it is OK to read a character this far ahead of the current match |
+ // point. |
+ int length_; |
+ RegExpCompiler* compiler_; |
+ // 0xff for Latin1, 0xffff for UTF-16. |
+ int max_char_; |
+ ZoneList<BoyerMoorePositionInfo*>* bitmaps_; |
+ |
+ int GetSkipTable(int min_lookahead, |
+ int max_lookahead, |
+ Handle<ByteArray> boolean_skip_table); |
+ bool FindWorthwhileInterval(int* from, int* to); |
+ int FindBestInterval( |
+ int max_number_of_chars, int old_biggest_points, int* from, int* to); |
+}; |
+ |
+ |
+// There are many ways to generate code for a node. This class encapsulates |
+// the current way we should be generating. In other words it encapsulates |
+// the current state of the code generator. The effect of this is that we |
+// generate code for paths that the matcher can take through the regular |
+// expression. A given node in the regexp can be code-generated several times |
+// as it can be part of several traces. For example for the regexp: |
+// /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part |
+// of the foo-bar-baz trace and once as part of the foo-ip-baz trace. The code |
+// to match foo is generated only once (the traces have a common prefix). The |
+// code to store the capture is deferred and generated (twice) after the places |
+// where baz has been matched. |
+class Trace { |
+ public: |
+ // A value for a property that is either known to be true, know to be false, |
+ // or not known. |
+ enum TriBool { |
+ UNKNOWN = -1, FALSE_VALUE = 0, TRUE_VALUE = 1 |
+ }; |
+ |
+ class DeferredAction { |
+ public: |
+ DeferredAction(ActionNode::ActionType action_type, int reg) |
+ : action_type_(action_type), reg_(reg), next_(NULL) { } |
+ DeferredAction* next() { return next_; } |
+ bool Mentions(int reg); |
+ int reg() { return reg_; } |
+ ActionNode::ActionType action_type() { return action_type_; } |
+ private: |
+ ActionNode::ActionType action_type_; |
+ int reg_; |
+ DeferredAction* next_; |
+ friend class Trace; |
+ }; |
+ |
+ class DeferredCapture : public DeferredAction { |
+ public: |
+ DeferredCapture(int reg, bool is_capture, Trace* trace) |
+ : DeferredAction(ActionNode::STORE_POSITION, reg), |
+ cp_offset_(trace->cp_offset()), |
+ is_capture_(is_capture) { } |
+ int cp_offset() { return cp_offset_; } |
+ bool is_capture() { return is_capture_; } |
+ private: |
+ int cp_offset_; |
+ bool is_capture_; |
+ void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; } |
+ }; |
+ |
+ class DeferredSetRegister : public DeferredAction { |
+ public: |
+ DeferredSetRegister(int reg, int value) |
+ : DeferredAction(ActionNode::SET_REGISTER, reg), |
+ value_(value) { } |
+ int value() { return value_; } |
+ private: |
+ int value_; |
+ }; |
+ |
+ class DeferredClearCaptures : public DeferredAction { |
+ public: |
+ explicit DeferredClearCaptures(Interval range) |
+ : DeferredAction(ActionNode::CLEAR_CAPTURES, -1), |
+ range_(range) { } |
+ Interval range() { return range_; } |
+ private: |
+ Interval range_; |
+ }; |
+ |
+ class DeferredIncrementRegister : public DeferredAction { |
+ public: |
+ explicit DeferredIncrementRegister(int reg) |
+ : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { } |
+ }; |
+ |
+ Trace() |
+ : cp_offset_(0), |
+ actions_(NULL), |
+ backtrack_(NULL), |
+ stop_node_(NULL), |
+ loop_label_(NULL), |
+ characters_preloaded_(0), |
+ bound_checked_up_to_(0), |
+ flush_budget_(100), |
+ at_start_(UNKNOWN) { } |
+ |
+ // End the trace. This involves flushing the deferred actions in the trace |
+ // and pushing a backtrack location onto the backtrack stack. Once this is |
+ // done we can start a new trace or go to one that has already been |
+ // generated. |
+ void Flush(RegExpCompiler* compiler, RegExpNode* successor); |
+ int cp_offset() { return cp_offset_; } |
+ DeferredAction* actions() { return actions_; } |
+ // A trivial trace is one that has no deferred actions or other state that |
