Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(47)

Side by Side Diff: runtime/vm/regexp.h

Issue 678193004: Copy irregexp related code from V8. (Closed) Base URL: https://dart.googlecode.com/svn/branches/bleeding_edge/dart
Patch Set: rebase Created 6 years, 1 month ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « no previous file | runtime/vm/regexp.cc » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
2 // for details. All rights reserved. Use of this source code is governed by a
3 // BSD-style license that can be found in the LICENSE file.
4
5 #ifndef VM_REGEXP_H_
6 #define VM_REGEXP_H_
7
8 // SNIP
9
10 namespace dart {
11
12 class NodeVisitor;
13 class RegExpCompiler;
14 class RegExpMacroAssembler;
15 class RegExpNode;
16 class RegExpTree;
17 class BoyerMooreLookahead;
18
19 // Represents the location of one element relative to the intersection of
20 // two sets. Corresponds to the four areas of a Venn diagram.
21 enum ElementInSetsRelation {
22 kInsideNone = 0,
23 kInsideFirst = 1,
24 kInsideSecond = 2,
25 kInsideBoth = 3
26 };
27
28
29 // Represents code units in the range from from_ to to_, both ends are
30 // inclusive.
31 class CharacterRange {
32 public:
33 CharacterRange() : from_(0), to_(0) { }
34 // For compatibility with the CHECK_OK macro
35 CharacterRange(void* null) { DCHECK_EQ(NULL, null); } //NOLINT
36 CharacterRange(uc16 from, uc16 to) : from_(from), to_(to) { }
37 static void AddClassEscape(uc16 type, ZoneList<CharacterRange>* ranges,
38 Zone* zone);
39 static Vector<const int> GetWordBounds();
40 static inline CharacterRange Singleton(uc16 value) {
41 return CharacterRange(value, value);
42 }
43 static inline CharacterRange Range(uc16 from, uc16 to) {
44 DCHECK(from <= to);
45 return CharacterRange(from, to);
46 }
47 static inline CharacterRange Everything() {
48 return CharacterRange(0, 0xFFFF);
49 }
50 bool Contains(uc16 i) { return from_ <= i && i <= to_; }
51 uc16 from() const { return from_; }
52 void set_from(uc16 value) { from_ = value; }
53 uc16 to() const { return to_; }
54 void set_to(uc16 value) { to_ = value; }
55 bool is_valid() { return from_ <= to_; }
56 bool IsEverything(uc16 max) { return from_ == 0 && to_ >= max; }
57 bool IsSingleton() { return (from_ == to_); }
58 void AddCaseEquivalents(ZoneList<CharacterRange>* ranges, bool is_one_byte,
59 Zone* zone);
60 static void Split(ZoneList<CharacterRange>* base,
61 Vector<const int> overlay,
62 ZoneList<CharacterRange>** included,
63 ZoneList<CharacterRange>** excluded,
64 Zone* zone);
65 // Whether a range list is in canonical form: Ranges ordered by from value,
66 // and ranges non-overlapping and non-adjacent.
67 static bool IsCanonical(ZoneList<CharacterRange>* ranges);
68 // Convert range list to canonical form. The characters covered by the ranges
69 // will still be the same, but no character is in more than one range, and
70 // adjacent ranges are merged. The resulting list may be shorter than the
71 // original, but cannot be longer.
72 static void Canonicalize(ZoneList<CharacterRange>* ranges);
73 // Negate the contents of a character range in canonical form.
74 static void Negate(ZoneList<CharacterRange>* src,
75 ZoneList<CharacterRange>* dst,
76 Zone* zone);
77 static const int kStartMarker = (1 << 24);
78 static const int kPayloadMask = (1 << 24) - 1;
79
80 private:
81 uc16 from_;
82 uc16 to_;
83 };
84
85
86 // A set of unsigned integers that behaves especially well on small
87 // integers (< 32). May do zone-allocation.
88 class OutSet: public ZoneObject {
89 public:
90 OutSet() : first_(0), remaining_(NULL), successors_(NULL) { }
91 OutSet* Extend(unsigned value, Zone* zone);
92 bool Get(unsigned value) const;
93 static const unsigned kFirstLimit = 32;
94
95 private:
96 // Destructively set a value in this set. In most cases you want
97 // to use Extend instead to ensure that only one instance exists
98 // that contains the same values.
99 void Set(unsigned value, Zone* zone);
100
101 // The successors are a list of sets that contain the same values
102 // as this set and the one more value that is not present in this
103 // set.
104 ZoneList<OutSet*>* successors(Zone* zone) { return successors_; }
105
106 OutSet(uint32_t first, ZoneList<unsigned>* remaining)
107 : first_(first), remaining_(remaining), successors_(NULL) { }
108 uint32_t first_;
109 ZoneList<unsigned>* remaining_;
110 ZoneList<OutSet*>* successors_;
111 friend class Trace;
112 };
113
114
115 // A mapping from integers, specified as ranges, to a set of integers.
116 // Used for mapping character ranges to choices.
117 class DispatchTable : public ZoneObject {
118 public:
119 explicit DispatchTable(Zone* zone) : tree_(zone) { }
120
121 class Entry {
122 public:
123 Entry() : from_(0), to_(0), out_set_(NULL) { }
124 Entry(uc16 from, uc16 to, OutSet* out_set)
125 : from_(from), to_(to), out_set_(out_set) { }
126 uc16 from() { return from_; }
127 uc16 to() { return to_; }
128 void set_to(uc16 value) { to_ = value; }
129 void AddValue(int value, Zone* zone) {
130 out_set_ = out_set_->Extend(value, zone);
131 }
132 OutSet* out_set() { return out_set_; }
133 private:
134 uc16 from_;
135 uc16 to_;
136 OutSet* out_set_;
137 };
138
139 class Config {
140 public:
141 typedef uc16 Key;
142 typedef Entry Value;
143 static const uc16 kNoKey;
144 static const Entry NoValue() { return Value(); }
145 static inline int Compare(uc16 a, uc16 b) {
146 if (a == b)
147 return 0;
148 else if (a < b)
149 return -1;
150 else
151 return 1;
152 }
153 };
154
155 void AddRange(CharacterRange range, int value, Zone* zone);
156 OutSet* Get(uc16 value);
157 void Dump();
158
159 template <typename Callback>
160 void ForEach(Callback* callback) {
161 return tree()->ForEach(callback);
162 }
163
164 private:
165 // There can't be a static empty set since it allocates its
166 // successors in a zone and caches them.
