| Index: src/utils/SkPatchUtils.cpp
|
| diff --git a/src/utils/SkPatchUtils.cpp b/src/utils/SkPatchUtils.cpp
|
| index ab15290a346c7e046fdd4e6b64b888a628c73d3c..d12019551da52b91c948becb7a939306171aba1d 100644
|
| --- a/src/utils/SkPatchUtils.cpp
|
| +++ b/src/utils/SkPatchUtils.cpp
|
| @@ -7,8 +7,121 @@
|
|
|
| #include "SkPatchUtils.h"
|
|
|
| +#include "SkColorPriv.h"
|
| +#include "SkGeometry.h"
|
| +
|
| +/**
|
| + * Evaluator to sample the values of a cubic bezier using forward differences.
|
| + * Forward differences is a method for evaluating a nth degree polynomial at a uniform step by only
|
| + * adding precalculated values.
|
| + * For a linear example we have the function f(t) = m*t+b, then the value of that function at t+h
|
| + * would be f(t+h) = m*(t+h)+b. If we want to know the uniform step that we must add to the first
|
| + * evaluation f(t) then we need to substract f(t+h) - f(t) = m*t + m*h + b - m*t + b = mh. After
|
| + * obtaining this value (mh) we could just add this constant step to our first sampled point
|
| + * to compute the next one.
|
| + *
|
| + * For the cubic case the first difference gives as a result a quadratic polynomial to which we can
|
| + * apply again forward differences and get linear function to which we can apply again forward
|
| + * differences to get a constant difference. This is why we keep an array of size 4, the 0th
|
| + * position keeps the sampled value while the next ones keep the quadratic, linear and constant
|
| + * difference values.
|
| + */
|
| +
|
| +class FwDCubicEvaluator {
|
| +
|
| +public:
|
| + FwDCubicEvaluator()
|
| + : fMax(0)
|
| + , fCurrent(0)
|
| + , fDivisions(0) {
|
| + memset(fPoints, 0, 4 * sizeof(SkPoint));
|
| + memset(fPoints, 0, 4 * sizeof(SkPoint));
|
| + memset(fPoints, 0, 4 * sizeof(SkPoint));
|
| + }
|
| +
|
| + /**
|
| + * Receives the 4 control points of the cubic bezier.
|
| + */
|
| + FwDCubicEvaluator(SkPoint a, SkPoint b, SkPoint c, SkPoint d) {
|
| + fPoints[0] = a;
|
| + fPoints[1] = b;
|
| + fPoints[2] = c;
|
| + fPoints[3] = d;
|
| +
|
| + SkScalar cx[4], cy[4];
|
| + SkGetCubicCoeff(fPoints, cx, cy);
|
| + fCoefs[0].set(cx[0], cy[0]);
|
| + fCoefs[1].set(cx[1], cy[1]);
|
| + fCoefs[2].set(cx[2], cy[2]);
|
| + fCoefs[3].set(cx[3], cy[3]);
|
| +
|
| + this->restart(1);
|
| + }
|
| +
|
| + explicit FwDCubicEvaluator(const SkPoint points[4]) {
|
| + memcpy(fPoints, points, 4 * sizeof(SkPoint));
|
| +
|
| + SkScalar cx[4], cy[4];
|
| + SkGetCubicCoeff(fPoints, cx, cy);
|
| + fCoefs[0].set(cx[0], cy[0]);
|
| + fCoefs[1].set(cx[1], cy[1]);
|
| + fCoefs[2].set(cx[2], cy[2]);
|
| + fCoefs[3].set(cx[3], cy[3]);
|
| +
|
| + this->restart(1);
|
| + }
|
| +
|
| + /**
|
| + * Restarts the forward differences evaluator to the first value of t = 0.
|
| + */
|
| + void restart(int divisions) {
|
| + fDivisions = divisions;
|
| + SkScalar h = 1.f / fDivisions;
|
| + fCurrent = 0;
|
| + fMax = fDivisions + 1;
|
| + fFwDiff[0] = fCoefs[3];
|
| + SkScalar h2 = h * h;
|
| + SkScalar h3 = h2 * h;
|
| +
|
| + fFwDiff[3].set(6.f * fCoefs[0].x() * h3, 6.f * fCoefs[0].y() * h3); //6ah^3
|
| + fFwDiff[2].set(fFwDiff[3].x() + 2.f * fCoefs[1].x() * h2, //6ah^3 + 2bh^2
|
| + fFwDiff[3].y() + 2.f * fCoefs[1].y() * h2);
|
| + fFwDiff[1].set(fCoefs[0].x() * h3 + fCoefs[1].x() * h2 + fCoefs[2].x() * h,//ah^3 + bh^2 +ch
|
| + fCoefs[0].y() * h3 + fCoefs[1].y() * h2 + fCoefs[2].y() * h);
|
| + }
|
| +
|
| + /**
|
| + * Check if the evaluator is still within the range of 0<=t<=1
|
| + */
|
| + bool done() const {
|
| + return fCurrent > fMax;
|
| + }
|
| +
|
| + /**
|
| + * Call next to obtain the SkPoint sampled and move to the next one.
