Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(124)

Unified Diff: runtime/vm/regexp.cc

Issue 678193004: Copy irregexp related code from V8. (Closed) Base URL: https://dart.googlecode.com/svn/branches/bleeding_edge/dart
Patch Set: rebase Created 6 years, 1 month ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « runtime/vm/regexp.h ('k') | runtime/vm/regexp_assembler.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: runtime/vm/regexp.cc
diff --git a/runtime/vm/regexp.cc b/runtime/vm/regexp.cc
new file mode 100644
index 0000000000000000000000000000000000000000..534e0c5072dc380457539422f1121bdecd81b0a8
--- /dev/null
+++ b/runtime/vm/regexp.cc
@@ -0,0 +1,5438 @@
+// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
+// for details. All rights reserved. Use of this source code is governed by a
+// BSD-style license that can be found in the LICENSE file.
+
+#include "vm/regexp.h"
+
+// SNIP
+
+namespace dart {
+
+// SNIP
+
+// -------------------------------------------------------------------
+// Implementation of the Irregexp regular expression engine.
+//
+// The Irregexp regular expression engine is intended to be a complete
+// implementation of ECMAScript regular expressions. It generates either
+// bytecodes or native code.
+
+// The Irregexp regexp engine is structured in three steps.
+// 1) The parser generates an abstract syntax tree. See ast.cc.
+// 2) From the AST a node network is created. The nodes are all
+// subclasses of RegExpNode. The nodes represent states when
+// executing a regular expression. Several optimizations are
+// performed on the node network.
+// 3) From the nodes we generate either byte codes or native code
+// that can actually execute the regular expression (perform
+// the search). The code generation step is described in more
+// detail below.
+
+// Code generation.
+//
+// The nodes are divided into four main categories.
+// * Choice nodes
+// These represent places where the regular expression can
+// match in more than one way. For example on entry to an
+// alternation (foo|bar) or a repetition (*, +, ? or {}).
+// * Action nodes
+// These represent places where some action should be
+// performed. Examples include recording the current position
+// in the input string to a register (in order to implement
+// captures) or other actions on register for example in order
+// to implement the counters needed for {} repetitions.
+// * Matching nodes
+// These attempt to match some element part of the input string.
+// Examples of elements include character classes, plain strings
+// or back references.
+// * End nodes
+// These are used to implement the actions required on finding
+// a successful match or failing to find a match.
+//
+// The code generated (whether as byte codes or native code) maintains
+// some state as it runs. This consists of the following elements:
+//
+// * The capture registers. Used for string captures.
+// * Other registers. Used for counters etc.
+// * The current position.
+// * The stack of backtracking information. Used when a matching node
+// fails to find a match and needs to try an alternative.
+//
+// Conceptual regular expression execution model:
+//
+// There is a simple conceptual model of regular expression execution
+// which will be presented first. The actual code generated is a more
+// efficient simulation of the simple conceptual model:
+//
+// * Choice nodes are implemented as follows:
+// For each choice except the last {
+// push current position
+// push backtrack code location
+// <generate code to test for choice>
+// backtrack code location:
+// pop current position
+// }
+// <generate code to test for last choice>
+//
+// * Actions nodes are generated as follows
+// <push affected registers on backtrack stack>
+// <generate code to perform action>
+// push backtrack code location
+// <generate code to test for following nodes>
+// backtrack code location:
+// <pop affected registers to restore their state>
+// <pop backtrack location from stack and go to it>
+//
+// * Matching nodes are generated as follows:
+// if input string matches at current position
+// update current position
+// <generate code to test for following nodes>
+// else
+// <pop backtrack location from stack and go to it>
+//
+// Thus it can be seen that the current position is saved and restored
+// by the choice nodes, whereas the registers are saved and restored by
+// by the action nodes that manipulate them.
+//
+// The other interesting aspect of this model is that nodes are generated
+// at the point where they are needed by a recursive call to Emit(). If
+// the node has already been code generated then the Emit() call will
+// generate a jump to the previously generated code instead. In order to
+// limit recursion it is possible for the Emit() function to put the node
+// on a work list for later generation and instead generate a jump. The
+// destination of the jump is resolved later when the code is generated.
+//
+// Actual regular expression code generation.
+//
+// Code generation is actually more complicated than the above. In order
+// to improve the efficiency of the generated code some optimizations are
+// performed
+//
+// * Choice nodes have 1-character lookahead.
+// A choice node looks at the following character and eliminates some of
+// the choices immediately based on that character. This is not yet
+// implemented.
+// * Simple greedy loops store reduced backtracking information.
+// A quantifier like /.*foo/m will greedily match the whole input. It will
+// then need to backtrack to a point where it can match "foo". The naive
+// implementation of this would push each character position onto the
+// backtracking stack, then pop them off one by one. This would use space
+// proportional to the length of the input string. However since the "."
+// can only match in one way and always has a constant length (in this case
+// of 1) it suffices to store the current position on the top of the stack
+// once. Matching now becomes merely incrementing the current position and
+// backtracking becomes decrementing the current position and checking the
+// result against the stored current position. This is faster and saves
+// space.
+// * The current state is virtualized.
+// This is used to defer expensive operations until it is clear that they
+// are needed and to generate code for a node more than once, allowing
+// specialized an efficient versions of the code to be created. This is
+// explained in the section below.
+//
+// Execution state virtualization.
+//
+// Instead of emitting code, nodes that manipulate the state can record their
+// manipulation in an object called the Trace. The Trace object can record a
+// current position offset, an optional backtrack code location on the top of
+// the virtualized backtrack stack and some register changes. When a node is
+// to be emitted it can flush the Trace or update it. Flushing the Trace
+// will emit code to bring the actual state into line with the virtual state.
+// Avoiding flushing the state can postpone some work (e.g. updates of capture
+// registers). Postponing work can save time when executing the regular
+// expression since it may be found that the work never has to be done as a
+// failure to match can occur. In addition it is much faster to jump to a
+// known backtrack code location than it is to pop an unknown backtrack
+// location from the stack and jump there.
+//
+// The virtual state found in the Trace affects code generation. For example
+// the virtual state contains the difference between the actual current
+// position and the virtual current position, and matching code needs to use
+// this offset to attempt a match in the correct location of the input
+// string. Therefore code generated for a non-trivial trace is specialized
+// to that trace. The code generator therefore has the ability to generate
+// code for each node several times. In order to limit the size of the
+// generated code there is an arbitrary limit on how many specialized sets of
+// code may be generated for a given node. If the limit is reached, the
+// trace is flushed and a generic version of the code for a node is emitted.
+// This is subsequently used for that node. The code emitted for non-generic
+// trace is not recorded in the node and so it cannot currently be reused in
+// the event that code generation is requested for an identical trace.
+
+
+void RegExpTree::AppendToText(RegExpText* text, Zone* zone) {
+ UNREACHABLE();
+}
+
+
+void RegExpAtom::AppendToText(RegExpText* text, Zone* zone) {
+ text->AddElement(TextElement::Atom(this), zone);
+}
+
+
+void RegExpCharacterClass::AppendToText(RegExpText* text, Zone* zone) {
+ text->AddElement(TextElement::CharClass(this), zone);
+}
+
+
+void RegExpText::AppendToText(RegExpText* text, Zone* zone) {
+ for (int i = 0; i < elements()->length(); i++)
+ text->AddElement(elements()->at(i), zone);
+}
+
+
+TextElement TextElement::Atom(RegExpAtom* atom) {
+ return TextElement(ATOM, atom);
+}
+
+
+TextElement TextElement::CharClass(RegExpCharacterClass* char_class) {
+ return TextElement(CHAR_CLASS, char_class);
+}
+
+
+int TextElement::length() const {
+ switch (text_type()) {
+ case ATOM:
+ return atom()->length();
+
+ case CHAR_CLASS:
+ return 1;
+ }
+ UNREACHABLE();
+ return 0;
+}
+
+
+DispatchTable* ChoiceNode::GetTable(bool ignore_case) {
+ if (table_ == NULL) {
+ table_ = new(zone()) DispatchTable(zone());
+ DispatchTableConstructor cons(table_, ignore_case, zone());
+ cons.BuildTable(this);
+ }
+ return table_;
+}
+
+
+class FrequencyCollator {
+ public:
+ FrequencyCollator() : total_samples_(0) {
+ for (int i = 0; i < RegExpMacroAssembler::kTableSize; i++) {
+ frequencies_[i] = CharacterFrequency(i);
+ }
+ }
+
+ void CountCharacter(int character) {
+ int index = (character & RegExpMacroAssembler::kTableMask);
+ frequencies_[index].Increment();
+ total_samples_++;
+ }
+
+ // Does not measure in percent, but rather per-128 (the table size from the
+ // regexp macro assembler).
+ int Frequency(int in_character) {
+ DCHECK((in_character & RegExpMacroAssembler::kTableMask) == in_character);
+ if (total_samples_ < 1) return 1; // Division by zero.
+ int freq_in_per128 =
+ (frequencies_[in_character].counter() * 128) / total_samples_;
+ return freq_in_per128;
+ }
+
+ private:
+ class CharacterFrequency {
+ public:
+ CharacterFrequency() : counter_(0), character_(-1) { }
+ explicit CharacterFrequency(int character)
+ : counter_(0), character_(character) { }
+
+ void Increment() { counter_++; }
+ int counter() { return counter_; }
+ int character() { return character_; }
+
+ private:
+ int counter_;
+ int character_;
+ };
+
+
+ private:
+ CharacterFrequency frequencies_[RegExpMacroAssembler::kTableSize];
+ int total_samples_;
+};
+
+
+class RegExpCompiler {
+ public:
+ RegExpCompiler(int capture_count, bool ignore_case, bool is_one_byte,
+ Zone* zone);
+
+ int AllocateRegister() {
+ if (next_register_ >= RegExpMacroAssembler::kMaxRegister) {
+ reg_exp_too_big_ = true;
+ return next_register_;
+ }
+ return next_register_++;
+ }
+
+ RegExpEngine::CompilationResult Assemble(RegExpMacroAssembler* assembler,
+ RegExpNode* start,
+ int capture_count,
+ Handle<String> pattern);
+
+ inline void AddWork(RegExpNode* node) { work_list_->Add(node); }
+
+ static const int kImplementationOffset = 0;
+ static const int kNumberOfRegistersOffset = 0;
+ static const int kCodeOffset = 1;
+
+ RegExpMacroAssembler* macro_assembler() { return macro_assembler_; }
+ EndNode* accept() { return accept_; }
+
+ static const int kMaxRecursion = 100;
+ inline int recursion_depth() { return recursion_depth_; }
+ inline void IncrementRecursionDepth() { recursion_depth_++; }
+ inline void DecrementRecursionDepth() { recursion_depth_--; }
+
+ void SetRegExpTooBig() { reg_exp_too_big_ = true; }
+
+ inline bool ignore_case() { return ignore_case_; }
+ inline bool one_byte() { return one_byte_; }
+ FrequencyCollator* frequency_collator() { return &frequency_collator_; }
+
+ int current_expansion_factor() { return current_expansion_factor_; }
+ void set_current_expansion_factor(int value) {
+ current_expansion_factor_ = value;
+ }
+
+ Zone* zone() const { return zone_; }
+
+ static const int kNoRegister = -1;
+
+ private:
+ EndNode* accept_;
+ int next_register_;
+ List<RegExpNode*>* work_list_;
+ int recursion_depth_;
+ RegExpMacroAssembler* macro_assembler_;
+ bool ignore_case_;
+ bool one_byte_;
+ bool reg_exp_too_big_;
+ int current_expansion_factor_;
+ FrequencyCollator frequency_collator_;
+ Zone* zone_;
+};
+
+
+class RecursionCheck {
+ public:
+ explicit RecursionCheck(RegExpCompiler* compiler) : compiler_(compiler) {
+ compiler->IncrementRecursionDepth();
+ }
+ ~RecursionCheck() { compiler_->DecrementRecursionDepth(); }
+ private:
+ RegExpCompiler* compiler_;
+};
+
+
+static RegExpEngine::CompilationResult IrregexpRegExpTooBig(Isolate* isolate) {
+ return RegExpEngine::CompilationResult(isolate, "RegExp too big");
+}
+
+
+// Attempts to compile the regexp using an Irregexp code generator. Returns
+// a fixed array or a null handle depending on whether it succeeded.
+RegExpCompiler::RegExpCompiler(int capture_count, bool ignore_case,
+ bool one_byte, Zone* zone)
+ : next_register_(2 * (capture_count + 1)),
+ work_list_(NULL),
+ recursion_depth_(0),
+ ignore_case_(ignore_case),
+ one_byte_(one_byte),
+ reg_exp_too_big_(false),
+ current_expansion_factor_(1),
+ frequency_collator_(),
+ zone_(zone) {
+ accept_ = new(zone) EndNode(EndNode::ACCEPT, zone);
+ DCHECK(next_register_ - 1 <= RegExpMacroAssembler::kMaxRegister);
+}
+
+
+RegExpEngine::CompilationResult RegExpCompiler::Assemble(
+ RegExpMacroAssembler* macro_assembler,
+ RegExpNode* start,
+ int capture_count,
+ Handle<String> pattern) {
+ Heap* heap = pattern->GetHeap();
+
+ bool use_slow_safe_regexp_compiler = false;
+ if (heap->total_regexp_code_generated() >
+ RegExpImpl::kRegWxpCompiledLimit &&
+ heap->isolate()->memory_allocator()->SizeExecutable() >
+ RegExpImpl::kRegExpExecutableMemoryLimit) {
+ use_slow_safe_regexp_compiler = true;
+ }
+
+ macro_assembler->set_slow_safe(use_slow_safe_regexp_compiler);
+
+#ifdef DEBUG
+ if (FLAG_trace_regexp_assembler)
+ macro_assembler_ = new RegExpMacroAssemblerTracer(macro_assembler);
+ else
+#endif
+ macro_assembler_ = macro_assembler;
+
+ List <RegExpNode*> work_list(0);
+ work_list_ = &work_list;
+ Label fail;
+ macro_assembler_->PushBacktrack(&fail);
+ Trace new_trace;
+ start->Emit(this, &new_trace);
+ macro_assembler_->Bind(&fail);
+ macro_assembler_->Fail();
+ while (!work_list.is_empty()) {
+ work_list.RemoveLast()->Emit(this, &new_trace);
+ }
+ if (reg_exp_too_big_) return IrregexpRegExpTooBig(zone_->isolate());
+
+ Handle<HeapObject> code = macro_assembler_->GetCode(pattern);
+ heap->IncreaseTotalRegexpCodeGenerated(code->Size());
+ work_list_ = NULL;
+#ifdef DEBUG
+ if (FLAG_print_code) {
+ CodeTracer::Scope trace_scope(heap->isolate()->GetCodeTracer());
+ OFStream os(trace_scope.file());
+ Handle<Code>::cast(code)->Disassemble(pattern->ToCString().get(), os);
+ }
+ if (FLAG_trace_regexp_assembler) {
+ delete macro_assembler_;
+ }
+#endif
+ return RegExpEngine::CompilationResult(*code, next_register_);
+}
+
+
+bool Trace::DeferredAction::Mentions(int that) {
+ if (action_type() == ActionNode::CLEAR_CAPTURES) {
+ Interval range = static_cast<DeferredClearCaptures*>(this)->range();
+ return range.Contains(that);
+ } else {
+ return reg() == that;
+ }
+}
+
+
+bool Trace::mentions_reg(int reg) {
+ for (DeferredAction* action = actions_;
+ action != NULL;
+ action = action->next()) {
+ if (action->Mentions(reg))
+ return true;
+ }
+ return false;
+}
+
+
+bool Trace::GetStoredPosition(int reg, int* cp_offset) {
+ DCHECK_EQ(0, *cp_offset);
+ for (DeferredAction* action = actions_;
+ action != NULL;
+ action = action->next()) {
+ if (action->Mentions(reg)) {
+ if (action->action_type() == ActionNode::STORE_POSITION) {
+ *cp_offset = static_cast<DeferredCapture*>(action)->cp_offset();
+ return true;
+ } else {
+ return false;
+ }
+ }
+ }
+ return false;
+}
+
+
+int Trace::FindAffectedRegisters(OutSet* affected_registers,
+ Zone* zone) {
+ int max_register = RegExpCompiler::kNoRegister;
+ for (DeferredAction* action = actions_;
+ action != NULL;
+ action = action->next()) {
+ if (action->action_type() == ActionNode::CLEAR_CAPTURES) {
+ Interval range = static_cast<DeferredClearCaptures*>(action)->range();
+ for (int i = range.from(); i <= range.to(); i++)
+ affected_registers->Set(i, zone);
+ if (range.to() > max_register) max_register = range.to();
+ } else {
+ affected_registers->Set(action->reg(), zone);
+ if (action->reg() > max_register) max_register = action->reg();
+ }
+ }
+ return max_register;
+}
+
+
+void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler,
+ int max_register,
+ const OutSet& registers_to_pop,
+ const OutSet& registers_to_clear) {
+ for (int reg = max_register; reg >= 0; reg--) {
+ if (registers_to_pop.Get(reg)) {
+ assembler->PopRegister(reg);
+ } else if (registers_to_clear.Get(reg)) {
+ int clear_to = reg;
+ while (reg > 0 && registers_to_clear.Get(reg - 1)) {
+ reg--;
+ }
+ assembler->ClearRegisters(reg, clear_to);
+ }
+ }
+}
+
+
+void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
+ int max_register,
+ const OutSet& affected_registers,
+ OutSet* registers_to_pop,
+ OutSet* registers_to_clear,
+ Zone* zone) {
+ // The "+1" is to avoid a push_limit of zero if stack_limit_slack() is 1.
+ const int push_limit = (assembler->stack_limit_slack() + 1) / 2;
+
+ // Count pushes performed to force a stack limit check occasionally.
+ int pushes = 0;
+
+ for (int reg = 0; reg <= max_register; reg++) {
+ if (!affected_registers.Get(reg)) {
+ continue;
+ }
+
+ // The chronologically first deferred action in the trace
+ // is used to infer the action needed to restore a register
+ // to its previous state (or not, if it's safe to ignore it).
+ enum DeferredActionUndoType { IGNORE, RESTORE, CLEAR };
+ DeferredActionUndoType undo_action = IGNORE;
+
+ int value = 0;
+ bool absolute = false;
+ bool clear = false;
+ int store_position = -1;
+ // This is a little tricky because we are scanning the actions in reverse
+ // historical order (newest first).
+ for (DeferredAction* action = actions_;
+ action != NULL;
+ action = action->next()) {
+ if (action->Mentions(reg)) {
+ switch (action->action_type()) {
+ case ActionNode::SET_REGISTER: {
+ Trace::DeferredSetRegister* psr =
+ static_cast<Trace::DeferredSetRegister*>(action);
+ if (!absolute) {
+ value += psr->value();
+ absolute = true;
+ }
+ // SET_REGISTER is currently only used for newly introduced loop
+ // counters. They can have a significant previous value if they
+ // occour in a loop. TODO(lrn): Propagate this information, so
+ // we can set undo_action to IGNORE if we know there is no value to
+ // restore.
+ undo_action = RESTORE;
+ DCHECK_EQ(store_position, -1);
+ DCHECK(!clear);
+ break;
+ }
+ case ActionNode::INCREMENT_REGISTER:
+ if (!absolute) {
+ value++;
+ }
+ DCHECK_EQ(store_position, -1);
+ DCHECK(!clear);
+ undo_action = RESTORE;
+ break;
+ case ActionNode::STORE_POSITION: {
+ Trace::DeferredCapture* pc =
+ static_cast<Trace::DeferredCapture*>(action);
+ if (!clear && store_position == -1) {
+ store_position = pc->cp_offset();
+ }
+
+ // For captures we know that stores and clears alternate.
+ // Other register, are never cleared, and if the occur
+ // inside a loop, they might be assigned more than once.
+ if (reg <= 1) {
+ // Registers zero and one, aka "capture zero", is
+ // always set correctly if we succeed. There is no
+ // need to undo a setting on backtrack, because we
+ // will set it again or fail.
+ undo_action = IGNORE;
+ } else {
+ undo_action = pc->is_capture() ? CLEAR : RESTORE;
+ }
+ DCHECK(!absolute);
+ DCHECK_EQ(value, 0);
+ break;
+ }
+ case ActionNode::CLEAR_CAPTURES: {
+ // Since we're scanning in reverse order, if we've already
+ // set the position we have to ignore historically earlier
+ // clearing operations.
+ if (store_position == -1) {
+ clear = true;
+ }
+ undo_action = RESTORE;
+ DCHECK(!absolute);
+ DCHECK_EQ(value, 0);
+ break;
+ }
+ default:
+ UNREACHABLE();
+ break;
+ }
+ }
+ }
+ // Prepare for the undo-action (e.g., push if it's going to be popped).
+ if (undo_action == RESTORE) {
+ pushes++;
+ RegExpMacroAssembler::StackCheckFlag stack_check =
+ RegExpMacroAssembler::kNoStackLimitCheck;
+ if (pushes == push_limit) {
+ stack_check = RegExpMacroAssembler::kCheckStackLimit;
+ pushes = 0;
+ }
+
+ assembler->PushRegister(reg, stack_check);
+ registers_to_pop->Set(reg, zone);
+ } else if (undo_action == CLEAR) {
+ registers_to_clear->Set(reg, zone);
+ }
+ // Perform the chronologically last action (or accumulated increment)
+ // for the register.
+ if (store_position != -1) {
+ assembler->WriteCurrentPositionToRegister(reg, store_position);
+ } else if (clear) {
+ assembler->ClearRegisters(reg, reg);
+ } else if (absolute) {
+ assembler->SetRegister(reg, value);
+ } else if (value != 0) {
+ assembler->AdvanceRegister(reg, value);
+ }
+ }
+}
+
+
+// This is called as we come into a loop choice node and some other tricky
+// nodes. It normalizes the state of the code generator to ensure we can
+// generate generic code.
+void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+
+ DCHECK(!is_trivial());
+
+ if (actions_ == NULL && backtrack() == NULL) {
+ // Here we just have some deferred cp advances to fix and we are back to
+ // a normal situation. We may also have to forget some information gained
+ // through a quick check that was already performed.
+ if (cp_offset_ != 0) assembler->AdvanceCurrentPosition(cp_offset_);
+ // Create a new trivial state and generate the node with that.
+ Trace new_state;
+ successor->Emit(compiler, &new_state);
+ return;
+ }
+
+ // Generate deferred actions here along with code to undo them again.
+ OutSet affected_registers;
+
+ if (backtrack() != NULL) {
+ // Here we have a concrete backtrack location. These are set up by choice
+ // nodes and so they indicate that we have a deferred save of the current
+ // position which we may need to emit here.
+ assembler->PushCurrentPosition();
+ }
+
+ int max_register = FindAffectedRegisters(&affected_registers,
+ compiler->zone());
+ OutSet registers_to_pop;
+ OutSet registers_to_clear;
+ PerformDeferredActions(assembler,
+ max_register,
+ affected_registers,
+ &registers_to_pop,
+ &registers_to_clear,
+ compiler->zone());
+ if (cp_offset_ != 0) {
+ assembler->AdvanceCurrentPosition(cp_offset_);
+ }
+
+ // Create a new trivial state and generate the node with that.
+ Label undo;
+ assembler->PushBacktrack(&undo);
+ Trace new_state;
+ successor->Emit(compiler, &new_state);
+
+ // On backtrack we need to restore state.
+ assembler->Bind(&undo);
+ RestoreAffectedRegisters(assembler,
+ max_register,
+ registers_to_pop,
+ registers_to_clear);
+ if (backtrack() == NULL) {
+ assembler->Backtrack();
+ } else {
+ assembler->PopCurrentPosition();
+ assembler->GoTo(backtrack());
+ }
+}
+
+
+void NegativeSubmatchSuccess::Emit(RegExpCompiler* compiler, Trace* trace) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+
+ // Omit flushing the trace. We discard the entire stack frame anyway.
+
+ if (!label()->is_bound()) {
+ // We are completely independent of the trace, since we ignore it,
+ // so this code can be used as the generic version.
+ assembler->Bind(label());
+ }
+
+ // Throw away everything on the backtrack stack since the start
+ // of the negative submatch and restore the character position.