167 OutSet* empty() { return &empty_; }
168 OutSet empty_;
169 ZoneSplayTree<Config>* tree() { return &tree_; }
170 ZoneSplayTree<Config> tree_;
171 };
172
173
174 #define FOR_EACH_NODE_TYPE(VISIT) \
175 VISIT(End) \
176 VISIT(Action) \
177 VISIT(Choice) \
178 VISIT(BackReference) \
179 VISIT(Assertion) \
180 VISIT(Text)
181
182
183 #define FOR_EACH_REG_EXP_TREE_TYPE(VISIT) \
184 VISIT(Disjunction) \
185 VISIT(Alternative) \
186 VISIT(Assertion) \
187 VISIT(CharacterClass) \
188 VISIT(Atom) \
189 VISIT(Quantifier) \
190 VISIT(Capture) \
191 VISIT(Lookahead) \
192 VISIT(BackReference) \
193 VISIT(Empty) \
194 VISIT(Text)
195
196
197 #define FORWARD_DECLARE(Name) class RegExp##Name;
198 FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)
199 #undef FORWARD_DECLARE
200
201
202 class TextElement FINAL BASE_EMBEDDED {
203 public:
204 enum TextType {
205 ATOM,
206 CHAR_CLASS
207 };
208
209 static TextElement Atom(RegExpAtom* atom);
210 static TextElement CharClass(RegExpCharacterClass* char_class);
211
212 int cp_offset() const { return cp_offset_; }
213 void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
214 int length() const;
215
216 TextType text_type() const { return text_type_; }
217
218 RegExpTree* tree() const { return tree_; }
219
220 RegExpAtom* atom() const {
221 DCHECK(text_type() == ATOM);
222 return reinterpret_cast<RegExpAtom*>(tree());
223 }
224
225 RegExpCharacterClass* char_class() const {
226 DCHECK(text_type() == CHAR_CLASS);
227 return reinterpret_cast<RegExpCharacterClass*>(tree());
228 }
229
230 private:
231 TextElement(TextType text_type, RegExpTree* tree)
232 : cp_offset_(-1), text_type_(text_type), tree_(tree) {}
233
234 int cp_offset_;
235 TextType text_type_;
236 RegExpTree* tree_;
237 };
238
239
240 class Trace;
241 struct PreloadState;
242 class GreedyLoopState;
243 class AlternativeGenerationList;
244
245 struct NodeInfo {
246 NodeInfo()
247 : being_analyzed(false),
248 been_analyzed(false),
249 follows_word_interest(false),
250 follows_newline_interest(false),
251 follows_start_interest(false),
252 at_end(false),
253 visited(false),
254 replacement_calculated(false) { }
255
256 // Returns true if the interests and assumptions of this node
257 // matches the given one.
258 bool Matches(NodeInfo* that) {
259 return (at_end == that->at_end) &&
260 (follows_word_interest == that->follows_word_interest) &&
261 (follows_newline_interest == that->follows_newline_interest) &&
262 (follows_start_interest == that->follows_start_interest);
263 }
264
265 // Updates the interests of this node given the interests of the
266 // node preceding it.
267 void AddFromPreceding(NodeInfo* that) {
268 at_end |= that->at_end;
269 follows_word_interest |= that->follows_word_interest;
270 follows_newline_interest |= that->follows_newline_interest;
271 follows_start_interest |= that->follows_start_interest;
272 }
273
274 bool HasLookbehind() {
275 return follows_word_interest ||
276 follows_newline_interest ||
277 follows_start_interest;
278 }
279
280 // Sets the interests of this node to include the interests of the
281 // following node.
282 void AddFromFollowing(NodeInfo* that) {
283 follows_word_interest |= that->follows_word_interest;
284 follows_newline_interest |= that->follows_newline_interest;
285 follows_start_interest |= that->follows_start_interest;
286 }
287
288 void ResetCompilationState() {
289 being_analyzed = false;
290 been_analyzed = false;
291 }
292
293 bool being_analyzed: 1;
294 bool been_analyzed: 1;
295
296 // These bits are set of this node has to know what the preceding
297 // character was.
298 bool follows_word_interest: 1;
299 bool follows_newline_interest: 1;
300 bool follows_start_interest: 1;
301
302 bool at_end: 1;
303 bool visited: 1;
304 bool replacement_calculated: 1;
305 };
306
307
308 // Details of a quick mask-compare check that can look ahead in the
309 // input stream.
310 class QuickCheckDetails {
311 public:
312 QuickCheckDetails()
313 : characters_(0),
314 mask_(0),
315 value_(0),
316 cannot_match_(false) { }
317 explicit QuickCheckDetails(int characters)
318 : characters_(characters),
319 mask_(0),
320 value_(0),
321 cannot_match_(false) { }
322 bool Rationalize(bool one_byte);
323 // Merge in the information from another branch of an alternation.
324 void Merge(QuickCheckDetails* other, int from_index);
325 // Advance the current position by some amount.
326 void Advance(int by, bool one_byte);
327 void Clear();
328 bool cannot_match() { return cannot_match_; }
329 void set_cannot_match() { cannot_match_ = true; }
330 struct Position {
331 Position() : mask(0), value(0), determines_perfectly(false) { }
332 uc16 mask;
333 uc16 value;
334 bool determines_perfectly;
335 };
336 int characters() { return characters_; }
337 void set_characters(int characters) { characters_ = characters; }
338 Position* positions(int index) {
339 DCHECK(index >= 0);
340 DCHECK(index < characters_);
341 return positions_ + index;
342 }
343 uint32_t mask() { return mask_; }
344 uint32_t value() { return value_; }
345
346 private:
347 // How many characters do we have quick check information from. This is
348 // the same for all branches of a choice node.
349 int characters_;
350 Position positions_[4];
351 // These values are the condensate of the above array after Rationalize().
352 uint32_t mask_;
353 uint32_t value_;
354 // If set to true, there is no way this quick check can match at all.
355 // E.g., if it requires to be at the start of the input, and isn't.
356 bool cannot_match_;
357 };
358
359
360 extern int kUninitializedRegExpNodePlaceHolder;
361
362
363 class RegExpNode: public ZoneObject {
364 public:
365 explicit RegExpNode(Zone* zone)
366 : replacement_(NULL), trace_count_(0), zone_(zone) {
367 bm_info_[0] = bm_info_[1] = NULL;
368 }
369 virtual ~RegExpNode();
370 virtual void Accept(NodeVisitor* visitor) = 0;
371 // Generates a goto to this node or actually generates the code at this point.
