Index: src/utils/SkTextureCompressor.cpp |
diff --git a/src/utils/SkTextureCompressor.cpp b/src/utils/SkTextureCompressor.cpp |
index a593b36880e8588fe50a0eb0bfcea68afac2b320..453d98912d986737dd96a991ed441dc9ed2d0715 100644 |
--- a/src/utils/SkTextureCompressor.cpp |
+++ b/src/utils/SkTextureCompressor.cpp |
@@ -6,6 +6,8 @@ |
*/ |
#include "SkTextureCompressor.h" |
+#include "SkTextureCompressor_R11EAC.h" |
+#include "SkTextureCompressor_LATC.h" |
#include "SkBitmap.h" |
#include "SkData.h" |
@@ -14,848 +16,32 @@ |
#include "SkTextureCompression_opts.h" |
//////////////////////////////////////////////////////////////////////////////// |
-// |
-// Utility Functions |
-// |
-//////////////////////////////////////////////////////////////////////////////// |
- |
-// Absolute difference between two values. More correct than SkTAbs(a - b) |
-// because it works on unsigned values. |
-template <typename T> inline T abs_diff(const T &a, const T &b) { |
- return (a > b) ? (a - b) : (b - a); |
-} |
- |
-static bool is_extremal(uint8_t pixel) { |
- return 0 == pixel || 255 == pixel; |
-} |
- |
-typedef uint64_t (*A84x4To64BitProc)(const uint8_t block[]); |
- |
-// This function is used by both R11 EAC and LATC to compress 4x4 blocks |
-// of 8-bit alpha into 64-bit values that comprise the compressed data. |
-// For both formats, we need to make sure that the dimensions of the |
-// src pixels are divisible by 4, and copy 4x4 blocks one at a time |
-// for compression. |
-static bool compress_4x4_a8_to_64bit(uint8_t* dst, const uint8_t* src, |
- int width, int height, int rowBytes, |
- A84x4To64BitProc proc) { |
- // Make sure that our data is well-formed enough to be considered for compression |
- if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) { |
- return false; |
- } |
- |
- int blocksX = width >> 2; |
- int blocksY = height >> 2; |
- |
- uint8_t block[16]; |
- uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst); |
- for (int y = 0; y < blocksY; ++y) { |
- for (int x = 0; x < blocksX; ++x) { |
- // Load block |
- for (int k = 0; k < 4; ++k) { |
- memcpy(block + k*4, src + k*rowBytes + 4*x, 4); |
- } |
- |
- // Compress it |
- *encPtr = proc(block); |
- ++encPtr; |
- } |
- src += 4 * rowBytes; |
- } |
- |
- return true; |
-} |
- |
-//////////////////////////////////////////////////////////////////////////////// |
-// |
-// LATC compressor |
-// |
-//////////////////////////////////////////////////////////////////////////////// |
- |
-// LATC compressed texels down into square 4x4 blocks |
-static const int kLATCPaletteSize = 8; |
-static const int kLATCBlockSize = 4; |
-static const int kLATCPixelsPerBlock = kLATCBlockSize * kLATCBlockSize; |
- |
-// Generates an LATC palette. LATC constructs |
-// a palette of eight colors from LUM0 and LUM1 using the algorithm: |
-// |
-// LUM0, if lum0 > lum1 and code(x,y) == 0 |
-// LUM1, if lum0 > lum1 and code(x,y) == 1 |
-// (6*LUM0+ LUM1)/7, if lum0 > lum1 and code(x,y) == 2 |
-// (5*LUM0+2*LUM1)/7, if lum0 > lum1 and code(x,y) == 3 |
-// (4*LUM0+3*LUM1)/7, if lum0 > lum1 and code(x,y) == 4 |
-// (3*LUM0+4*LUM1)/7, if lum0 > lum1 and code(x,y) == 5 |
-// (2*LUM0+5*LUM1)/7, if lum0 > lum1 and code(x,y) == 6 |
-// ( LUM0+6*LUM1)/7, if lum0 > lum1 and code(x,y) == 7 |
-// |
-// LUM0, if lum0 <= lum1 and code(x,y) == 0 |
-// LUM1, if lum0 <= lum1 and code(x,y) == 1 |
-// (4*LUM0+ LUM1)/5, if lum0 <= lum1 and code(x,y) == 2 |
-// (3*LUM0+2*LUM1)/5, if lum0 <= lum1 and code(x,y) == 3 |
-// (2*LUM0+3*LUM1)/5, if lum0 <= lum1 and code(x,y) == 4 |