+ assembler->ReadCurrentPositionFromRegister(current_position_register_);
+ assembler->ReadStackPointerFromRegister(stack_pointer_register_);
+ if (clear_capture_count_ > 0) {
+ // Clear any captures that might have been performed during the success
+ // of the body of the negative look-ahead.
+ int clear_capture_end = clear_capture_start_ + clear_capture_count_ - 1;
+ assembler->ClearRegisters(clear_capture_start_, clear_capture_end);
+ }
+ // Now that we have unwound the stack we find at the top of the stack the
+ // backtrack that the BeginSubmatch node got.
+ assembler->Backtrack();
+}
+
+
+void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) {
+ if (!trace->is_trivial()) {
+ trace->Flush(compiler, this);
+ return;
+ }
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ if (!label()->is_bound()) {
+ assembler->Bind(label());
+ }
+ switch (action_) {
+ case ACCEPT:
+ assembler->Succeed();
+ return;
+ case BACKTRACK:
+ assembler->GoTo(trace->backtrack());
+ return;
+ case NEGATIVE_SUBMATCH_SUCCESS:
+ // This case is handled in a different virtual method.
+ UNREACHABLE();
+ }
+ UNIMPLEMENTED();
+}
+
+
+void GuardedAlternative::AddGuard(Guard* guard, Zone* zone) {
+ if (guards_ == NULL)
+ guards_ = new(zone) ZoneList<Guard*>(1, zone);
+ guards_->Add(guard, zone);
+}
+
+
+ActionNode* ActionNode::SetRegister(int reg,
+ int val,
+ RegExpNode* on_success) {
+ ActionNode* result =
+ new(on_success->zone()) ActionNode(SET_REGISTER, on_success);
+ result->data_.u_store_register.reg = reg;
+ result->data_.u_store_register.value = val;
+ return result;
+}
+
+
+ActionNode* ActionNode::IncrementRegister(int reg, RegExpNode* on_success) {
+ ActionNode* result =
+ new(on_success->zone()) ActionNode(INCREMENT_REGISTER, on_success);
+ result->data_.u_increment_register.reg = reg;
+ return result;
+}
+
+
+ActionNode* ActionNode::StorePosition(int reg,
+ bool is_capture,
+ RegExpNode* on_success) {
+ ActionNode* result =
+ new(on_success->zone()) ActionNode(STORE_POSITION, on_success);
+ result->data_.u_position_register.reg = reg;
+ result->data_.u_position_register.is_capture = is_capture;
+ return result;
+}
+
+
+ActionNode* ActionNode::ClearCaptures(Interval range,
+ RegExpNode* on_success) {
+ ActionNode* result =
+ new(on_success->zone()) ActionNode(CLEAR_CAPTURES, on_success);
+ result->data_.u_clear_captures.range_from = range.from();
+ result->data_.u_clear_captures.range_to = range.to();
+ return result;
+}
+
+
+ActionNode* ActionNode::BeginSubmatch(int stack_reg,
+ int position_reg,
+ RegExpNode* on_success) {
+ ActionNode* result =
+ new(on_success->zone()) ActionNode(BEGIN_SUBMATCH, on_success);
+ result->data_.u_submatch.stack_pointer_register = stack_reg;
+ result->data_.u_submatch.current_position_register = position_reg;
+ return result;
+}
+
+
+ActionNode* ActionNode::PositiveSubmatchSuccess(int stack_reg,
+ int position_reg,
+ int clear_register_count,
+ int clear_register_from,
+ RegExpNode* on_success) {
+ ActionNode* result =
+ new(on_success->zone()) ActionNode(POSITIVE_SUBMATCH_SUCCESS, on_success);
+ result->data_.u_submatch.stack_pointer_register = stack_reg;
+ result->data_.u_submatch.current_position_register = position_reg;
+ result->data_.u_submatch.clear_register_count = clear_register_count;
+ result->data_.u_submatch.clear_register_from = clear_register_from;
+ return result;
+}
+
+
+ActionNode* ActionNode::EmptyMatchCheck(int start_register,
+ int repetition_register,
+ int repetition_limit,
+ RegExpNode* on_success) {
+ ActionNode* result =
+ new(on_success->zone()) ActionNode(EMPTY_MATCH_CHECK, on_success);
+ result->data_.u_empty_match_check.start_register = start_register;
+ result->data_.u_empty_match_check.repetition_register = repetition_register;
+ result->data_.u_empty_match_check.repetition_limit = repetition_limit;
+ return result;
+}
+
+
+#define DEFINE_ACCEPT(Type) \
+ void Type##Node::Accept(NodeVisitor* visitor) { \
+ visitor->Visit##Type(this); \
+ }
+FOR_EACH_NODE_TYPE(DEFINE_ACCEPT)
+#undef DEFINE_ACCEPT
+
+
+void LoopChoiceNode::Accept(NodeVisitor* visitor) {
+ visitor->VisitLoopChoice(this);
+}
+
+
+// -------------------------------------------------------------------
+// Emit code.
+
+
+void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler,
+ Guard* guard,
+ Trace* trace) {
+ switch (guard->op()) {
+ case Guard::LT:
+ DCHECK(!trace->mentions_reg(guard->reg()));
+ macro_assembler->IfRegisterGE(guard->reg(),
+ guard->value(),
+ trace->backtrack());
+ break;
+ case Guard::GEQ:
+ DCHECK(!trace->mentions_reg(guard->reg()));
+ macro_assembler->IfRegisterLT(guard->reg(),
+ guard->value(),
+ trace->backtrack());
+ break;
+ }
+}
+
+
+// Returns the number of characters in the equivalence class, omitting those
+// that cannot occur in the source string because it is ASCII.
+static int GetCaseIndependentLetters(Isolate* isolate, uc16 character,
+ bool one_byte_subject,
+ unibrow::uchar* letters) {
+ int length =
+ isolate->jsregexp_uncanonicalize()->get(character, '\0', letters);
+ // Unibrow returns 0 or 1 for characters where case independence is
+ // trivial.
+ if (length == 0) {
+ letters[0] = character;
+ length = 1;
+ }
+ if (!one_byte_subject || character <= String::kMaxOneByteCharCode) {
+ return length;
+ }
+
+ // The standard requires that non-ASCII characters cannot have ASCII
+ // character codes in their equivalence class.
+ // TODO(dcarney): issue 3550 this is not actually true for Latin1 anymore,
+ // is it? For example, \u00C5 is equivalent to \u212B.
+ return 0;
+}
+
+
+static inline bool EmitSimpleCharacter(Isolate* isolate,
+ RegExpCompiler* compiler,
+ uc16 c,
+ Label* on_failure,
+ int cp_offset,
+ bool check,
+ bool preloaded) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ bool bound_checked = false;
+ if (!preloaded) {
+ assembler->LoadCurrentCharacter(
+ cp_offset,
+ on_failure,
+ check);
+ bound_checked = true;
+ }
+ assembler->CheckNotCharacter(c, on_failure);
+ return bound_checked;
+}
+
+
+// Only emits non-letters (things that don't have case). Only used for case
+// independent matches.
+static inline bool EmitAtomNonLetter(Isolate* isolate,
+ RegExpCompiler* compiler,
+ uc16 c,
+ Label* on_failure,
+ int cp_offset,
+ bool check,
+ bool preloaded) {
+ RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+ bool one_byte = compiler->one_byte();
+ unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+ int length = GetCaseIndependentLetters(isolate, c, one_byte, chars);
+ if (length < 1) {
+ // This can't match. Must be an one-byte subject and a non-one-byte
+ // character. We do not need to do anything since the one-byte pass
+ // already handled this.
+ return false; // Bounds not checked.
+ }
+ bool checked = false;
+ // We handle the length > 1 case in a later pass.
+ if (length == 1) {
+ if (one_byte && c > String::kMaxOneByteCharCodeU) {
+ // Can't match - see above.
+ return false; // Bounds not checked.
+ }
+ if (!preloaded) {
+ macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
+ checked = check;
+ }
+ macro_assembler->CheckNotCharacter(c, on_failure);
+ }
+ return checked;
+}
+
+
+static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler,
+ bool one_byte, uc16 c1, uc16 c2,
+ Label* on_failure) {
+ uc16 char_mask;
+ if (one_byte) {
+ char_mask = String::kMaxOneByteCharCode;
+ } else {
+ char_mask = String::kMaxUtf16CodeUnit;
+ }
+ uc16 exor = c1 ^ c2;
+ // Check whether exor has only one bit set.
+ if (((exor - 1) & exor) == 0) {
+ // If c1 and c2 differ only by one bit.
+ // Ecma262UnCanonicalize always gives the highest number last.
+ DCHECK(c2 > c1);
+ uc16 mask = char_mask ^ exor;
+ macro_assembler->CheckNotCharacterAfterAnd(c1, mask, on_failure);
+ return true;
+ }
+ DCHECK(c2 > c1);
+ uc16 diff = c2 - c1;
+ if (((diff - 1) & diff) == 0 && c1 >= diff) {
+ // If the characters differ by 2^n but don't differ by one bit then
+ // subtract the difference from the found character, then do the or
+ // trick. We avoid the theoretical case where negative numbers are
+ // involved in order to simplify code generation.
+ uc16 mask = char_mask ^ diff;
+ macro_assembler->CheckNotCharacterAfterMinusAnd(c1 - diff,
+ diff,
+ mask,
+ on_failure);
+ return true;
+ }
+ return false;
+}
+
+
+typedef bool EmitCharacterFunction(Isolate* isolate,
+ RegExpCompiler* compiler,
+ uc16 c,
+ Label* on_failure,
+ int cp_offset,
+ bool check,
+ bool preloaded);
+
+// Only emits letters (things that have case). Only used for case independent
+// matches.
+static inline bool EmitAtomLetter(Isolate* isolate,
+ RegExpCompiler* compiler,
+ uc16 c,
+ Label* on_failure,
+ int cp_offset,
+ bool check,
+ bool preloaded) {
+ RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+ bool one_byte = compiler->one_byte();
+ unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+ int length = GetCaseIndependentLetters(isolate, c, one_byte, chars);
+ if (length <= 1) return false;
+ // We may not need to check against the end of the input string
+ // if this character lies before a character that matched.
+ if (!preloaded) {
+ macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
+ }
+ Label ok;
+ DCHECK(unibrow::Ecma262UnCanonicalize::kMaxWidth == 4);
+ switch (length) {
+ case 2: {
+ if (ShortCutEmitCharacterPair(macro_assembler, one_byte, chars[0],
+ chars[1], on_failure)) {
+ } else {
+ macro_assembler->CheckCharacter(chars[0], &ok);
+ macro_assembler->CheckNotCharacter(chars[1], on_failure);
+ macro_assembler->Bind(&ok);
+ }
+ break;
+ }
+ case 4:
+ macro_assembler->CheckCharacter(chars[3], &ok);
+ // Fall through!
+ case 3:
+ macro_assembler->CheckCharacter(chars[0], &ok);
+ macro_assembler->CheckCharacter(chars[1], &ok);
+ macro_assembler->CheckNotCharacter(chars[2], on_failure);
+ macro_assembler->Bind(&ok);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ return true;
+}
+
+
+static void EmitBoundaryTest(RegExpMacroAssembler* masm,
+ int border,
+ Label* fall_through,
+ Label* above_or_equal,
+ Label* below) {
+ if (below != fall_through) {
+ masm->CheckCharacterLT(border, below);
+ if (above_or_equal != fall_through) masm->GoTo(above_or_equal);
+ } else {
+ masm->CheckCharacterGT(border - 1, above_or_equal);
+ }
+}
+
+
+static void EmitDoubleBoundaryTest(RegExpMacroAssembler* masm,
+ int first,
+ int last,
+ Label* fall_through,
+ Label* in_range,
+ Label* out_of_range) {
+ if (in_range == fall_through) {
+ if (first == last) {
+ masm->CheckNotCharacter(first, out_of_range);
+ } else {
+ masm->CheckCharacterNotInRange(first, last, out_of_range);
+ }
+ } else {
+ if (first == last) {
+ masm->CheckCharacter(first, in_range);
+ } else {
+ masm->CheckCharacterInRange(first, last, in_range);
+ }
+ if (out_of_range != fall_through) masm->GoTo(out_of_range);
+ }
+}
+
+
+// even_label is for ranges[i] to ranges[i + 1] where i - start_index is even.
+// odd_label is for ranges[i] to ranges[i + 1] where i - start_index is odd.
+static void EmitUseLookupTable(
+ RegExpMacroAssembler* masm,
+ ZoneList<int>* ranges,
+ int start_index,
+ int end_index,
+ int min_char,
+ Label* fall_through,
+ Label* even_label,
+ Label* odd_label) {
+ static const int kSize = RegExpMacroAssembler::kTableSize;
+ static const int kMask = RegExpMacroAssembler::kTableMask;
+
+ int base = (min_char & ~kMask);
+ USE(base);
+
+ // Assert that everything is on one kTableSize page.
+ for (int i = start_index; i <= end_index; i++) {
+ DCHECK_EQ(ranges->at(i) & ~kMask, base);
+ }
+ DCHECK(start_index == 0 || (ranges->at(start_index - 1) & ~kMask) <= base);
+
+ char templ[kSize];
+ Label* on_bit_set;
+ Label* on_bit_clear;
+ int bit;
+ if (even_label == fall_through) {
+ on_bit_set = odd_label;
+ on_bit_clear = even_label;
+ bit = 1;
+ } else {
+ on_bit_set = even_label;
+ on_bit_clear = odd_label;
+ bit = 0;
+ }
+ for (int i = 0; i < (ranges->at(start_index) & kMask) && i < kSize; i++) {
+ templ[i] = bit;
+ }
+ int j = 0;
+ bit ^= 1;
+ for (int i = start_index; i < end_index; i++) {
+ for (j = (ranges->at(i) & kMask); j < (ranges->at(i + 1) & kMask); j++) {
+ templ[j] = bit;
+ }
+ bit ^= 1;
+ }
+ for (int i = j; i < kSize; i++) {
+ templ[i] = bit;
+ }
+ Factory* factory = masm->zone()->isolate()->factory();
+ // TODO(erikcorry): Cache these.
+ Handle<ByteArray> ba = factory->NewByteArray(kSize, TENURED);
+ for (int i = 0; i < kSize; i++) {
+ ba->set(i, templ[i]);
+ }
+ masm->CheckBitInTable(ba, on_bit_set);
+ if (on_bit_clear != fall_through) masm->GoTo(on_bit_clear);
+}
+
+
+static void CutOutRange(RegExpMacroAssembler* masm,
+ ZoneList<int>* ranges,
+ int start_index,
+ int end_index,
+ int cut_index,
+ Label* even_label,
+ Label* odd_label) {
+ bool odd = (((cut_index - start_index) & 1) == 1);
+ Label* in_range_label = odd ? odd_label : even_label;
+ Label dummy;
+ EmitDoubleBoundaryTest(masm,
+ ranges->at(cut_index),
+ ranges->at(cut_index + 1) - 1,
+ &dummy,
+ in_range_label,
+ &dummy);
+ DCHECK(!dummy.is_linked());
+ // Cut out the single range by rewriting the array. This creates a new
+ // range that is a merger of the two ranges on either side of the one we
+ // are cutting out. The oddity of the labels is preserved.
+ for (int j = cut_index; j > start_index; j--) {
+ ranges->at(j) = ranges->at(j - 1);
+ }
+ for (int j = cut_index + 1; j < end_index; j++) {
+ ranges->at(j) = ranges->at(j + 1);
+ }
+}
+
+
+// Unicode case. Split the search space into kSize spaces that are handled
+// with recursion.
+static void SplitSearchSpace(ZoneList<int>* ranges,
+ int start_index,
+ int end_index,
+ int* new_start_index,
+ int* new_end_index,
+ int* border) {
+ static const int kSize = RegExpMacroAssembler::kTableSize;
+ static const int kMask = RegExpMacroAssembler::kTableMask;
+
+ int first = ranges->at(start_index);
+ int last = ranges->at(end_index) - 1;
+
+ *new_start_index = start_index;
+ *border = (ranges->at(start_index) & ~kMask) + kSize;
+ while (*new_start_index < end_index) {
+ if (ranges->at(*new_start_index) > *border) break;
+ (*new_start_index)++;
+ }
+ // new_start_index is the index of the first edge that is beyond the
+ // current kSize space.
+
+ // For very large search spaces we do a binary chop search of the non-Latin1
+ // space instead of just going to the end of the current kSize space. The
+ // heuristics are complicated a little by the fact that any 128-character
+ // encoding space can be quickly tested with a table lookup, so we don't
+ // wish to do binary chop search at a smaller granularity than that. A
+ // 128-character space can take up a lot of space in the ranges array if,
+ // for example, we only want to match every second character (eg. the lower
+ // case characters on some Unicode pages).
+ int binary_chop_index = (end_index + start_index) / 2;
+ // The first test ensures that we get to the code that handles the Latin1
+ // range with a single not-taken branch, speeding up this important
+ // character range (even non-Latin1 charset-based text has spaces and
+ // punctuation).
+ if (*border - 1 > String::kMaxOneByteCharCode && // Latin1 case.
+ end_index - start_index > (*new_start_index - start_index) * 2 &&
+ last - first > kSize * 2 && binary_chop_index > *new_start_index &&
+ ranges->at(binary_chop_index) >= first + 2 * kSize) {
+ int scan_forward_for_section_border = binary_chop_index;;
+ int new_border = (ranges->at(binary_chop_index) | kMask) + 1;
+
+ while (scan_forward_for_section_border < end_index) {
+ if (ranges->at(scan_forward_for_section_border) > new_border) {
+ *new_start_index = scan_forward_for_section_border;
+ *border = new_border;
+ break;
+ }
+ scan_forward_for_section_border++;
+ }
+ }
+
+ DCHECK(*new_start_index > start_index);
+ *new_end_index = *new_start_index - 1;
+ if (ranges->at(*new_end_index) == *border) {
+ (*new_end_index)--;
+ }
+ if (*border >= ranges->at(end_index)) {
+ *border = ranges->at(end_index);
+ *new_start_index = end_index; // Won't be used.
+ *new_end_index = end_index - 1;
+ }
+}
+
+
+// Gets a series of segment boundaries representing a character class. If the
+// character is in the range between an even and an odd boundary (counting from
+// start_index) then go to even_label, otherwise go to odd_label. We already
+// know that the character is in the range of min_char to max_char inclusive.
+// Either label can be NULL indicating backtracking. Either label can also be
+// equal to the fall_through label.
+static void GenerateBranches(RegExpMacroAssembler* masm,
+ ZoneList<int>* ranges,
+ int start_index,
+ int end_index,
+ uc16 min_char,
+ uc16 max_char,
+ Label* fall_through,
+ Label* even_label,
+ Label* odd_label) {
+ int first = ranges->at(start_index);
+ int last = ranges->at(end_index) - 1;
+
+ DCHECK_LT(min_char, first);
+
+ // Just need to test if the character is before or on-or-after
+ // a particular character.
+ if (start_index == end_index) {
+ EmitBoundaryTest(masm, first, fall_through, even_label, odd_label);
+ return;
+ }
+
+ // Another almost trivial case: There is one interval in the middle that is
+ // different from the end intervals.
+ if (start_index + 1 == end_index) {
+ EmitDoubleBoundaryTest(
+ masm, first, last, fall_through, even_label, odd_label);
+ return;
+ }
+
+ // It's not worth using table lookup if there are very few intervals in the
+ // character class.
+ if (end_index - start_index <= 6) {
+ // It is faster to test for individual characters, so we look for those
+ // first, then try arbitrary ranges in the second round.
+ static int kNoCutIndex = -1;
+ int cut = kNoCutIndex;
+ for (int i = start_index; i < end_index; i++) {
+ if (ranges->at(i) == ranges->at(i + 1) - 1) {
+ cut = i;
+ break;
+ }
+ }
+ if (cut == kNoCutIndex) cut = start_index;
+ CutOutRange(
+ masm, ranges, start_index, end_index, cut, even_label, odd_label);
+ DCHECK_GE(end_index - start_index, 2);
+ GenerateBranches(masm,
+ ranges,
+ start_index + 1,
+ end_index - 1,
+ min_char,
+ max_char,
+ fall_through,
+ even_label,
+ odd_label);
+ return;
+ }
+
+ // If there are a lot of intervals in the regexp, then we will use tables to
+ // determine whether the character is inside or outside the character class.
+ static const int kBits = RegExpMacroAssembler::kTableSizeBits;
+
+ if ((max_char >> kBits) == (min_char >> kBits)) {
+ EmitUseLookupTable(masm,
+ ranges,
+ start_index,
+ end_index,
+ min_char,
+ fall_through,
+ even_label,
+ odd_label);
+ return;
+ }
+
+ if ((min_char >> kBits) != (first >> kBits)) {
+ masm->CheckCharacterLT(first, odd_label);
+ GenerateBranches(masm,
+ ranges,
+ start_index + 1,
+ end_index,
+ first,
+ max_char,
+ fall_through,
+ odd_label,
+ even_label);
+ return;
+ }
+
+ int new_start_index = 0;
+ int new_end_index = 0;
+ int border = 0;
+
+ SplitSearchSpace(ranges,
+ start_index,
+ end_index,
+ &new_start_index,
+ &new_end_index,
+ &border);
+
+ Label handle_rest;
+ Label* above = &handle_rest;
+ if (border == last + 1) {
+ // We didn't find any section that started after the limit, so everything
+ // above the border is one of the terminal labels.
+ above = (end_index & 1) != (start_index & 1) ? odd_label : even_label;
+ DCHECK(new_end_index == end_index - 1);
+ }
+
+ DCHECK_LE(start_index, new_end_index);
+ DCHECK_LE(new_start_index, end_index);
+ DCHECK_LT(start_index, new_start_index);
+ DCHECK_LT(new_end_index, end_index);
+ DCHECK(new_end_index + 1 == new_start_index ||
+ (new_end_index + 2 == new_start_index &&
+ border == ranges->at(new_end_index + 1)));
+ DCHECK_LT(min_char, border - 1);
+ DCHECK_LT(border, max_char);
+ DCHECK_LT(ranges->at(new_end_index), border);
+ DCHECK(border < ranges->at(new_start_index) ||
+ (border == ranges->at(new_start_index) &&
+ new_start_index == end_index &&
+ new_end_index == end_index - 1 &&
+ border == last + 1));
+ DCHECK(new_start_index == 0 || border >= ranges->at(new_start_index - 1));
+
+ masm->CheckCharacterGT(border - 1, above);
+ Label dummy;
+ GenerateBranches(masm,
+ ranges,
+ start_index,
+ new_end_index,
+ min_char,
+ border - 1,
+ &dummy,
+ even_label,
+ odd_label);
+ if (handle_rest.is_linked()) {
+ masm->Bind(&handle_rest);
+ bool flip = (new_start_index & 1) != (start_index & 1);
+ GenerateBranches(masm,
+ ranges,
+ new_start_index,
+ end_index,
+ border,
+ max_char,
+ &dummy,
+ flip ? odd_label : even_label,
+ flip ? even_label : odd_label);
+ }
+}
+
+
+static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
+ RegExpCharacterClass* cc, bool one_byte,
+ Label* on_failure, int cp_offset, bool check_offset,
+ bool preloaded, Zone* zone) {
+ ZoneList<CharacterRange>* ranges = cc->ranges(zone);
+ if (!CharacterRange::IsCanonical(ranges)) {
+ CharacterRange::Canonicalize(ranges);
+ }
+
+ int max_char;
+ if (one_byte) {
+ max_char = String::kMaxOneByteCharCode;
+ } else {
+ max_char = String::kMaxUtf16CodeUnit;
+ }
+
+ int range_count = ranges->length();
+
+ int last_valid_range = range_count - 1;
+ while (last_valid_range >= 0) {
+ CharacterRange& range = ranges->at(last_valid_range);
+ if (range.from() <= max_char) {
+ break;
+ }
+ last_valid_range--;
+ }
+
+ if (last_valid_range < 0) {
+ if (!cc->is_negated()) {
+ macro_assembler->GoTo(on_failure);
+ }
+ if (check_offset) {
+ macro_assembler->CheckPosition(cp_offset, on_failure);
+ }
+ return;
+ }
+
+ if (last_valid_range == 0 &&
+ ranges->at(0).IsEverything(max_char)) {
+ if (cc->is_negated()) {
+ macro_assembler->GoTo(on_failure);
+ } else {
+ // This is a common case hit by non-anchored expressions.