372 virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
373 // How many characters must this node consume at a minimum in order to
374 // succeed. If we have found at least 'still_to_find' characters that
375 // must be consumed there is no need to ask any following nodes whether
376 // they are sure to eat any more characters. The not_at_start argument is
377 // used to indicate that we know we are not at the start of the input. In
378 // this case anchored branches will always fail and can be ignored when
379 // determining how many characters are consumed on success.
380 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start) = 0;
381 // Emits some quick code that checks whether the preloaded characters match.
382 // Falls through on certain failure, jumps to the label on possible success.
383 // If the node cannot make a quick check it does nothing and returns false.
384 bool EmitQuickCheck(RegExpCompiler* compiler,
385 Trace* bounds_check_trace,
386 Trace* trace,
387 bool preload_has_checked_bounds,
388 Label* on_possible_success,
389 QuickCheckDetails* details_return,
390 bool fall_through_on_failure);
391 // For a given number of characters this returns a mask and a value. The
392 // next n characters are anded with the mask and compared with the value.
393 // A comparison failure indicates the node cannot match the next n characters.
394 // A comparison success indicates the node may match.
395 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
396 RegExpCompiler* compiler,
397 int characters_filled_in,
398 bool not_at_start) = 0;
399 static const int kNodeIsTooComplexForGreedyLoops = -1;
400 virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
401 // Only returns the successor for a text node of length 1 that matches any
402 // character and that has no guards on it.
403 virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
404 RegExpCompiler* compiler) {
405 return NULL;
406 }
407
408 // Collects information on the possible code units (mod 128) that can match if
409 // we look forward. This is used for a Boyer-Moore-like string searching
410 // implementation. TODO(erikcorry): This should share more code with
411 // EatsAtLeast, GetQuickCheckDetails. The budget argument is used to limit
412 // the number of nodes we are willing to look at in order to create this data.
413 static const int kRecursionBudget = 200;
414 virtual void FillInBMInfo(int offset,
415 int budget,
416 BoyerMooreLookahead* bm,
417 bool not_at_start) {
418 UNREACHABLE();
419 }
420
421 // If we know that the input is one-byte then there are some nodes that can
422 // never match. This method returns a node that can be substituted for
423 // itself, or NULL if the node can never match.
424 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case) {
425 return this;
426 }
427 // Helper for FilterOneByte.
428 RegExpNode* replacement() {
429 DCHECK(info()->replacement_calculated);
430 return replacement_;
431 }
432 RegExpNode* set_replacement(RegExpNode* replacement) {
433 info()->replacement_calculated = true;
434 replacement_ = replacement;
435 return replacement; // For convenience.
436 }
437
438 // We want to avoid recalculating the lookahead info, so we store it on the
439 // node. Only info that is for this node is stored. We can tell that the
440 // info is for this node when offset == 0, so the information is calculated
441 // relative to this node.
442 void SaveBMInfo(BoyerMooreLookahead* bm, bool not_at_start, int offset) {
443 if (offset == 0) set_bm_info(not_at_start, bm);
444 }
445
446 Label* label() { return &label_; }
447 // If non-generic code is generated for a node (i.e. the node is not at the
448 // start of the trace) then it cannot be reused. This variable sets a limit
449 // on how often we allow that to happen before we insist on starting a new
450 // trace and generating generic code for a node that can be reused by flushing
451 // the deferred actions in the current trace and generating a goto.
452 static const int kMaxCopiesCodeGenerated = 10;
453
454 NodeInfo* info() { return &info_; }
455
456 BoyerMooreLookahead* bm_info(bool not_at_start) {
457 return bm_info_[not_at_start ? 1 : 0];
458 }
459
460 Zone* zone() const { return zone_; }
461
462 protected:
463 enum LimitResult { DONE, CONTINUE };
464 RegExpNode* replacement_;
465
466 LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
467
468 void set_bm_info(bool not_at_start, BoyerMooreLookahead* bm) {
469 bm_info_[not_at_start ? 1 : 0] = bm;
470 }
471
472 private:
473 static const int kFirstCharBudget = 10;
474 Label label_;
475 NodeInfo info_;
476 // This variable keeps track of how many times code has been generated for
477 // this node (in different traces). We don't keep track of where the
478 // generated code is located unless the code is generated at the start of
479 // a trace, in which case it is generic and can be reused by flushing the
480 // deferred operations in the current trace and generating a goto.
481 int trace_count_;
482 BoyerMooreLookahead* bm_info_[2];
483
484 Zone* zone_;
485 };
486
487
488 // A simple closed interval.
489 class Interval {
490 public:
491 Interval() : from_(kNone), to_(kNone) { }
492 Interval(int from, int to) : from_(from), to_(to) { }
493 Interval Union(Interval that) {
494 if (that.from_ == kNone)
495 return *this;
496 else if (from_ == kNone)
497 return that;
498 else
499 return Interval(Min(from_, that.from_), Max(to_, that.to_));
500 }
501 bool Contains(int value) {
502 return (from_ <= value) && (value <= to_);
503 }
504 bool is_empty() { return from_ == kNone; }
505 int from() const { return from_; }
506 int to() const { return to_; }
507 static Interval Empty() { return Interval(); }
508 static const int kNone = -1;
509 private:
510 int from_;
511 int to_;
512 };
513
514
515 class SeqRegExpNode: public RegExpNode {
516 public:
517 explicit SeqRegExpNode(RegExpNode* on_success)
518 : RegExpNode(on_success->zone()), on_success_(on_success) { }
519 RegExpNode* on_success() { return on_success_; }
520 void set_on_success(RegExpNode* node) { on_success_ = node; }
521 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
522 virtual void FillInBMInfo(int offset,
523 int budget,
524 BoyerMooreLookahead* bm,
525 bool not_at_start) {
526 on_success_->FillInBMInfo(offset, budget - 1, bm, not_at_start);
527 if (offset == 0) set_bm_info(not_at_start, bm);
528 }
529
530 protected:
531 RegExpNode* FilterSuccessor(int depth, bool ignore_case);
532
533 private:
534 RegExpNode* on_success_;
535 };
536
537
538 class ActionNode: public SeqRegExpNode {
539 public:
540 enum ActionType {
541 SET_REGISTER,
542 INCREMENT_REGISTER,
543 STORE_POSITION,
544 BEGIN_SUBMATCH,
545 POSITIVE_SUBMATCH_SUCCESS,
546 EMPTY_MATCH_CHECK,
547 CLEAR_CAPTURES
548 };
549 static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success);
550 static ActionNode* IncrementRegister(int reg, RegExpNode* on_success);
551 static ActionNode* StorePosition(int reg,
552 bool is_capture,
553 RegExpNode* on_success);
554 static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
555 static ActionNode* BeginSubmatch(int stack_pointer_reg,
556 int position_reg,
557 RegExpNode* on_success);
558 static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg,
559 int restore_reg,
560 int clear_capture_count,
561 int clear_capture_from,
562 RegExpNode* on_success);
563 static ActionNode* EmptyMatchCheck(int start_register,
564 int repetition_register,
565 int repetition_limit,
566 RegExpNode* on_success);
567 virtual void Accept(NodeVisitor* visitor);
568 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
569 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
570 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
571 RegExpCompiler* compiler,
572 int filled_in,
573 bool not_at_start) {
574 return on_success()->GetQuickCheckDetails(
575 details, compiler, filled_in, not_at_start);
576 }
577 virtual void FillInBMInfo(int offset,
578 int budget,
579 BoyerMooreLookahead* bm,
580 bool not_at_start);
581 ActionType action_type() { return action_type_; }
582 // TODO(erikcorry): We should allow some action nodes in greedy loops.