-// ( LUM0+4*LUM1)/5, if lum0 <= lum1 and code(x,y) == 5 |
-// 0, if lum0 <= lum1 and code(x,y) == 6 |
-// 255, if lum0 <= lum1 and code(x,y) == 7 |
- |
-static void generate_latc_palette(uint8_t palette[], uint8_t lum0, uint8_t lum1) { |
- palette[0] = lum0; |
- palette[1] = lum1; |
- if (lum0 > lum1) { |
- for (int i = 1; i < 7; i++) { |
- palette[i+1] = ((7-i)*lum0 + i*lum1) / 7; |
- } |
- } else { |
- for (int i = 1; i < 5; i++) { |
- palette[i+1] = ((5-i)*lum0 + i*lum1) / 5; |
- } |
- palette[6] = 0; |
- palette[7] = 255; |
- } |
-} |
- |
-// Compress a block by using the bounding box of the pixels. It is assumed that |
-// there are no extremal pixels in this block otherwise we would have used |
-// compressBlockBBIgnoreExtremal. |
-static uint64_t compress_latc_block_bb(const uint8_t pixels[]) { |
- uint8_t minVal = 255; |
- uint8_t maxVal = 0; |
- for (int i = 0; i < kLATCPixelsPerBlock; ++i) { |
- minVal = SkTMin(pixels[i], minVal); |
- maxVal = SkTMax(pixels[i], maxVal); |
- } |
- |
- SkASSERT(!is_extremal(minVal)); |
- SkASSERT(!is_extremal(maxVal)); |
- |
- uint8_t palette[kLATCPaletteSize]; |
- generate_latc_palette(palette, maxVal, minVal); |
- |
- uint64_t indices = 0; |
- for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) { |
- |
- // Find the best palette index |
- uint8_t bestError = abs_diff(pixels[i], palette[0]); |
- uint8_t idx = 0; |
- for (int j = 1; j < kLATCPaletteSize; ++j) { |
- uint8_t error = abs_diff(pixels[i], palette[j]); |
- if (error < bestError) { |
- bestError = error; |
- idx = j; |
- } |
- } |
- |
- indices <<= 3; |
- indices |= idx; |
- } |
- |
- return |
- SkEndian_SwapLE64( |
- static_cast<uint64_t>(maxVal) | |
- (static_cast<uint64_t>(minVal) << 8) | |
- (indices << 16)); |
-} |
- |
-// Compress a block by using the bounding box of the pixels without taking into |
-// account the extremal values. The generated palette will contain extremal values |
-// and fewer points along the line segment to interpolate. |
-static uint64_t compress_latc_block_bb_ignore_extremal(const uint8_t pixels[]) { |
- uint8_t minVal = 255; |
- uint8_t maxVal = 0; |
- for (int i = 0; i < kLATCPixelsPerBlock; ++i) { |
- if (is_extremal(pixels[i])) { |
- continue; |
- } |
- |
- minVal = SkTMin(pixels[i], minVal); |
- maxVal = SkTMax(pixels[i], maxVal); |
- } |
- |
- SkASSERT(!is_extremal(minVal)); |
- SkASSERT(!is_extremal(maxVal)); |
- |
- uint8_t palette[kLATCPaletteSize]; |
- generate_latc_palette(palette, minVal, maxVal); |
- |
- uint64_t indices = 0; |
- for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) { |
- |
- // Find the best palette index |
- uint8_t idx = 0; |
- if (is_extremal(pixels[i])) { |
- if (0xFF == pixels[i]) { |
- idx = 7; |
- } else if (0 == pixels[i]) { |
- idx = 6; |
- } else { |
- SkFAIL("Pixel is extremal but not really?!"); |
- } |
- } else { |
- uint8_t bestError = abs_diff(pixels[i], palette[0]); |
- for (int j = 1; j < kLATCPaletteSize - 2; ++j) { |
- uint8_t error = abs_diff(pixels[i], palette[j]); |
- if (error < bestError) { |
- bestError = error; |
- idx = j; |
- } |
- } |
- } |
- |
- indices <<= 3; |
- indices |= idx; |
- } |
- |
- return |
- SkEndian_SwapLE64( |
- static_cast<uint64_t>(minVal) | |
- (static_cast<uint64_t>(maxVal) << 8) | |
- (indices << 16)); |
-} |
- |
- |
-// Compress LATC block. Each 4x4 block of pixels is decompressed by LATC from two |
-// values LUM0 and LUM1, and an index into the generated palette. Details of how |
-// the palette is generated can be found in the comments of generatePalette above. |
