Index: src/utils/SkPatchUtils.cpp |
diff --git a/src/utils/SkPatchUtils.cpp b/src/utils/SkPatchUtils.cpp |
index ab15290a346c7e046fdd4e6b64b888a628c73d3c..d12019551da52b91c948becb7a939306171aba1d 100644 |
--- a/src/utils/SkPatchUtils.cpp |
+++ b/src/utils/SkPatchUtils.cpp |
@@ -7,8 +7,121 @@ |
#include "SkPatchUtils.h" |
+#include "SkColorPriv.h" |
+#include "SkGeometry.h" |
+ |
+/** |
+ * Evaluator to sample the values of a cubic bezier using forward differences. |
+ * Forward differences is a method for evaluating a nth degree polynomial at a uniform step by only |
+ * adding precalculated values. |
+ * For a linear example we have the function f(t) = m*t+b, then the value of that function at t+h |
+ * would be f(t+h) = m*(t+h)+b. If we want to know the uniform step that we must add to the first |
+ * evaluation f(t) then we need to substract f(t+h) - f(t) = m*t + m*h + b - m*t + b = mh. After |
+ * obtaining this value (mh) we could just add this constant step to our first sampled point |
+ * to compute the next one. |
+ * |
+ * For the cubic case the first difference gives as a result a quadratic polynomial to which we can |
+ * apply again forward differences and get linear function to which we can apply again forward |
+ * differences to get a constant difference. This is why we keep an array of size 4, the 0th |
+ * position keeps the sampled value while the next ones keep the quadratic, linear and constant |
+ * difference values. |
+ */ |
+ |
+class FwDCubicEvaluator { |
+ |
+public: |
+ FwDCubicEvaluator() |
+ : fMax(0) |
+ , fCurrent(0) |
+ , fDivisions(0) { |
+ memset(fPoints, 0, 4 * sizeof(SkPoint)); |
+ memset(fPoints, 0, 4 * sizeof(SkPoint)); |
+ memset(fPoints, 0, 4 * sizeof(SkPoint)); |
+ } |
+ |
+ /** |
+ * Receives the 4 control points of the cubic bezier. |
+ */ |
+ FwDCubicEvaluator(SkPoint a, SkPoint b, SkPoint c, SkPoint d) { |
+ fPoints[0] = a; |
+ fPoints[1] = b; |
+ fPoints[2] = c; |
+ fPoints[3] = d; |
+ |
+ SkScalar cx[4], cy[4]; |
+ SkGetCubicCoeff(fPoints, cx, cy); |
+ fCoefs[0].set(cx[0], cy[0]); |
+ fCoefs[1].set(cx[1], cy[1]); |
+ fCoefs[2].set(cx[2], cy[2]); |
+ fCoefs[3].set(cx[3], cy[3]); |
+ |
+ this->restart(1); |
+ } |
+ |
+ explicit FwDCubicEvaluator(const SkPoint points[4]) { |
+ memcpy(fPoints, points, 4 * sizeof(SkPoint)); |
+ |
+ SkScalar cx[4], cy[4]; |
+ SkGetCubicCoeff(fPoints, cx, cy); |
+ fCoefs[0].set(cx[0], cy[0]); |
+ fCoefs[1].set(cx[1], cy[1]); |
+ fCoefs[2].set(cx[2], cy[2]); |
+ fCoefs[3].set(cx[3], cy[3]); |
+ |
+ this->restart(1); |
+ } |
+ |
+ /** |
+ * Restarts the forward differences evaluator to the first value of t = 0. |
+ */ |
+ void restart(int divisions) { |
+ fDivisions = divisions; |
+ SkScalar h = 1.f / fDivisions; |
+ fCurrent = 0; |
+ fMax = fDivisions + 1; |
+ fFwDiff[0] = fCoefs[3]; |
+ SkScalar h2 = h * h; |
+ SkScalar h3 = h2 * h; |
+ |
+ fFwDiff[3].set(6.f * fCoefs[0].x() * h3, 6.f * fCoefs[0].y() * h3); //6ah^3 |
+ fFwDiff[2].set(fFwDiff[3].x() + 2.f * fCoefs[1].x() * h2, //6ah^3 + 2bh^2 |
+ fFwDiff[3].y() + 2.f * fCoefs[1].y() * h2); |