583 virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
584
585 private:
586 union {
587 struct {
588 int reg;
589 int value;
590 } u_store_register;
591 struct {
592 int reg;
593 } u_increment_register;
594 struct {
595 int reg;
596 bool is_capture;
597 } u_position_register;
598 struct {
599 int stack_pointer_register;
600 int current_position_register;
601 int clear_register_count;
602 int clear_register_from;
603 } u_submatch;
604 struct {
605 int start_register;
606 int repetition_register;
607 int repetition_limit;
608 } u_empty_match_check;
609 struct {
610 int range_from;
611 int range_to;
612 } u_clear_captures;
613 } data_;
614 ActionNode(ActionType action_type, RegExpNode* on_success)
615 : SeqRegExpNode(on_success),
616 action_type_(action_type) { }
617 ActionType action_type_;
618 friend class DotPrinter;
619 };
620
621
622 class TextNode: public SeqRegExpNode {
623 public:
624 TextNode(ZoneList<TextElement>* elms,
625 RegExpNode* on_success)
626 : SeqRegExpNode(on_success),
627 elms_(elms) { }
628 TextNode(RegExpCharacterClass* that,
629 RegExpNode* on_success)
630 : SeqRegExpNode(on_success),
631 elms_(new(zone()) ZoneList<TextElement>(1, zone())) {
632 elms_->Add(TextElement::CharClass(that), zone());
633 }
634 virtual void Accept(NodeVisitor* visitor);
635 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
636 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
637 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
638 RegExpCompiler* compiler,
639 int characters_filled_in,
640 bool not_at_start);
641 ZoneList<TextElement>* elements() { return elms_; }
642 void MakeCaseIndependent(bool is_one_byte);
643 virtual int GreedyLoopTextLength();
644 virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
645 RegExpCompiler* compiler);
646 virtual void FillInBMInfo(int offset,
647 int budget,
648 BoyerMooreLookahead* bm,
649 bool not_at_start);
650 void CalculateOffsets();
651 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
652
653 private:
654 enum TextEmitPassType {
655 NON_LATIN1_MATCH, // Check for characters that can't match.
656 SIMPLE_CHARACTER_MATCH, // Case-dependent single character check.
657 NON_LETTER_CHARACTER_MATCH, // Check characters that have no case equivs.
658 CASE_CHARACTER_MATCH, // Case-independent single character check.
659 CHARACTER_CLASS_MATCH // Character class.
660 };
661 static bool SkipPass(int pass, bool ignore_case);
662 static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH;
663 static const int kLastPass = CHARACTER_CLASS_MATCH;
664 void TextEmitPass(RegExpCompiler* compiler,
665 TextEmitPassType pass,
666 bool preloaded,
667 Trace* trace,
668 bool first_element_checked,
669 int* checked_up_to);
670 int Length();
671 ZoneList<TextElement>* elms_;
672 };
673
674
675 class AssertionNode: public SeqRegExpNode {
676 public:
677 enum AssertionType {
678 AT_END,
679 AT_START,
680 AT_BOUNDARY,
681 AT_NON_BOUNDARY,
682 AFTER_NEWLINE
683 };
684 static AssertionNode* AtEnd(RegExpNode* on_success) {
685 return new(on_success->zone()) AssertionNode(AT_END, on_success);
686 }
687 static AssertionNode* AtStart(RegExpNode* on_success) {
688 return new(on_success->zone()) AssertionNode(AT_START, on_success);
689 }
690 static AssertionNode* AtBoundary(RegExpNode* on_success) {
691 return new(on_success->zone()) AssertionNode(AT_BOUNDARY, on_success);
692 }
693 static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
694 return new(on_success->zone()) AssertionNode(AT_NON_BOUNDARY, on_success);
695 }
696 static AssertionNode* AfterNewline(RegExpNode* on_success) {
697 return new(on_success->zone()) AssertionNode(AFTER_NEWLINE, on_success);
698 }
699 virtual void Accept(NodeVisitor* visitor);
700 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
701 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
702 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
703 RegExpCompiler* compiler,
704 int filled_in,
705 bool not_at_start);
706 virtual void FillInBMInfo(int offset,
707 int budget,
708 BoyerMooreLookahead* bm,
709 bool not_at_start);
710 AssertionType assertion_type() { return assertion_type_; }
711
712 private:
713 void EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace);
714 enum IfPrevious { kIsNonWord, kIsWord };
715 void BacktrackIfPrevious(RegExpCompiler* compiler,
716 Trace* trace,
717 IfPrevious backtrack_if_previous);
718 AssertionNode(AssertionType t, RegExpNode* on_success)
719 : SeqRegExpNode(on_success), assertion_type_(t) { }
720 AssertionType assertion_type_;
721 };
722
723
724 class BackReferenceNode: public SeqRegExpNode {
725 public:
726 BackReferenceNode(int start_reg,
727 int end_reg,
728 RegExpNode* on_success)
729 : SeqRegExpNode(on_success),
730 start_reg_(start_reg),
731 end_reg_(end_reg) { }
732 virtual void Accept(NodeVisitor* visitor);
733 int start_register() { return start_reg_; }
734 int end_register() { return end_reg_; }
735 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
736 virtual int EatsAtLeast(int still_to_find,
737 int recursion_depth,
738 bool not_at_start);
739 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
740 RegExpCompiler* compiler,
741 int characters_filled_in,
742 bool not_at_start) {
743 return;
744 }
745 virtual void FillInBMInfo(int offset,
746 int budget,
747 BoyerMooreLookahead* bm,
748 bool not_at_start);
749
750 private:
751 int start_reg_;
752 int end_reg_;
753 };
754
755
756 class EndNode: public RegExpNode {
757 public:
758 enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
759 explicit EndNode(Action action, Zone* zone)
760 : RegExpNode(zone), action_(action) { }
761 virtual void Accept(NodeVisitor* visitor);
762 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
763 virtual int EatsAtLeast(int still_to_find,
764 int recursion_depth,
765 bool not_at_start) { return 0; }
766 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
767 RegExpCompiler* compiler,
768 int characters_filled_in,
769 bool not_at_start) {
770 // Returning 0 from EatsAtLeast should ensure we never get here.