|
| + */
|
| + SkPoint next() {
|
| + SkPoint point = fFwDiff[0];
|
| + fFwDiff[0] += fFwDiff[1];
|
| + fFwDiff[1] += fFwDiff[2];
|
| + fFwDiff[2] += fFwDiff[3];
|
| + fCurrent++;
|
| + return point;
|
| + }
|
| +
|
| + const SkPoint* getCtrlPoints() const {
|
| + return fPoints;
|
| + }
|
| +
|
| +private:
|
| + int fMax, fCurrent, fDivisions;
|
| + SkPoint fFwDiff[4], fCoefs[4], fPoints[4];
|
| +};
|
| +
|
| +////////////////////////////////////////////////////////////////////////////////
|
| +
|
| // size in pixels of each partition per axis, adjust this knob
|
| -static const int kPartitionSize = 15;
|
| +static const int kPartitionSize = 10;
|
|
|
| /**
|
| * Calculate the approximate arc length given a bezier curve's control points.
|
| @@ -24,32 +137,188 @@ static SkScalar approx_arc_length(SkPoint* points, int count) {
|
| return arcLength;
|
| }
|
|
|
| -SkISize SkPatchUtils::GetLevelOfDetail(const SkPatch& patch, const SkMatrix* matrix) {
|
| -
|
| - SkPoint mapPts[12];
|
| - matrix->mapPoints(mapPts, patch.getControlPoints(), 12);
|
| +static SkScalar bilerp(SkScalar tx, SkScalar ty, SkScalar c00, SkScalar c10, SkScalar c01,
|
| + SkScalar c11) {
|
| + SkScalar a = c00 * (1.f - tx) + c10 * tx;
|
| + SkScalar b = c01 * (1.f - tx) + c11 * tx;
|
| + return a * (1.f - ty) + b * ty;
|
| +}
|
| +
|
| +SkISize SkPatchUtils::GetLevelOfDetail(const SkPoint cubics[12], const SkMatrix* matrix) {
|
|
|
| // Approximate length of each cubic.
|
| - SkPoint pts[4];
|
| - patch.getTopPoints(pts);
|
| - matrix->mapPoints(pts, 4);
|
| - SkScalar topLength = approx_arc_length(pts, 4);
|
| + SkPoint pts[kNumPtsCubic];
|
| + SkPatchUtils::getTopCubic(cubics, pts);
|
| + matrix->mapPoints(pts, kNumPtsCubic);
|
| + SkScalar topLength = approx_arc_length(pts, kNumPtsCubic);
|
|
|
| - patch.getBottomPoints(pts);
|
| - matrix->mapPoints(pts, 4);
|
| - SkScalar bottomLength = approx_arc_length(pts, 4);
|
| + SkPatchUtils::getBottomCubic(cubics, pts);
|
| + matrix->mapPoints(pts, kNumPtsCubic);
|
| + SkScalar bottomLength = approx_arc_length(pts, kNumPtsCubic);
|
|
|
| - patch.getLeftPoints(pts);
|
| - matrix->mapPoints(pts, 4);
|
| - SkScalar leftLength = approx_arc_length(pts, 4);
|
| + SkPatchUtils::getLeftCubic(cubics, pts);
|
| + matrix->mapPoints(pts, kNumPtsCubic);
|
| + SkScalar leftLength = approx_arc_length(pts, kNumPtsCubic);
|
|
|
| - patch.getRightPoints(pts);
|
| - matrix->mapPoints(pts, 4);
|
| - SkScalar rightLength = approx_arc_length(pts, 4);
|
| + SkPatchUtils::getRightCubic(cubics, pts);
|
| + matrix->mapPoints(pts, kNumPtsCubic);
|
| + SkScalar rightLength = approx_arc_length(pts, kNumPtsCubic);
|
|
|
| // Level of detail per axis, based on the larger side between top and bottom or left and right
|
| int lodX = static_cast<int>(SkMaxScalar(topLength, bottomLength) / kPartitionSize);
|
| int lodY = static_cast<int>(SkMaxScalar(leftLength, rightLength) / kPartitionSize);
|
|
|
| - return SkISize::Make(SkMax32(4, lodX), SkMax32(4, lodY));
|
| + return SkISize::Make(SkMax32(8, lodX), SkMax32(8, lodY));
|
| +}
|
| +
|