+ if (check_offset) {
+ macro_assembler->CheckPosition(cp_offset, on_failure);
+ }
+ }
+ return;
+ }
+ if (last_valid_range == 0 &&
+ !cc->is_negated() &&
+ ranges->at(0).IsEverything(max_char)) {
+ // This is a common case hit by non-anchored expressions.
+ if (check_offset) {
+ macro_assembler->CheckPosition(cp_offset, on_failure);
+ }
+ return;
+ }
+
+ if (!preloaded) {
+ macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check_offset);
+ }
+
+ if (cc->is_standard(zone) &&
+ macro_assembler->CheckSpecialCharacterClass(cc->standard_type(),
+ on_failure)) {
+ return;
+ }
+
+
+ // A new list with ascending entries. Each entry is a code unit
+ // where there is a boundary between code units that are part of
+ // the class and code units that are not. Normally we insert an
+ // entry at zero which goes to the failure label, but if there
+ // was already one there we fall through for success on that entry.
+ // Subsequent entries have alternating meaning (success/failure).
+ ZoneList<int>* range_boundaries =
+ new(zone) ZoneList<int>(last_valid_range, zone);
+
+ bool zeroth_entry_is_failure = !cc->is_negated();
+
+ for (int i = 0; i <= last_valid_range; i++) {
+ CharacterRange& range = ranges->at(i);
+ if (range.from() == 0) {
+ DCHECK_EQ(i, 0);
+ zeroth_entry_is_failure = !zeroth_entry_is_failure;
+ } else {
+ range_boundaries->Add(range.from(), zone);
+ }
+ range_boundaries->Add(range.to() + 1, zone);
+ }
+ int end_index = range_boundaries->length() - 1;
+ if (range_boundaries->at(end_index) > max_char) {
+ end_index--;
+ }
+
+ Label fall_through;
+ GenerateBranches(macro_assembler,
+ range_boundaries,
+ 0, // start_index.
+ end_index,
+ 0, // min_char.
+ max_char,
+ &fall_through,
+ zeroth_entry_is_failure ? &fall_through : on_failure,
+ zeroth_entry_is_failure ? on_failure : &fall_through);
+ macro_assembler->Bind(&fall_through);
+}
+
+
+RegExpNode::~RegExpNode() {
+}
+
+
+RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler,
+ Trace* trace) {
+ // If we are generating a greedy loop then don't stop and don't reuse code.
+ if (trace->stop_node() != NULL) {
+ return CONTINUE;
+ }
+
+ RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+ if (trace->is_trivial()) {
+ if (label_.is_bound()) {
+ // We are being asked to generate a generic version, but that's already
+ // been done so just go to it.
+ macro_assembler->GoTo(&label_);
+ return DONE;
+ }
+ if (compiler->recursion_depth() >= RegExpCompiler::kMaxRecursion) {
+ // To avoid too deep recursion we push the node to the work queue and just
+ // generate a goto here.
+ compiler->AddWork(this);
+ macro_assembler->GoTo(&label_);
+ return DONE;
+ }
+ // Generate generic version of the node and bind the label for later use.
+ macro_assembler->Bind(&label_);
+ return CONTINUE;
+ }
+
+ // We are being asked to make a non-generic version. Keep track of how many
+ // non-generic versions we generate so as not to overdo it.
+ trace_count_++;
+ if (FLAG_regexp_optimization &&
+ trace_count_ < kMaxCopiesCodeGenerated &&
+ compiler->recursion_depth() <= RegExpCompiler::kMaxRecursion) {
+ return CONTINUE;
+ }
+
+ // If we get here code has been generated for this node too many times or
+ // recursion is too deep. Time to switch to a generic version. The code for
+ // generic versions above can handle deep recursion properly.
+ trace->Flush(compiler, this);
+ return DONE;
+}
+
+
+int ActionNode::EatsAtLeast(int still_to_find,
+ int budget,
+ bool not_at_start) {
+ if (budget <= 0) return 0;
+ if (action_type_ == POSITIVE_SUBMATCH_SUCCESS) return 0; // Rewinds input!
+ return on_success()->EatsAtLeast(still_to_find,
+ budget - 1,
+ not_at_start);
+}
+
+
+void ActionNode::FillInBMInfo(int offset,
+ int budget,
+ BoyerMooreLookahead* bm,
+ bool not_at_start) {
+ if (action_type_ == BEGIN_SUBMATCH) {
+ bm->SetRest(offset);
+ } else if (action_type_ != POSITIVE_SUBMATCH_SUCCESS) {
+ on_success()->FillInBMInfo(offset, budget - 1, bm, not_at_start);
+ }
+ SaveBMInfo(bm, not_at_start, offset);
+}
+
+
+int AssertionNode::EatsAtLeast(int still_to_find,
+ int budget,
+ bool not_at_start) {
+ if (budget <= 0) return 0;
+ // If we know we are not at the start and we are asked "how many characters
+ // will you match if you succeed?" then we can answer anything since false
+ // implies false. So lets just return the max answer (still_to_find) since
+ // that won't prevent us from preloading a lot of characters for the other
+ // branches in the node graph.
+ if (assertion_type() == AT_START && not_at_start) return still_to_find;
+ return on_success()->EatsAtLeast(still_to_find,
+ budget - 1,
+ not_at_start);
+}
+
+
+void AssertionNode::FillInBMInfo(int offset,
+ int budget,
+ BoyerMooreLookahead* bm,
+ bool not_at_start) {
+ // Match the behaviour of EatsAtLeast on this node.
+ if (assertion_type() == AT_START && not_at_start) return;
+ on_success()->FillInBMInfo(offset, budget - 1, bm, not_at_start);
+ SaveBMInfo(bm, not_at_start, offset);
+}
+
+
+int BackReferenceNode::EatsAtLeast(int still_to_find,
+ int budget,
+ bool not_at_start) {
+ if (budget <= 0) return 0;
+ return on_success()->EatsAtLeast(still_to_find,
+ budget - 1,
+ not_at_start);
+}
+
+
+int TextNode::EatsAtLeast(int still_to_find,
+ int budget,
+ bool not_at_start) {
+ int answer = Length();
+ if (answer >= still_to_find) return answer;
+ if (budget <= 0) return answer;
+ // We are not at start after this node so we set the last argument to 'true'.
+ return answer + on_success()->EatsAtLeast(still_to_find - answer,
+ budget - 1,
+ true);
+}
+
+
+int NegativeLookaheadChoiceNode::EatsAtLeast(int still_to_find,
+ int budget,
+ bool not_at_start) {
+ if (budget <= 0) return 0;
+ // Alternative 0 is the negative lookahead, alternative 1 is what comes
+ // afterwards.
+ RegExpNode* node = alternatives_->at(1).node();
+ return node->EatsAtLeast(still_to_find, budget - 1, not_at_start);
+}
+
+
+void NegativeLookaheadChoiceNode::GetQuickCheckDetails(
+ QuickCheckDetails* details,
+ RegExpCompiler* compiler,
+ int filled_in,
+ bool not_at_start) {
+ // Alternative 0 is the negative lookahead, alternative 1 is what comes
+ // afterwards.
+ RegExpNode* node = alternatives_->at(1).node();
+ return node->GetQuickCheckDetails(details, compiler, filled_in, not_at_start);
+}
+
+
+int ChoiceNode::EatsAtLeastHelper(int still_to_find,
+ int budget,
+ RegExpNode* ignore_this_node,
+ bool not_at_start) {
+ if (budget <= 0) return 0;
+ int min = 100;
+ int choice_count = alternatives_->length();
+ budget = (budget - 1) / choice_count;
+ for (int i = 0; i < choice_count; i++) {
+ RegExpNode* node = alternatives_->at(i).node();
+ if (node == ignore_this_node) continue;
+ int node_eats_at_least =
+ node->EatsAtLeast(still_to_find, budget, not_at_start);
+ if (node_eats_at_least < min) min = node_eats_at_least;
+ if (min == 0) return 0;
+ }
+ return min;
+}
+
+
+int LoopChoiceNode::EatsAtLeast(int still_to_find,
+ int budget,
+ bool not_at_start) {
+ return EatsAtLeastHelper(still_to_find,
+ budget - 1,
+ loop_node_,
+ not_at_start);
+}
+
+
+int ChoiceNode::EatsAtLeast(int still_to_find,
+ int budget,
+ bool not_at_start) {
+ return EatsAtLeastHelper(still_to_find,
+ budget,
+ NULL,
+ not_at_start);
+}
+
+
+// Takes the left-most 1-bit and smears it out, setting all bits to its right.
+static inline uint32_t SmearBitsRight(uint32_t v) {
+ v |= v >> 1;
+ v |= v >> 2;
+ v |= v >> 4;
+ v |= v >> 8;
+ v |= v >> 16;
+ return v;
+}
+
+
+bool QuickCheckDetails::Rationalize(bool asc) {
+ bool found_useful_op = false;
+ uint32_t char_mask;
+ if (asc) {
+ char_mask = String::kMaxOneByteCharCode;
+ } else {
+ char_mask = String::kMaxUtf16CodeUnit;
+ }
+ mask_ = 0;
+ value_ = 0;
+ int char_shift = 0;
+ for (int i = 0; i < characters_; i++) {
+ Position* pos = &positions_[i];
+ if ((pos->mask & String::kMaxOneByteCharCode) != 0) {
+ found_useful_op = true;
+ }
+ mask_ |= (pos->mask & char_mask) << char_shift;
+ value_ |= (pos->value & char_mask) << char_shift;
+ char_shift += asc ? 8 : 16;
+ }
+ return found_useful_op;
+}
+
+
+bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler,
+ Trace* bounds_check_trace,
+ Trace* trace,
+ bool preload_has_checked_bounds,
+ Label* on_possible_success,
+ QuickCheckDetails* details,
+ bool fall_through_on_failure) {
+ if (details->characters() == 0) return false;
+ GetQuickCheckDetails(
+ details, compiler, 0, trace->at_start() == Trace::FALSE_VALUE);
+ if (details->cannot_match()) return false;
+ if (!details->Rationalize(compiler->one_byte())) return false;
+ DCHECK(details->characters() == 1 ||
+ compiler->macro_assembler()->CanReadUnaligned());
+ uint32_t mask = details->mask();
+ uint32_t value = details->value();
+
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+
+ if (trace->characters_preloaded() != details->characters()) {
+ DCHECK(trace->cp_offset() == bounds_check_trace->cp_offset());
+ // We are attempting to preload the minimum number of characters
+ // any choice would eat, so if the bounds check fails, then none of the
+ // choices can succeed, so we can just immediately backtrack, rather
+ // than go to the next choice.
+ assembler->LoadCurrentCharacter(trace->cp_offset(),
+ bounds_check_trace->backtrack(),
+ !preload_has_checked_bounds,
+ details->characters());
+ }
+
+
+ bool need_mask = true;
+
+ if (details->characters() == 1) {
+ // If number of characters preloaded is 1 then we used a byte or 16 bit
+ // load so the value is already masked down.
+ uint32_t char_mask;
+ if (compiler->one_byte()) {
+ char_mask = String::kMaxOneByteCharCode;
+ } else {
+ char_mask = String::kMaxUtf16CodeUnit;
+ }
+ if ((mask & char_mask) == char_mask) need_mask = false;
+ mask &= char_mask;
+ } else {
+ // For 2-character preloads in one-byte mode or 1-character preloads in
+ // two-byte mode we also use a 16 bit load with zero extend.
+ if (details->characters() == 2 && compiler->one_byte()) {
+ if ((mask & 0xffff) == 0xffff) need_mask = false;
+ } else if (details->characters() == 1 && !compiler->one_byte()) {
+ if ((mask & 0xffff) == 0xffff) need_mask = false;
+ } else {
+ if (mask == 0xffffffff) need_mask = false;
+ }
+ }
+
+ if (fall_through_on_failure) {
+ if (need_mask) {
+ assembler->CheckCharacterAfterAnd(value, mask, on_possible_success);
+ } else {
+ assembler->CheckCharacter(value, on_possible_success);
+ }
+ } else {
+ if (need_mask) {
+ assembler->CheckNotCharacterAfterAnd(value, mask, trace->backtrack());
+ } else {
+ assembler->CheckNotCharacter(value, trace->backtrack());
+ }
+ }
+ return true;
+}
+
+
+// Here is the meat of GetQuickCheckDetails (see also the comment on the
+// super-class in the .h file).
+//
+// We iterate along the text object, building up for each character a
+// mask and value that can be used to test for a quick failure to match.
+// The masks and values for the positions will be combined into a single
+// machine word for the current character width in order to be used in
+// generating a quick check.
+void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
+ RegExpCompiler* compiler,
+ int characters_filled_in,
+ bool not_at_start) {
+ Isolate* isolate = compiler->macro_assembler()->zone()->isolate();
+ DCHECK(characters_filled_in < details->characters());
+ int characters = details->characters();
+ int char_mask;
+ if (compiler->one_byte()) {
+ char_mask = String::kMaxOneByteCharCode;
+ } else {
+ char_mask = String::kMaxUtf16CodeUnit;
+ }
+ for (int k = 0; k < elms_->length(); k++) {
+ TextElement elm = elms_->at(k);
+ if (elm.text_type() == TextElement::ATOM) {
+ Vector<const uc16> quarks = elm.atom()->data();
+ for (int i = 0; i < characters && i < quarks.length(); i++) {
+ QuickCheckDetails::Position* pos =
+ details->positions(characters_filled_in);
+ uc16 c = quarks[i];
+ if (c > char_mask) {
+ // If we expect a non-Latin1 character from an one-byte string,
+ // there is no way we can match. Not even case-independent
+ // matching can turn an Latin1 character into non-Latin1 or
+ // vice versa.
+ // TODO(dcarney): issue 3550. Verify that this works as expected.
+ // For example, \u0178 is uppercase of \u00ff (y-umlaut).
+ details->set_cannot_match();
+ pos->determines_perfectly = false;
+ return;
+ }
+ if (compiler->ignore_case()) {
+ unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+ int length = GetCaseIndependentLetters(isolate, c,
+ compiler->one_byte(), chars);
+ DCHECK(length != 0); // Can only happen if c > char_mask (see above).
+ if (length == 1) {
+ // This letter has no case equivalents, so it's nice and simple
+ // and the mask-compare will determine definitely whether we have
+ // a match at this character position.
+ pos->mask = char_mask;
+ pos->value = c;
+ pos->determines_perfectly = true;
+ } else {
+ uint32_t common_bits = char_mask;
+ uint32_t bits = chars[0];
+ for (int j = 1; j < length; j++) {
+ uint32_t differing_bits = ((chars[j] & common_bits) ^ bits);
+ common_bits ^= differing_bits;
+ bits &= common_bits;
+ }
+ // If length is 2 and common bits has only one zero in it then
+ // our mask and compare instruction will determine definitely
+ // whether we have a match at this character position. Otherwise
+ // it can only be an approximate check.
+ uint32_t one_zero = (common_bits | ~char_mask);
+ if (length == 2 && ((~one_zero) & ((~one_zero) - 1)) == 0) {
+ pos->determines_perfectly = true;
+ }
+ pos->mask = common_bits;
+ pos->value = bits;
+ }
+ } else {
+ // Don't ignore case. Nice simple case where the mask-compare will
+ // determine definitely whether we have a match at this character
+ // position.
+ pos->mask = char_mask;
+ pos->value = c;
+ pos->determines_perfectly = true;
+ }
+ characters_filled_in++;
+ DCHECK(characters_filled_in <= details->characters());
+ if (characters_filled_in == details->characters()) {
+ return;
+ }
+ }
+ } else {
+ QuickCheckDetails::Position* pos =
+ details->positions(characters_filled_in);
+ RegExpCharacterClass* tree = elm.char_class();
+ ZoneList<CharacterRange>* ranges = tree->ranges(zone());
+ if (tree->is_negated()) {
+ // A quick check uses multi-character mask and compare. There is no
+ // useful way to incorporate a negative char class into this scheme
+ // so we just conservatively create a mask and value that will always
+ // succeed.
+ pos->mask = 0;
+ pos->value = 0;
+ } else {
+ int first_range = 0;
+ while (ranges->at(first_range).from() > char_mask) {
+ first_range++;
+ if (first_range == ranges->length()) {
+ details->set_cannot_match();
+ pos->determines_perfectly = false;
+ return;
+ }
+ }
+ CharacterRange range = ranges->at(first_range);
+ uc16 from = range.from();
+ uc16 to = range.to();
+ if (to > char_mask) {
+ to = char_mask;
+ }
+ uint32_t differing_bits = (from ^ to);
+ // A mask and compare is only perfect if the differing bits form a
+ // number like 00011111 with one single block of trailing 1s.
+ if ((differing_bits & (differing_bits + 1)) == 0 &&
+ from + differing_bits == to) {
+ pos->determines_perfectly = true;
+ }
+ uint32_t common_bits = ~SmearBitsRight(differing_bits);
+ uint32_t bits = (from & common_bits);
+ for (int i = first_range + 1; i < ranges->length(); i++) {
+ CharacterRange range = ranges->at(i);
+ uc16 from = range.from();
+ uc16 to = range.to();
+ if (from > char_mask) continue;
+ if (to > char_mask) to = char_mask;
+ // Here we are combining more ranges into the mask and compare
+ // value. With each new range the mask becomes more sparse and
+ // so the chances of a false positive rise. A character class
+ // with multiple ranges is assumed never to be equivalent to a
+ // mask and compare operation.
+ pos->determines_perfectly = false;
+ uint32_t new_common_bits = (from ^ to);
+ new_common_bits = ~SmearBitsRight(new_common_bits);
+ common_bits &= new_common_bits;
+ bits &= new_common_bits;
+ uint32_t differing_bits = (from & common_bits) ^ bits;
+ common_bits ^= differing_bits;
+ bits &= common_bits;
+ }
+ pos->mask = common_bits;
+ pos->value = bits;
+ }
+ characters_filled_in++;
+ DCHECK(characters_filled_in <= details->characters());
+ if (characters_filled_in == details->characters()) {
+ return;
+ }
+ }
+ }
+ DCHECK(characters_filled_in != details->characters());
+ if (!details->cannot_match()) {
+ on_success()-> GetQuickCheckDetails(details,
+ compiler,
+ characters_filled_in,
+ true);
+ }
+}
+
+
+void QuickCheckDetails::Clear() {
+ for (int i = 0; i < characters_; i++) {
+ positions_[i].mask = 0;
+ positions_[i].value = 0;
+ positions_[i].determines_perfectly = false;
+ }
+ characters_ = 0;
+}
+
+
+void QuickCheckDetails::Advance(int by, bool one_byte) {
+ DCHECK(by >= 0);
+ if (by >= characters_) {
+ Clear();
+ return;
+ }
+ for (int i = 0; i < characters_ - by; i++) {
+ positions_[i] = positions_[by + i];
+ }
+ for (int i = characters_ - by; i < characters_; i++) {
+ positions_[i].mask = 0;
+ positions_[i].value = 0;
+ positions_[i].determines_perfectly = false;
+ }
+ characters_ -= by;
+ // We could change mask_ and value_ here but we would never advance unless
+ // they had already been used in a check and they won't be used again because
+ // it would gain us nothing. So there's no point.
+}
+
+
+void QuickCheckDetails::Merge(QuickCheckDetails* other, int from_index) {
+ DCHECK(characters_ == other->characters_);
+ if (other->cannot_match_) {
+ return;
+ }
+ if (cannot_match_) {
+ *this = *other;
+ return;
+ }
+ for (int i = from_index; i < characters_; i++) {
+ QuickCheckDetails::Position* pos = positions(i);
+ QuickCheckDetails::Position* other_pos = other->positions(i);
+ if (pos->mask != other_pos->mask ||
+ pos->value != other_pos->value ||
+ !other_pos->determines_perfectly) {
+ // Our mask-compare operation will be approximate unless we have the
+ // exact same operation on both sides of the alternation.
+ pos->determines_perfectly = false;
+ }
+ pos->mask &= other_pos->mask;
+ pos->value &= pos->mask;
+ other_pos->value &= pos->mask;
+ uc16 differing_bits = (pos->value ^ other_pos->value);
+ pos->mask &= ~differing_bits;
+ pos->value &= pos->mask;
+ }
+}
+
+
+class VisitMarker {
+ public:
+ explicit VisitMarker(NodeInfo* info) : info_(info) {
+ DCHECK(!info->visited);
+ info->visited = true;
+ }
+ ~VisitMarker() {
+ info_->visited = false;
+ }
+ private:
+ NodeInfo* info_;
+};
+
+
+RegExpNode* SeqRegExpNode::FilterOneByte(int depth, bool ignore_case) {
+ if (info()->replacement_calculated) return replacement();
+ if (depth < 0) return this;
+ DCHECK(!info()->visited);
+ VisitMarker marker(info());
+ return FilterSuccessor(depth - 1, ignore_case);
+}
+
+
+RegExpNode* SeqRegExpNode::FilterSuccessor(int depth, bool ignore_case) {
+ RegExpNode* next = on_success_->FilterOneByte(depth - 1, ignore_case);
+ if (next == NULL) return set_replacement(NULL);
+ on_success_ = next;
+ return set_replacement(this);
+}
+
+
+// We need to check for the following characters: 0x39c 0x3bc 0x178.
+static inline bool RangeContainsLatin1Equivalents(CharacterRange range) {
+ // TODO(dcarney): this could be a lot more efficient.
+ return range.Contains(0x39c) ||
+ range.Contains(0x3bc) || range.Contains(0x178);
+}
+
+
+static bool RangesContainLatin1Equivalents(ZoneList<CharacterRange>* ranges) {
+ for (int i = 0; i < ranges->length(); i++) {
+ // TODO(dcarney): this could be a lot more efficient.
+ if (RangeContainsLatin1Equivalents(ranges->at(i))) return true;
+ }
+ return false;
+}
+
+
+RegExpNode* TextNode::FilterOneByte(int depth, bool ignore_case) {
+ if (info()->replacement_calculated) return replacement();
+ if (depth < 0) return this;
+ DCHECK(!info()->visited);
+ VisitMarker marker(info());
+ int element_count = elms_->length();
+ for (int i = 0; i < element_count; i++) {
+ TextElement elm = elms_->at(i);
+ if (elm.text_type() == TextElement::ATOM) {
+ Vector<const uc16> quarks = elm.atom()->data();
+ for (int j = 0; j < quarks.length(); j++) {
+ uint16_t c = quarks[j];
+ if (c <= String::kMaxOneByteCharCode) continue;
+ if (!ignore_case) return set_replacement(NULL);
+ // Here, we need to check for characters whose upper and lower cases
+ // are outside the Latin-1 range.
+ uint16_t converted = unibrow::Latin1::ConvertNonLatin1ToLatin1(c);
+ // Character is outside Latin-1 completely
+ if (converted == 0) return set_replacement(NULL);
+ // Convert quark to Latin-1 in place.
+ uint16_t* copy = const_cast<uint16_t*>(quarks.start());
+ copy[j] = converted;
+ }
+ } else {
+ DCHECK(elm.text_type() == TextElement::CHAR_CLASS);
+ RegExpCharacterClass* cc = elm.char_class();
+ ZoneList<CharacterRange>* ranges = cc->ranges(zone());
+ if (!CharacterRange::IsCanonical(ranges)) {
+ CharacterRange::Canonicalize(ranges);
+ }
+ // Now they are in order so we only need to look at the first.
+ int range_count = ranges->length();
+ if (cc->is_negated()) {
+ if (range_count != 0 &&
+ ranges->at(0).from() == 0 &&
+ ranges->at(0).to() >= String::kMaxOneByteCharCode) {
+ // This will be handled in a later filter.
+ if (ignore_case && RangesContainLatin1Equivalents(ranges)) continue;
+ return set_replacement(NULL);
+ }
+ } else {
+ if (range_count == 0 ||
+ ranges->at(0).from() > String::kMaxOneByteCharCode) {
+ // This will be handled in a later filter.