771 UNREACHABLE();
772 }
773 virtual void FillInBMInfo(int offset,
774 int budget,
775 BoyerMooreLookahead* bm,
776 bool not_at_start) {
777 // Returning 0 from EatsAtLeast should ensure we never get here.
778 UNREACHABLE();
779 }
780
781 private:
782 Action action_;
783 };
784
785
786 class NegativeSubmatchSuccess: public EndNode {
787 public:
788 NegativeSubmatchSuccess(int stack_pointer_reg,
789 int position_reg,
790 int clear_capture_count,
791 int clear_capture_start,
792 Zone* zone)
793 : EndNode(NEGATIVE_SUBMATCH_SUCCESS, zone),
794 stack_pointer_register_(stack_pointer_reg),
795 current_position_register_(position_reg),
796 clear_capture_count_(clear_capture_count),
797 clear_capture_start_(clear_capture_start) { }
798 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
799
800 private:
801 int stack_pointer_register_;
802 int current_position_register_;
803 int clear_capture_count_;
804 int clear_capture_start_;
805 };
806
807
808 class Guard: public ZoneObject {
809 public:
810 enum Relation { LT, GEQ };
811 Guard(int reg, Relation op, int value)
812 : reg_(reg),
813 op_(op),
814 value_(value) { }
815 int reg() { return reg_; }
816 Relation op() { return op_; }
817 int value() { return value_; }
818
819 private:
820 int reg_;
821 Relation op_;
822 int value_;
823 };
824
825
826 class GuardedAlternative {
827 public:
828 explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { }
829 void AddGuard(Guard* guard, Zone* zone);
830 RegExpNode* node() { return node_; }
831 void set_node(RegExpNode* node) { node_ = node; }
832 ZoneList<Guard*>* guards() { return guards_; }
833
834 private:
835 RegExpNode* node_;
836 ZoneList<Guard*>* guards_;
837 };
838
839
840 class AlternativeGeneration;
841
842
843 class ChoiceNode: public RegExpNode {
844 public:
845 explicit ChoiceNode(int expected_size, Zone* zone)
846 : RegExpNode(zone),
847 alternatives_(new(zone)
848 ZoneList<GuardedAlternative>(expected_size, zone)),
849 table_(NULL),
850 not_at_start_(false),
851 being_calculated_(false) { }
852 virtual void Accept(NodeVisitor* visitor);
853 void AddAlternative(GuardedAlternative node) {
854 alternatives()->Add(node, zone());
855 }
856 ZoneList<GuardedAlternative>* alternatives() { return alternatives_; }
857 DispatchTable* GetTable(bool ignore_case);
858 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
859 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
860 int EatsAtLeastHelper(int still_to_find,
861 int budget,
862 RegExpNode* ignore_this_node,
863 bool not_at_start);
864 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
865 RegExpCompiler* compiler,
866 int characters_filled_in,
867 bool not_at_start);
868 virtual void FillInBMInfo(int offset,
869 int budget,
870 BoyerMooreLookahead* bm,
871 bool not_at_start);
872
873 bool being_calculated() { return being_calculated_; }
874 bool not_at_start() { return not_at_start_; }
875 void set_not_at_start() { not_at_start_ = true; }
876 void set_being_calculated(bool b) { being_calculated_ = b; }
877 virtual bool try_to_emit_quick_check_for_alternative(bool is_first) {
878 return true;
879 }
880 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
881
882 protected:
883 int GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative);
884 ZoneList<GuardedAlternative>* alternatives_;
885
886 private:
887 friend class DispatchTableConstructor;
888 friend class Analysis;
889 void GenerateGuard(RegExpMacroAssembler* macro_assembler,
890 Guard* guard,
891 Trace* trace);
892 int CalculatePreloadCharacters(RegExpCompiler* compiler, int eats_at_least);
893 void EmitOutOfLineContinuation(RegExpCompiler* compiler,
894 Trace* trace,
895 GuardedAlternative alternative,
896 AlternativeGeneration* alt_gen,
897 int preload_characters,
898 bool next_expects_preload);
899 void SetUpPreLoad(RegExpCompiler* compiler,
900 Trace* current_trace,
901 PreloadState* preloads);
902 void AssertGuardsMentionRegisters(Trace* trace);
903 int EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, Trace* trace);
904 Trace* EmitGreedyLoop(RegExpCompiler* compiler,
905 Trace* trace,
906 AlternativeGenerationList* alt_gens,
907 PreloadState* preloads,
908 GreedyLoopState* greedy_loop_state,
909 int text_length);
910 void EmitChoices(RegExpCompiler* compiler,
911 AlternativeGenerationList* alt_gens,
912 int first_choice,
913 Trace* trace,
914 PreloadState* preloads);
915 DispatchTable* table_;
916 // If true, this node is never checked at the start of the input.
917 // Allows a new trace to start with at_start() set to false.
918 bool not_at_start_;
919 bool being_calculated_;
920 };
921
922
923 class NegativeLookaheadChoiceNode: public ChoiceNode {
924 public:
925 explicit NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,
926 GuardedAlternative then_do_this,
927 Zone* zone)
928 : ChoiceNode(2, zone) {
929 AddAlternative(this_must_fail);
930 AddAlternative(then_do_this);
931 }
932 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
933 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
934 RegExpCompiler* compiler,
935 int characters_filled_in,
936 bool not_at_start);
937 virtual void FillInBMInfo(int offset,
938 int budget,
939 BoyerMooreLookahead* bm,
940 bool not_at_start) {
941 alternatives_->at(1).node()->FillInBMInfo(
942 offset, budget - 1, bm, not_at_start);
943 if (offset == 0) set_bm_info(not_at_start, bm);
944 }
945 // For a negative lookahead we don't emit the quick check for the
946 // alternative that is expected to fail. This is because quick check code
947 // starts by loading enough characters for the alternative that takes fewest
948 // characters, but on a negative lookahead the negative branch did not take
949 // part in that calculation (EatsAtLeast) so the assumptions don't hold.