+ // affects the assumptions used when generating code. There is no recorded |
+ // backtrack location in a trivial trace, so with a trivial trace we will |
+ // generate code that, on a failure to match, gets the backtrack location |
+ // from the backtrack stack rather than using a direct jump instruction. We |
+ // always start code generation with a trivial trace and non-trivial traces |
+ // are created as we emit code for nodes or add to the list of deferred |
+ // actions in the trace. The location of the code generated for a node using |
+ // a trivial trace is recorded in a label in the node so that gotos can be |
+ // generated to that code. |
+ bool is_trivial() { |
+ return backtrack_ == NULL && |
+ actions_ == NULL && |
+ cp_offset_ == 0 && |
+ characters_preloaded_ == 0 && |
+ bound_checked_up_to_ == 0 && |
+ quick_check_performed_.characters() == 0 && |
+ at_start_ == UNKNOWN; |
+ } |
+ TriBool at_start() { return at_start_; } |
+ void set_at_start(bool at_start) { |
+ at_start_ = at_start ? TRUE_VALUE : FALSE_VALUE; |
+ } |
+ Label* backtrack() { return backtrack_; } |
+ Label* loop_label() { return loop_label_; } |
+ RegExpNode* stop_node() { return stop_node_; } |
+ int characters_preloaded() { return characters_preloaded_; } |
+ int bound_checked_up_to() { return bound_checked_up_to_; } |
+ int flush_budget() { return flush_budget_; } |
+ QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; } |
+ bool mentions_reg(int reg); |
+ // Returns true if a deferred position store exists to the specified |
+ // register and stores the offset in the out-parameter. Otherwise |
+ // returns false. |
+ bool GetStoredPosition(int reg, int* cp_offset); |
+ // These set methods and AdvanceCurrentPositionInTrace should be used only on |
+ // new traces - the intention is that traces are immutable after creation. |
+ void add_action(DeferredAction* new_action) { |
+ DCHECK(new_action->next_ == NULL); |
+ new_action->next_ = actions_; |
+ actions_ = new_action; |
+ } |
+ void set_backtrack(Label* backtrack) { backtrack_ = backtrack; } |
+ void set_stop_node(RegExpNode* node) { stop_node_ = node; } |
+ void set_loop_label(Label* label) { loop_label_ = label; } |
+ void set_characters_preloaded(int count) { characters_preloaded_ = count; } |
+ void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; } |
+ void set_flush_budget(int to) { flush_budget_ = to; } |
+ void set_quick_check_performed(QuickCheckDetails* d) { |
+ quick_check_performed_ = *d; |
+ } |
+ void InvalidateCurrentCharacter(); |
+ void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler); |
+ |
+ private: |
+ int FindAffectedRegisters(OutSet* affected_registers, Zone* zone); |
+ void PerformDeferredActions(RegExpMacroAssembler* macro, |
+ int max_register, |
+ const OutSet& affected_registers, |
+ OutSet* registers_to_pop, |
+ OutSet* registers_to_clear, |
+ Zone* zone); |
+ void RestoreAffectedRegisters(RegExpMacroAssembler* macro, |
+ int max_register, |
+ const OutSet& registers_to_pop, |
+ const OutSet& registers_to_clear); |
+ int cp_offset_; |
+ DeferredAction* actions_; |
+ Label* backtrack_; |
+ RegExpNode* stop_node_; |
+ Label* loop_label_; |
+ int characters_preloaded_; |
+ int bound_checked_up_to_; |
+ QuickCheckDetails quick_check_performed_; |
+ int flush_budget_; |
+ TriBool at_start_; |
+}; |
+ |
+ |
+class GreedyLoopState { |
+ public: |
+ explicit GreedyLoopState(bool not_at_start); |
+ |
+ Label* label() { return &label_; } |
+ Trace* counter_backtrack_trace() { return &counter_backtrack_trace_; } |
+ |
+ private: |
+ Label label_; |
+ Trace counter_backtrack_trace_; |
+}; |
+ |
+ |
+struct PreloadState { |
+ static const int kEatsAtLeastNotYetInitialized = -1; |
+ bool preload_is_current_; |
+ bool preload_has_checked_bounds_; |
+ int preload_characters_; |
+ int eats_at_least_; |