+ if (ignore_case && RangesContainLatin1Equivalents(ranges)) continue;
+ return set_replacement(NULL);
+ }
+ }
+ }
+ }
+ return FilterSuccessor(depth - 1, ignore_case);
+}
+
+
+RegExpNode* LoopChoiceNode::FilterOneByte(int depth, bool ignore_case) {
+ if (info()->replacement_calculated) return replacement();
+ if (depth < 0) return this;
+ if (info()->visited) return this;
+ {
+ VisitMarker marker(info());
+
+ RegExpNode* continue_replacement =
+ continue_node_->FilterOneByte(depth - 1, ignore_case);
+ // If we can't continue after the loop then there is no sense in doing the
+ // loop.
+ if (continue_replacement == NULL) return set_replacement(NULL);
+ }
+
+ return ChoiceNode::FilterOneByte(depth - 1, ignore_case);
+}
+
+
+RegExpNode* ChoiceNode::FilterOneByte(int depth, bool ignore_case) {
+ if (info()->replacement_calculated) return replacement();
+ if (depth < 0) return this;
+ if (info()->visited) return this;
+ VisitMarker marker(info());
+ int choice_count = alternatives_->length();
+
+ for (int i = 0; i < choice_count; i++) {
+ GuardedAlternative alternative = alternatives_->at(i);
+ if (alternative.guards() != NULL && alternative.guards()->length() != 0) {
+ set_replacement(this);
+ return this;
+ }
+ }
+
+ int surviving = 0;
+ RegExpNode* survivor = NULL;
+ for (int i = 0; i < choice_count; i++) {
+ GuardedAlternative alternative = alternatives_->at(i);
+ RegExpNode* replacement =
+ alternative.node()->FilterOneByte(depth - 1, ignore_case);
+ DCHECK(replacement != this); // No missing EMPTY_MATCH_CHECK.
+ if (replacement != NULL) {
+ alternatives_->at(i).set_node(replacement);
+ surviving++;
+ survivor = replacement;
+ }
+ }
+ if (surviving < 2) return set_replacement(survivor);
+
+ set_replacement(this);
+ if (surviving == choice_count) {
+ return this;
+ }
+ // Only some of the nodes survived the filtering. We need to rebuild the
+ // alternatives list.
+ ZoneList<GuardedAlternative>* new_alternatives =
+ new(zone()) ZoneList<GuardedAlternative>(surviving, zone());
+ for (int i = 0; i < choice_count; i++) {
+ RegExpNode* replacement =
+ alternatives_->at(i).node()->FilterOneByte(depth - 1, ignore_case);
+ if (replacement != NULL) {
+ alternatives_->at(i).set_node(replacement);
+ new_alternatives->Add(alternatives_->at(i), zone());
+ }
+ }
+ alternatives_ = new_alternatives;
+ return this;
+}
+
+
+RegExpNode* NegativeLookaheadChoiceNode::FilterOneByte(int depth,
+ bool ignore_case) {
+ if (info()->replacement_calculated) return replacement();
+ if (depth < 0) return this;
+ if (info()->visited) return this;
+ VisitMarker marker(info());
+ // Alternative 0 is the negative lookahead, alternative 1 is what comes
+ // afterwards.
+ RegExpNode* node = alternatives_->at(1).node();
+ RegExpNode* replacement = node->FilterOneByte(depth - 1, ignore_case);
+ if (replacement == NULL) return set_replacement(NULL);
+ alternatives_->at(1).set_node(replacement);
+
+ RegExpNode* neg_node = alternatives_->at(0).node();
+ RegExpNode* neg_replacement = neg_node->FilterOneByte(depth - 1, ignore_case);
+ // If the negative lookahead is always going to fail then
+ // we don't need to check it.
+ if (neg_replacement == NULL) return set_replacement(replacement);
+ alternatives_->at(0).set_node(neg_replacement);
+ return set_replacement(this);
+}
+
+
+void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
+ RegExpCompiler* compiler,
+ int characters_filled_in,
+ bool not_at_start) {
+ if (body_can_be_zero_length_ || info()->visited) return;
+ VisitMarker marker(info());
+ return ChoiceNode::GetQuickCheckDetails(details,
+ compiler,
+ characters_filled_in,
+ not_at_start);
+}
+
+
+void LoopChoiceNode::FillInBMInfo(int offset,
+ int budget,
+ BoyerMooreLookahead* bm,
+ bool not_at_start) {
+ if (body_can_be_zero_length_ || budget <= 0) {
+ bm->SetRest(offset);
+ SaveBMInfo(bm, not_at_start, offset);
+ return;
+ }
+ ChoiceNode::FillInBMInfo(offset, budget - 1, bm, not_at_start);
+ SaveBMInfo(bm, not_at_start, offset);
+}
+
+
+void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
+ RegExpCompiler* compiler,
+ int characters_filled_in,
+ bool not_at_start) {
+ not_at_start = (not_at_start || not_at_start_);
+ int choice_count = alternatives_->length();
+ DCHECK(choice_count > 0);
+ alternatives_->at(0).node()->GetQuickCheckDetails(details,
+ compiler,
+ characters_filled_in,
+ not_at_start);
+ for (int i = 1; i < choice_count; i++) {
+ QuickCheckDetails new_details(details->characters());
+ RegExpNode* node = alternatives_->at(i).node();
+ node->GetQuickCheckDetails(&new_details, compiler,
+ characters_filled_in,
+ not_at_start);
+ // Here we merge the quick match details of the two branches.
+ details->Merge(&new_details, characters_filled_in);
+ }
+}
+
+
+// Check for [0-9A-Z_a-z].
+static void EmitWordCheck(RegExpMacroAssembler* assembler,
+ Label* word,
+ Label* non_word,
+ bool fall_through_on_word) {
+ if (assembler->CheckSpecialCharacterClass(
+ fall_through_on_word ? 'w' : 'W',
+ fall_through_on_word ? non_word : word)) {
+ // Optimized implementation available.
+ return;
+ }
+ assembler->CheckCharacterGT('z', non_word);
+ assembler->CheckCharacterLT('0', non_word);
+ assembler->CheckCharacterGT('a' - 1, word);
+ assembler->CheckCharacterLT('9' + 1, word);
+ assembler->CheckCharacterLT('A', non_word);
+ assembler->CheckCharacterLT('Z' + 1, word);
+ if (fall_through_on_word) {
+ assembler->CheckNotCharacter('_', non_word);
+ } else {
+ assembler->CheckCharacter('_', word);
+ }
+}
+
+
+// Emit the code to check for a ^ in multiline mode (1-character lookbehind
+// that matches newline or the start of input).
+static void EmitHat(RegExpCompiler* compiler,
+ RegExpNode* on_success,
+ Trace* trace) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ // We will be loading the previous character into the current character
+ // register.
+ Trace new_trace(*trace);
+ new_trace.InvalidateCurrentCharacter();
+
+ Label ok;
+ if (new_trace.cp_offset() == 0) {
+ // The start of input counts as a newline in this context, so skip to
+ // ok if we are at the start.
+ assembler->CheckAtStart(&ok);
+ }
+ // We already checked that we are not at the start of input so it must be
+ // OK to load the previous character.
+ assembler->LoadCurrentCharacter(new_trace.cp_offset() -1,
+ new_trace.backtrack(),
+ false);
+ if (!assembler->CheckSpecialCharacterClass('n',
+ new_trace.backtrack())) {
+ // Newline means \n, \r, 0x2028 or 0x2029.
+ if (!compiler->one_byte()) {
+ assembler->CheckCharacterAfterAnd(0x2028, 0xfffe, &ok);
+ }
+ assembler->CheckCharacter('\n', &ok);
+ assembler->CheckNotCharacter('\r', new_trace.backtrack());
+ }
+ assembler->Bind(&ok);
+ on_success->Emit(compiler, &new_trace);
+}
+
+
+// Emit the code to handle \b and \B (word-boundary or non-word-boundary).
+void AssertionNode::EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ Trace::TriBool next_is_word_character = Trace::UNKNOWN;
+ bool not_at_start = (trace->at_start() == Trace::FALSE_VALUE);
+ BoyerMooreLookahead* lookahead = bm_info(not_at_start);
+ if (lookahead == NULL) {
+ int eats_at_least =
+ Min(kMaxLookaheadForBoyerMoore, EatsAtLeast(kMaxLookaheadForBoyerMoore,
+ kRecursionBudget,
+ not_at_start));
+ if (eats_at_least >= 1) {
+ BoyerMooreLookahead* bm =
+ new(zone()) BoyerMooreLookahead(eats_at_least, compiler, zone());
+ FillInBMInfo(0, kRecursionBudget, bm, not_at_start);
+ if (bm->at(0)->is_non_word())
+ next_is_word_character = Trace::FALSE_VALUE;
+ if (bm->at(0)->is_word()) next_is_word_character = Trace::TRUE_VALUE;
+ }
+ } else {
+ if (lookahead->at(0)->is_non_word())
+ next_is_word_character = Trace::FALSE_VALUE;
+ if (lookahead->at(0)->is_word())
+ next_is_word_character = Trace::TRUE_VALUE;
+ }
+ bool at_boundary = (assertion_type_ == AssertionNode::AT_BOUNDARY);
+ if (next_is_word_character == Trace::UNKNOWN) {
+ Label before_non_word;
+ Label before_word;
+ if (trace->characters_preloaded() != 1) {
+ assembler->LoadCurrentCharacter(trace->cp_offset(), &before_non_word);
+ }
+ // Fall through on non-word.
+ EmitWordCheck(assembler, &before_word, &before_non_word, false);
+ // Next character is not a word character.
+ assembler->Bind(&before_non_word);
+ Label ok;
+ BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord);
+ assembler->GoTo(&ok);
+
+ assembler->Bind(&before_word);
+ BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord);
+ assembler->Bind(&ok);
+ } else if (next_is_word_character == Trace::TRUE_VALUE) {
+ BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord);
+ } else {
+ DCHECK(next_is_word_character == Trace::FALSE_VALUE);
+ BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord);
+ }
+}
+
+
+void AssertionNode::BacktrackIfPrevious(
+ RegExpCompiler* compiler,
+ Trace* trace,
+ AssertionNode::IfPrevious backtrack_if_previous) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ Trace new_trace(*trace);
+ new_trace.InvalidateCurrentCharacter();
+
+ Label fall_through, dummy;
+
+ Label* non_word = backtrack_if_previous == kIsNonWord ?
+ new_trace.backtrack() :
+ &fall_through;
+ Label* word = backtrack_if_previous == kIsNonWord ?
+ &fall_through :
+ new_trace.backtrack();
+
+ if (new_trace.cp_offset() == 0) {
+ // The start of input counts as a non-word character, so the question is
+ // decided if we are at the start.
+ assembler->CheckAtStart(non_word);
+ }
+ // We already checked that we are not at the start of input so it must be
+ // OK to load the previous character.
+ assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1, &dummy, false);
+ EmitWordCheck(assembler, word, non_word, backtrack_if_previous == kIsNonWord);
+
+ assembler->Bind(&fall_through);
+ on_success()->Emit(compiler, &new_trace);
+}
+
+
+void AssertionNode::GetQuickCheckDetails(QuickCheckDetails* details,
+ RegExpCompiler* compiler,
+ int filled_in,
+ bool not_at_start) {
+ if (assertion_type_ == AT_START && not_at_start) {
+ details->set_cannot_match();
+ return;
+ }
+ return on_success()->GetQuickCheckDetails(details,
+ compiler,
+ filled_in,
+ not_at_start);
+}
+
+
+void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ switch (assertion_type_) {
+ case AT_END: {
+ Label ok;
+ assembler->CheckPosition(trace->cp_offset(), &ok);
+ assembler->GoTo(trace->backtrack());
+ assembler->Bind(&ok);
+ break;
+ }
+ case AT_START: {
+ if (trace->at_start() == Trace::FALSE_VALUE) {
+ assembler->GoTo(trace->backtrack());
+ return;
+ }
+ if (trace->at_start() == Trace::UNKNOWN) {
+ assembler->CheckNotAtStart(trace->backtrack());
+ Trace at_start_trace = *trace;
+ at_start_trace.set_at_start(true);
+ on_success()->Emit(compiler, &at_start_trace);
+ return;
+ }
+ }
+ break;
+ case AFTER_NEWLINE:
+ EmitHat(compiler, on_success(), trace);
+ return;
+ case AT_BOUNDARY:
+ case AT_NON_BOUNDARY: {
+ EmitBoundaryCheck(compiler, trace);
+ return;
+ }
+ }
+ on_success()->Emit(compiler, trace);
+}
+
+
+static bool DeterminedAlready(QuickCheckDetails* quick_check, int offset) {
+ if (quick_check == NULL) return false;
+ if (offset >= quick_check->characters()) return false;
+ return quick_check->positions(offset)->determines_perfectly;
+}
+
+
+static void UpdateBoundsCheck(int index, int* checked_up_to) {
+ if (index > *checked_up_to) {
+ *checked_up_to = index;
+ }
+}
+
+
+// We call this repeatedly to generate code for each pass over the text node.
+// The passes are in increasing order of difficulty because we hope one
+// of the first passes will fail in which case we are saved the work of the
+// later passes. for example for the case independent regexp /%[asdfghjkl]a/
+// we will check the '%' in the first pass, the case independent 'a' in the
+// second pass and the character class in the last pass.
+//
+// The passes are done from right to left, so for example to test for /bar/
+// we will first test for an 'r' with offset 2, then an 'a' with offset 1
+// and then a 'b' with offset 0. This means we can avoid the end-of-input
+// bounds check most of the time. In the example we only need to check for
+// end-of-input when loading the putative 'r'.
+//
+// A slight complication involves the fact that the first character may already
+// be fetched into a register by the previous node. In this case we want to
+// do the test for that character first. We do this in separate passes. The
+// 'preloaded' argument indicates that we are doing such a 'pass'. If such a
+// pass has been performed then subsequent passes will have true in
+// first_element_checked to indicate that that character does not need to be
+// checked again.
+//
+// In addition to all this we are passed a Trace, which can
+// contain an AlternativeGeneration object. In this AlternativeGeneration
+// object we can see details of any quick check that was already passed in
+// order to get to the code we are now generating. The quick check can involve
+// loading characters, which means we do not need to recheck the bounds
+// up to the limit the quick check already checked. In addition the quick
+// check can have involved a mask and compare operation which may simplify
+// or obviate the need for further checks at some character positions.
+void TextNode::TextEmitPass(RegExpCompiler* compiler,
+ TextEmitPassType pass,
+ bool preloaded,
+ Trace* trace,
+ bool first_element_checked,
+ int* checked_up_to) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ Isolate* isolate = assembler->zone()->isolate();
+ bool one_byte = compiler->one_byte();
+ Label* backtrack = trace->backtrack();
+ QuickCheckDetails* quick_check = trace->quick_check_performed();
+ int element_count = elms_->length();
+ for (int i = preloaded ? 0 : element_count - 1; i >= 0; i--) {
+ TextElement elm = elms_->at(i);
+ int cp_offset = trace->cp_offset() + elm.cp_offset();
+ if (elm.text_type() == TextElement::ATOM) {
+ Vector<const uc16> quarks = elm.atom()->data();
+ for (int j = preloaded ? 0 : quarks.length() - 1; j >= 0; j--) {
+ if (first_element_checked && i == 0 && j == 0) continue;
+ if (DeterminedAlready(quick_check, elm.cp_offset() + j)) continue;
+ EmitCharacterFunction* emit_function = NULL;
+ switch (pass) {
+ case NON_LATIN1_MATCH:
+ DCHECK(one_byte);
+ if (quarks[j] > String::kMaxOneByteCharCode) {
+ assembler->GoTo(backtrack);
+ return;
+ }
+ break;
+ case NON_LETTER_CHARACTER_MATCH:
+ emit_function = &EmitAtomNonLetter;
+ break;
+ case SIMPLE_CHARACTER_MATCH:
+ emit_function = &EmitSimpleCharacter;
+ break;
+ case CASE_CHARACTER_MATCH:
+ emit_function = &EmitAtomLetter;
+ break;
+ default:
+ break;
+ }
+ if (emit_function != NULL) {
+ bool bound_checked = emit_function(isolate,
+ compiler,
+ quarks[j],
+ backtrack,
+ cp_offset + j,
+ *checked_up_to < cp_offset + j,
+ preloaded);
+ if (bound_checked) UpdateBoundsCheck(cp_offset + j, checked_up_to);
+ }
+ }
+ } else {
+ DCHECK_EQ(TextElement::CHAR_CLASS, elm.text_type());
+ if (pass == CHARACTER_CLASS_MATCH) {
+ if (first_element_checked && i == 0) continue;
+ if (DeterminedAlready(quick_check, elm.cp_offset())) continue;
+ RegExpCharacterClass* cc = elm.char_class();
+ EmitCharClass(assembler, cc, one_byte, backtrack, cp_offset,
+ *checked_up_to < cp_offset, preloaded, zone());
+ UpdateBoundsCheck(cp_offset, checked_up_to);
+ }
+ }
+ }
+}
+
+
+int TextNode::Length() {
+ TextElement elm = elms_->last();
+ DCHECK(elm.cp_offset() >= 0);
+ return elm.cp_offset() + elm.length();
+}
+
+
+bool TextNode::SkipPass(int int_pass, bool ignore_case) {
+ TextEmitPassType pass = static_cast<TextEmitPassType>(int_pass);
+ if (ignore_case) {
+ return pass == SIMPLE_CHARACTER_MATCH;
+ } else {
+ return pass == NON_LETTER_CHARACTER_MATCH || pass == CASE_CHARACTER_MATCH;
+ }
+}
+
+
+// This generates the code to match a text node. A text node can contain
+// straight character sequences (possibly to be matched in a case-independent
+// way) and character classes. For efficiency we do not do this in a single
+// pass from left to right. Instead we pass over the text node several times,
+// emitting code for some character positions every time. See the comment on
+// TextEmitPass for details.
+void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) {
+ LimitResult limit_result = LimitVersions(compiler, trace);
+ if (limit_result == DONE) return;
+ DCHECK(limit_result == CONTINUE);
+
+ if (trace->cp_offset() + Length() > RegExpMacroAssembler::kMaxCPOffset) {
+ compiler->SetRegExpTooBig();
+ return;
+ }
+
+ if (compiler->one_byte()) {
+ int dummy = 0;
+ TextEmitPass(compiler, NON_LATIN1_MATCH, false, trace, false, &dummy);
+ }
+
+ bool first_elt_done = false;
+ int bound_checked_to = trace->cp_offset() - 1;
+ bound_checked_to += trace->bound_checked_up_to();
+
+ // If a character is preloaded into the current character register then
+ // check that now.
+ if (trace->characters_preloaded() == 1) {
+ for (int pass = kFirstRealPass; pass <= kLastPass; pass++) {
+ if (!SkipPass(pass, compiler->ignore_case())) {
+ TextEmitPass(compiler,
+ static_cast<TextEmitPassType>(pass),
+ true,
+ trace,
+ false,
+ &bound_checked_to);
+ }
+ }
+ first_elt_done = true;
+ }
+
+ for (int pass = kFirstRealPass; pass <= kLastPass; pass++) {
+ if (!SkipPass(pass, compiler->ignore_case())) {
+ TextEmitPass(compiler,
+ static_cast<TextEmitPassType>(pass),
+ false,
+ trace,
+ first_elt_done,
+ &bound_checked_to);
+ }
+ }
+
+ Trace successor_trace(*trace);
+ successor_trace.set_at_start(false);
+ successor_trace.AdvanceCurrentPositionInTrace(Length(), compiler);
+ RecursionCheck rc(compiler);
+ on_success()->Emit(compiler, &successor_trace);
+}
+
+
+void Trace::InvalidateCurrentCharacter() {
+ characters_preloaded_ = 0;
+}
+
+
+void Trace::AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler) {
+ DCHECK(by > 0);
+ // We don't have an instruction for shifting the current character register
+ // down or for using a shifted value for anything so lets just forget that
+ // we preloaded any characters into it.
+ characters_preloaded_ = 0;
+ // Adjust the offsets of the quick check performed information. This
+ // information is used to find out what we already determined about the
+ // characters by means of mask and compare.
+ quick_check_performed_.Advance(by, compiler->one_byte());
+ cp_offset_ += by;
+ if (cp_offset_ > RegExpMacroAssembler::kMaxCPOffset) {
+ compiler->SetRegExpTooBig();
+ cp_offset_ = 0;
+ }
+ bound_checked_up_to_ = Max(0, bound_checked_up_to_ - by);
+}
+
+
+void TextNode::MakeCaseIndependent(bool is_one_byte) {
+ int element_count = elms_->length();
+ for (int i = 0; i < element_count; i++) {
+ TextElement elm = elms_->at(i);
+ if (elm.text_type() == TextElement::CHAR_CLASS) {
+ RegExpCharacterClass* cc = elm.char_class();
+ // None of the standard character classes is different in the case
+ // independent case and it slows us down if we don't know that.
+ if (cc->is_standard(zone())) continue;
+ ZoneList<CharacterRange>* ranges = cc->ranges(zone());
+ int range_count = ranges->length();
+ for (int j = 0; j < range_count; j++) {
+ ranges->at(j).AddCaseEquivalents(ranges, is_one_byte, zone());
+ }
+ }
+ }
+}
+
+
+int TextNode::GreedyLoopTextLength() {
+ TextElement elm = elms_->at(elms_->length() - 1);
+ return elm.cp_offset() + elm.length();
+}
+
+
+RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode(
+ RegExpCompiler* compiler) {
+ if (elms_->length() != 1) return NULL;
+ TextElement elm = elms_->at(0);
+ if (elm.text_type() != TextElement::CHAR_CLASS) return NULL;
+ RegExpCharacterClass* node = elm.char_class();
+ ZoneList<CharacterRange>* ranges = node->ranges(zone());
+ if (!CharacterRange::IsCanonical(ranges)) {
+ CharacterRange::Canonicalize(ranges);
+ }
+ if (node->is_negated()) {
+ return ranges->length() == 0 ? on_success() : NULL;
+ }
+ if (ranges->length() != 1) return NULL;
+ uint32_t max_char;
+ if (compiler->one_byte()) {
+ max_char = String::kMaxOneByteCharCode;
+ } else {
+ max_char = String::kMaxUtf16CodeUnit;
+ }
+ return ranges->at(0).IsEverything(max_char) ? on_success() : NULL;
+}
+
+
+// Finds the fixed match length of a sequence of nodes that goes from
+// this alternative and back to this choice node. If there are variable
+// length nodes or other complications in the way then return a sentinel
+// value indicating that a greedy loop cannot be constructed.
+int ChoiceNode::GreedyLoopTextLengthForAlternative(
+ GuardedAlternative* alternative) {
+ int length = 0;
+ RegExpNode* node = alternative->node();
+ // Later we will generate code for all these text nodes using recursion
+ // so we have to limit the max number.
+ int recursion_depth = 0;
+ while (node != this) {
+ if (recursion_depth++ > RegExpCompiler::kMaxRecursion) {
+ return kNodeIsTooComplexForGreedyLoops;
+ }
+ int node_length = node->GreedyLoopTextLength();
+ if (node_length == kNodeIsTooComplexForGreedyLoops) {
+ return kNodeIsTooComplexForGreedyLoops;
+ }
+ length += node_length;
+ SeqRegExpNode* seq_node = static_cast<SeqRegExpNode*>(node);
+ node = seq_node->on_success();
+ }
+ return length;
+}
+
+
+void LoopChoiceNode::AddLoopAlternative(GuardedAlternative alt) {
+ DCHECK_EQ(loop_node_, NULL);
+ AddAlternative(alt);
+ loop_node_ = alt.node();
+}
+
+
+void LoopChoiceNode::AddContinueAlternative(GuardedAlternative alt) {
+ DCHECK_EQ(continue_node_, NULL);
+ AddAlternative(alt);
+ continue_node_ = alt.node();
+}
+
+
+void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
+ RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+ if (trace->stop_node() == this) {
+ // Back edge of greedy optimized loop node graph.
+ int text_length =
+ GreedyLoopTextLengthForAlternative(&(alternatives_->at(0)));
+ DCHECK(text_length != kNodeIsTooComplexForGreedyLoops);
+ // Update the counter-based backtracking info on the stack. This is an
+ // optimization for greedy loops (see below).