-// |
-// We choose which palette type to use based on whether or not 'pixels' contains |
-// any extremal values (0 or 255). If there are extremal values, then we use the |
-// palette that has the extremal values built in. Otherwise, we use the full bounding |
-// box. |
- |
-static uint64_t compress_latc_block(const uint8_t pixels[]) { |
- // Collect unique pixels |
- int nUniquePixels = 0; |
- uint8_t uniquePixels[kLATCPixelsPerBlock]; |
- for (int i = 0; i < kLATCPixelsPerBlock; ++i) { |
- bool foundPixel = false; |
- for (int j = 0; j < nUniquePixels; ++j) { |
- foundPixel = foundPixel || uniquePixels[j] == pixels[i]; |
- } |
- |
- if (!foundPixel) { |
- uniquePixels[nUniquePixels] = pixels[i]; |
- ++nUniquePixels; |
- } |
- } |
- |
- // If there's only one unique pixel, then our compression is easy. |
- if (1 == nUniquePixels) { |
- return SkEndian_SwapLE64(pixels[0] | (pixels[0] << 8)); |
- |
- // Similarly, if there are only two unique pixels, then our compression is |
- // easy again: place the pixels in the block header, and assign the indices |
- // with one or zero depending on which pixel they belong to. |
- } else if (2 == nUniquePixels) { |
- uint64_t outBlock = 0; |
- for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) { |
- int idx = 0; |
- if (pixels[i] == uniquePixels[1]) { |
- idx = 1; |
- } |
- |
- outBlock <<= 3; |
- outBlock |= idx; |
- } |
- outBlock <<= 16; |
- outBlock |= (uniquePixels[0] | (uniquePixels[1] << 8)); |
- return SkEndian_SwapLE64(outBlock); |
- } |
- |
- // Count non-maximal pixel values |
- int nonExtremalPixels = 0; |
- for (int i = 0; i < nUniquePixels; ++i) { |
- if (!is_extremal(uniquePixels[i])) { |
- ++nonExtremalPixels; |
- } |
- } |
- |
- // If all the pixels are nonmaximal then compute the palette using |
- // the bounding box of all the pixels. |
- if (nonExtremalPixels == nUniquePixels) { |
- // This is really just for correctness, in all of my tests we |
- // never take this step. We don't lose too much perf here because |
- // most of the processing in this function is worth it for the |
- // 1 == nUniquePixels optimization. |
- return compress_latc_block_bb(pixels); |
- } else { |
- return compress_latc_block_bb_ignore_extremal(pixels); |
- } |
-} |
- |
-static inline bool compress_a8_to_latc(uint8_t* dst, const uint8_t* src, |
- int width, int height, int rowBytes) { |
- return compress_4x4_a8_to_64bit(dst, src, width, height, rowBytes, compress_latc_block); |
-} |
- |
-//////////////////////////////////////////////////////////////////////////////// |
-// |
-// R11 EAC Compressor |
-// |
-//////////////////////////////////////////////////////////////////////////////// |
- |
-// #define COMPRESS_R11_EAC_SLOW 1 |
-// #define COMPRESS_R11_EAC_FAST 1 |
-#define COMPRESS_R11_EAC_FASTEST 1 |
- |
-// Blocks compressed into R11 EAC are represented as follows: |
-// 0000000000000000000000000000000000000000000000000000000000000000 |
-// |base_cw|mod|mul| ----------------- indices ------------------- |
-// |
-// To reconstruct the value of a given pixel, we use the formula: |
-// clamp[0, 2047](base_cw * 8 + 4 + mod_val*mul*8) |
-// |
-// mod_val is chosen from a palette of values based on the index of the |
-// given pixel. The palette is chosen by the value stored in mod. |
-// This formula returns a value between 0 and 2047, which is converted |
-// to a float from 0 to 1 in OpenGL. |
-// |
-// If mul is zero, then we set mul = 1/8, so that the formula becomes |
-// clamp[0, 2047](base_cw * 8 + 4 + mod_val) |
- |
-#if COMPRESS_R11_EAC_SLOW |
