Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(500)

Side by Side Diff: src/utils/SkPatchUtils.cpp

Issue 463493002: SkCanvas::drawPatch param SkPoint[12] (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: Removed GPU headers from GM Created 6 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « src/utils/SkPatchUtils.h ('k') | src/utils/SkProxyCanvas.cpp » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 /* 1 /*
2 * Copyright 2014 Google Inc. 2 * Copyright 2014 Google Inc.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license that can be 4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file. 5 * found in the LICENSE file.
6 */ 6 */
7 7
8 #include "SkPatchUtils.h" 8 #include "SkPatchUtils.h"
9 9
10 #include "SkColorPriv.h"
11 #include "SkGeometry.h"
12
13 /**
14 * Evaluator to sample the values of a cubic bezier using forward differences.
15 * Forward differences is a method for evaluating a nth degree polynomial at a u niform step by only
16 * adding precalculated values.
17 * For a linear example we have the function f(t) = m*t+b, then the value of tha t function at t+h
18 * would be f(t+h) = m*(t+h)+b. If we want to know the uniform step that we must add to the first
19 * evaluation f(t) then we need to substract f(t+h) - f(t) = m*t + m*h + b - m*t + b = mh. After
20 * obtaining this value (mh) we could just add this constant step to our first s ampled point
21 * to compute the next one.
22 *
23 * For the cubic case the first difference gives as a result a quadratic polynom ial to which we can
24 * apply again forward differences and get linear function to which we can apply again forward
25 * differences to get a constant difference. This is why we keep an array of siz e 4, the 0th
26 * position keeps the sampled value while the next ones keep the quadratic, line ar and constant
27 * difference values.
28 */
29
30 class FwDCubicEvaluator {
31
32 public:
33 FwDCubicEvaluator()
34 : fMax(0)
35 , fCurrent(0)
36 , fDivisions(0) {
37 memset(fPoints, 0, 4 * sizeof(SkPoint));
38 memset(fPoints, 0, 4 * sizeof(SkPoint));
39 memset(fPoints, 0, 4 * sizeof(SkPoint));
40 }
41
42 /**
43 * Receives the 4 control points of the cubic bezier.
44 */
45 FwDCubicEvaluator(SkPoint a, SkPoint b, SkPoint c, SkPoint d) {
46 fPoints[0] = a;
47 fPoints[1] = b;
48 fPoints[2] = c;
49 fPoints[3] = d;
50
51 SkScalar cx[4], cy[4];
52 SkGetCubicCoeff(fPoints, cx, cy);
53 fCoefs[0].set(cx[0], cy[0]);
54 fCoefs[1].set(cx[1], cy[1]);
55 fCoefs[2].set(cx[2], cy[2]);
56 fCoefs[3].set(cx[3], cy[3]);
57
58 this->restart(1);
59 }
60
61 explicit FwDCubicEvaluator(const SkPoint points[4]) {
62 memcpy(fPoints, points, 4 * sizeof(SkPoint));
63
64 SkScalar cx[4], cy[4];
65 SkGetCubicCoeff(fPoints, cx, cy);
66 fCoefs[0].set(cx[0], cy[0]);
67 fCoefs[1].set(cx[1], cy[1]);
68 fCoefs[2].set(cx[2], cy[2]);
69 fCoefs[3].set(cx[3], cy[3]);
70
71 this->restart(1);
72 }
73
74 /**
75 * Restarts the forward differences evaluator to the first value of t = 0.
76 */
77 void restart(int divisions) {
78 fDivisions = divisions;
79 SkScalar h = 1.f / fDivisions;
80 fCurrent = 0;
81 fMax = fDivisions + 1;
82 fFwDiff[0] = fCoefs[3];
83 SkScalar h2 = h * h;
84 SkScalar h3 = h2 * h;
85
86 fFwDiff[3].set(6.f * fCoefs[0].x() * h3, 6.f * fCoefs[0].y() * h3); //6a h^3
87 fFwDiff[2].set(fFwDiff[3].x() + 2.f * fCoefs[1].x() * h2, //6ah^3 + 2bh^ 2
88 fFwDiff[3].y() + 2.f * fCoefs[1].y() * h2);
89 fFwDiff[1].set(fCoefs[0].x() * h3 + fCoefs[1].x() * h2 + fCoefs[2].x() * h,//ah^3 + bh^2 +ch
90 fCoefs[0].y() * h3 + fCoefs[1].y() * h2 + fCoefs[2].y() * h);
91 }
92
93 /**
94 * Check if the evaluator is still within the range of 0<=t<=1
95 */
96 bool done() const {
97 return fCurrent > fMax;
98 }
99
100 /**
101 * Call next to obtain the SkPoint sampled and move to the next one.