| +void SkPatchUtils::getTopCubic(const SkPoint cubics[12], SkPoint points[4]) {
|
| + points[0] = cubics[kTopP0_CubicCtrlPts];
|
| + points[1] = cubics[kTopP1_CubicCtrlPts];
|
| + points[2] = cubics[kTopP2_CubicCtrlPts];
|
| + points[3] = cubics[kTopP3_CubicCtrlPts];
|
| +}
|
| +
|
| +void SkPatchUtils::getBottomCubic(const SkPoint cubics[12], SkPoint points[4]) {
|
| + points[0] = cubics[kBottomP0_CubicCtrlPts];
|
| + points[1] = cubics[kBottomP1_CubicCtrlPts];
|
| + points[2] = cubics[kBottomP2_CubicCtrlPts];
|
| + points[3] = cubics[kBottomP3_CubicCtrlPts];
|
| +}
|
| +
|
| +void SkPatchUtils::getLeftCubic(const SkPoint cubics[12], SkPoint points[4]) {
|
| + points[0] = cubics[kLeftP0_CubicCtrlPts];
|
| + points[1] = cubics[kLeftP1_CubicCtrlPts];
|
| + points[2] = cubics[kLeftP2_CubicCtrlPts];
|
| + points[3] = cubics[kLeftP3_CubicCtrlPts];
|
| +}
|
| +
|
| +void SkPatchUtils::getRightCubic(const SkPoint cubics[12], SkPoint points[4]) {
|
| + points[0] = cubics[kRightP0_CubicCtrlPts];
|
| + points[1] = cubics[kRightP1_CubicCtrlPts];
|
| + points[2] = cubics[kRightP2_CubicCtrlPts];
|
| + points[3] = cubics[kRightP3_CubicCtrlPts];
|
| +}
|
| +
|
| +bool SkPatchUtils::getVertexData(SkPatchUtils::VertexData* data, const SkPoint cubics[12],
|
| + const SkColor colors[4], const SkPoint texCoords[4], int lodX, int lodY) {
|
| + if (lodX < 1 || lodY < 1 || NULL == cubics || NULL == data) {
|
| + return false;
|
| + }
|
| +
|
| + // number of indices is limited by size of uint16_t, so we clamp it to avoid overflow
|
| + data->fVertexCount = SkMin32((lodX + 1) * (lodY + 1), 65536);
|
| + lodX = SkMin32(lodX, 255);
|
| + lodY = SkMin32(lodY, 255);
|
| + data->fIndexCount = lodX * lodY * 6;
|
| +
|
| + data->fPoints = SkNEW_ARRAY(SkPoint, data->fVertexCount);
|
| + data->fIndices = SkNEW_ARRAY(uint16_t, data->fIndexCount);
|
| +
|
| + // if colors is not null then create array for colors
|
| + SkPMColor colorsPM[kNumCorners];
|
| + if (NULL != colors) {
|
| + // premultiply colors to avoid color bleeding.
|
| + for (int i = 0; i < kNumCorners; i++) {
|
| + colorsPM[i] = SkPreMultiplyColor(colors[i]);
|
| + }
|
| + data->fColors = SkNEW_ARRAY(uint32_t, data->fVertexCount);
|
| + }
|
| +
|
| + // if texture coordinates are not null then create array for them
|
| + if (NULL != texCoords) {
|
| + data->fTexCoords = SkNEW_ARRAY(SkPoint, data->fVertexCount);
|
| + }
|
| +
|
| + SkPoint pts[kNumPtsCubic];
|
| + SkPatchUtils::getBottomCubic(cubics, pts);
|
| + FwDCubicEvaluator fBottom(pts);
|
| + SkPatchUtils::getTopCubic(cubics, pts);
|
| + FwDCubicEvaluator fTop(pts);
|
| + SkPatchUtils::getLeftCubic(cubics, pts);
|
| + FwDCubicEvaluator fLeft(pts);
|
| + SkPatchUtils::getRightCubic(cubics, pts);
|
| + FwDCubicEvaluator fRight(pts);
|
| +
|
| + fBottom.restart(lodX);
|
| + fTop.restart(lodX);
|
| +
|
| + SkScalar u = 0.0f;
|
| + int stride = lodY + 1;
|
| + for (int x = 0; x <= lodX; x++) {
|
| + SkPoint bottom = fBottom.next(), top = fTop.next();
|
| + fLeft.restart(lodY);
|
| + fRight.restart(lodY);
|
| + SkScalar v = 0.f;
|