- |
-static const int kNumR11EACPalettes = 16; |
-static const int kR11EACPaletteSize = 8; |
-static const int kR11EACModifierPalettes[kNumR11EACPalettes][kR11EACPaletteSize] = { |
- {-3, -6, -9, -15, 2, 5, 8, 14}, |
- {-3, -7, -10, -13, 2, 6, 9, 12}, |
- {-2, -5, -8, -13, 1, 4, 7, 12}, |
- {-2, -4, -6, -13, 1, 3, 5, 12}, |
- {-3, -6, -8, -12, 2, 5, 7, 11}, |
- {-3, -7, -9, -11, 2, 6, 8, 10}, |
- {-4, -7, -8, -11, 3, 6, 7, 10}, |
- {-3, -5, -8, -11, 2, 4, 7, 10}, |
- {-2, -6, -8, -10, 1, 5, 7, 9}, |
- {-2, -5, -8, -10, 1, 4, 7, 9}, |
- {-2, -4, -8, -10, 1, 3, 7, 9}, |
- {-2, -5, -7, -10, 1, 4, 6, 9}, |
- {-3, -4, -7, -10, 2, 3, 6, 9}, |
- {-1, -2, -3, -10, 0, 1, 2, 9}, |
- {-4, -6, -8, -9, 3, 5, 7, 8}, |
- {-3, -5, -7, -9, 2, 4, 6, 8} |
-}; |
- |
-// Pack the base codeword, palette, and multiplier into the 64 bits necessary |
-// to decode it. |
-static uint64_t pack_r11eac_block(uint16_t base_cw, uint16_t palette, uint16_t multiplier, |
- uint64_t indices) { |
- SkASSERT(palette < 16); |
- SkASSERT(multiplier < 16); |
- SkASSERT(indices < (static_cast<uint64_t>(1) << 48)); |
- |
- const uint64_t b = static_cast<uint64_t>(base_cw) << 56; |
- const uint64_t m = static_cast<uint64_t>(multiplier) << 52; |
- const uint64_t p = static_cast<uint64_t>(palette) << 48; |
- return SkEndian_SwapBE64(b | m | p | indices); |
-} |
- |
-// Given a base codeword, a modifier, and a multiplier, compute the proper |
-// pixel value in the range [0, 2047]. |
-static uint16_t compute_r11eac_pixel(int base_cw, int modifier, int multiplier) { |
- int ret = (base_cw * 8 + 4) + (modifier * multiplier * 8); |
- return (ret > 2047)? 2047 : ((ret < 0)? 0 : ret); |
-} |
- |
-// Compress a block into R11 EAC format. |
-// The compression works as follows: |
-// 1. Find the center of the span of the block's values. Use this as the base codeword. |
-// 2. Choose a multiplier based roughly on the size of the span of block values |
-// 3. Iterate through each palette and choose the one with the most accurate |
-// modifiers. |
-static inline uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) { |
- // Find the center of the data... |
- uint16_t bmin = block[0]; |
- uint16_t bmax = block[0]; |
- for (int i = 1; i < 16; ++i) { |
- bmin = SkTMin<uint16_t>(bmin, block[i]); |
- bmax = SkTMax<uint16_t>(bmax, block[i]); |
- } |
- |
- uint16_t center = (bmax + bmin) >> 1; |
- SkASSERT(center <= 255); |
- |
- // Based on the min and max, we can guesstimate a proper multiplier |
- // This is kind of a magic choice to start with. |
- uint16_t multiplier = (bmax - center) / 10; |
- |
- // Now convert the block to 11 bits and transpose it to match |
- // the proper layout |
- uint16_t cblock[16]; |
- for (int i = 0; i < 4; ++i) { |
- for (int j = 0; j < 4; ++j) { |
- int srcIdx = i*4+j; |
- int dstIdx = j*4+i; |
- cblock[dstIdx] = (block[srcIdx] << 3) | (block[srcIdx] >> 5); |
- } |
- } |
- |
- // Finally, choose the proper palette and indices |
- uint32_t bestError = 0xFFFFFFFF; |
- uint64_t bestIndices = 0; |
- uint16_t bestPalette = 0; |
- for (uint16_t paletteIdx = 0; paletteIdx < kNumR11EACPalettes; ++paletteIdx) { |
- const int *palette = kR11EACModifierPalettes[paletteIdx]; |
- |
- // Iterate through each pixel to find the best palette index |
- // and update the indices with the choice. Also store the error |
- // for this palette to be compared against the best error... |
- uint32_t error = 0; |
- uint64_t indices = 0; |
- for (int pixelIdx = 0; pixelIdx < 16; ++pixelIdx) { |
- const uint16_t pixel = cblock[pixelIdx]; |