950 virtual bool try_to_emit_quick_check_for_alternative(bool is_first) {
951 return !is_first;
952 }
953 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
954 };
955
956
957 class LoopChoiceNode: public ChoiceNode {
958 public:
959 explicit LoopChoiceNode(bool body_can_be_zero_length, Zone* zone)
960 : ChoiceNode(2, zone),
961 loop_node_(NULL),
962 continue_node_(NULL),
963 body_can_be_zero_length_(body_can_be_zero_length)
964 { }
965 void AddLoopAlternative(GuardedAlternative alt);
966 void AddContinueAlternative(GuardedAlternative alt);
967 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
968 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
969 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
970 RegExpCompiler* compiler,
971 int characters_filled_in,
972 bool not_at_start);
973 virtual void FillInBMInfo(int offset,
974 int budget,
975 BoyerMooreLookahead* bm,
976 bool not_at_start);
977 RegExpNode* loop_node() { return loop_node_; }
978 RegExpNode* continue_node() { return continue_node_; }
979 bool body_can_be_zero_length() { return body_can_be_zero_length_; }
980 virtual void Accept(NodeVisitor* visitor);
981 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
982
983 private:
984 // AddAlternative is made private for loop nodes because alternatives
985 // should not be added freely, we need to keep track of which node
986 // goes back to the node itself.
987 void AddAlternative(GuardedAlternative node) {
988 ChoiceNode::AddAlternative(node);
989 }
990
991 RegExpNode* loop_node_;
992 RegExpNode* continue_node_;
993 bool body_can_be_zero_length_;
994 };
995
996
997 // Improve the speed that we scan for an initial point where a non-anchored
998 // regexp can match by using a Boyer-Moore-like table. This is done by
999 // identifying non-greedy non-capturing loops in the nodes that eat any
1000 // character one at a time. For example in the middle of the regexp
1001 // /foo[\s\S]*?bar/ we find such a loop. There is also such a loop implicitly
1002 // inserted at the start of any non-anchored regexp.
1003 //
1004 // When we have found such a loop we look ahead in the nodes to find the set of
1005 // characters that can come at given distances. For example for the regexp
1006 // /.?foo/ we know that there are at least 3 characters ahead of us, and the
1007 // sets of characters that can occur are [any, [f, o], [o]]. We find a range in
1008 // the lookahead info where the set of characters is reasonably constrained. In
1009 // our example this is from index 1 to 2 (0 is not constrained). We can now
1010 // look 3 characters ahead and if we don't find one of [f, o] (the union of
1011 // [f, o] and [o]) then we can skip forwards by the range size (in this case 2).
1012 //
1013 // For Unicode input strings we do the same, but modulo 128.
1014 //
1015 // We also look at the first string fed to the regexp and use that to get a hint
1016 // of the character frequencies in the inputs. This affects the assessment of
1017 // whether the set of characters is 'reasonably constrained'.
1018 //
1019 // We also have another lookahead mechanism (called quick check in the code),
1020 // which uses a wide load of multiple characters followed by a mask and compare
1021 // to determine whether a match is possible at this point.
1022 enum ContainedInLattice {
1023 kNotYet = 0,
1024 kLatticeIn = 1,
1025 kLatticeOut = 2,
1026 kLatticeUnknown = 3 // Can also mean both in and out.
1027 };
1028
1029
1030 inline ContainedInLattice Combine(ContainedInLattice a, ContainedInLattice b) {
1031 return static_cast<ContainedInLattice>(a | b);
1032 }
1033
1034
1035 ContainedInLattice AddRange(ContainedInLattice a,
1036 const int* ranges,
1037 int ranges_size,
1038 Interval new_range);
1039
1040
1041 class BoyerMoorePositionInfo : public ZoneObject {
1042 public:
1043 explicit BoyerMoorePositionInfo(Zone* zone)
1044 : map_(new(zone) ZoneList<bool>(kMapSize, zone)),
1045 map_count_(0),
1046 w_(kNotYet),
1047 s_(kNotYet),
1048 d_(kNotYet),
1049 surrogate_(kNotYet) {
1050 for (int i = 0; i < kMapSize; i++) {
1051 map_->Add(false, zone);
1052 }
1053 }
1054
1055 bool& at(int i) { return map_->at(i); }
1056
1057 static const int kMapSize = 128;
1058 static const int kMask = kMapSize - 1;
1059
1060 int map_count() const { return map_count_; }
1061
1062 void Set(int character);
1063 void SetInterval(const Interval& interval);
1064 void SetAll();
1065 bool is_non_word() { return w_ == kLatticeOut; }
1066 bool is_word() { return w_ == kLatticeIn; }
1067
1068 private:
1069 ZoneList<bool>* map_;
1070 int map_count_; // Number of set bits in the map.
1071 ContainedInLattice w_; // The \w character class.
1072 ContainedInLattice s_; // The \s character class.
1073 ContainedInLattice d_; // The \d character class.
1074 ContainedInLattice surrogate_; // Surrogate UTF-16 code units.
1075 };
1076
1077
1078 class BoyerMooreLookahead : public ZoneObject {
1079 public:
1080 BoyerMooreLookahead(int length, RegExpCompiler* compiler, Zone* zone);
1081
1082 int length() { return length_; }
1083 int max_char() { return max_char_; }
1084 RegExpCompiler* compiler() { return compiler_; }
1085
1086 int Count(int map_number) {
1087 return bitmaps_->at(map_number)->map_count();
1088 }
1089
1090 BoyerMoorePositionInfo* at(int i) { return bitmaps_->at(i); }
1091
1092 void Set(int map_number, int character) {
1093 if (character > max_char_) return;
1094 BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
1095 info->Set(character);
1096 }
1097
1098 void SetInterval(int map_number, const Interval& interval) {
1099 if (interval.from() > max_char_) return;
1100 BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
1101 if (interval.to() > max_char_) {
1102 info->SetInterval(Interval(interval.from(), max_char_));
1103 } else {
1104 info->SetInterval(interval);
1105 }
1106 }
1107
1108 void SetAll(int map_number) {
1109 bitmaps_->at(map_number)->SetAll();
1110 }
1111
1112 void SetRest(int from_map) {
1113 for (int i = from_map; i < length_; i++) SetAll(i);
1114 }
1115 void EmitSkipInstructions(RegExpMacroAssembler* masm);
1116
1117 private:
1118 // This is the value obtained by EatsAtLeast. If we do not have at least this
1119 // many characters left in the sample string then the match is bound to fail.