+ fFwDiff[1].set(fCoefs[0].x() * h3 + fCoefs[1].x() * h2 + fCoefs[2].x() * h,//ah^3 + bh^2 +ch |
+ fCoefs[0].y() * h3 + fCoefs[1].y() * h2 + fCoefs[2].y() * h); |
+ } |
+ |
+ /** |
+ * Check if the evaluator is still within the range of 0<=t<=1 |
+ */ |
+ bool done() const { |
+ return fCurrent > fMax; |
+ } |
+ |
+ /** |
+ * Call next to obtain the SkPoint sampled and move to the next one. |
+ */ |
+ SkPoint next() { |
+ SkPoint point = fFwDiff[0]; |
+ fFwDiff[0] += fFwDiff[1]; |
+ fFwDiff[1] += fFwDiff[2]; |
+ fFwDiff[2] += fFwDiff[3]; |
+ fCurrent++; |
+ return point; |
+ } |
+ |
+ const SkPoint* getCtrlPoints() const { |
+ return fPoints; |
+ } |
+ |
+private: |
+ int fMax, fCurrent, fDivisions; |
+ SkPoint fFwDiff[4], fCoefs[4], fPoints[4]; |
+}; |
+ |
+//////////////////////////////////////////////////////////////////////////////// |
+ |
// size in pixels of each partition per axis, adjust this knob |
-static const int kPartitionSize = 15; |
+static const int kPartitionSize = 10; |
/** |
* Calculate the approximate arc length given a bezier curve's control points. |
@@ -24,32 +137,188 @@ static SkScalar approx_arc_length(SkPoint* points, int count) { |
return arcLength; |
} |
-SkISize SkPatchUtils::GetLevelOfDetail(const SkPatch& patch, const SkMatrix* matrix) { |
- |
- SkPoint mapPts[12]; |
- matrix->mapPoints(mapPts, patch.getControlPoints(), 12); |
+static SkScalar bilerp(SkScalar tx, SkScalar ty, SkScalar c00, SkScalar c10, SkScalar c01, |
+ SkScalar c11) { |
+ SkScalar a = c00 * (1.f - tx) + c10 * tx; |
+ SkScalar b = c01 * (1.f - tx) + c11 * tx; |
+ return a * (1.f - ty) + b * ty; |
+} |
+ |
+SkISize SkPatchUtils::GetLevelOfDetail(const SkPoint cubics[12], const SkMatrix* matrix) { |
// Approximate length of each cubic. |
- SkPoint pts[4]; |
- patch.getTopPoints(pts); |
- matrix->mapPoints(pts, 4); |
- SkScalar topLength = approx_arc_length(pts, 4); |
+ SkPoint pts[kNumPtsCubic]; |
+ SkPatchUtils::getTopCubic(cubics, pts); |
+ matrix->mapPoints(pts, kNumPtsCubic); |
+ SkScalar topLength = approx_arc_length(pts, kNumPtsCubic); |
- patch.getBottomPoints(pts); |
- matrix->mapPoints(pts, 4); |
- SkScalar bottomLength = approx_arc_length(pts, 4); |
+ SkPatchUtils::getBottomCubic(cubics, pts); |
+ matrix->mapPoints(pts, kNumPtsCubic); |
+ SkScalar bottomLength = approx_arc_length(pts, kNumPtsCubic); |
- patch.getLeftPoints(pts); |
- matrix->mapPoints(pts, 4); |
- SkScalar leftLength = approx_arc_length(pts, 4); |
+ SkPatchUtils::getLeftCubic(cubics, pts); |
+ matrix->mapPoints(pts, kNumPtsCubic); |
+ SkScalar leftLength = approx_arc_length(pts, kNumPtsCubic); |
- patch.getRightPoints(pts); |
- matrix->mapPoints(pts, 4); |
- SkScalar rightLength = approx_arc_length(pts, 4); |
+ SkPatchUtils::getRightCubic(cubics, pts); |
+ matrix->mapPoints(pts, kNumPtsCubic); |
+ SkScalar rightLength = approx_arc_length(pts, kNumPtsCubic); |
// Level of detail per axis, based on the larger side between top and bottom or left and right |
int lodX = static_cast<int>(SkMaxScalar(topLength, bottomLength) / kPartitionSize); |