- |
- // Iterate through each palette value to find the best index |
- // for this particular pixel for this particular palette. |
- uint16_t bestPixelError = |
- abs_diff(pixel, compute_r11eac_pixel(center, palette[0], multiplier)); |
- int bestIndex = 0; |
- for (int i = 1; i < kR11EACPaletteSize; ++i) { |
- const uint16_t p = compute_r11eac_pixel(center, palette[i], multiplier); |
- const uint16_t perror = abs_diff(pixel, p); |
- |
- // Is this index better? |
- if (perror < bestPixelError) { |
- bestIndex = i; |
- bestPixelError = perror; |
- } |
- } |
- |
- SkASSERT(bestIndex < 8); |
- |
- error += bestPixelError; |
- indices <<= 3; |
- indices |= bestIndex; |
- } |
- |
- SkASSERT(indices < (static_cast<uint64_t>(1) << 48)); |
- |
- // Is this palette better? |
- if (error < bestError) { |
- bestPalette = paletteIdx; |
- bestIndices = indices; |
- bestError = error; |
- } |
- } |
- |
- // Finally, pack everything together... |
- return pack_r11eac_block(center, bestPalette, multiplier, bestIndices); |
-} |
-#endif // COMPRESS_R11_EAC_SLOW |
- |
-#if COMPRESS_R11_EAC_FAST |
-// This function takes into account that most blocks that we compress have a gradation from |
-// fully opaque to fully transparent. The compression scheme works by selecting the |
-// palette and multiplier that has the tightest fit to the 0-255 range. This is encoded |
-// as the block header (0x8490). The indices are then selected by considering the top |
-// three bits of each alpha value. For alpha masks, this reduces the dynamic range from |
-// 17 to 8, but the quality is still acceptable. |
-// |
-// There are a few caveats that need to be taken care of... |
-// |
-// 1. The block is read in as scanlines, so the indices are stored as: |
-// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
-// However, the decomrpession routine reads them in column-major order, so they |
-// need to be packed as: |
-// 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15 |
-// So when reading, they must be transposed. |
-// |
-// 2. We cannot use the top three bits as an index directly, since the R11 EAC palettes |
-// above store the modulation values first decreasing and then increasing: |
-// e.g. {-3, -6, -9, -15, 2, 5, 8, 14} |
-// Hence, we need to convert the indices with the following mapping: |
-// From: 0 1 2 3 4 5 6 7 |
-// To: 3 2 1 0 4 5 6 7 |
-static inline uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) { |
- uint64_t retVal = static_cast<uint64_t>(0x8490) << 48; |
- for(int i = 0; i < 4; ++i) { |
- for(int j = 0; j < 4; ++j) { |
- const int shift = 45-3*(j*4+i); |
- SkASSERT(shift <= 45); |
- const uint64_t idx = block[i*4+j] >> 5; |
- SkASSERT(idx < 8); |
- |
- // !SPEED! This is slightly faster than having an if-statement. |
- switch(idx) { |
- case 0: |
- case 1: |
- case 2: |
- case 3: |
- retVal |= (3-idx) << shift; |
- break; |
- default: |
- retVal |= idx << shift; |
- break; |
- } |
- } |
- } |
- |
- return SkEndian_SwapBE64(retVal); |
-} |
-#endif // COMPRESS_R11_EAC_FAST |
- |
-#if (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST) |
-static uint64_t compress_r11eac_block(const uint8_t block[16]) { |
- // Are all blocks a solid color? |
- bool solid = true; |
- for (int i = 1; i < 16; ++i) { |
- if (block[i] != block[0]) { |
- solid = false; |
- break; |
- } |
- } |
- |
- if (solid) { |
- switch(block[0]) { |
- // Fully transparent? We know the encoding... |
- case 0: |
- // (0x0020 << 48) produces the following: |
- // basw_cw: 0 |
- // mod: 0, palette: {-3, -6, -9, -15, 2, 5, 8, 14} |