1120 // Therefore it is OK to read a character this far ahead of the current match
1121 // point.
1122 int length_;
1123 RegExpCompiler* compiler_;
1124 // 0xff for Latin1, 0xffff for UTF-16.
1125 int max_char_;
1126 ZoneList<BoyerMoorePositionInfo*>* bitmaps_;
1127
1128 int GetSkipTable(int min_lookahead,
1129 int max_lookahead,
1130 Handle<ByteArray> boolean_skip_table);
1131 bool FindWorthwhileInterval(int* from, int* to);
1132 int FindBestInterval(
1133 int max_number_of_chars, int old_biggest_points, int* from, int* to);
1134 };
1135
1136
1137 // There are many ways to generate code for a node. This class encapsulates
1138 // the current way we should be generating. In other words it encapsulates
1139 // the current state of the code generator. The effect of this is that we
1140 // generate code for paths that the matcher can take through the regular
1141 // expression. A given node in the regexp can be code-generated several times
1142 // as it can be part of several traces. For example for the regexp:
1143 // /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
1144 // of the foo-bar-baz trace and once as part of the foo-ip-baz trace. The code
1145 // to match foo is generated only once (the traces have a common prefix). The
1146 // code to store the capture is deferred and generated (twice) after the places
1147 // where baz has been matched.
1148 class Trace {
1149 public:
1150 // A value for a property that is either known to be true, know to be false,
1151 // or not known.
1152 enum TriBool {
1153 UNKNOWN = -1, FALSE_VALUE = 0, TRUE_VALUE = 1
1154 };
1155
1156 class DeferredAction {
1157 public:
1158 DeferredAction(ActionNode::ActionType action_type, int reg)
1159 : action_type_(action_type), reg_(reg), next_(NULL) { }
1160 DeferredAction* next() { return next_; }
1161 bool Mentions(int reg);
1162 int reg() { return reg_; }
1163 ActionNode::ActionType action_type() { return action_type_; }
1164 private:
1165 ActionNode::ActionType action_type_;
1166 int reg_;
1167 DeferredAction* next_;
1168 friend class Trace;
1169 };
1170
1171 class DeferredCapture : public DeferredAction {
1172 public:
1173 DeferredCapture(int reg, bool is_capture, Trace* trace)
1174 : DeferredAction(ActionNode::STORE_POSITION, reg),
1175 cp_offset_(trace->cp_offset()),
1176 is_capture_(is_capture) { }
1177 int cp_offset() { return cp_offset_; }
1178 bool is_capture() { return is_capture_; }
1179 private:
1180 int cp_offset_;
1181 bool is_capture_;
1182 void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
1183 };
1184
1185 class DeferredSetRegister : public DeferredAction {
1186 public:
1187 DeferredSetRegister(int reg, int value)
1188 : DeferredAction(ActionNode::SET_REGISTER, reg),
1189 value_(value) { }
1190 int value() { return value_; }
1191 private:
1192 int value_;
1193 };
1194
1195 class DeferredClearCaptures : public DeferredAction {
1196 public:
1197 explicit DeferredClearCaptures(Interval range)
1198 : DeferredAction(ActionNode::CLEAR_CAPTURES, -1),
1199 range_(range) { }
1200 Interval range() { return range_; }
1201 private:
1202 Interval range_;
1203 };
1204
1205 class DeferredIncrementRegister : public DeferredAction {
1206 public:
1207 explicit DeferredIncrementRegister(int reg)
1208 : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { }
1209 };
1210
1211 Trace()
1212 : cp_offset_(0),
1213 actions_(NULL),
1214 backtrack_(NULL),
1215 stop_node_(NULL),
1216 loop_label_(NULL),
1217 characters_preloaded_(0),
1218 bound_checked_up_to_(0),
1219 flush_budget_(100),
1220 at_start_(UNKNOWN) { }
1221
1222 // End the trace. This involves flushing the deferred actions in the trace
1223 // and pushing a backtrack location onto the backtrack stack. Once this is
1224 // done we can start a new trace or go to one that has already been
1225 // generated.
1226 void Flush(RegExpCompiler* compiler, RegExpNode* successor);
1227 int cp_offset() { return cp_offset_; }
1228 DeferredAction* actions() { return actions_; }
1229 // A trivial trace is one that has no deferred actions or other state that
1230 // affects the assumptions used when generating code. There is no recorded
1231 // backtrack location in a trivial trace, so with a trivial trace we will
1232 // generate code that, on a failure to match, gets the backtrack location
1233 // from the backtrack stack rather than using a direct jump instruction. We
1234 // always start code generation with a trivial trace and non-trivial traces
1235 // are created as we emit code for nodes or add to the list of deferred
1236 // actions in the trace. The location of the code generated for a node using
1237 // a trivial trace is recorded in a label in the node so that gotos can be
1238 // generated to that code.
1239 bool is_trivial() {
1240 return backtrack_ == NULL &&
1241 actions_ == NULL &&
1242 cp_offset_ == 0 &&
1243 characters_preloaded_ == 0 &&
1244 bound_checked_up_to_ == 0 &&
1245 quick_check_performed_.characters() == 0 &&
1246 at_start_ == UNKNOWN;
1247 }
1248 TriBool at_start() { return at_start_; }
1249 void set_at_start(bool at_start) {
1250 at_start_ = at_start ? TRUE_VALUE : FALSE_VALUE;
1251 }
1252 Label* backtrack() { return backtrack_; }
1253 Label* loop_label() { return loop_label_; }
1254 RegExpNode* stop_node() { return stop_node_; }
1255 int characters_preloaded() { return characters_preloaded_; }
1256 int bound_checked_up_to() { return bound_checked_up_to_; }
1257 int flush_budget() { return flush_budget_; }
1258 QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
1259 bool mentions_reg(int reg);
1260 // Returns true if a deferred position store exists to the specified
1261 // register and stores the offset in the out-parameter. Otherwise
1262 // returns false.
1263 bool GetStoredPosition(int reg, int* cp_offset);
1264 // These set methods and AdvanceCurrentPositionInTrace should be used only on
1265 // new traces - the intention is that traces are immutable after creation.