102 */
103 SkPoint next() {
104 SkPoint point = fFwDiff[0];
105 fFwDiff[0] += fFwDiff[1];
106 fFwDiff[1] += fFwDiff[2];
107 fFwDiff[2] += fFwDiff[3];
108 fCurrent++;
109 return point;
110 }
111
112 const SkPoint* getCtrlPoints() const {
113 return fPoints;
114 }
115
116 private:
117 int fMax, fCurrent, fDivisions;
118 SkPoint fFwDiff[4], fCoefs[4], fPoints[4];
119 };
120
121 ////////////////////////////////////////////////////////////////////////////////
122
10 // size in pixels of each partition per axis, adjust this knob 123 // size in pixels of each partition per axis, adjust this knob
11 static const int kPartitionSize = 15; 124 static const int kPartitionSize = 10;
12 125
13 /** 126 /**
14 * Calculate the approximate arc length given a bezier curve's control points. 127 * Calculate the approximate arc length given a bezier curve's control points.
15 */ 128 */
16 static SkScalar approx_arc_length(SkPoint* points, int count) { 129 static SkScalar approx_arc_length(SkPoint* points, int count) {
17 if (count < 2) { 130 if (count < 2) {
18 return 0; 131 return 0;
19 } 132 }
20 SkScalar arcLength = 0; 133 SkScalar arcLength = 0;
21 for (int i = 0; i < count - 1; i++) { 134 for (int i = 0; i < count - 1; i++) {
22 arcLength += SkPoint::Distance(points[i], points[i + 1]); 135 arcLength += SkPoint::Distance(points[i], points[i + 1]);
23 } 136 }
24 return arcLength; 137 return arcLength;
25 } 138 }
26 139
27 SkISize SkPatchUtils::GetLevelOfDetail(const SkPatch& patch, const SkMatrix* mat rix) { 140 static SkScalar bilerp(SkScalar tx, SkScalar ty, SkScalar c00, SkScalar c10, SkS calar c01,
28 141 SkScalar c11) {
29 SkPoint mapPts[12]; 142 SkScalar a = c00 * (1.f - tx) + c10 * tx;
30 matrix->mapPoints(mapPts, patch.getControlPoints(), 12); 143 SkScalar b = c01 * (1.f - tx) + c11 * tx;
144 return a * (1.f - ty) + b * ty;
145 }
146
147 SkISize SkPatchUtils::GetLevelOfDetail(const SkPoint cubics[12], const SkMatrix* matrix) {
31 148
32 // Approximate length of each cubic. 149 // Approximate length of each cubic.
33 SkPoint pts[4]; 150 SkPoint pts[kNumPtsCubic];
34 patch.getTopPoints(pts); 151 SkPatchUtils::getTopCubic(cubics, pts);
35 matrix->mapPoints(pts, 4); 152 matrix->mapPoints(pts, kNumPtsCubic);
36 SkScalar topLength = approx_arc_length(pts, 4); 153 SkScalar topLength = approx_arc_length(pts, kNumPtsCubic);
37 154
38 patch.getBottomPoints(pts); 155 SkPatchUtils::getBottomCubic(cubics, pts);
39 matrix->mapPoints(pts, 4); 156 matrix->mapPoints(pts, kNumPtsCubic);
40 SkScalar bottomLength = approx_arc_length(pts, 4); 157 SkScalar bottomLength = approx_arc_length(pts, kNumPtsCubic);
41 158
42 patch.getLeftPoints(pts); 159 SkPatchUtils::getLeftCubic(cubics, pts);
43 matrix->mapPoints(pts, 4); 160 matrix->mapPoints(pts, kNumPtsCubic);
44 SkScalar leftLength = approx_arc_length(pts, 4); 161 SkScalar leftLength = approx_arc_length(pts, kNumPtsCubic);
45 162
46 patch.getRightPoints(pts); 163 SkPatchUtils::getRightCubic(cubics, pts);
47 matrix->mapPoints(pts, 4); 164 matrix->mapPoints(pts, kNumPtsCubic);
48 SkScalar rightLength = approx_arc_length(pts, 4); 165 SkScalar rightLength = approx_arc_length(pts, kNumPtsCubic);
49 166
50 // Level of detail per axis, based on the larger side between top and bottom or left and right 167 // Level of detail per axis, based on the larger side between top and bottom or left and right