- // multiplier: 2 |
- // mod_val: -3 |
- // |
- // this gives the following formula: |
- // clamp[0, 2047](0*8+4+(-3)*2*8) = 0 |
- // |
- // Furthermore, it is impervious to endianness: |
- // 0x0020000000002000ULL |
- // Will produce one pixel with index 2, which gives: |
- // clamp[0, 2047](0*8+4+(-9)*2*8) = 0 |
- return 0x0020000000002000ULL; |
- |
- // Fully opaque? We know this encoding too... |
- case 255: |
- |
- // -1 produces the following: |
- // basw_cw: 255 |
- // mod: 15, palette: {-3, -5, -7, -9, 2, 4, 6, 8} |
- // mod_val: 8 |
- // |
- // this gives the following formula: |
- // clamp[0, 2047](255*8+4+8*8*8) = clamp[0, 2047](2556) = 2047 |
- return 0xFFFFFFFFFFFFFFFFULL; |
- |
- default: |
- // !TODO! krajcevski: |
- // This will probably never happen, since we're using this format |
- // primarily for compressing alpha maps. Usually the only |
- // non-fullly opaque or fully transparent blocks are not a solid |
- // intermediate color. If we notice that they are, then we can |
- // add another optimization... |
- break; |
- } |
- } |
- |
- return compress_heterogeneous_r11eac_block(block); |
-} |
-#endif // (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST) |
- |
-#if COMPRESS_R11_EAC_FASTEST |
-static inline uint64_t interleave6(uint64_t topRows, uint64_t bottomRows) { |
- // If our 3-bit block indices are laid out as: |
- // a b c d |
- // e f g h |
- // i j k l |
- // m n o p |
- // |
- // This function expects topRows and bottomRows to contain the first two rows |
- // of indices interleaved in the least significant bits of a and b. In other words... |
- // |
- // If the architecture is big endian, then topRows and bottomRows will contain the following: |
- // Bits 31-0: |
- // a: 00 a e 00 b f 00 c g 00 d h |
- // b: 00 i m 00 j n 00 k o 00 l p |
- // |
- // If the architecture is little endian, then topRows and bottomRows will contain |
- // the following: |
- // Bits 31-0: |
- // a: 00 d h 00 c g 00 b f 00 a e |
- // b: 00 l p 00 k o 00 j n 00 i m |
- // |
- // This function returns a 48-bit packing of the form: |
- // a e i m b f j n c g k o d h l p |
- // |
- // !SPEED! this function might be even faster if certain SIMD intrinsics are |
- // used.. |
- |
- // For both architectures, we can figure out a packing of the bits by |
- // using a shuffle and a few shift-rotates... |
- uint64_t x = (static_cast<uint64_t>(topRows) << 32) | static_cast<uint64_t>(bottomRows); |
- |
- // x: 00 a e 00 b f 00 c g 00 d h 00 i m 00 j n 00 k o 00 l p |
- |
- uint64_t t = (x ^ (x >> 10)) & 0x3FC0003FC00000ULL; |
- x = x ^ t ^ (t << 10); |
- |
- // x: b f 00 00 00 a e c g i m 00 00 00 d h j n 00 k o 00 l p |
- |
- x = (x | ((x << 52) & (0x3FULL << 52)) | ((x << 20) & (0x3FULL << 28))) >> 16; |
- |
- // x: 00 00 00 00 00 00 00 00 b f l p a e c g i m k o d h j n |
- |
- t = (x ^ (x >> 6)) & 0xFC0000ULL; |
- x = x ^ t ^ (t << 6); |
- |
-#if defined (SK_CPU_BENDIAN) |
- // x: 00 00 00 00 00 00 00 00 b f l p a e i m c g k o d h j n |
- |
- t = (x ^ (x >> 36)) & 0x3FULL; |
- x = x ^ t ^ (t << 36); |
- |
- // x: 00 00 00 00 00 00 00 00 b f j n a e i m c g k o d h l p |
- |
- t = (x ^ (x >> 12)) & 0xFFF000000ULL; |
- x = x ^ t ^ (t << 12); |
- |
- // x: 00 00 00 00 00 00 00 00 a e i m b f j n c g k o d h l p |
- return x; |
-#else |
- // If our CPU is little endian, then the above logic will |
- // produce the following indices: |
- // x: 00 00 00 00 00 00 00 00 c g i m d h l p b f j n a e k o |
- |
- t = (x ^ (x >> 36)) & 0xFC0ULL; |
- x = x ^ t ^ (t << 36); |
- |