+ DCHECK(trace->cp_offset() == text_length);
+ macro_assembler->AdvanceCurrentPosition(text_length);
+ macro_assembler->GoTo(trace->loop_label());
+ return;
+ }
+ DCHECK(trace->stop_node() == NULL);
+ if (!trace->is_trivial()) {
+ trace->Flush(compiler, this);
+ return;
+ }
+ ChoiceNode::Emit(compiler, trace);
+}
+
+
+int ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler,
+ int eats_at_least) {
+ int preload_characters = Min(4, eats_at_least);
+ if (compiler->macro_assembler()->CanReadUnaligned()) {
+ bool one_byte = compiler->one_byte();
+ if (one_byte) {
+ if (preload_characters > 4) preload_characters = 4;
+ // We can't preload 3 characters because there is no machine instruction
+ // to do that. We can't just load 4 because we could be reading
+ // beyond the end of the string, which could cause a memory fault.
+ if (preload_characters == 3) preload_characters = 2;
+ } else {
+ if (preload_characters > 2) preload_characters = 2;
+ }
+ } else {
+ if (preload_characters > 1) preload_characters = 1;
+ }
+ return preload_characters;
+}
+
+
+// This class is used when generating the alternatives in a choice node. It
+// records the way the alternative is being code generated.
+class AlternativeGeneration: public Malloced {
+ public:
+ AlternativeGeneration()
+ : possible_success(),
+ expects_preload(false),
+ after(),
+ quick_check_details() { }
+ Label possible_success;
+ bool expects_preload;
+ Label after;
+ QuickCheckDetails quick_check_details;
+};
+
+
+// Creates a list of AlternativeGenerations. If the list has a reasonable
+// size then it is on the stack, otherwise the excess is on the heap.
+class AlternativeGenerationList {
+ public:
+ AlternativeGenerationList(int count, Zone* zone)
+ : alt_gens_(count, zone) {
+ for (int i = 0; i < count && i < kAFew; i++) {
+ alt_gens_.Add(a_few_alt_gens_ + i, zone);
+ }
+ for (int i = kAFew; i < count; i++) {
+ alt_gens_.Add(new AlternativeGeneration(), zone);
+ }
+ }
+ ~AlternativeGenerationList() {
+ for (int i = kAFew; i < alt_gens_.length(); i++) {
+ delete alt_gens_[i];
+ alt_gens_[i] = NULL;
+ }
+ }
+
+ AlternativeGeneration* at(int i) {
+ return alt_gens_[i];
+ }
+
+ private:
+ static const int kAFew = 10;
+ ZoneList<AlternativeGeneration*> alt_gens_;
+ AlternativeGeneration a_few_alt_gens_[kAFew];
+};
+
+
+// The '2' variant is has inclusive from and exclusive to.
+// This covers \s as defined in ECMA-262 5.1, 15.10.2.12,
+// which include WhiteSpace (7.2) or LineTerminator (7.3) values.
+static const int kSpaceRanges[] = { '\t', '\r' + 1, ' ', ' ' + 1,
+ 0x00A0, 0x00A1, 0x1680, 0x1681, 0x180E, 0x180F, 0x2000, 0x200B,
+ 0x2028, 0x202A, 0x202F, 0x2030, 0x205F, 0x2060, 0x3000, 0x3001,
+ 0xFEFF, 0xFF00, 0x10000 };
+static const int kSpaceRangeCount = arraysize(kSpaceRanges);
+
+static const int kWordRanges[] = {
+ '0', '9' + 1, 'A', 'Z' + 1, '_', '_' + 1, 'a', 'z' + 1, 0x10000 };
+static const int kWordRangeCount = arraysize(kWordRanges);
+static const int kDigitRanges[] = { '0', '9' + 1, 0x10000 };
+static const int kDigitRangeCount = arraysize(kDigitRanges);
+static const int kSurrogateRanges[] = { 0xd800, 0xe000, 0x10000 };
+static const int kSurrogateRangeCount = arraysize(kSurrogateRanges);
+static const int kLineTerminatorRanges[] = { 0x000A, 0x000B, 0x000D, 0x000E,
+ 0x2028, 0x202A, 0x10000 };
+static const int kLineTerminatorRangeCount = arraysize(kLineTerminatorRanges);
+
+
+void BoyerMoorePositionInfo::Set(int character) {
+ SetInterval(Interval(character, character));
+}
+
+
+void BoyerMoorePositionInfo::SetInterval(const Interval& interval) {
+ s_ = AddRange(s_, kSpaceRanges, kSpaceRangeCount, interval);
+ w_ = AddRange(w_, kWordRanges, kWordRangeCount, interval);
+ d_ = AddRange(d_, kDigitRanges, kDigitRangeCount, interval);
+ surrogate_ =
+ AddRange(surrogate_, kSurrogateRanges, kSurrogateRangeCount, interval);
+ if (interval.to() - interval.from() >= kMapSize - 1) {
+ if (map_count_ != kMapSize) {
+ map_count_ = kMapSize;
+ for (int i = 0; i < kMapSize; i++) map_->at(i) = true;
+ }
+ return;
+ }
+ for (int i = interval.from(); i <= interval.to(); i++) {
+ int mod_character = (i & kMask);
+ if (!map_->at(mod_character)) {
+ map_count_++;
+ map_->at(mod_character) = true;
+ }
+ if (map_count_ == kMapSize) return;
+ }
+}
+
+
+void BoyerMoorePositionInfo::SetAll() {
+ s_ = w_ = d_ = kLatticeUnknown;
+ if (map_count_ != kMapSize) {
+ map_count_ = kMapSize;
+ for (int i = 0; i < kMapSize; i++) map_->at(i) = true;
+ }
+}
+
+
+BoyerMooreLookahead::BoyerMooreLookahead(
+ int length, RegExpCompiler* compiler, Zone* zone)
+ : length_(length),
+ compiler_(compiler) {
+ if (compiler->one_byte()) {
+ max_char_ = String::kMaxOneByteCharCode;
+ } else {
+ max_char_ = String::kMaxUtf16CodeUnit;
+ }
+ bitmaps_ = new(zone) ZoneList<BoyerMoorePositionInfo*>(length, zone);
+ for (int i = 0; i < length; i++) {
+ bitmaps_->Add(new(zone) BoyerMoorePositionInfo(zone), zone);
+ }
+}
+
+
+// Find the longest range of lookahead that has the fewest number of different
+// characters that can occur at a given position. Since we are optimizing two
+// different parameters at once this is a tradeoff.
+bool BoyerMooreLookahead::FindWorthwhileInterval(int* from, int* to) {
+ int biggest_points = 0;
+ // If more than 32 characters out of 128 can occur it is unlikely that we can
+ // be lucky enough to step forwards much of the time.
+ const int kMaxMax = 32;
+ for (int max_number_of_chars = 4;
+ max_number_of_chars < kMaxMax;
+ max_number_of_chars *= 2) {
+ biggest_points =
+ FindBestInterval(max_number_of_chars, biggest_points, from, to);
+ }
+ if (biggest_points == 0) return false;
+ return true;
+}
+
+
+// Find the highest-points range between 0 and length_ where the character
+// information is not too vague. 'Too vague' means that there are more than
+// max_number_of_chars that can occur at this position. Calculates the number
+// of points as the product of width-of-the-range and
+// probability-of-finding-one-of-the-characters, where the probability is
+// calculated using the frequency distribution of the sample subject string.
+int BoyerMooreLookahead::FindBestInterval(
+ int max_number_of_chars, int old_biggest_points, int* from, int* to) {
+ int biggest_points = old_biggest_points;
+ static const int kSize = RegExpMacroAssembler::kTableSize;
+ for (int i = 0; i < length_; ) {
+ while (i < length_ && Count(i) > max_number_of_chars) i++;
+ if (i == length_) break;
+ int remembered_from = i;
+ bool union_map[kSize];
+ for (int j = 0; j < kSize; j++) union_map[j] = false;
+ while (i < length_ && Count(i) <= max_number_of_chars) {
+ BoyerMoorePositionInfo* map = bitmaps_->at(i);
+ for (int j = 0; j < kSize; j++) union_map[j] |= map->at(j);
+ i++;
+ }
+ int frequency = 0;
+ for (int j = 0; j < kSize; j++) {
+ if (union_map[j]) {
+ // Add 1 to the frequency to give a small per-character boost for
+ // the cases where our sampling is not good enough and many
+ // characters have a frequency of zero. This means the frequency
+ // can theoretically be up to 2*kSize though we treat it mostly as
+ // a fraction of kSize.
+ frequency += compiler_->frequency_collator()->Frequency(j) + 1;
+ }
+ }
+ // We use the probability of skipping times the distance we are skipping to
+ // judge the effectiveness of this. Actually we have a cut-off: By
+ // dividing by 2 we switch off the skipping if the probability of skipping
+ // is less than 50%. This is because the multibyte mask-and-compare
+ // skipping in quickcheck is more likely to do well on this case.
+ bool in_quickcheck_range =
+ ((i - remembered_from < 4) ||
+ (compiler_->one_byte() ? remembered_from <= 4 : remembered_from <= 2));
+ // Called 'probability' but it is only a rough estimate and can actually
+ // be outside the 0-kSize range.
+ int probability = (in_quickcheck_range ? kSize / 2 : kSize) - frequency;
+ int points = (i - remembered_from) * probability;
+ if (points > biggest_points) {
+ *from = remembered_from;
+ *to = i - 1;
+ biggest_points = points;
+ }
+ }
+ return biggest_points;
+}
+
+
+// Take all the characters that will not prevent a successful match if they
+// occur in the subject string in the range between min_lookahead and
+// max_lookahead (inclusive) measured from the current position. If the
+// character at max_lookahead offset is not one of these characters, then we
+// can safely skip forwards by the number of characters in the range.
+int BoyerMooreLookahead::GetSkipTable(int min_lookahead,
+ int max_lookahead,
+ Handle<ByteArray> boolean_skip_table) {
+ const int kSize = RegExpMacroAssembler::kTableSize;
+
+ const int kSkipArrayEntry = 0;
+ const int kDontSkipArrayEntry = 1;
+
+ for (int i = 0; i < kSize; i++) {
+ boolean_skip_table->set(i, kSkipArrayEntry);
+ }
+ int skip = max_lookahead + 1 - min_lookahead;
+
+ for (int i = max_lookahead; i >= min_lookahead; i--) {
+ BoyerMoorePositionInfo* map = bitmaps_->at(i);
+ for (int j = 0; j < kSize; j++) {
+ if (map->at(j)) {
+ boolean_skip_table->set(j, kDontSkipArrayEntry);
+ }
+ }
+ }
+
+ return skip;
+}
+
+
+// See comment above on the implementation of GetSkipTable.
+void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) {
+ const int kSize = RegExpMacroAssembler::kTableSize;
+
+ int min_lookahead = 0;
+ int max_lookahead = 0;
+
+ if (!FindWorthwhileInterval(&min_lookahead, &max_lookahead)) return;
+
+ bool found_single_character = false;
+ int single_character = 0;
+ for (int i = max_lookahead; i >= min_lookahead; i--) {
+ BoyerMoorePositionInfo* map = bitmaps_->at(i);
+ if (map->map_count() > 1 ||
+ (found_single_character && map->map_count() != 0)) {
+ found_single_character = false;
+ break;
+ }
+ for (int j = 0; j < kSize; j++) {
+ if (map->at(j)) {
+ found_single_character = true;
+ single_character = j;
+ break;
+ }
+ }
+ }
+
+ int lookahead_width = max_lookahead + 1 - min_lookahead;
+
+ if (found_single_character && lookahead_width == 1 && max_lookahead < 3) {
+ // The mask-compare can probably handle this better.
+ return;
+ }
+
+ if (found_single_character) {
+ Label cont, again;
+ masm->Bind(&again);
+ masm->LoadCurrentCharacter(max_lookahead, &cont, true);
+ if (max_char_ > kSize) {
+ masm->CheckCharacterAfterAnd(single_character,
+ RegExpMacroAssembler::kTableMask,
+ &cont);
+ } else {
+ masm->CheckCharacter(single_character, &cont);
+ }
+ masm->AdvanceCurrentPosition(lookahead_width);
+ masm->GoTo(&again);
+ masm->Bind(&cont);
+ return;
+ }
+
+ Factory* factory = masm->zone()->isolate()->factory();
+ Handle<ByteArray> boolean_skip_table = factory->NewByteArray(kSize, TENURED);
+ int skip_distance = GetSkipTable(
+ min_lookahead, max_lookahead, boolean_skip_table);
+ DCHECK(skip_distance != 0);
+
+ Label cont, again;
+ masm->Bind(&again);
+ masm->LoadCurrentCharacter(max_lookahead, &cont, true);
+ masm->CheckBitInTable(boolean_skip_table, &cont);
+ masm->AdvanceCurrentPosition(skip_distance);
+ masm->GoTo(&again);
+ masm->Bind(&cont);
+}
+
+
+/* Code generation for choice nodes.
+ *
+ * We generate quick checks that do a mask and compare to eliminate a
+ * choice. If the quick check succeeds then it jumps to the continuation to
+ * do slow checks and check subsequent nodes. If it fails (the common case)
+ * it falls through to the next choice.
+ *
+ * Here is the desired flow graph. Nodes directly below each other imply
+ * fallthrough. Alternatives 1 and 2 have quick checks. Alternative
+ * 3 doesn't have a quick check so we have to call the slow check.
+ * Nodes are marked Qn for quick checks and Sn for slow checks. The entire
+ * regexp continuation is generated directly after the Sn node, up to the
+ * next GoTo if we decide to reuse some already generated code. Some
+ * nodes expect preload_characters to be preloaded into the current
+ * character register. R nodes do this preloading. Vertices are marked
+ * F for failures and S for success (possible success in the case of quick
+ * nodes). L, V, < and > are used as arrow heads.
+ *
+ * ----------> R
+ * |
+ * V
+ * Q1 -----> S1
+ * | S /
+ * F| /
+ * | F/
+ * | /
+ * | R
+ * | /
+ * V L
+ * Q2 -----> S2
+ * | S /
+ * F| /
+ * | F/
+ * | /
+ * | R
+ * | /
+ * V L
+ * S3
+ * |
+ * F|
+ * |
+ * R
+ * |
+ * backtrack V
+ * <----------Q4
+ * \ F |
+ * \ |S
+ * \ F V
+ * \-----S4
+ *
+ * For greedy loops we push the current position, then generate the code that
+ * eats the input specially in EmitGreedyLoop. The other choice (the
+ * continuation) is generated by the normal code in EmitChoices, and steps back
+ * in the input to the starting position when it fails to match. The loop code
+ * looks like this (U is the unwind code that steps back in the greedy loop).
+ *
+ * _____
+ * / \
+ * V |
+ * ----------> S1 |
+ * /| |
+ * / |S |
+ * F/ \_____/
+ * /
+ * |<-----
+ * | \
+ * V |S
+ * Q2 ---> U----->backtrack
+ * | F /
+ * S| /
+ * V F /
+ * S2--/
+ */
+
+GreedyLoopState::GreedyLoopState(bool not_at_start) {
+ counter_backtrack_trace_.set_backtrack(&label_);
+ if (not_at_start) counter_backtrack_trace_.set_at_start(false);
+}
+
+
+void ChoiceNode::AssertGuardsMentionRegisters(Trace* trace) {
+#ifdef DEBUG
+ int choice_count = alternatives_->length();
+ for (int i = 0; i < choice_count - 1; i++) {
+ GuardedAlternative alternative = alternatives_->at(i);
+ ZoneList<Guard*>* guards = alternative.guards();
+ int guard_count = (guards == NULL) ? 0 : guards->length();
+ for (int j = 0; j < guard_count; j++) {
+ DCHECK(!trace->mentions_reg(guards->at(j)->reg()));
+ }
+ }
+#endif
+}
+
+
+void ChoiceNode::SetUpPreLoad(RegExpCompiler* compiler,
+ Trace* current_trace,
+ PreloadState* state) {
+ if (state->eats_at_least_ == PreloadState::kEatsAtLeastNotYetInitialized) {
+ // Save some time by looking at most one machine word ahead.
+ state->eats_at_least_ =
+ EatsAtLeast(compiler->one_byte() ? 4 : 2, kRecursionBudget,
+ current_trace->at_start() == Trace::FALSE_VALUE);
+ }
+ state->preload_characters_ =
+ CalculatePreloadCharacters(compiler, state->eats_at_least_);
+
+ state->preload_is_current_ =
+ (current_trace->characters_preloaded() == state->preload_characters_);
+ state->preload_has_checked_bounds_ = state->preload_is_current_;
+}
+
+
+void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
+ int choice_count = alternatives_->length();
+
+ AssertGuardsMentionRegisters(trace);
+
+ LimitResult limit_result = LimitVersions(compiler, trace);
+ if (limit_result == DONE) return;
+ DCHECK(limit_result == CONTINUE);
+
+ // For loop nodes we already flushed (see LoopChoiceNode::Emit), but for
+ // other choice nodes we only flush if we are out of code size budget.
+ if (trace->flush_budget() == 0 && trace->actions() != NULL) {
+ trace->Flush(compiler, this);
+ return;
+ }
+
+ RecursionCheck rc(compiler);
+
+ PreloadState preload;
+ preload.init();
+ GreedyLoopState greedy_loop_state(not_at_start());
+
+ int text_length = GreedyLoopTextLengthForAlternative(&alternatives_->at(0));
+ AlternativeGenerationList alt_gens(choice_count, zone());
+
+ if (choice_count > 1 && text_length != kNodeIsTooComplexForGreedyLoops) {
+ trace = EmitGreedyLoop(compiler,
+ trace,
+ &alt_gens,
+ &preload,
+ &greedy_loop_state,
+ text_length);
+ } else {
+ // TODO(erikcorry): Delete this. We don't need this label, but it makes us
+ // match the traces produced pre-cleanup.
+ Label second_choice;
+ compiler->macro_assembler()->Bind(&second_choice);
+
+ preload.eats_at_least_ = EmitOptimizedUnanchoredSearch(compiler, trace);
+
+ EmitChoices(compiler,
+ &alt_gens,
+ 0,
+ trace,
+ &preload);
+ }
+
+ // At this point we need to generate slow checks for the alternatives where
+ // the quick check was inlined. We can recognize these because the associated
+ // label was bound.
+ int new_flush_budget = trace->flush_budget() / choice_count;
+ for (int i = 0; i < choice_count; i++) {
+ AlternativeGeneration* alt_gen = alt_gens.at(i);
+ Trace new_trace(*trace);
+ // If there are actions to be flushed we have to limit how many times
+ // they are flushed. Take the budget of the parent trace and distribute
+ // it fairly amongst the children.
+ if (new_trace.actions() != NULL) {
+ new_trace.set_flush_budget(new_flush_budget);
+ }
+ bool next_expects_preload =
+ i == choice_count - 1 ? false : alt_gens.at(i + 1)->expects_preload;
+ EmitOutOfLineContinuation(compiler,
+ &new_trace,
+ alternatives_->at(i),
+ alt_gen,
+ preload.preload_characters_,
+ next_expects_preload);
+ }
+}
+
+
+Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler,
+ Trace* trace,
+ AlternativeGenerationList* alt_gens,
+ PreloadState* preload,
+ GreedyLoopState* greedy_loop_state,
+ int text_length) {
+ RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+ // Here we have special handling for greedy loops containing only text nodes
+ // and other simple nodes. These are handled by pushing the current
+ // position on the stack and then incrementing the current position each
+ // time around the switch. On backtrack we decrement the current position
+ // and check it against the pushed value. This avoids pushing backtrack
+ // information for each iteration of the loop, which could take up a lot of
+ // space.
+ DCHECK(trace->stop_node() == NULL);
+ macro_assembler->PushCurrentPosition();
+ Label greedy_match_failed;
+ Trace greedy_match_trace;
+ if (not_at_start()) greedy_match_trace.set_at_start(false);
+ greedy_match_trace.set_backtrack(&greedy_match_failed);
+ Label loop_label;
+ macro_assembler->Bind(&loop_label);
+ greedy_match_trace.set_stop_node(this);
+ greedy_match_trace.set_loop_label(&loop_label);
+ alternatives_->at(0).node()->Emit(compiler, &greedy_match_trace);
+ macro_assembler->Bind(&greedy_match_failed);
+
+ Label second_choice; // For use in greedy matches.
+ macro_assembler->Bind(&second_choice);
+
+ Trace* new_trace = greedy_loop_state->counter_backtrack_trace();
+
+ EmitChoices(compiler,
+ alt_gens,
+ 1,
+ new_trace,
+ preload);
+
+ macro_assembler->Bind(greedy_loop_state->label());
+ // If we have unwound to the bottom then backtrack.
+ macro_assembler->CheckGreedyLoop(trace->backtrack());
+ // Otherwise try the second priority at an earlier position.
+ macro_assembler->AdvanceCurrentPosition(-text_length);
+ macro_assembler->GoTo(&second_choice);
+ return new_trace;
+}
+
+int ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler,
+ Trace* trace) {
+ int eats_at_least = PreloadState::kEatsAtLeastNotYetInitialized;
+ if (alternatives_->length() != 2) return eats_at_least;
+
+ GuardedAlternative alt1 = alternatives_->at(1);
+ if (alt1.guards() != NULL && alt1.guards()->length() != 0) {
+ return eats_at_least;
+ }
+ RegExpNode* eats_anything_node = alt1.node();
+ if (eats_anything_node->GetSuccessorOfOmnivorousTextNode(compiler) != this) {
+ return eats_at_least;
+ }
+
+ // Really we should be creating a new trace when we execute this function,
+ // but there is no need, because the code it generates cannot backtrack, and
+ // we always arrive here with a trivial trace (since it's the entry to a
+ // loop. That also implies that there are no preloaded characters, which is
+ // good, because it means we won't be violating any assumptions by
+ // overwriting those characters with new load instructions.
+ DCHECK(trace->is_trivial());
+
+ RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+ // At this point we know that we are at a non-greedy loop that will eat
+ // any character one at a time. Any non-anchored regexp has such a
+ // loop prepended to it in order to find where it starts. We look for
+ // a pattern of the form ...abc... where we can look 6 characters ahead
+ // and step forwards 3 if the character is not one of abc. Abc need
+ // not be atoms, they can be any reasonably limited character class or
+ // small alternation.
+ BoyerMooreLookahead* bm = bm_info(false);
+ if (bm == NULL) {
+ eats_at_least = Min(kMaxLookaheadForBoyerMoore,
+ EatsAtLeast(kMaxLookaheadForBoyerMoore,
+ kRecursionBudget,
+ false));
+ if (eats_at_least >= 1) {
+ bm = new(zone()) BoyerMooreLookahead(eats_at_least,
+ compiler,
+ zone());
+ GuardedAlternative alt0 = alternatives_->at(0);
+ alt0.node()->FillInBMInfo(0, kRecursionBudget, bm, false);
+ }
+ }
+ if (bm != NULL) {
+ bm->EmitSkipInstructions(macro_assembler);
+ }
+ return eats_at_least;
+}
+
+
+void ChoiceNode::EmitChoices(RegExpCompiler* compiler,
+ AlternativeGenerationList* alt_gens,
+ int first_choice,
+ Trace* trace,
+ PreloadState* preload) {
+ RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+ SetUpPreLoad(compiler, trace, preload);
+
+ // For now we just call all choices one after the other. The idea ultimately
+ // is to use the Dispatch table to try only the relevant ones.
+ int choice_count = alternatives_->length();
+
+ int new_flush_budget = trace->flush_budget() / choice_count;
+
+ for (int i = first_choice; i < choice_count; i++) {
+ bool is_last = i == choice_count - 1;
+ bool fall_through_on_failure = !is_last;
+ GuardedAlternative alternative = alternatives_->at(i);
+ AlternativeGeneration* alt_gen = alt_gens->at(i);
+ alt_gen->quick_check_details.set_characters(preload->preload_characters_);
+ ZoneList<Guard*>* guards = alternative.guards();
+ int guard_count = (guards == NULL) ? 0 : guards->length();
+ Trace new_trace(*trace);
+ new_trace.set_characters_preloaded(preload->preload_is_current_ ?