51 int lodX = static_cast<int>(SkMaxScalar(topLength, bottomLength) / kPartitio nSize); 168 int lodX = static_cast<int>(SkMaxScalar(topLength, bottomLength) / kPartitio nSize);
52 int lodY = static_cast<int>(SkMaxScalar(leftLength, rightLength) / kPartitio nSize); 169 int lodY = static_cast<int>(SkMaxScalar(leftLength, rightLength) / kPartitio nSize);
53 170
54 return SkISize::Make(SkMax32(4, lodX), SkMax32(4, lodY)); 171 return SkISize::Make(SkMax32(8, lodX), SkMax32(8, lodY));
55 } 172 }
173
174 void SkPatchUtils::getTopCubic(const SkPoint cubics[12], SkPoint points[4]) {
175 points[0] = cubics[kTopP0_CubicCtrlPts];
176 points[1] = cubics[kTopP1_CubicCtrlPts];
177 points[2] = cubics[kTopP2_CubicCtrlPts];
178 points[3] = cubics[kTopP3_CubicCtrlPts];
179 }
180
181 void SkPatchUtils::getBottomCubic(const SkPoint cubics[12], SkPoint points[4]) {
182 points[0] = cubics[kBottomP0_CubicCtrlPts];
183 points[1] = cubics[kBottomP1_CubicCtrlPts];
184 points[2] = cubics[kBottomP2_CubicCtrlPts];
185 points[3] = cubics[kBottomP3_CubicCtrlPts];
186 }
187
188 void SkPatchUtils::getLeftCubic(const SkPoint cubics[12], SkPoint points[4]) {
189 points[0] = cubics[kLeftP0_CubicCtrlPts];
190 points[1] = cubics[kLeftP1_CubicCtrlPts];
191 points[2] = cubics[kLeftP2_CubicCtrlPts];
192 points[3] = cubics[kLeftP3_CubicCtrlPts];
193 }
194
195 void SkPatchUtils::getRightCubic(const SkPoint cubics[12], SkPoint points[4]) {
196 points[0] = cubics[kRightP0_CubicCtrlPts];
197 points[1] = cubics[kRightP1_CubicCtrlPts];
198 points[2] = cubics[kRightP2_CubicCtrlPts];
199 points[3] = cubics[kRightP3_CubicCtrlPts];
200 }
201
202 bool SkPatchUtils::getVertexData(SkPatchUtils::VertexData* data, const SkPoint c ubics[12],
203 const SkColor colors[4], const SkPoint texCoords[4], int lodX , int lodY) {
204 if (lodX < 1 || lodY < 1 || NULL == cubics || NULL == data) {
205 return false;
206 }
207
208 // number of indices is limited by size of uint16_t, so we clamp it to avoid overflow
209 data->fVertexCount = SkMin32((lodX + 1) * (lodY + 1), 65536);
210 lodX = SkMin32(lodX, 255);
211 lodY = SkMin32(lodY, 255);
212 data->fIndexCount = lodX * lodY * 6;
213
214 data->fPoints = SkNEW_ARRAY(SkPoint, data->fVertexCount);
215 data->fIndices = SkNEW_ARRAY(uint16_t, data->fIndexCount);
216
217 // if colors is not null then create array for colors
218 SkPMColor colorsPM[kNumCorners];
219 if (NULL != colors) {
220 // premultiply colors to avoid color bleeding.
221 for (int i = 0; i < kNumCorners; i++) {
222 colorsPM[i] = SkPreMultiplyColor(colors[i]);
223 }
224 data->fColors = SkNEW_ARRAY(uint32_t, data->fVertexCount);
225 }
226
227 // if texture coordinates are not null then create array for them
228 if (NULL != texCoords) {
229 data->fTexCoords = SkNEW_ARRAY(SkPoint, data->fVertexCount);
230 }
231
232 SkPoint pts[kNumPtsCubic];
233 SkPatchUtils::getBottomCubic(cubics, pts);
234 FwDCubicEvaluator fBottom(pts);
235 SkPatchUtils::getTopCubic(cubics, pts);
236 FwDCubicEvaluator fTop(pts);
237 SkPatchUtils::getLeftCubic(cubics, pts);
238 FwDCubicEvaluator fLeft(pts);
239 SkPatchUtils::getRightCubic(cubics, pts);
240 FwDCubicEvaluator fRight(pts);
241
242 fBottom.restart(lodX);
243 fTop.restart(lodX);
244