1266 void add_action(DeferredAction* new_action) {
1267 DCHECK(new_action->next_ == NULL);
1268 new_action->next_ = actions_;
1269 actions_ = new_action;
1270 }
1271 void set_backtrack(Label* backtrack) { backtrack_ = backtrack; }
1272 void set_stop_node(RegExpNode* node) { stop_node_ = node; }
1273 void set_loop_label(Label* label) { loop_label_ = label; }
1274 void set_characters_preloaded(int count) { characters_preloaded_ = count; }
1275 void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; }
1276 void set_flush_budget(int to) { flush_budget_ = to; }
1277 void set_quick_check_performed(QuickCheckDetails* d) {
1278 quick_check_performed_ = *d;
1279 }
1280 void InvalidateCurrentCharacter();
1281 void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler);
1282
1283 private:
1284 int FindAffectedRegisters(OutSet* affected_registers, Zone* zone);
1285 void PerformDeferredActions(RegExpMacroAssembler* macro,
1286 int max_register,
1287 const OutSet& affected_registers,
1288 OutSet* registers_to_pop,
1289 OutSet* registers_to_clear,
1290 Zone* zone);
1291 void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
1292 int max_register,
1293 const OutSet& registers_to_pop,
1294 const OutSet& registers_to_clear);
1295 int cp_offset_;
1296 DeferredAction* actions_;
1297 Label* backtrack_;
1298 RegExpNode* stop_node_;
1299 Label* loop_label_;
1300 int characters_preloaded_;
1301 int bound_checked_up_to_;
1302 QuickCheckDetails quick_check_performed_;
1303 int flush_budget_;
1304 TriBool at_start_;
1305 };
1306
1307
1308 class GreedyLoopState {
1309 public:
1310 explicit GreedyLoopState(bool not_at_start);
1311
1312 Label* label() { return &label_; }
1313 Trace* counter_backtrack_trace() { return &counter_backtrack_trace_; }
1314
1315 private:
1316 Label label_;
1317 Trace counter_backtrack_trace_;
1318 };
1319
1320
1321 struct PreloadState {
1322 static const int kEatsAtLeastNotYetInitialized = -1;
1323 bool preload_is_current_;
1324 bool preload_has_checked_bounds_;
1325 int preload_characters_;
1326 int eats_at_least_;
1327 void init() {
1328 eats_at_least_ = kEatsAtLeastNotYetInitialized;
1329 }
1330 };
1331
1332
1333 class NodeVisitor {
1334 public:
1335 virtual ~NodeVisitor() { }
1336 #define DECLARE_VISIT(Type) \
1337 virtual void Visit##Type(Type##Node* that) = 0;
1338 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1339 #undef DECLARE_VISIT
1340 virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
1341 };
1342
1343
1344 // Node visitor used to add the start set of the alternatives to the
1345 // dispatch table of a choice node.
1346 class DispatchTableConstructor: public NodeVisitor {
1347 public:
1348 DispatchTableConstructor(DispatchTable* table, bool ignore_case,
1349 Zone* zone)
1350 : table_(table),
1351 choice_index_(-1),
1352 ignore_case_(ignore_case),
1353 zone_(zone) { }
1354
1355 void BuildTable(ChoiceNode* node);
1356
1357 void AddRange(CharacterRange range) {
1358 table()->AddRange(range, choice_index_, zone_);
1359 }
1360
1361 void AddInverse(ZoneList<CharacterRange>* ranges);
1362
1363 #define DECLARE_VISIT(Type) \
1364 virtual void Visit##Type(Type##Node* that);
1365 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1366 #undef DECLARE_VISIT
1367
1368 DispatchTable* table() { return table_; }
1369 void set_choice_index(int value) { choice_index_ = value; }
1370
1371 protected:
1372 DispatchTable* table_;
1373 int choice_index_;
1374 bool ignore_case_;
1375 Zone* zone_;
1376 };
1377
1378
1379 // Assertion propagation moves information about assertions such as
1380 // \b to the affected nodes. For instance, in /.\b./ information must
1381 // be propagated to the first '.' that whatever follows needs to know
1382 // if it matched a word or a non-word, and to the second '.' that it
1383 // has to check if it succeeds a word or non-word. In this case the
1384 // result will be something like:
1385 //
1386 // +-------+ +------------+
1387 // | . | | . |
1388 // +-------+ ---> +------------+
1389 // | word? | | check word |
1390 // +-------+ +------------+
1391 class Analysis: public NodeVisitor {
1392 public:
1393 Analysis(bool ignore_case, bool is_one_byte)
1394 : ignore_case_(ignore_case),
1395 is_one_byte_(is_one_byte),
1396 error_message_(NULL) {}
1397 void EnsureAnalyzed(RegExpNode* node);
1398
1399 #define DECLARE_VISIT(Type) \
1400 virtual void Visit##Type(Type##Node* that);
1401 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1402 #undef DECLARE_VISIT
1403 virtual void VisitLoopChoice(LoopChoiceNode* that);
1404
1405 bool has_failed() { return error_message_ != NULL; }
1406 const char* error_message() {
1407 DCHECK(error_message_ != NULL);
1408 return error_message_;
1409 }
1410 void fail(const char* error_message) {
1411 error_message_ = error_message;
1412 }
1413
1414 private:
1415 bool ignore_case_;
1416 bool is_one_byte_;
1417 const char* error_message_;
1418
1419 DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
1420 };
1421
1422
1423 struct RegExpCompileData {
1424 RegExpCompileData()
1425 : tree(NULL),
1426 node(NULL),
1427 simple(true),
1428 contains_anchor(false),
1429 capture_count(0) { }
1430 RegExpTree* tree;
1431 RegExpNode* node;
1432 bool simple;
1433 bool contains_anchor;
1434 Handle<String> error;
1435 int capture_count;
1436 };
1437
1438
1439 class RegExpEngine: public AllStatic {
1440 public:
1441 struct CompilationResult {
1442 CompilationResult(Isolate* isolate, const char* error_message)
1443 : error_message(error_message),
1444 code(isolate->heap()->the_hole_value()),
1445 num_registers(0) {}
1446 CompilationResult(Object* code, int registers)
1447 : error_message(NULL),
1448 code(code),
1449 num_registers(registers) {}
1450 const char* error_message;
1451 Object* code;
1452 int num_registers;
1453 };
1454
1455 static CompilationResult Compile(RegExpCompileData* input, bool ignore_case,
1456 bool global, bool multiline, bool sticky,
1457 Handle<String> pattern,
1458 Handle<String> sample_subject,
1459 bool is_one_byte, Zone* zone);
1460
1461 static void DotPrint(const char* label, RegExpNode* node, bool ignore_case);
1462 };
1463
1464 } // namespace dart
1465
1466 #endif // VM_REGEXP_H_
OLDNEW
« no previous file with comments | « no previous file | runtime/vm/regexp.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698