- // x: 00 00 00 00 00 00 00 00 a e i m d h l p b f j n c g k o |
- |
- x = (x & (0xFFFULL << 36)) | ((x & 0xFFFFFFULL) << 12) | ((x >> 24) & 0xFFFULL); |
- |
- // x: 00 00 00 00 00 00 00 00 a e i m b f j n c g k o d h l p |
- |
- return x; |
-#endif |
-} |
- |
-// This function converts an integer containing four bytes of alpha |
-// values into an integer containing four bytes of indices into R11 EAC. |
-// Note, there needs to be a mapping of indices: |
-// 0 1 2 3 4 5 6 7 |
-// 3 2 1 0 4 5 6 7 |
-// |
-// To compute this, we first negate each byte, and then add three, which |
-// gives the mapping |
-// 3 2 1 0 -1 -2 -3 -4 |
-// |
-// Then we mask out the negative values, take their absolute value, and |
-// add three. |
-// |
-// Most of the voodoo in this function comes from Hacker's Delight, section 2-18 |
-static inline uint32_t convert_indices(uint32_t x) { |
- // Take the top three bits... |
- x = (x & 0xE0E0E0E0) >> 5; |
- |
- // Negate... |
- x = ~((0x80808080 - x) ^ 0x7F7F7F7F); |
- |
- // Add three |
- const uint32_t s = (x & 0x7F7F7F7F) + 0x03030303; |
- x = ((x ^ 0x03030303) & 0x80808080) ^ s; |
- |
- // Absolute value |
- const uint32_t a = x & 0x80808080; |
- const uint32_t b = a >> 7; |
- |
- // Aside: mask negatives (m is three if the byte was negative) |
- const uint32_t m = (a >> 6) | b; |
- |
- // .. continue absolute value |
- x = (x ^ ((a - b) | a)) + b; |
- |
- // Add three |
- return x + m; |
-} |
- |
-// This function follows the same basic procedure as compress_heterogeneous_r11eac_block |
-// above when COMPRESS_R11_EAC_FAST is defined, but it avoids a few loads/stores and |
-// tries to optimize where it can using SIMD. |
-static uint64_t compress_r11eac_block_fast(const uint8_t* src, int rowBytes) { |
- // Store each row of alpha values in an integer |
- const uint32_t alphaRow1 = *(reinterpret_cast<const uint32_t*>(src)); |
- const uint32_t alphaRow2 = *(reinterpret_cast<const uint32_t*>(src + rowBytes)); |
- const uint32_t alphaRow3 = *(reinterpret_cast<const uint32_t*>(src + 2*rowBytes)); |
- const uint32_t alphaRow4 = *(reinterpret_cast<const uint32_t*>(src + 3*rowBytes)); |
- |
- // Check for solid blocks. The explanations for these values |
- // can be found in the comments of compress_r11eac_block above |
- if (alphaRow1 == alphaRow2 && alphaRow1 == alphaRow3 && alphaRow1 == alphaRow4) { |
- if (0 == alphaRow1) { |
- // Fully transparent block |
- return 0x0020000000002000ULL; |
- } else if (0xFFFFFFFF == alphaRow1) { |
- // Fully opaque block |
- return 0xFFFFFFFFFFFFFFFFULL; |
- } |
- } |
- |
- // Convert each integer of alpha values into an integer of indices |
- const uint32_t indexRow1 = convert_indices(alphaRow1); |
- const uint32_t indexRow2 = convert_indices(alphaRow2); |
- const uint32_t indexRow3 = convert_indices(alphaRow3); |
- const uint32_t indexRow4 = convert_indices(alphaRow4); |
- |
- // Interleave the indices from the top two rows and bottom two rows |
- // prior to passing them to interleave6. Since each index is at most |
- // three bits, then each byte can hold two indices... The way that the |
- // compression scheme expects the packing allows us to efficiently pack |
- // the top two rows and bottom two rows. Interleaving each 6-bit sequence |
- // and tightly packing it into a uint64_t is a little trickier, which is |
- // taken care of in interleave6. |
- const uint32_t r1r2 = (indexRow1 << 3) | indexRow2; |
- const uint32_t r3r4 = (indexRow3 << 3) | indexRow4; |
- const uint64_t indices = interleave6(r1r2, r3r4); |
- |