245 SkScalar u = 0.0f;
246 int stride = lodY + 1;
247 for (int x = 0; x <= lodX; x++) {
248 SkPoint bottom = fBottom.next(), top = fTop.next();
249 fLeft.restart(lodY);
250 fRight.restart(lodY);
251 SkScalar v = 0.f;
252 for (int y = 0; y <= lodY; y++) {
253 int dataIndex = x * (lodY + 1) + y;
254
255 SkPoint left = fLeft.next(), right = fRight.next();
256
257 SkPoint s0 = SkPoint::Make((1.0f - v) * top.x() + v * bottom.x(),
258 (1.0f - v) * top.y() + v * bottom.y());
259 SkPoint s1 = SkPoint::Make((1.0f - u) * left.x() + u * right.x(),
260 (1.0f - u) * left.y() + u * right.y());
261 SkPoint s2 = SkPoint::Make(
262 (1.0f - v) * ((1.0f - u) * fTop.getCtrlPo ints()[0].x()
263 + u * fTop.getCtrlPoints()[ 3].x())
264 + v * ((1.0f - u) * fBottom.getCtrlPoints ()[0].x()
265 + u * fBottom.getCtrlPoints()[3].x ()),
266 (1.0f - v) * ((1.0f - u) * fTop.getCtrlPo ints()[0].y()
267 + u * fTop.getCtrlPoints()[ 3].y())
268 + v * ((1.0f - u) * fBottom.getCtrlPoints ()[0].y()
269 + u * fBottom.getCtrlPoints()[3].y ()));
270 data->fPoints[dataIndex] = s0 + s1 - s2;
271
272 if (NULL != colors) {
273 uint8_t a = uint8_t(bilerp(u, v,
274 SkScalar(SkColorGetA(colorsPM[kTopLeft_Corner ])),
275 SkScalar(SkColorGetA(colorsPM[kTopRight_Corne r])),
276 SkScalar(SkColorGetA(colorsPM[kBottomLeft_Cor ner])),
277 SkScalar(SkColorGetA(colorsPM[kBottomRight_Co rner]))));
278 uint8_t r = uint8_t(bilerp(u, v,
279 SkScalar(SkColorGetR(colorsPM[kTopLeft_Corner ])),
280 SkScalar(SkColorGetR(colorsPM[kTopRight_Corne r])),
281 SkScalar(SkColorGetR(colorsPM[kBottomLeft_Cor ner])),
282 SkScalar(SkColorGetR(colorsPM[kBottomRight_Co rner]))));
283 uint8_t g = uint8_t(bilerp(u, v,
284 SkScalar(SkColorGetG(colorsPM[kTopLeft_Corner ])),
285 SkScalar(SkColorGetG(colorsPM[kTopRight_Corne r])),
286 SkScalar(SkColorGetG(colorsPM[kBottomLeft_Cor ner])),
287 SkScalar(SkColorGetG(colorsPM[kBottomRight_Co rner]))));
288 uint8_t b = uint8_t(bilerp(u, v,
289 SkScalar(SkColorGetB(colorsPM[kTopLeft_Corner ])),
290 SkScalar(SkColorGetB(colorsPM[kTopRight_Corne r])),
291 SkScalar(SkColorGetB(colorsPM[kBottomLeft_Cor ner])),
292 SkScalar(SkColorGetB(colorsPM[kBottomRight_Co rner]))));
293 data->fColors[dataIndex] = SkPackARGB32(a,r,g,b);
294 }
295
296 if (NULL != texCoords) {
297 data->fTexCoords[dataIndex] = SkPoint::Make(
298 bilerp(u, v, texCoords[kTopLeft_Corn er].x(),
299 texCoords[kTopRight_Corner].x (),
300 texCoords[kBottomLeft_Corner] .x(),
301 texCoords[kBottomRight_Corner ].x()),
302 bilerp(u, v, texCoords[kTopLeft_Corn er].y(),
303 texCoords[kTopRight_Corner].y (),
304 texCoords[kBottomLeft_Corner] .y(),
305 texCoords[kBottomRight_Corner ].y()));
306
307 }
308
309 if(x < lodX && y < lodY) {
310 int i = 6 * (x * lodY + y);
311 data->fIndices[i] = x * stride + y;
312 data->fIndices[i + 1] = x * stride + 1 + y;
313 data->fIndices[i + 2] = (x + 1) * stride + 1 + y;
314 data->fIndices[i + 3] = data->fIndices[i];
315 data->fIndices[i + 4] = data->fIndices[i + 2];
316 data->fIndices[i + 5] = (x + 1) * stride + y;
317 }
318 v = SkScalarClampMax(v + 1.f / lodY, 1);
319 }
320 u = SkScalarClampMax(u + 1.f / lodX, 1);
321 }
322 return true;
323
324 }
OLDNEW
« no previous file with comments | « src/utils/SkPatchUtils.h ('k') | src/utils/SkProxyCanvas.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698