int lodY = static_cast<int>(SkMaxScalar(leftLength, rightLength) / kPartitionSize); |
- return SkISize::Make(SkMax32(4, lodX), SkMax32(4, lodY)); |
+ return SkISize::Make(SkMax32(8, lodX), SkMax32(8, lodY)); |
+} |
+ |
+void SkPatchUtils::getTopCubic(const SkPoint cubics[12], SkPoint points[4]) { |
+ points[0] = cubics[kTopP0_CubicCtrlPts]; |
+ points[1] = cubics[kTopP1_CubicCtrlPts]; |
+ points[2] = cubics[kTopP2_CubicCtrlPts]; |
+ points[3] = cubics[kTopP3_CubicCtrlPts]; |
+} |
+ |
+void SkPatchUtils::getBottomCubic(const SkPoint cubics[12], SkPoint points[4]) { |
+ points[0] = cubics[kBottomP0_CubicCtrlPts]; |
+ points[1] = cubics[kBottomP1_CubicCtrlPts]; |
+ points[2] = cubics[kBottomP2_CubicCtrlPts]; |
+ points[3] = cubics[kBottomP3_CubicCtrlPts]; |
+} |
+ |
+void SkPatchUtils::getLeftCubic(const SkPoint cubics[12], SkPoint points[4]) { |
+ points[0] = cubics[kLeftP0_CubicCtrlPts]; |
+ points[1] = cubics[kLeftP1_CubicCtrlPts]; |
+ points[2] = cubics[kLeftP2_CubicCtrlPts]; |
+ points[3] = cubics[kLeftP3_CubicCtrlPts]; |
+} |
+ |
+void SkPatchUtils::getRightCubic(const SkPoint cubics[12], SkPoint points[4]) { |
+ points[0] = cubics[kRightP0_CubicCtrlPts]; |
+ points[1] = cubics[kRightP1_CubicCtrlPts]; |
+ points[2] = cubics[kRightP2_CubicCtrlPts]; |
+ points[3] = cubics[kRightP3_CubicCtrlPts]; |
+} |
+ |
+bool SkPatchUtils::getVertexData(SkPatchUtils::VertexData* data, const SkPoint cubics[12], |
+ const SkColor colors[4], const SkPoint texCoords[4], int lodX, int lodY) { |
+ if (lodX < 1 || lodY < 1 || NULL == cubics || NULL == data) { |
+ return false; |
+ } |
+ |
+ // number of indices is limited by size of uint16_t, so we clamp it to avoid overflow |
+ data->fVertexCount = SkMin32((lodX + 1) * (lodY + 1), 65536); |
+ lodX = SkMin32(lodX, 255); |
+ lodY = SkMin32(lodY, 255); |
+ data->fIndexCount = lodX * lodY * 6; |
+ |
+ data->fPoints = SkNEW_ARRAY(SkPoint, data->fVertexCount); |
+ data->fIndices = SkNEW_ARRAY(uint16_t, data->fIndexCount); |
+ |
+ // if colors is not null then create array for colors |
+ SkPMColor colorsPM[kNumCorners]; |
+ if (NULL != colors) { |
+ // premultiply colors to avoid color bleeding. |
+ for (int i = 0; i < kNumCorners; i++) { |
+ colorsPM[i] = SkPreMultiplyColor(colors[i]); |
+ } |
+ data->fColors = SkNEW_ARRAY(uint32_t, data->fVertexCount); |
+ } |
+ |
+ // if texture coordinates are not null then create array for them |
+ if (NULL != texCoords) { |
+ data->fTexCoords = SkNEW_ARRAY(SkPoint, data->fVertexCount); |
+ } |
+ |
+ SkPoint pts[kNumPtsCubic]; |
+ SkPatchUtils::getBottomCubic(cubics, pts); |
+ FwDCubicEvaluator fBottom(pts); |
+ SkPatchUtils::getTopCubic(cubics, pts); |
+ FwDCubicEvaluator fTop(pts); |
+ SkPatchUtils::getLeftCubic(cubics, pts); |
+ FwDCubicEvaluator fLeft(pts); |
+ SkPatchUtils::getRightCubic(cubics, pts); |
+ FwDCubicEvaluator fRight(pts); |
+ |
+ fBottom.restart(lodX); |
+ fTop.restart(lodX); |
+ |
+ SkScalar u = 0.0f; |
+ int stride = lodY + 1; |
+ for (int x = 0; x <= lodX; x++) { |