+ preload->preload_characters_ :
+ 0);
+ if (preload->preload_has_checked_bounds_) {
+ new_trace.set_bound_checked_up_to(preload->preload_characters_);
+ }
+ new_trace.quick_check_performed()->Clear();
+ if (not_at_start_) new_trace.set_at_start(Trace::FALSE_VALUE);
+ if (!is_last) {
+ new_trace.set_backtrack(&alt_gen->after);
+ }
+ alt_gen->expects_preload = preload->preload_is_current_;
+ bool generate_full_check_inline = false;
+ if (FLAG_regexp_optimization &&
+ try_to_emit_quick_check_for_alternative(i == 0) &&
+ alternative.node()->EmitQuickCheck(compiler,
+ trace,
+ &new_trace,
+ preload->preload_has_checked_bounds_,
+ &alt_gen->possible_success,
+ &alt_gen->quick_check_details,
+ fall_through_on_failure)) {
+ // Quick check was generated for this choice.
+ preload->preload_is_current_ = true;
+ preload->preload_has_checked_bounds_ = true;
+ // If we generated the quick check to fall through on possible success,
+ // we now need to generate the full check inline.
+ if (!fall_through_on_failure) {
+ macro_assembler->Bind(&alt_gen->possible_success);
+ new_trace.set_quick_check_performed(&alt_gen->quick_check_details);
+ new_trace.set_characters_preloaded(preload->preload_characters_);
+ new_trace.set_bound_checked_up_to(preload->preload_characters_);
+ generate_full_check_inline = true;
+ }
+ } else if (alt_gen->quick_check_details.cannot_match()) {
+ if (!fall_through_on_failure) {
+ macro_assembler->GoTo(trace->backtrack());
+ }
+ continue;
+ } else {
+ // No quick check was generated. Put the full code here.
+ // If this is not the first choice then there could be slow checks from
+ // previous cases that go here when they fail. There's no reason to
+ // insist that they preload characters since the slow check we are about
+ // to generate probably can't use it.
+ if (i != first_choice) {
+ alt_gen->expects_preload = false;
+ new_trace.InvalidateCurrentCharacter();
+ }
+ generate_full_check_inline = true;
+ }
+ if (generate_full_check_inline) {
+ if (new_trace.actions() != NULL) {
+ new_trace.set_flush_budget(new_flush_budget);
+ }
+ for (int j = 0; j < guard_count; j++) {
+ GenerateGuard(macro_assembler, guards->at(j), &new_trace);
+ }
+ alternative.node()->Emit(compiler, &new_trace);
+ preload->preload_is_current_ = false;
+ }
+ macro_assembler->Bind(&alt_gen->after);
+ }
+}
+
+
+void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler,
+ Trace* trace,
+ GuardedAlternative alternative,
+ AlternativeGeneration* alt_gen,
+ int preload_characters,
+ bool next_expects_preload) {
+ if (!alt_gen->possible_success.is_linked()) return;
+
+ RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+ macro_assembler->Bind(&alt_gen->possible_success);
+ Trace out_of_line_trace(*trace);
+ out_of_line_trace.set_characters_preloaded(preload_characters);
+ out_of_line_trace.set_quick_check_performed(&alt_gen->quick_check_details);
+ if (not_at_start_) out_of_line_trace.set_at_start(Trace::FALSE_VALUE);
+ ZoneList<Guard*>* guards = alternative.guards();
+ int guard_count = (guards == NULL) ? 0 : guards->length();
+ if (next_expects_preload) {
+ Label reload_current_char;
+ out_of_line_trace.set_backtrack(&reload_current_char);
+ for (int j = 0; j < guard_count; j++) {
+ GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace);
+ }
+ alternative.node()->Emit(compiler, &out_of_line_trace);
+ macro_assembler->Bind(&reload_current_char);
+ // Reload the current character, since the next quick check expects that.
+ // We don't need to check bounds here because we only get into this
+ // code through a quick check which already did the checked load.
+ macro_assembler->LoadCurrentCharacter(trace->cp_offset(),
+ NULL,
+ false,
+ preload_characters);
+ macro_assembler->GoTo(&(alt_gen->after));
+ } else {
+ out_of_line_trace.set_backtrack(&(alt_gen->after));
+ for (int j = 0; j < guard_count; j++) {
+ GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace);
+ }
+ alternative.node()->Emit(compiler, &out_of_line_trace);
+ }
+}
+
+
+void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ LimitResult limit_result = LimitVersions(compiler, trace);
+ if (limit_result == DONE) return;
+ DCHECK(limit_result == CONTINUE);
+
+ RecursionCheck rc(compiler);
+
+ switch (action_type_) {
+ case STORE_POSITION: {
+ Trace::DeferredCapture
+ new_capture(data_.u_position_register.reg,
+ data_.u_position_register.is_capture,
+ trace);
+ Trace new_trace = *trace;
+ new_trace.add_action(&new_capture);
+ on_success()->Emit(compiler, &new_trace);
+ break;
+ }
+ case INCREMENT_REGISTER: {
+ Trace::DeferredIncrementRegister
+ new_increment(data_.u_increment_register.reg);
+ Trace new_trace = *trace;
+ new_trace.add_action(&new_increment);
+ on_success()->Emit(compiler, &new_trace);
+ break;
+ }
+ case SET_REGISTER: {
+ Trace::DeferredSetRegister
+ new_set(data_.u_store_register.reg, data_.u_store_register.value);
+ Trace new_trace = *trace;
+ new_trace.add_action(&new_set);
+ on_success()->Emit(compiler, &new_trace);
+ break;
+ }
+ case CLEAR_CAPTURES: {
+ Trace::DeferredClearCaptures
+ new_capture(Interval(data_.u_clear_captures.range_from,
+ data_.u_clear_captures.range_to));
+ Trace new_trace = *trace;
+ new_trace.add_action(&new_capture);
+ on_success()->Emit(compiler, &new_trace);
+ break;
+ }
+ case BEGIN_SUBMATCH:
+ if (!trace->is_trivial()) {
+ trace->Flush(compiler, this);
+ } else {
+ assembler->WriteCurrentPositionToRegister(
+ data_.u_submatch.current_position_register, 0);
+ assembler->WriteStackPointerToRegister(
+ data_.u_submatch.stack_pointer_register);
+ on_success()->Emit(compiler, trace);
+ }
+ break;
+ case EMPTY_MATCH_CHECK: {
+ int start_pos_reg = data_.u_empty_match_check.start_register;
+ int stored_pos = 0;
+ int rep_reg = data_.u_empty_match_check.repetition_register;
+ bool has_minimum = (rep_reg != RegExpCompiler::kNoRegister);
+ bool know_dist = trace->GetStoredPosition(start_pos_reg, &stored_pos);
+ if (know_dist && !has_minimum && stored_pos == trace->cp_offset()) {
+ // If we know we haven't advanced and there is no minimum we
+ // can just backtrack immediately.
+ assembler->GoTo(trace->backtrack());
+ } else if (know_dist && stored_pos < trace->cp_offset()) {
+ // If we know we've advanced we can generate the continuation
+ // immediately.
+ on_success()->Emit(compiler, trace);
+ } else if (!trace->is_trivial()) {
+ trace->Flush(compiler, this);
+ } else {
+ Label skip_empty_check;
+ // If we have a minimum number of repetitions we check the current
+ // number first and skip the empty check if it's not enough.
+ if (has_minimum) {
+ int limit = data_.u_empty_match_check.repetition_limit;
+ assembler->IfRegisterLT(rep_reg, limit, &skip_empty_check);
+ }
+ // If the match is empty we bail out, otherwise we fall through
+ // to the on-success continuation.
+ assembler->IfRegisterEqPos(data_.u_empty_match_check.start_register,
+ trace->backtrack());
+ assembler->Bind(&skip_empty_check);
+ on_success()->Emit(compiler, trace);
+ }
+ break;
+ }
+ case POSITIVE_SUBMATCH_SUCCESS: {
+ if (!trace->is_trivial()) {
+ trace->Flush(compiler, this);
+ return;
+ }
+ assembler->ReadCurrentPositionFromRegister(
+ data_.u_submatch.current_position_register);
+ assembler->ReadStackPointerFromRegister(
+ data_.u_submatch.stack_pointer_register);
+ int clear_register_count = data_.u_submatch.clear_register_count;
+ if (clear_register_count == 0) {
+ on_success()->Emit(compiler, trace);
+ return;
+ }
+ int clear_registers_from = data_.u_submatch.clear_register_from;
+ Label clear_registers_backtrack;
+ Trace new_trace = *trace;
+ new_trace.set_backtrack(&clear_registers_backtrack);
+ on_success()->Emit(compiler, &new_trace);
+
+ assembler->Bind(&clear_registers_backtrack);
+ int clear_registers_to = clear_registers_from + clear_register_count - 1;
+ assembler->ClearRegisters(clear_registers_from, clear_registers_to);
+
+ DCHECK(trace->backtrack() == NULL);
+ assembler->Backtrack();
+ return;
+ }
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ if (!trace->is_trivial()) {
+ trace->Flush(compiler, this);
+ return;
+ }
+
+ LimitResult limit_result = LimitVersions(compiler, trace);
+ if (limit_result == DONE) return;
+ DCHECK(limit_result == CONTINUE);
+
+ RecursionCheck rc(compiler);
+
+ DCHECK_EQ(start_reg_ + 1, end_reg_);
+ if (compiler->ignore_case()) {
+ assembler->CheckNotBackReferenceIgnoreCase(start_reg_,
+ trace->backtrack());
+ } else {
+ assembler->CheckNotBackReference(start_reg_, trace->backtrack());
+ }
+ on_success()->Emit(compiler, trace);
+}
+
+
+// -------------------------------------------------------------------
+// Dot/dotty output
+
+
+#ifdef DEBUG
+
+
+class DotPrinter: public NodeVisitor {
+ public:
+ DotPrinter(OStream& os, bool ignore_case) // NOLINT
+ : os_(os),
+ ignore_case_(ignore_case) {}
+ void PrintNode(const char* label, RegExpNode* node);
+ void Visit(RegExpNode* node);
+ void PrintAttributes(RegExpNode* from);
+ void PrintOnFailure(RegExpNode* from, RegExpNode* to);
+#define DECLARE_VISIT(Type) \
+ virtual void Visit##Type(Type##Node* that);
+FOR_EACH_NODE_TYPE(DECLARE_VISIT)
+#undef DECLARE_VISIT
+ private:
+ OStream& os_;
+ bool ignore_case_;
+};
+
+
+void DotPrinter::PrintNode(const char* label, RegExpNode* node) {
+ os_ << "digraph G {\n graph [label=\"";
+ for (int i = 0; label[i]; i++) {
+ switch (label[i]) {
+ case '\\':
+ os_ << "\\\\";
+ break;
+ case '"':
+ os_ << "\"";
+ break;
+ default:
+ os_ << label[i];
+ break;
+ }
+ }
+ os_ << "\"];\n";
+ Visit(node);
+ os_ << "}" << endl;
+}
+
+
+void DotPrinter::Visit(RegExpNode* node) {
+ if (node->info()->visited) return;
+ node->info()->visited = true;
+ node->Accept(this);
+}
+
+
+void DotPrinter::PrintOnFailure(RegExpNode* from, RegExpNode* on_failure) {
+ os_ << " n" << from << " -> n" << on_failure << " [style=dotted];\n";
+ Visit(on_failure);
+}
+
+
+class TableEntryBodyPrinter {
+ public:
+ TableEntryBodyPrinter(OStream& os, ChoiceNode* choice) // NOLINT
+ : os_(os),
+ choice_(choice) {}
+ void Call(uc16 from, DispatchTable::Entry entry) {
+ OutSet* out_set = entry.out_set();
+ for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
+ if (out_set->Get(i)) {
+ os_ << " n" << choice() << ":s" << from << "o" << i << " -> n"
+ << choice()->alternatives()->at(i).node() << ";\n";
+ }
+ }
+ }
+ private:
+ ChoiceNode* choice() { return choice_; }
+ OStream& os_;
+ ChoiceNode* choice_;
+};
+
+
+class TableEntryHeaderPrinter {
+ public:
+ explicit TableEntryHeaderPrinter(OStream& os) // NOLINT
+ : first_(true),
+ os_(os) {}
+ void Call(uc16 from, DispatchTable::Entry entry) {
+ if (first_) {
+ first_ = false;
+ } else {
+ os_ << "|";
+ }
+ os_ << "{\\" << AsUC16(from) << "-\\" << AsUC16(entry.to()) << "|{";
+ OutSet* out_set = entry.out_set();
+ int priority = 0;
+ for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
+ if (out_set->Get(i)) {
+ if (priority > 0) os_ << "|";
+ os_ << "<s" << from << "o" << i << "> " << priority;
+ priority++;
+ }
+ }
+ os_ << "}}";
+ }
+
+ private:
+ bool first_;
+ OStream& os_;
+};
+
+
+class AttributePrinter {
+ public:
+ explicit AttributePrinter(OStream& os) // NOLINT
+ : os_(os),
+ first_(true) {}
+ void PrintSeparator() {
+ if (first_) {
+ first_ = false;
+ } else {
+ os_ << "|";
+ }
+ }
+ void PrintBit(const char* name, bool value) {
+ if (!value) return;
+ PrintSeparator();
+ os_ << "{" << name << "}";
+ }
+ void PrintPositive(const char* name, int value) {
+ if (value < 0) return;
+ PrintSeparator();
+ os_ << "{" << name << "|" << value << "}";
+ }
+
+ private:
+ OStream& os_;
+ bool first_;
+};
+
+
+void DotPrinter::PrintAttributes(RegExpNode* that) {
+ os_ << " a" << that << " [shape=Mrecord, color=grey, fontcolor=grey, "
+ << "margin=0.1, fontsize=10, label=\"{";
+ AttributePrinter printer(os_);
+ NodeInfo* info = that->info();
+ printer.PrintBit("NI", info->follows_newline_interest);
+ printer.PrintBit("WI", info->follows_word_interest);
+ printer.PrintBit("SI", info->follows_start_interest);
+ Label* label = that->label();
+ if (label->is_bound())
+ printer.PrintPositive("@", label->pos());
+ os_ << "}\"];\n"
+ << " a" << that << " -> n" << that
+ << " [style=dashed, color=grey, arrowhead=none];\n";
+}
+
+
+static const bool kPrintDispatchTable = false;
+void DotPrinter::VisitChoice(ChoiceNode* that) {
+ if (kPrintDispatchTable) {
+ os_ << " n" << that << " [shape=Mrecord, label=\"";
+ TableEntryHeaderPrinter header_printer(os_);
+ that->GetTable(ignore_case_)->ForEach(&header_printer);
+ os_ << "\"]\n";
+ PrintAttributes(that);
+ TableEntryBodyPrinter body_printer(os_, that);
+ that->GetTable(ignore_case_)->ForEach(&body_printer);
+ } else {
+ os_ << " n" << that << " [shape=Mrecord, label=\"?\"];\n";
+ for (int i = 0; i < that->alternatives()->length(); i++) {
+ GuardedAlternative alt = that->alternatives()->at(i);
+ os_ << " n" << that << " -> n" << alt.node();
+ }
+ }
+ for (int i = 0; i < that->alternatives()->length(); i++) {
+ GuardedAlternative alt = that->alternatives()->at(i);
+ alt.node()->Accept(this);
+ }
+}
+
+
+void DotPrinter::VisitText(TextNode* that) {
+ Zone* zone = that->zone();
+ os_ << " n" << that << " [label=\"";
+ for (int i = 0; i < that->elements()->length(); i++) {
+ if (i > 0) os_ << " ";
+ TextElement elm = that->elements()->at(i);
+ switch (elm.text_type()) {
+ case TextElement::ATOM: {
+ Vector<const uc16> data = elm.atom()->data();
+ for (int i = 0; i < data.length(); i++) {
+ os_ << static_cast<char>(data[i]);
+ }
+ break;
+ }
+ case TextElement::CHAR_CLASS: {
+ RegExpCharacterClass* node = elm.char_class();
+ os_ << "[";
+ if (node->is_negated()) os_ << "^";
+ for (int j = 0; j < node->ranges(zone)->length(); j++) {
+ CharacterRange range = node->ranges(zone)->at(j);
+ os_ << AsUC16(range.from()) << "-" << AsUC16(range.to());
+ }
+ os_ << "]";
+ break;
+ }
+ default:
+ UNREACHABLE();
+ }
+ }
+ os_ << "\", shape=box, peripheries=2];\n";
+ PrintAttributes(that);
+ os_ << " n" << that << " -> n" << that->on_success() << ";\n";
+ Visit(that->on_success());
+}
+
+
+void DotPrinter::VisitBackReference(BackReferenceNode* that) {
+ os_ << " n" << that << " [label=\"$" << that->start_register() << "..$"
+ << that->end_register() << "\", shape=doubleoctagon];\n";
+ PrintAttributes(that);
+ os_ << " n" << that << " -> n" << that->on_success() << ";\n";
+ Visit(that->on_success());
+}
+
+
+void DotPrinter::VisitEnd(EndNode* that) {
+ os_ << " n" << that << " [style=bold, shape=point];\n";
+ PrintAttributes(that);
+}
+
+
+void DotPrinter::VisitAssertion(AssertionNode* that) {
+ os_ << " n" << that << " [";
+ switch (that->assertion_type()) {
+ case AssertionNode::AT_END:
+ os_ << "label=\"$\", shape=septagon";
+ break;
+ case AssertionNode::AT_START:
+ os_ << "label=\"^\", shape=septagon";
+ break;
+ case AssertionNode::AT_BOUNDARY:
+ os_ << "label=\"\\b\", shape=septagon";
+ break;
+ case AssertionNode::AT_NON_BOUNDARY:
+ os_ << "label=\"\\B\", shape=septagon";
+ break;
+ case AssertionNode::AFTER_NEWLINE:
+ os_ << "label=\"(?<=\\n)\", shape=septagon";
+ break;
+ }
+ os_ << "];\n";
+ PrintAttributes(that);
+ RegExpNode* successor = that->on_success();
+ os_ << " n" << that << " -> n" << successor << ";\n";
+ Visit(successor);
+}
+
+
+void DotPrinter::VisitAction(ActionNode* that) {
+ os_ << " n" << that << " [";
+ switch (that->action_type_) {
+ case ActionNode::SET_REGISTER:
+ os_ << "label=\"$" << that->data_.u_store_register.reg
+ << ":=" << that->data_.u_store_register.value << "\", shape=octagon";
+ break;
+ case ActionNode::INCREMENT_REGISTER:
+ os_ << "label=\"$" << that->data_.u_increment_register.reg
+ << "++\", shape=octagon";
+ break;
+ case ActionNode::STORE_POSITION:
+ os_ << "label=\"$" << that->data_.u_position_register.reg
+ << ":=$pos\", shape=octagon";
+ break;
+ case ActionNode::BEGIN_SUBMATCH:
+ os_ << "label=\"$" << that->data_.u_submatch.current_position_register
+ << ":=$pos,begin\", shape=septagon";
+ break;
+ case ActionNode::POSITIVE_SUBMATCH_SUCCESS:
+ os_ << "label=\"escape\", shape=septagon";
+ break;
+ case ActionNode::EMPTY_MATCH_CHECK:
+ os_ << "label=\"$" << that->data_.u_empty_match_check.start_register
+ << "=$pos?,$" << that->data_.u_empty_match_check.repetition_register
+ << "<" << that->data_.u_empty_match_check.repetition_limit
+ << "?\", shape=septagon";
+ break;
+ case ActionNode::CLEAR_CAPTURES: {
+ os_ << "label=\"clear $" << that->data_.u_clear_captures.range_from
+ << " to $" << that->data_.u_clear_captures.range_to
+ << "\", shape=septagon";
+ break;
+ }
+ }
+ os_ << "];\n";
+ PrintAttributes(that);
+ RegExpNode* successor = that->on_success();
+ os_ << " n" << that << " -> n" << successor << ";\n";
+ Visit(successor);
+}
+
+
+class DispatchTableDumper {
+ public:
+ explicit DispatchTableDumper(OStream& os) : os_(os) {}
+ void Call(uc16 key, DispatchTable::Entry entry);
+ private:
+ OStream& os_;
+};
+
+
+void DispatchTableDumper::Call(uc16 key, DispatchTable::Entry entry) {
+ os_ << "[" << AsUC16(key) << "-" << AsUC16(entry.to()) << "]: {";
+ OutSet* set = entry.out_set();
+ bool first = true;
+ for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
+ if (set->Get(i)) {
+ if (first) {
+ first = false;
+ } else {
+ os_ << ", ";
+ }
+ os_ << i;
+ }
+ }
+ os_ << "}\n";
+}
+
+
+void DispatchTable::Dump() {
+ OFStream os(stderr);
+ DispatchTableDumper dumper(os);
+ tree()->ForEach(&dumper);
+}
+
+
+void RegExpEngine::DotPrint(const char* label,
+ RegExpNode* node,
+ bool ignore_case) {
+ OFStream os(stdout);
+ DotPrinter printer(os, ignore_case);
+ printer.PrintNode(label, node);
+}
+
+
+#endif // DEBUG
+
+
+// -------------------------------------------------------------------
+// Tree to graph conversion
+
+RegExpNode* RegExpAtom::ToNode(RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ ZoneList<TextElement>* elms =
+ new(compiler->zone()) ZoneList<TextElement>(1, compiler->zone());
+ elms->Add(TextElement::Atom(this), compiler->zone());
+ return new(compiler->zone()) TextNode(elms, on_success);
+}
+
+
+RegExpNode* RegExpText::ToNode(RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ return new(compiler->zone()) TextNode(elements(), on_success);
+}
+
+
+static bool CompareInverseRanges(ZoneList<CharacterRange>* ranges,
+ const int* special_class,
+ int length) {
+ length--; // Remove final 0x10000.
+ DCHECK(special_class[length] == 0x10000);
+ DCHECK(ranges->length() != 0);
+ DCHECK(length != 0);
+ DCHECK(special_class[0] != 0);
+ if (ranges->length() != (length >> 1) + 1) {
+ return false;
+ }
+ CharacterRange range = ranges->at(0);
+ if (range.from() != 0) {
+ return false;
+ }
+ for (int i = 0; i < length; i += 2) {
+ if (special_class[i] != (range.to() + 1)) {
+ return false;
+ }
+ range = ranges->at((i >> 1) + 1);
+ if (special_class[i+1] != range.from()) {
+ return false;
+ }
+ }
+ if (range.to() != 0xffff) {
+ return false;
+ }
+ return true;
+}
+
+
+static bool CompareRanges(ZoneList<CharacterRange>* ranges,
+ const int* special_class,
+ int length) {
+ length--; // Remove final 0x10000.
+ DCHECK(special_class[length] == 0x10000);
+ if (ranges->length() * 2 != length) {
+ return false;
+ }
+ for (int i = 0; i < length; i += 2) {
+ CharacterRange range = ranges->at(i >> 1);
+ if (range.from() != special_class[i] ||
+ range.to() != special_class[i + 1] - 1) {
+ return false;
+ }
+ }
+ return true;
+}
+
+
+bool RegExpCharacterClass::is_standard(Zone* zone) {
+ // TODO(lrn): Remove need for this function, by not throwing away information
+ // along the way.
+ if (is_negated_) {
+ return false;
+ }
+ if (set_.is_standard()) {
+ return true;
+ }
+ if (CompareRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) {
+ set_.set_standard_set_type('s');
+ return true;
+ }
+ if (CompareInverseRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) {
+ set_.set_standard_set_type('S');
+ return true;
+ }
+ if (CompareInverseRanges(set_.ranges(zone),
+ kLineTerminatorRanges,
+ kLineTerminatorRangeCount)) {
+ set_.set_standard_set_type('.');
+ return true;
+ }
+ if (CompareRanges(set_.ranges(zone),
+ kLineTerminatorRanges,
+ kLineTerminatorRangeCount)) {
+ set_.set_standard_set_type('n');
+ return true;
+ }
+ if (CompareRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) {
+ set_.set_standard_set_type('w');
+ return true;
+ }
+ if (CompareInverseRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) {
+ set_.set_standard_set_type('W');
+ return true;
+ }
+ return false;
+}
+
+
+RegExpNode* RegExpCharacterClass::ToNode(RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ return new(compiler->zone()) TextNode(this, on_success);
+}
+
+
+RegExpNode* RegExpDisjunction::ToNode(RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ ZoneList<RegExpTree*>* alternatives = this->alternatives();
+ int length = alternatives->length();
+ ChoiceNode* result =
+ new(compiler->zone()) ChoiceNode(length, compiler->zone());
+ for (int i = 0; i < length; i++) {
+ GuardedAlternative alternative(alternatives->at(i)->ToNode(compiler,
+ on_success));
+ result->AddAlternative(alternative);
+ }
+ return result;
+}
+
+
+RegExpNode* RegExpQuantifier::ToNode(RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ return ToNode(min(),
+ max(),
+ is_greedy(),
+ body(),
+ compiler,
+ on_success);
+}
+
+
+// Scoped object to keep track of how much we unroll quantifier loops in the
+// regexp graph generator.