+ void init() { |
+ eats_at_least_ = kEatsAtLeastNotYetInitialized; |
+ } |
+}; |
+ |
+ |
+class NodeVisitor { |
+ public: |
+ virtual ~NodeVisitor() { } |
+#define DECLARE_VISIT(Type) \ |
+ virtual void Visit##Type(Type##Node* that) = 0; |
+FOR_EACH_NODE_TYPE(DECLARE_VISIT) |
+#undef DECLARE_VISIT |
+ virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); } |
+}; |
+ |
+ |
+// Node visitor used to add the start set of the alternatives to the |
+// dispatch table of a choice node. |
+class DispatchTableConstructor: public NodeVisitor { |
+ public: |
+ DispatchTableConstructor(DispatchTable* table, bool ignore_case, |
+ Zone* zone) |
+ : table_(table), |
+ choice_index_(-1), |
+ ignore_case_(ignore_case), |
+ zone_(zone) { } |
+ |
+ void BuildTable(ChoiceNode* node); |
+ |
+ void AddRange(CharacterRange range) { |
+ table()->AddRange(range, choice_index_, zone_); |
+ } |
+ |
+ void AddInverse(ZoneList<CharacterRange>* ranges); |
+ |
+#define DECLARE_VISIT(Type) \ |
+ virtual void Visit##Type(Type##Node* that); |
+FOR_EACH_NODE_TYPE(DECLARE_VISIT) |
+#undef DECLARE_VISIT |
+ |
+ DispatchTable* table() { return table_; } |
+ void set_choice_index(int value) { choice_index_ = value; } |
+ |
+ protected: |
+ DispatchTable* table_; |
+ int choice_index_; |
+ bool ignore_case_; |
+ Zone* zone_; |
+}; |
+ |
+ |
+// Assertion propagation moves information about assertions such as |
+// \b to the affected nodes. For instance, in /.\b./ information must |
+// be propagated to the first '.' that whatever follows needs to know |
+// if it matched a word or a non-word, and to the second '.' that it |
+// has to check if it succeeds a word or non-word. In this case the |
+// result will be something like: |
+// |
+// +-------+ +------------+ |
+// | . | | . | |
+// +-------+ ---> +------------+ |
+// | word? | | check word | |
+// +-------+ +------------+ |
+class Analysis: public NodeVisitor { |
+ public: |
+ Analysis(bool ignore_case, bool is_one_byte) |
+ : ignore_case_(ignore_case), |
+ is_one_byte_(is_one_byte), |
+ error_message_(NULL) {} |
+ void EnsureAnalyzed(RegExpNode* node); |
+ |
+#define DECLARE_VISIT(Type) \ |
+ virtual void Visit##Type(Type##Node* that); |
+FOR_EACH_NODE_TYPE(DECLARE_VISIT) |
+#undef DECLARE_VISIT |
+ virtual void VisitLoopChoice(LoopChoiceNode* that); |
+ |
+ bool has_failed() { return error_message_ != NULL; } |
+ const char* error_message() { |
+ DCHECK(error_message_ != NULL); |
+ return error_message_; |
+ } |
+ void fail(const char* error_message) { |
+ error_message_ = error_message; |
+ } |
+ |
+ private: |
+ bool ignore_case_; |
+ bool is_one_byte_; |
+ const char* error_message_; |
+ |
+ DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis); |
+}; |
+ |
+ |
+struct RegExpCompileData { |
+ RegExpCompileData() |
+ : tree(NULL), |
+ node(NULL), |
+ simple(true), |
+ contains_anchor(false), |
+ capture_count(0) { } |
+ RegExpTree* tree; |
+ RegExpNode* node; |
+ bool simple; |
+ bool contains_anchor; |
+ Handle<String> error; |
+ int capture_count; |
+}; |
+ |
+ |
+class RegExpEngine: public AllStatic { |
+ public: |
+ struct CompilationResult { |
+ CompilationResult(Isolate* isolate, const char* error_message) |
+ : error_message(error_message), |
+ code(isolate->heap()->the_hole_value()), |
+ num_registers(0) {} |
+ CompilationResult(Object* code, int registers) |
+ : error_message(NULL), |
+ code(code), |
+ num_registers(registers) {} |
+ const char* error_message; |
+ Object* code; |
+ int num_registers; |
+ }; |
+ |
+ static CompilationResult Compile(RegExpCompileData* input, bool ignore_case, |
+ bool global, bool multiline, bool sticky, |
+ Handle<String> pattern, |
+ Handle<String> sample_subject, |
+ bool is_one_byte, Zone* zone); |
+ |
+ static void DotPrint(const char* label, RegExpNode* node, bool ignore_case); |
+}; |
+ |
+} // namespace dart |
+ |
+#endif // VM_REGEXP_H_ |