+ SkPoint bottom = fBottom.next(), top = fTop.next(); |
+ fLeft.restart(lodY); |
+ fRight.restart(lodY); |
+ SkScalar v = 0.f; |
+ for (int y = 0; y <= lodY; y++) { |
+ int dataIndex = x * (lodY + 1) + y; |
+ |
+ SkPoint left = fLeft.next(), right = fRight.next(); |
+ |
+ SkPoint s0 = SkPoint::Make((1.0f - v) * top.x() + v * bottom.x(), |
+ (1.0f - v) * top.y() + v * bottom.y()); |
+ SkPoint s1 = SkPoint::Make((1.0f - u) * left.x() + u * right.x(), |
+ (1.0f - u) * left.y() + u * right.y()); |
+ SkPoint s2 = SkPoint::Make( |
+ (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].x() |
+ + u * fTop.getCtrlPoints()[3].x()) |
+ + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].x() |
+ + u * fBottom.getCtrlPoints()[3].x()), |
+ (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].y() |
+ + u * fTop.getCtrlPoints()[3].y()) |
+ + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].y() |
+ + u * fBottom.getCtrlPoints()[3].y())); |
+ data->fPoints[dataIndex] = s0 + s1 - s2; |
+ |
+ if (NULL != colors) { |
+ uint8_t a = uint8_t(bilerp(u, v, |
+ SkScalar(SkColorGetA(colorsPM[kTopLeft_Corner])), |
+ SkScalar(SkColorGetA(colorsPM[kTopRight_Corner])), |
+ SkScalar(SkColorGetA(colorsPM[kBottomLeft_Corner])), |
+ SkScalar(SkColorGetA(colorsPM[kBottomRight_Corner])))); |
+ uint8_t r = uint8_t(bilerp(u, v, |
+ SkScalar(SkColorGetR(colorsPM[kTopLeft_Corner])), |
+ SkScalar(SkColorGetR(colorsPM[kTopRight_Corner])), |
+ SkScalar(SkColorGetR(colorsPM[kBottomLeft_Corner])), |
+ SkScalar(SkColorGetR(colorsPM[kBottomRight_Corner])))); |
+ uint8_t g = uint8_t(bilerp(u, v, |
+ SkScalar(SkColorGetG(colorsPM[kTopLeft_Corner])), |
+ SkScalar(SkColorGetG(colorsPM[kTopRight_Corner])), |
+ SkScalar(SkColorGetG(colorsPM[kBottomLeft_Corner])), |
+ SkScalar(SkColorGetG(colorsPM[kBottomRight_Corner])))); |
+ uint8_t b = uint8_t(bilerp(u, v, |
+ SkScalar(SkColorGetB(colorsPM[kTopLeft_Corner])), |
+ SkScalar(SkColorGetB(colorsPM[kTopRight_Corner])), |
+ SkScalar(SkColorGetB(colorsPM[kBottomLeft_Corner])), |
+ SkScalar(SkColorGetB(colorsPM[kBottomRight_Corner])))); |
+ data->fColors[dataIndex] = SkPackARGB32(a,r,g,b); |
+ } |
+ |
+ if (NULL != texCoords) { |
+ data->fTexCoords[dataIndex] = SkPoint::Make( |
+ bilerp(u, v, texCoords[kTopLeft_Corner].x(), |
+ texCoords[kTopRight_Corner].x(), |
+ texCoords[kBottomLeft_Corner].x(), |
+ texCoords[kBottomRight_Corner].x()), |
+ bilerp(u, v, texCoords[kTopLeft_Corner].y(), |
+ texCoords[kTopRight_Corner].y(), |
+ texCoords[kBottomLeft_Corner].y(), |
+ texCoords[kBottomRight_Corner].y())); |
+ |
+ } |
+ |
+ if(x < lodX && y < lodY) { |
+ int i = 6 * (x * lodY + y); |
+ data->fIndices[i] = x * stride + y; |
+ data->fIndices[i + 1] = x * stride + 1 + y; |
+ data->fIndices[i + 2] = (x + 1) * stride + 1 + y; |
+ data->fIndices[i + 3] = data->fIndices[i]; |
+ data->fIndices[i + 4] = data->fIndices[i + 2]; |
+ data->fIndices[i + 5] = (x + 1) * stride + y; |
+ } |
+ v = SkScalarClampMax(v + 1.f / lodY, 1); |
+ } |
+ u = SkScalarClampMax(u + 1.f / lodX, 1); |
+ } |
+ return true; |
+ |
} |