+class RegExpExpansionLimiter {
+ public:
+ static const int kMaxExpansionFactor = 6;
+ RegExpExpansionLimiter(RegExpCompiler* compiler, int factor)
+ : compiler_(compiler),
+ saved_expansion_factor_(compiler->current_expansion_factor()),
+ ok_to_expand_(saved_expansion_factor_ <= kMaxExpansionFactor) {
+ DCHECK(factor > 0);
+ if (ok_to_expand_) {
+ if (factor > kMaxExpansionFactor) {
+ // Avoid integer overflow of the current expansion factor.
+ ok_to_expand_ = false;
+ compiler->set_current_expansion_factor(kMaxExpansionFactor + 1);
+ } else {
+ int new_factor = saved_expansion_factor_ * factor;
+ ok_to_expand_ = (new_factor <= kMaxExpansionFactor);
+ compiler->set_current_expansion_factor(new_factor);
+ }
+ }
+ }
+
+ ~RegExpExpansionLimiter() {
+ compiler_->set_current_expansion_factor(saved_expansion_factor_);
+ }
+
+ bool ok_to_expand() { return ok_to_expand_; }
+
+ private:
+ RegExpCompiler* compiler_;
+ int saved_expansion_factor_;
+ bool ok_to_expand_;
+
+ DISALLOW_IMPLICIT_CONSTRUCTORS(RegExpExpansionLimiter);
+};
+
+
+RegExpNode* RegExpQuantifier::ToNode(int min,
+ int max,
+ bool is_greedy,
+ RegExpTree* body,
+ RegExpCompiler* compiler,
+ RegExpNode* on_success,
+ bool not_at_start) {
+ // x{f, t} becomes this:
+ //
+ // (r++)<-.
+ // | `
+ // | (x)
+ // v ^
+ // (r=0)-->(?)---/ [if r < t]
+ // |
+ // [if r >= f] \----> ...
+ //
+
+ // 15.10.2.5 RepeatMatcher algorithm.
+ // The parser has already eliminated the case where max is 0. In the case
+ // where max_match is zero the parser has removed the quantifier if min was
+ // > 0 and removed the atom if min was 0. See AddQuantifierToAtom.
+
+ // If we know that we cannot match zero length then things are a little
+ // simpler since we don't need to make the special zero length match check
+ // from step 2.1. If the min and max are small we can unroll a little in
+ // this case.
+ static const int kMaxUnrolledMinMatches = 3; // Unroll (foo)+ and (foo){3,}
+ static const int kMaxUnrolledMaxMatches = 3; // Unroll (foo)? and (foo){x,3}
+ if (max == 0) return on_success; // This can happen due to recursion.
+ bool body_can_be_empty = (body->min_match() == 0);
+ int body_start_reg = RegExpCompiler::kNoRegister;
+ Interval capture_registers = body->CaptureRegisters();
+ bool needs_capture_clearing = !capture_registers.is_empty();
+ Zone* zone = compiler->zone();
+
+ if (body_can_be_empty) {
+ body_start_reg = compiler->AllocateRegister();
+ } else if (FLAG_regexp_optimization && !needs_capture_clearing) {
+ // Only unroll if there are no captures and the body can't be
+ // empty.
+ {
+ RegExpExpansionLimiter limiter(
+ compiler, min + ((max != min) ? 1 : 0));
+ if (min > 0 && min <= kMaxUnrolledMinMatches && limiter.ok_to_expand()) {
+ int new_max = (max == kInfinity) ? max : max - min;
+ // Recurse once to get the loop or optional matches after the fixed
+ // ones.
+ RegExpNode* answer = ToNode(
+ 0, new_max, is_greedy, body, compiler, on_success, true);
+ // Unroll the forced matches from 0 to min. This can cause chains of
+ // TextNodes (which the parser does not generate). These should be
+ // combined if it turns out they hinder good code generation.
+ for (int i = 0; i < min; i++) {
+ answer = body->ToNode(compiler, answer);
+ }
+ return answer;
+ }
+ }
+ if (max <= kMaxUnrolledMaxMatches && min == 0) {
+ DCHECK(max > 0); // Due to the 'if' above.
+ RegExpExpansionLimiter limiter(compiler, max);
+ if (limiter.ok_to_expand()) {
+ // Unroll the optional matches up to max.
+ RegExpNode* answer = on_success;
+ for (int i = 0; i < max; i++) {
+ ChoiceNode* alternation = new(zone) ChoiceNode(2, zone);
+ if (is_greedy) {
+ alternation->AddAlternative(
+ GuardedAlternative(body->ToNode(compiler, answer)));
+ alternation->AddAlternative(GuardedAlternative(on_success));
+ } else {
+ alternation->AddAlternative(GuardedAlternative(on_success));
+ alternation->AddAlternative(
+ GuardedAlternative(body->ToNode(compiler, answer)));
+ }
+ answer = alternation;
+ if (not_at_start) alternation->set_not_at_start();
+ }
+ return answer;
+ }
+ }
+ }
+ bool has_min = min > 0;
+ bool has_max = max < RegExpTree::kInfinity;
+ bool needs_counter = has_min || has_max;
+ int reg_ctr = needs_counter
+ ? compiler->AllocateRegister()
+ : RegExpCompiler::kNoRegister;
+ LoopChoiceNode* center = new(zone) LoopChoiceNode(body->min_match() == 0,
+ zone);
+ if (not_at_start) center->set_not_at_start();
+ RegExpNode* loop_return = needs_counter
+ ? static_cast<RegExpNode*>(ActionNode::IncrementRegister(reg_ctr, center))
+ : static_cast<RegExpNode*>(center);
+ if (body_can_be_empty) {
+ // If the body can be empty we need to check if it was and then
+ // backtrack.
+ loop_return = ActionNode::EmptyMatchCheck(body_start_reg,
+ reg_ctr,
+ min,
+ loop_return);
+ }
+ RegExpNode* body_node = body->ToNode(compiler, loop_return);
+ if (body_can_be_empty) {
+ // If the body can be empty we need to store the start position
+ // so we can bail out if it was empty.
+ body_node = ActionNode::StorePosition(body_start_reg, false, body_node);
+ }
+ if (needs_capture_clearing) {
+ // Before entering the body of this loop we need to clear captures.
+ body_node = ActionNode::ClearCaptures(capture_registers, body_node);
+ }
+ GuardedAlternative body_alt(body_node);
+ if (has_max) {
+ Guard* body_guard =
+ new(zone) Guard(reg_ctr, Guard::LT, max);
+ body_alt.AddGuard(body_guard, zone);
+ }
+ GuardedAlternative rest_alt(on_success);
+ if (has_min) {
+ Guard* rest_guard = new(compiler->zone()) Guard(reg_ctr, Guard::GEQ, min);
+ rest_alt.AddGuard(rest_guard, zone);
+ }
+ if (is_greedy) {
+ center->AddLoopAlternative(body_alt);
+ center->AddContinueAlternative(rest_alt);
+ } else {
+ center->AddContinueAlternative(rest_alt);
+ center->AddLoopAlternative(body_alt);
+ }
+ if (needs_counter) {
+ return ActionNode::SetRegister(reg_ctr, 0, center);
+ } else {
+ return center;
+ }
+}
+
+
+RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ NodeInfo info;
+ Zone* zone = compiler->zone();
+
+ switch (assertion_type()) {
+ case START_OF_LINE:
+ return AssertionNode::AfterNewline(on_success);
+ case START_OF_INPUT:
+ return AssertionNode::AtStart(on_success);
+ case BOUNDARY:
+ return AssertionNode::AtBoundary(on_success);
+ case NON_BOUNDARY:
+ return AssertionNode::AtNonBoundary(on_success);
+ case END_OF_INPUT:
+ return AssertionNode::AtEnd(on_success);
+ case END_OF_LINE: {
+ // Compile $ in multiline regexps as an alternation with a positive
+ // lookahead in one side and an end-of-input on the other side.
+ // We need two registers for the lookahead.
+ int stack_pointer_register = compiler->AllocateRegister();
+ int position_register = compiler->AllocateRegister();
+ // The ChoiceNode to distinguish between a newline and end-of-input.
+ ChoiceNode* result = new(zone) ChoiceNode(2, zone);
+ // Create a newline atom.
+ ZoneList<CharacterRange>* newline_ranges =
+ new(zone) ZoneList<CharacterRange>(3, zone);
+ CharacterRange::AddClassEscape('n', newline_ranges, zone);
+ RegExpCharacterClass* newline_atom = new(zone) RegExpCharacterClass('n');
+ TextNode* newline_matcher = new(zone) TextNode(
+ newline_atom,
+ ActionNode::PositiveSubmatchSuccess(stack_pointer_register,
+ position_register,
+ 0, // No captures inside.
+ -1, // Ignored if no captures.
+ on_success));
+ // Create an end-of-input matcher.
+ RegExpNode* end_of_line = ActionNode::BeginSubmatch(
+ stack_pointer_register,
+ position_register,
+ newline_matcher);
+ // Add the two alternatives to the ChoiceNode.
+ GuardedAlternative eol_alternative(end_of_line);
+ result->AddAlternative(eol_alternative);
+ GuardedAlternative end_alternative(AssertionNode::AtEnd(on_success));
+ result->AddAlternative(end_alternative);
+ return result;
+ }
+ default:
+ UNREACHABLE();
+ }
+ return on_success;
+}
+
+
+RegExpNode* RegExpBackReference::ToNode(RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ return new(compiler->zone())
+ BackReferenceNode(RegExpCapture::StartRegister(index()),
+ RegExpCapture::EndRegister(index()),
+ on_success);
+}
+
+
+RegExpNode* RegExpEmpty::ToNode(RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ return on_success;
+}
+
+
+RegExpNode* RegExpLookahead::ToNode(RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ int stack_pointer_register = compiler->AllocateRegister();
+ int position_register = compiler->AllocateRegister();
+
+ const int registers_per_capture = 2;
+ const int register_of_first_capture = 2;
+ int register_count = capture_count_ * registers_per_capture;
+ int register_start =
+ register_of_first_capture + capture_from_ * registers_per_capture;
+
+ RegExpNode* success;
+ if (is_positive()) {
+ RegExpNode* node = ActionNode::BeginSubmatch(
+ stack_pointer_register,
+ position_register,
+ body()->ToNode(
+ compiler,
+ ActionNode::PositiveSubmatchSuccess(stack_pointer_register,
+ position_register,
+ register_count,
+ register_start,
+ on_success)));
+ return node;
+ } else {
+ // We use a ChoiceNode for a negative lookahead because it has most of
+ // the characteristics we need. It has the body of the lookahead as its
+ // first alternative and the expression after the lookahead of the second
+ // alternative. If the first alternative succeeds then the
+ // NegativeSubmatchSuccess will unwind the stack including everything the
+ // choice node set up and backtrack. If the first alternative fails then
+ // the second alternative is tried, which is exactly the desired result
+ // for a negative lookahead. The NegativeLookaheadChoiceNode is a special
+ // ChoiceNode that knows to ignore the first exit when calculating quick
+ // checks.
+ Zone* zone = compiler->zone();
+
+ GuardedAlternative body_alt(
+ body()->ToNode(
+ compiler,
+ success = new(zone) NegativeSubmatchSuccess(stack_pointer_register,
+ position_register,
+ register_count,
+ register_start,
+ zone)));
+ ChoiceNode* choice_node =
+ new(zone) NegativeLookaheadChoiceNode(body_alt,
+ GuardedAlternative(on_success),
+ zone);
+ return ActionNode::BeginSubmatch(stack_pointer_register,
+ position_register,
+ choice_node);
+ }
+}
+
+
+RegExpNode* RegExpCapture::ToNode(RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ return ToNode(body(), index(), compiler, on_success);
+}
+
+
+RegExpNode* RegExpCapture::ToNode(RegExpTree* body,
+ int index,
+ RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ int start_reg = RegExpCapture::StartRegister(index);
+ int end_reg = RegExpCapture::EndRegister(index);
+ RegExpNode* store_end = ActionNode::StorePosition(end_reg, true, on_success);
+ RegExpNode* body_node = body->ToNode(compiler, store_end);
+ return ActionNode::StorePosition(start_reg, true, body_node);
+}
+
+
+RegExpNode* RegExpAlternative::ToNode(RegExpCompiler* compiler,
+ RegExpNode* on_success) {
+ ZoneList<RegExpTree*>* children = nodes();
+ RegExpNode* current = on_success;
+ for (int i = children->length() - 1; i >= 0; i--) {
+ current = children->at(i)->ToNode(compiler, current);
+ }
+ return current;
+}
+
+
+static void AddClass(const int* elmv,
+ int elmc,
+ ZoneList<CharacterRange>* ranges,
+ Zone* zone) {
+ elmc--;
+ DCHECK(elmv[elmc] == 0x10000);
+ for (int i = 0; i < elmc; i += 2) {
+ DCHECK(elmv[i] < elmv[i + 1]);
+ ranges->Add(CharacterRange(elmv[i], elmv[i + 1] - 1), zone);
+ }
+}
+
+
+static void AddClassNegated(const int *elmv,
+ int elmc,
+ ZoneList<CharacterRange>* ranges,
+ Zone* zone) {
+ elmc--;
+ DCHECK(elmv[elmc] == 0x10000);
+ DCHECK(elmv[0] != 0x0000);
+ DCHECK(elmv[elmc-1] != String::kMaxUtf16CodeUnit);
+ uc16 last = 0x0000;
+ for (int i = 0; i < elmc; i += 2) {
+ DCHECK(last <= elmv[i] - 1);
+ DCHECK(elmv[i] < elmv[i + 1]);
+ ranges->Add(CharacterRange(last, elmv[i] - 1), zone);
+ last = elmv[i + 1];
+ }
+ ranges->Add(CharacterRange(last, String::kMaxUtf16CodeUnit), zone);
+}
+
+
+void CharacterRange::AddClassEscape(uc16 type,
+ ZoneList<CharacterRange>* ranges,
+ Zone* zone) {
+ switch (type) {
+ case 's':
+ AddClass(kSpaceRanges, kSpaceRangeCount, ranges, zone);
+ break;
+ case 'S':
+ AddClassNegated(kSpaceRanges, kSpaceRangeCount, ranges, zone);
+ break;
+ case 'w':
+ AddClass(kWordRanges, kWordRangeCount, ranges, zone);
+ break;
+ case 'W':
+ AddClassNegated(kWordRanges, kWordRangeCount, ranges, zone);
+ break;
+ case 'd':
+ AddClass(kDigitRanges, kDigitRangeCount, ranges, zone);
+ break;
+ case 'D':
+ AddClassNegated(kDigitRanges, kDigitRangeCount, ranges, zone);
+ break;
+ case '.':
+ AddClassNegated(kLineTerminatorRanges,
+ kLineTerminatorRangeCount,
+ ranges,
+ zone);
+ break;
+ // This is not a character range as defined by the spec but a
+ // convenient shorthand for a character class that matches any
+ // character.
+ case '*':
+ ranges->Add(CharacterRange::Everything(), zone);
+ break;
+ // This is the set of characters matched by the $ and ^ symbols
+ // in multiline mode.
+ case 'n':
+ AddClass(kLineTerminatorRanges,
+ kLineTerminatorRangeCount,
+ ranges,
+ zone);
+ break;
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+Vector<const int> CharacterRange::GetWordBounds() {
+ return Vector<const int>(kWordRanges, kWordRangeCount - 1);
+}
+
+
+class CharacterRangeSplitter {
+ public:
+ CharacterRangeSplitter(ZoneList<CharacterRange>** included,
+ ZoneList<CharacterRange>** excluded,
+ Zone* zone)
+ : included_(included),
+ excluded_(excluded),
+ zone_(zone) { }
+ void Call(uc16 from, DispatchTable::Entry entry);
+
+ static const int kInBase = 0;
+ static const int kInOverlay = 1;
+
+ private:
+ ZoneList<CharacterRange>** included_;
+ ZoneList<CharacterRange>** excluded_;
+ Zone* zone_;
+};
+
+
+void CharacterRangeSplitter::Call(uc16 from, DispatchTable::Entry entry) {
+ if (!entry.out_set()->Get(kInBase)) return;
+ ZoneList<CharacterRange>** target = entry.out_set()->Get(kInOverlay)
+ ? included_
+ : excluded_;
+ if (*target == NULL) *target = new(zone_) ZoneList<CharacterRange>(2, zone_);
+ (*target)->Add(CharacterRange(entry.from(), entry.to()), zone_);
+}
+
+
+void CharacterRange::Split(ZoneList<CharacterRange>* base,
+ Vector<const int> overlay,
+ ZoneList<CharacterRange>** included,
+ ZoneList<CharacterRange>** excluded,
+ Zone* zone) {
+ DCHECK_EQ(NULL, *included);
+ DCHECK_EQ(NULL, *excluded);
+ DispatchTable table(zone);
+ for (int i = 0; i < base->length(); i++)
+ table.AddRange(base->at(i), CharacterRangeSplitter::kInBase, zone);
+ for (int i = 0; i < overlay.length(); i += 2) {
+ table.AddRange(CharacterRange(overlay[i], overlay[i + 1] - 1),
+ CharacterRangeSplitter::kInOverlay, zone);
+ }
+ CharacterRangeSplitter callback(included, excluded, zone);
+ table.ForEach(&callback);
+}
+
+
+void CharacterRange::AddCaseEquivalents(ZoneList<CharacterRange>* ranges,
+ bool is_one_byte, Zone* zone) {
+ Isolate* isolate = zone->isolate();
+ uc16 bottom = from();
+ uc16 top = to();
+ if (is_one_byte && !RangeContainsLatin1Equivalents(*this)) {
+ if (bottom > String::kMaxOneByteCharCode) return;
+ if (top > String::kMaxOneByteCharCode) top = String::kMaxOneByteCharCode;
+ }
+ unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+ if (top == bottom) {
+ // If this is a singleton we just expand the one character.
+ int length = isolate->jsregexp_uncanonicalize()->get(bottom, '\0', chars);
+ for (int i = 0; i < length; i++) {
+ uc32 chr = chars[i];
+ if (chr != bottom) {
+ ranges->Add(CharacterRange::Singleton(chars[i]), zone);
+ }
+ }
+ } else {
+ // If this is a range we expand the characters block by block,
+ // expanding contiguous subranges (blocks) one at a time.
+ // The approach is as follows. For a given start character we
+ // look up the remainder of the block that contains it (represented
+ // by the end point), for instance we find 'z' if the character
+ // is 'c'. A block is characterized by the property
+ // that all characters uncanonicalize in the same way, except that
+ // each entry in the result is incremented by the distance from the first
+ // element. So a-z is a block because 'a' uncanonicalizes to ['a', 'A'] and
+ // the k'th letter uncanonicalizes to ['a' + k, 'A' + k].
+ // Once we've found the end point we look up its uncanonicalization
+ // and produce a range for each element. For instance for [c-f]
+ // we look up ['z', 'Z'] and produce [c-f] and [C-F]. We then only
+ // add a range if it is not already contained in the input, so [c-f]
+ // will be skipped but [C-F] will be added. If this range is not
+ // completely contained in a block we do this for all the blocks
+ // covered by the range (handling characters that is not in a block
+ // as a "singleton block").
+ unibrow::uchar range[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+ int pos = bottom;
+ while (pos <= top) {
+ int length = isolate->jsregexp_canonrange()->get(pos, '\0', range);
+ uc16 block_end;
+ if (length == 0) {
+ block_end = pos;
+ } else {
+ DCHECK_EQ(1, length);
+ block_end = range[0];
+ }
+ int end = (block_end > top) ? top : block_end;
+ length = isolate->jsregexp_uncanonicalize()->get(block_end, '\0', range);
+ for (int i = 0; i < length; i++) {
+ uc32 c = range[i];
+ uc16 range_from = c - (block_end - pos);
+ uc16 range_to = c - (block_end - end);
+ if (!(bottom <= range_from && range_to <= top)) {
+ ranges->Add(CharacterRange(range_from, range_to), zone);
+ }
+ }
+ pos = end + 1;
+ }
+ }
+}
+
+
+bool CharacterRange::IsCanonical(ZoneList<CharacterRange>* ranges) {
+ DCHECK_NOT_NULL(ranges);
+ int n = ranges->length();
+ if (n <= 1) return true;
+ int max = ranges->at(0).to();
+ for (int i = 1; i < n; i++) {
+ CharacterRange next_range = ranges->at(i);
+ if (next_range.from() <= max + 1) return false;
+ max = next_range.to();
+ }
+ return true;
+}
+
+
+ZoneList<CharacterRange>* CharacterSet::ranges(Zone* zone) {
+ if (ranges_ == NULL) {
+ ranges_ = new(zone) ZoneList<CharacterRange>(2, zone);
+ CharacterRange::AddClassEscape(standard_set_type_, ranges_, zone);
+ }
+ return ranges_;
+}
+
+
+// Move a number of elements in a zonelist to another position
+// in the same list. Handles overlapping source and target areas.
+static void MoveRanges(ZoneList<CharacterRange>* list,
+ int from,
+ int to,
+ int count) {
+ // Ranges are potentially overlapping.
+ if (from < to) {
+ for (int i = count - 1; i >= 0; i--) {
+ list->at(to + i) = list->at(from + i);
+ }
+ } else {
+ for (int i = 0; i < count; i++) {
+ list->at(to + i) = list->at(from + i);
+ }
+ }
+}
+
+
+static int InsertRangeInCanonicalList(ZoneList<CharacterRange>* list,
+ int count,
+ CharacterRange insert) {
+ // Inserts a range into list[0..count[, which must be sorted
+ // by from value and non-overlapping and non-adjacent, using at most
+ // list[0..count] for the result. Returns the number of resulting
+ // canonicalized ranges. Inserting a range may collapse existing ranges into
+ // fewer ranges, so the return value can be anything in the range 1..count+1.
+ uc16 from = insert.from();
+ uc16 to = insert.to();
+ int start_pos = 0;
+ int end_pos = count;
+ for (int i = count - 1; i >= 0; i--) {
+ CharacterRange current = list->at(i);
+ if (current.from() > to + 1) {
+ end_pos = i;
+ } else if (current.to() + 1 < from) {
+ start_pos = i + 1;
+ break;
+ }
+ }
+
+ // Inserted range overlaps, or is adjacent to, ranges at positions
+ // [start_pos..end_pos[. Ranges before start_pos or at or after end_pos are
+ // not affected by the insertion.
+ // If start_pos == end_pos, the range must be inserted before start_pos.
+ // if start_pos < end_pos, the entire range from start_pos to end_pos
+ // must be merged with the insert range.
+
+ if (start_pos == end_pos) {
+ // Insert between existing ranges at position start_pos.
+ if (start_pos < count) {
+ MoveRanges(list, start_pos, start_pos + 1, count - start_pos);
+ }
+ list->at(start_pos) = insert;
+ return count + 1;
+ }
+ if (start_pos + 1 == end_pos) {
+ // Replace single existing range at position start_pos.
+ CharacterRange to_replace = list->at(start_pos);
+ int new_from = Min(to_replace.from(), from);
+ int new_to = Max(to_replace.to(), to);
+ list->at(start_pos) = CharacterRange(new_from, new_to);
+ return count;
+ }
+ // Replace a number of existing ranges from start_pos to end_pos - 1.
+ // Move the remaining ranges down.