| + for (int y = 0; y <= lodY; y++) {
|
| + int dataIndex = x * (lodY + 1) + y;
|
| +
|
| + SkPoint left = fLeft.next(), right = fRight.next();
|
| +
|
| + SkPoint s0 = SkPoint::Make((1.0f - v) * top.x() + v * bottom.x(),
|
| + (1.0f - v) * top.y() + v * bottom.y());
|
| + SkPoint s1 = SkPoint::Make((1.0f - u) * left.x() + u * right.x(),
|
| + (1.0f - u) * left.y() + u * right.y());
|
| + SkPoint s2 = SkPoint::Make(
|
| + (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].x()
|
| + + u * fTop.getCtrlPoints()[3].x())
|
| + + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].x()
|
| + + u * fBottom.getCtrlPoints()[3].x()),
|
| + (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].y()
|
| + + u * fTop.getCtrlPoints()[3].y())
|
| + + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].y()
|
| + + u * fBottom.getCtrlPoints()[3].y()));
|
| + data->fPoints[dataIndex] = s0 + s1 - s2;
|
| +
|
| + if (NULL != colors) {
|
| + uint8_t a = uint8_t(bilerp(u, v,
|
| + SkScalar(SkColorGetA(colorsPM[kTopLeft_Corner])),
|
| + SkScalar(SkColorGetA(colorsPM[kTopRight_Corner])),
|
| + SkScalar(SkColorGetA(colorsPM[kBottomLeft_Corner])),
|
| + SkScalar(SkColorGetA(colorsPM[kBottomRight_Corner]))));
|
| + uint8_t r = uint8_t(bilerp(u, v,
|
| + SkScalar(SkColorGetR(colorsPM[kTopLeft_Corner])),
|
| + SkScalar(SkColorGetR(colorsPM[kTopRight_Corner])),
|
| + SkScalar(SkColorGetR(colorsPM[kBottomLeft_Corner])),
|
| + SkScalar(SkColorGetR(colorsPM[kBottomRight_Corner]))));
|
| + uint8_t g = uint8_t(bilerp(u, v,
|
| + SkScalar(SkColorGetG(colorsPM[kTopLeft_Corner])),
|
| + SkScalar(SkColorGetG(colorsPM[kTopRight_Corner])),
|
| + SkScalar(SkColorGetG(colorsPM[kBottomLeft_Corner])),
|
| + SkScalar(SkColorGetG(colorsPM[kBottomRight_Corner]))));
|
| + uint8_t b = uint8_t(bilerp(u, v,
|
| + SkScalar(SkColorGetB(colorsPM[kTopLeft_Corner])),
|
| + SkScalar(SkColorGetB(colorsPM[kTopRight_Corner])),
|
| + SkScalar(SkColorGetB(colorsPM[kBottomLeft_Corner])),
|
| + SkScalar(SkColorGetB(colorsPM[kBottomRight_Corner]))));
|
| + data->fColors[dataIndex] = SkPackARGB32(a,r,g,b);
|
| + }
|
| +
|
| + if (NULL != texCoords) {
|
| + data->fTexCoords[dataIndex] = SkPoint::Make(
|
| + bilerp(u, v, texCoords[kTopLeft_Corner].x(),
|
| + texCoords[kTopRight_Corner].x(),
|
| + texCoords[kBottomLeft_Corner].x(),
|
| + texCoords[kBottomRight_Corner].x()),
|
| + bilerp(u, v, texCoords[kTopLeft_Corner].y(),
|
| + texCoords[kTopRight_Corner].y(),
|
| + texCoords[kBottomLeft_Corner].y(),
|
| + texCoords[kBottomRight_Corner].y()));
|
| +
|
| + }
|
| +
|
| + if(x < lodX && y < lodY) {
|
| + int i = 6 * (x * lodY + y);
|
| + data->fIndices[i] = x * stride + y;
|
| + data->fIndices[i + 1] = x * stride + 1 + y;
|
| + data->fIndices[i + 2] = (x + 1) * stride + 1 + y;
|
| + data->fIndices[i + 3] = data->fIndices[i];
|
| + data->fIndices[i + 4] = data->fIndices[i + 2];
|
| + data->fIndices[i + 5] = (x + 1) * stride + y;
|
| + }
|
| + v = SkScalarClampMax(v + 1.f / lodY, 1);
|
| + }
|
| + u = SkScalarClampMax(u + 1.f / lodX, 1);
|
| + }
|
| + return true;
|
| +
|
| }
|
|
|