+
+ int new_from = Min(list->at(start_pos).from(), from);
+ int new_to = Max(list->at(end_pos - 1).to(), to);
+ if (end_pos < count) {
+ MoveRanges(list, end_pos, start_pos + 1, count - end_pos);
+ }
+ list->at(start_pos) = CharacterRange(new_from, new_to);
+ return count - (end_pos - start_pos) + 1;
+}
+
+
+void CharacterSet::Canonicalize() {
+ // Special/default classes are always considered canonical. The result
+ // of calling ranges() will be sorted.
+ if (ranges_ == NULL) return;
+ CharacterRange::Canonicalize(ranges_);
+}
+
+
+void CharacterRange::Canonicalize(ZoneList<CharacterRange>* character_ranges) {
+ if (character_ranges->length() <= 1) return;
+ // Check whether ranges are already canonical (increasing, non-overlapping,
+ // non-adjacent).
+ int n = character_ranges->length();
+ int max = character_ranges->at(0).to();
+ int i = 1;
+ while (i < n) {
+ CharacterRange current = character_ranges->at(i);
+ if (current.from() <= max + 1) {
+ break;
+ }
+ max = current.to();
+ i++;
+ }
+ // Canonical until the i'th range. If that's all of them, we are done.
+ if (i == n) return;
+
+ // The ranges at index i and forward are not canonicalized. Make them so by
+ // doing the equivalent of insertion sort (inserting each into the previous
+ // list, in order).
+ // Notice that inserting a range can reduce the number of ranges in the
+ // result due to combining of adjacent and overlapping ranges.
+ int read = i; // Range to insert.
+ int num_canonical = i; // Length of canonicalized part of list.
+ do {
+ num_canonical = InsertRangeInCanonicalList(character_ranges,
+ num_canonical,
+ character_ranges->at(read));
+ read++;
+ } while (read < n);
+ character_ranges->Rewind(num_canonical);
+
+ DCHECK(CharacterRange::IsCanonical(character_ranges));
+}
+
+
+void CharacterRange::Negate(ZoneList<CharacterRange>* ranges,
+ ZoneList<CharacterRange>* negated_ranges,
+ Zone* zone) {
+ DCHECK(CharacterRange::IsCanonical(ranges));
+ DCHECK_EQ(0, negated_ranges->length());
+ int range_count = ranges->length();
+ uc16 from = 0;
+ int i = 0;
+ if (range_count > 0 && ranges->at(0).from() == 0) {
+ from = ranges->at(0).to();
+ i = 1;
+ }
+ while (i < range_count) {
+ CharacterRange range = ranges->at(i);
+ negated_ranges->Add(CharacterRange(from + 1, range.from() - 1), zone);
+ from = range.to();
+ i++;
+ }
+ if (from < String::kMaxUtf16CodeUnit) {
+ negated_ranges->Add(CharacterRange(from + 1, String::kMaxUtf16CodeUnit),
+ zone);
+ }
+}
+
+
+// -------------------------------------------------------------------
+// Splay tree
+
+
+OutSet* OutSet::Extend(unsigned value, Zone* zone) {
+ if (Get(value))
+ return this;
+ if (successors(zone) != NULL) {
+ for (int i = 0; i < successors(zone)->length(); i++) {
+ OutSet* successor = successors(zone)->at(i);
+ if (successor->Get(value))
+ return successor;
+ }
+ } else {
+ successors_ = new(zone) ZoneList<OutSet*>(2, zone);
+ }
+ OutSet* result = new(zone) OutSet(first_, remaining_);
+ result->Set(value, zone);
+ successors(zone)->Add(result, zone);
+ return result;
+}
+
+
+void OutSet::Set(unsigned value, Zone *zone) {
+ if (value < kFirstLimit) {
+ first_ |= (1 << value);
+ } else {
+ if (remaining_ == NULL)
+ remaining_ = new(zone) ZoneList<unsigned>(1, zone);
+ if (remaining_->is_empty() || !remaining_->Contains(value))
+ remaining_->Add(value, zone);
+ }
+}
+
+
+bool OutSet::Get(unsigned value) const {
+ if (value < kFirstLimit) {
+ return (first_ & (1 << value)) != 0;
+ } else if (remaining_ == NULL) {
+ return false;
+ } else {
+ return remaining_->Contains(value);
+ }
+}
+
+
+const uc16 DispatchTable::Config::kNoKey = unibrow::Utf8::kBadChar;
+
+
+void DispatchTable::AddRange(CharacterRange full_range, int value,
+ Zone* zone) {
+ CharacterRange current = full_range;
+ if (tree()->is_empty()) {
+ // If this is the first range we just insert into the table.
+ ZoneSplayTree<Config>::Locator loc;
+ DCHECK_RESULT(tree()->Insert(current.from(), &loc));
+ loc.set_value(Entry(current.from(), current.to(),
+ empty()->Extend(value, zone)));
+ return;
+ }
+ // First see if there is a range to the left of this one that
+ // overlaps.
+ ZoneSplayTree<Config>::Locator loc;
+ if (tree()->FindGreatestLessThan(current.from(), &loc)) {
+ Entry* entry = &loc.value();
+ // If we've found a range that overlaps with this one, and it
+ // starts strictly to the left of this one, we have to fix it
+ // because the following code only handles ranges that start on
+ // or after the start point of the range we're adding.
+ if (entry->from() < current.from() && entry->to() >= current.from()) {
+ // Snap the overlapping range in half around the start point of
+ // the range we're adding.
+ CharacterRange left(entry->from(), current.from() - 1);
+ CharacterRange right(current.from(), entry->to());
+ // The left part of the overlapping range doesn't overlap.
+ // Truncate the whole entry to be just the left part.
+ entry->set_to(left.to());
+ // The right part is the one that overlaps. We add this part
+ // to the map and let the next step deal with merging it with
+ // the range we're adding.
+ ZoneSplayTree<Config>::Locator loc;
+ DCHECK_RESULT(tree()->Insert(right.from(), &loc));
+ loc.set_value(Entry(right.from(),
+ right.to(),
+ entry->out_set()));
+ }
+ }
+ while (current.is_valid()) {
+ if (tree()->FindLeastGreaterThan(current.from(), &loc) &&
+ (loc.value().from() <= current.to()) &&
+ (loc.value().to() >= current.from())) {
+ Entry* entry = &loc.value();
+ // We have overlap. If there is space between the start point of
+ // the range we're adding and where the overlapping range starts
+ // then we have to add a range covering just that space.
+ if (current.from() < entry->from()) {
+ ZoneSplayTree<Config>::Locator ins;
+ DCHECK_RESULT(tree()->Insert(current.from(), &ins));
+ ins.set_value(Entry(current.from(),
+ entry->from() - 1,
+ empty()->Extend(value, zone)));
+ current.set_from(entry->from());
+ }
+ DCHECK_EQ(current.from(), entry->from());
+ // If the overlapping range extends beyond the one we want to add
+ // we have to snap the right part off and add it separately.
+ if (entry->to() > current.to()) {
+ ZoneSplayTree<Config>::Locator ins;
+ DCHECK_RESULT(tree()->Insert(current.to() + 1, &ins));
+ ins.set_value(Entry(current.to() + 1,
+ entry->to(),
+ entry->out_set()));
+ entry->set_to(current.to());
+ }
+ DCHECK(entry->to() <= current.to());
+ // The overlapping range is now completely contained by the range
+ // we're adding so we can just update it and move the start point
+ // of the range we're adding just past it.
+ entry->AddValue(value, zone);
+ // Bail out if the last interval ended at 0xFFFF since otherwise
+ // adding 1 will wrap around to 0.
+ if (entry->to() == String::kMaxUtf16CodeUnit)
+ break;
+ DCHECK(entry->to() + 1 > current.from());
+ current.set_from(entry->to() + 1);
+ } else {
+ // There is no overlap so we can just add the range
+ ZoneSplayTree<Config>::Locator ins;
+ DCHECK_RESULT(tree()->Insert(current.from(), &ins));
+ ins.set_value(Entry(current.from(),
+ current.to(),
+ empty()->Extend(value, zone)));
+ break;
+ }
+ }
+}
+
+
+OutSet* DispatchTable::Get(uc16 value) {
+ ZoneSplayTree<Config>::Locator loc;
+ if (!tree()->FindGreatestLessThan(value, &loc))
+ return empty();
+ Entry* entry = &loc.value();
+ if (value <= entry->to())
+ return entry->out_set();
+ else
+ return empty();
+}
+
+
+// -------------------------------------------------------------------
+// Analysis
+
+
+void Analysis::EnsureAnalyzed(RegExpNode* that) {
+ StackLimitCheck check(that->zone()->isolate());
+ if (check.HasOverflowed()) {
+ fail("Stack overflow");
+ return;
+ }
+ if (that->info()->been_analyzed || that->info()->being_analyzed)
+ return;
+ that->info()->being_analyzed = true;
+ that->Accept(this);
+ that->info()->being_analyzed = false;
+ that->info()->been_analyzed = true;
+}
+
+
+void Analysis::VisitEnd(EndNode* that) {
+ // nothing to do
+}
+
+
+void TextNode::CalculateOffsets() {
+ int element_count = elements()->length();
+ // Set up the offsets of the elements relative to the start. This is a fixed
+ // quantity since a TextNode can only contain fixed-width things.
+ int cp_offset = 0;
+ for (int i = 0; i < element_count; i++) {
+ TextElement& elm = elements()->at(i);
+ elm.set_cp_offset(cp_offset);
+ cp_offset += elm.length();
+ }
+}
+
+
+void Analysis::VisitText(TextNode* that) {
+ if (ignore_case_) {
+ that->MakeCaseIndependent(is_one_byte_);
+ }
+ EnsureAnalyzed(that->on_success());
+ if (!has_failed()) {
+ that->CalculateOffsets();
+ }
+}
+
+
+void Analysis::VisitAction(ActionNode* that) {
+ RegExpNode* target = that->on_success();
+ EnsureAnalyzed(target);
+ if (!has_failed()) {
+ // If the next node is interested in what it follows then this node
+ // has to be interested too so it can pass the information on.
+ that->info()->AddFromFollowing(target->info());
+ }
+}
+
+
+void Analysis::VisitChoice(ChoiceNode* that) {
+ NodeInfo* info = that->info();
+ for (int i = 0; i < that->alternatives()->length(); i++) {
+ RegExpNode* node = that->alternatives()->at(i).node();
+ EnsureAnalyzed(node);
+ if (has_failed()) return;
+ // Anything the following nodes need to know has to be known by
+ // this node also, so it can pass it on.
+ info->AddFromFollowing(node->info());
+ }
+}
+
+
+void Analysis::VisitLoopChoice(LoopChoiceNode* that) {
+ NodeInfo* info = that->info();
+ for (int i = 0; i < that->alternatives()->length(); i++) {
+ RegExpNode* node = that->alternatives()->at(i).node();
+ if (node != that->loop_node()) {
+ EnsureAnalyzed(node);
+ if (has_failed()) return;
+ info->AddFromFollowing(node->info());
+ }
+ }
+ // Check the loop last since it may need the value of this node
+ // to get a correct result.
+ EnsureAnalyzed(that->loop_node());
+ if (!has_failed()) {
+ info->AddFromFollowing(that->loop_node()->info());
+ }
+}
+
+
+void Analysis::VisitBackReference(BackReferenceNode* that) {
+ EnsureAnalyzed(that->on_success());
+}
+
+
+void Analysis::VisitAssertion(AssertionNode* that) {
+ EnsureAnalyzed(that->on_success());
+}
+
+
+void BackReferenceNode::FillInBMInfo(int offset,
+ int budget,
+ BoyerMooreLookahead* bm,
+ bool not_at_start) {
+ // Working out the set of characters that a backreference can match is too
+ // hard, so we just say that any character can match.
+ bm->SetRest(offset);
+ SaveBMInfo(bm, not_at_start, offset);
+}
+
+
+STATIC_ASSERT(BoyerMoorePositionInfo::kMapSize ==
+ RegExpMacroAssembler::kTableSize);
+
+
+void ChoiceNode::FillInBMInfo(int offset,
+ int budget,
+ BoyerMooreLookahead* bm,
+ bool not_at_start) {
+ ZoneList<GuardedAlternative>* alts = alternatives();
+ budget = (budget - 1) / alts->length();
+ for (int i = 0; i < alts->length(); i++) {
+ GuardedAlternative& alt = alts->at(i);
+ if (alt.guards() != NULL && alt.guards()->length() != 0) {
+ bm->SetRest(offset); // Give up trying to fill in info.
+ SaveBMInfo(bm, not_at_start, offset);
+ return;
+ }
+ alt.node()->FillInBMInfo(offset, budget, bm, not_at_start);
+ }
+ SaveBMInfo(bm, not_at_start, offset);
+}
+
+
+void TextNode::FillInBMInfo(int initial_offset,
+ int budget,
+ BoyerMooreLookahead* bm,
+ bool not_at_start) {
+ if (initial_offset >= bm->length()) return;
+ int offset = initial_offset;
+ int max_char = bm->max_char();
+ for (int i = 0; i < elements()->length(); i++) {
+ if (offset >= bm->length()) {
+ if (initial_offset == 0) set_bm_info(not_at_start, bm);
+ return;
+ }
+ TextElement text = elements()->at(i);
+ if (text.text_type() == TextElement::ATOM) {
+ RegExpAtom* atom = text.atom();
+ for (int j = 0; j < atom->length(); j++, offset++) {
+ if (offset >= bm->length()) {
+ if (initial_offset == 0) set_bm_info(not_at_start, bm);
+ return;
+ }
+ uc16 character = atom->data()[j];
+ if (bm->compiler()->ignore_case()) {
+ unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+ int length = GetCaseIndependentLetters(
+ Isolate::Current(),
+ character,
+ bm->max_char() == String::kMaxOneByteCharCode,
+ chars);
+ for (int j = 0; j < length; j++) {
+ bm->Set(offset, chars[j]);
+ }
+ } else {
+ if (character <= max_char) bm->Set(offset, character);
+ }
+ }
+ } else {
+ DCHECK_EQ(TextElement::CHAR_CLASS, text.text_type());
+ RegExpCharacterClass* char_class = text.char_class();
+ ZoneList<CharacterRange>* ranges = char_class->ranges(zone());
+ if (char_class->is_negated()) {
+ bm->SetAll(offset);
+ } else {
+ for (int k = 0; k < ranges->length(); k++) {
+ CharacterRange& range = ranges->at(k);
+ if (range.from() > max_char) continue;
+ int to = Min(max_char, static_cast<int>(range.to()));
+ bm->SetInterval(offset, Interval(range.from(), to));
+ }
+ }
+ offset++;
+ }
+ }
+ if (offset >= bm->length()) {
+ if (initial_offset == 0) set_bm_info(not_at_start, bm);
+ return;
+ }
+ on_success()->FillInBMInfo(offset,
+ budget - 1,
+ bm,
+ true); // Not at start after a text node.
+ if (initial_offset == 0) set_bm_info(not_at_start, bm);
+}
+
+
+// -------------------------------------------------------------------
+// Dispatch table construction
+
+
+void DispatchTableConstructor::VisitEnd(EndNode* that) {
+ AddRange(CharacterRange::Everything());
+}
+
+
+void DispatchTableConstructor::BuildTable(ChoiceNode* node) {
+ node->set_being_calculated(true);
+ ZoneList<GuardedAlternative>* alternatives = node->alternatives();
+ for (int i = 0; i < alternatives->length(); i++) {
+ set_choice_index(i);
+ alternatives->at(i).node()->Accept(this);
+ }
+ node->set_being_calculated(false);
+}
+
+
+class AddDispatchRange {
+ public:
+ explicit AddDispatchRange(DispatchTableConstructor* constructor)
+ : constructor_(constructor) { }
+ void Call(uc32 from, DispatchTable::Entry entry);
+ private:
+ DispatchTableConstructor* constructor_;
+};
+
+
+void AddDispatchRange::Call(uc32 from, DispatchTable::Entry entry) {
+ CharacterRange range(from, entry.to());
+ constructor_->AddRange(range);
+}
+
+
+void DispatchTableConstructor::VisitChoice(ChoiceNode* node) {
+ if (node->being_calculated())
+ return;
+ DispatchTable* table = node->GetTable(ignore_case_);
+ AddDispatchRange adder(this);
+ table->ForEach(&adder);
+}
+
+
+void DispatchTableConstructor::VisitBackReference(BackReferenceNode* that) {
+ // TODO(160): Find the node that we refer back to and propagate its start
+ // set back to here. For now we just accept anything.
+ AddRange(CharacterRange::Everything());
+}
+
+
+void DispatchTableConstructor::VisitAssertion(AssertionNode* that) {
+ RegExpNode* target = that->on_success();
+ target->Accept(this);
+}
+
+
+static int CompareRangeByFrom(const CharacterRange* a,
+ const CharacterRange* b) {
+ return Compare<uc16>(a->from(), b->from());
+}
+
+
+void DispatchTableConstructor::AddInverse(ZoneList<CharacterRange>* ranges) {
+ ranges->Sort(CompareRangeByFrom);
+ uc16 last = 0;
+ for (int i = 0; i < ranges->length(); i++) {
+ CharacterRange range = ranges->at(i);
+ if (last < range.from())
+ AddRange(CharacterRange(last, range.from() - 1));
+ if (range.to() >= last) {
+ if (range.to() == String::kMaxUtf16CodeUnit) {
+ return;
+ } else {
+ last = range.to() + 1;
+ }
+ }
+ }
+ AddRange(CharacterRange(last, String::kMaxUtf16CodeUnit));
+}
+
+
+void DispatchTableConstructor::VisitText(TextNode* that) {
+ TextElement elm = that->elements()->at(0);
+ switch (elm.text_type()) {
+ case TextElement::ATOM: {
+ uc16 c = elm.atom()->data()[0];
+ AddRange(CharacterRange(c, c));
+ break;
+ }
+ case TextElement::CHAR_CLASS: {
+ RegExpCharacterClass* tree = elm.char_class();
+ ZoneList<CharacterRange>* ranges = tree->ranges(that->zone());
+ if (tree->is_negated()) {
+ AddInverse(ranges);
+ } else {
+ for (int i = 0; i < ranges->length(); i++)
+ AddRange(ranges->at(i));
+ }
+ break;
+ }
+ default: {
+ UNIMPLEMENTED();
+ }
+ }
+}
+
+
+void DispatchTableConstructor::VisitAction(ActionNode* that) {
+ RegExpNode* target = that->on_success();
+ target->Accept(this);
+}
+
+
+RegExpEngine::CompilationResult RegExpEngine::Compile(
+ RegExpCompileData* data, bool ignore_case, bool is_global,
+ bool is_multiline, bool is_sticky, Handle<String> pattern,
+ Handle<String> sample_subject, bool is_one_byte, Zone* zone) {
+ if ((data->capture_count + 1) * 2 - 1 > RegExpMacroAssembler::kMaxRegister) {
+ return IrregexpRegExpTooBig(zone->isolate());
+ }
+ RegExpCompiler compiler(data->capture_count, ignore_case, is_one_byte, zone);
+
+ // Sample some characters from the middle of the string.
+ static const int kSampleSize = 128;
+
+ sample_subject = String::Flatten(sample_subject);
+ int chars_sampled = 0;
+ int half_way = (sample_subject->length() - kSampleSize) / 2;
+ for (int i = Max(0, half_way);
+ i < sample_subject->length() && chars_sampled < kSampleSize;
+ i++, chars_sampled++) {
+ compiler.frequency_collator()->CountCharacter(sample_subject->Get(i));
+ }
+
+ // Wrap the body of the regexp in capture #0.
+ RegExpNode* captured_body = RegExpCapture::ToNode(data->tree,
+ 0,
+ &compiler,
+ compiler.accept());
+ RegExpNode* node = captured_body;
+ bool is_end_anchored = data->tree->IsAnchoredAtEnd();
+ bool is_start_anchored = data->tree->IsAnchoredAtStart();
+ int max_length = data->tree->max_match();
+ if (!is_start_anchored && !is_sticky) {
+ // Add a .*? at the beginning, outside the body capture, unless
+ // this expression is anchored at the beginning or sticky.
+ RegExpNode* loop_node =
+ RegExpQuantifier::ToNode(0,
+ RegExpTree::kInfinity,
+ false,
+ new(zone) RegExpCharacterClass('*'),
+ &compiler,
+ captured_body,
+ data->contains_anchor);
+
+ if (data->contains_anchor) {
+ // Unroll loop once, to take care of the case that might start
+ // at the start of input.
+ ChoiceNode* first_step_node = new(zone) ChoiceNode(2, zone);
+ first_step_node->AddAlternative(GuardedAlternative(captured_body));
+ first_step_node->AddAlternative(GuardedAlternative(
+ new(zone) TextNode(new(zone) RegExpCharacterClass('*'), loop_node)));
+ node = first_step_node;
+ } else {
+ node = loop_node;
+ }
+ }
+ if (is_one_byte) {
+ node = node->FilterOneByte(RegExpCompiler::kMaxRecursion, ignore_case);
+ // Do it again to propagate the new nodes to places where they were not
+ // put because they had not been calculated yet.
+ if (node != NULL) {
+ node = node->FilterOneByte(RegExpCompiler::kMaxRecursion, ignore_case);
+ }
+ }
+
+ if (node == NULL) node = new(zone) EndNode(EndNode::BACKTRACK, zone);
+ data->node = node;
+ Analysis analysis(ignore_case, is_one_byte);
+ analysis.EnsureAnalyzed(node);
+ if (analysis.has_failed()) {
+ const char* error_message = analysis.error_message();
+ return CompilationResult(zone->isolate(), error_message);
+ }
+
+ // Create the correct assembler for the architecture.
+#ifndef V8_INTERPRETED_REGEXP
+ // Native regexp implementation.
+
+ NativeRegExpMacroAssembler::Mode mode =
+ is_one_byte ? NativeRegExpMacroAssembler::LATIN1
+ : NativeRegExpMacroAssembler::UC16;
+
+#if V8_TARGET_ARCH_IA32
+ RegExpMacroAssemblerIA32 macro_assembler(mode, (data->capture_count + 1) * 2,
+ zone);
+#elif V8_TARGET_ARCH_X64
+ RegExpMacroAssemblerX64 macro_assembler(mode, (data->capture_count + 1) * 2,
+ zone);
+#elif V8_TARGET_ARCH_ARM
+ RegExpMacroAssemblerARM macro_assembler(mode, (data->capture_count + 1) * 2,
+ zone);
+#elif V8_TARGET_ARCH_ARM64
+ RegExpMacroAssemblerARM64 macro_assembler(mode, (data->capture_count + 1) * 2,
+ zone);
+#elif V8_TARGET_ARCH_MIPS
+ RegExpMacroAssemblerMIPS macro_assembler(mode, (data->capture_count + 1) * 2,
+ zone);
+#elif V8_TARGET_ARCH_MIPS64
+ RegExpMacroAssemblerMIPS macro_assembler(mode, (data->capture_count + 1) * 2,
+ zone);
+#elif V8_TARGET_ARCH_X87
+ RegExpMacroAssemblerX87 macro_assembler(mode, (data->capture_count + 1) * 2,
+ zone);
+#else
+#error "Unsupported architecture"
+#endif
+
+#else // V8_INTERPRETED_REGEXP
+ // Interpreted regexp implementation.
+ EmbeddedVector<byte, 1024> codes;
+ RegExpMacroAssemblerIrregexp macro_assembler(codes, zone);
+#endif // V8_INTERPRETED_REGEXP
+
+ // Inserted here, instead of in Assembler, because it depends on information
+ // in the AST that isn't replicated in the Node structure.
+ static const int kMaxBacksearchLimit = 1024;
+ if (is_end_anchored &&
+ !is_start_anchored &&
+ max_length < kMaxBacksearchLimit) {
+ macro_assembler.SetCurrentPositionFromEnd(max_length);
+ }
+
+ if (is_global) {
+ macro_assembler.set_global_mode(
+ (data->tree->min_match() > 0)
+ ? RegExpMacroAssembler::GLOBAL_NO_ZERO_LENGTH_CHECK
+ : RegExpMacroAssembler::GLOBAL);
+ }
+
+ return compiler.Assemble(&macro_assembler,
+ node,
+ data->capture_count,
+ pattern);
+}
+
+} // namespace dart
« no previous file with comments | « runtime/vm/regexp.h ('k') | runtime/vm/regexp_assembler.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698