- // Return the packed incdices in the least significant bits with the magic header |
- return SkEndian_SwapBE64(0x8490000000000000ULL | indices); |
-} |
- |
-static bool compress_a8_to_r11eac_fast(uint8_t* dst, const uint8_t* src, |
- int width, int height, int rowBytes) { |
- // Make sure that our data is well-formed enough to be considered for compression |
- if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) { |
- return false; |
- } |
- |
- const int blocksX = width >> 2; |
- const int blocksY = height >> 2; |
- |
- uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst); |
- for (int y = 0; y < blocksY; ++y) { |
- for (int x = 0; x < blocksX; ++x) { |
- // Compress it |
- *encPtr = compress_r11eac_block_fast(src + 4*x, rowBytes); |
- ++encPtr; |
- } |
- src += 4 * rowBytes; |
- } |
- return true; |
-} |
-#endif // COMPRESS_R11_EAC_FASTEST |
- |
-// The R11 EAC format expects that indices are given in column-major order. Since |
-// we receive alpha values in raster order, this usually means that we have to use |
-// pack6 above to properly pack our indices. However, if our indices come from the |
-// blitter, then each integer will be a column of indices, and hence can be efficiently |
-// packed. This function takes the bottom three bits of each byte and places them in |
-// the least significant 12 bits of the resulting integer. |
-static inline uint32_t pack_indices_vertical(uint32_t x) { |
-#if defined (SK_CPU_BENDIAN) |
- return |
- (x & 7) | |
- ((x >> 5) & (7 << 3)) | |
- ((x >> 10) & (7 << 6)) | |
- ((x >> 15) & (7 << 9)); |
-#else |
- return |
- ((x >> 24) & 7) | |
- ((x >> 13) & (7 << 3)) | |
- ((x >> 2) & (7 << 6)) | |
- ((x << 9) & (7 << 9)); |
-#endif |
-} |
- |
-// This function returns the compressed format of a block given as four columns of |
-// alpha values. Each column is assumed to be loaded from top to bottom, and hence |
-// must first be converted to indices and then packed into the resulting 64-bit |
-// integer. |
-static inline uint64_t compress_block_vertical(const uint32_t alphaColumn0, |
- const uint32_t alphaColumn1, |
- const uint32_t alphaColumn2, |
- const uint32_t alphaColumn3) { |
- |
- if (alphaColumn0 == alphaColumn1 && |
- alphaColumn2 == alphaColumn3 && |
- alphaColumn0 == alphaColumn2) { |
- |
- if (0 == alphaColumn0) { |
- // Transparent |
- return 0x0020000000002000ULL; |
- } |
- else if (0xFFFFFFFF == alphaColumn0) { |
- // Opaque |
- return 0xFFFFFFFFFFFFFFFFULL; |
- } |
- } |
- |
- const uint32_t indexColumn0 = convert_indices(alphaColumn0); |
- const uint32_t indexColumn1 = convert_indices(alphaColumn1); |
- const uint32_t indexColumn2 = convert_indices(alphaColumn2); |
- const uint32_t indexColumn3 = convert_indices(alphaColumn3); |
- |
- const uint32_t packedIndexColumn0 = pack_indices_vertical(indexColumn0); |
- const uint32_t packedIndexColumn1 = pack_indices_vertical(indexColumn1); |
- const uint32_t packedIndexColumn2 = pack_indices_vertical(indexColumn2); |
- const uint32_t packedIndexColumn3 = pack_indices_vertical(indexColumn3); |
- |
- return SkEndian_SwapBE64(0x8490000000000000ULL | |
- (static_cast<uint64_t>(packedIndexColumn0) << 36) | |
- (static_cast<uint64_t>(packedIndexColumn1) << 24) | |
- static_cast<uint64_t>(packedIndexColumn2 << 12) | |
- static_cast<uint64_t>(packedIndexColumn3)); |
- |
-} |
- |
-static inline bool compress_a8_to_r11eac(uint8_t* dst, const uint8_t* src, |
- int width, int height, int rowBytes) { |
-#if (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST) |
- return compress_4x4_a8_to_64bit(dst, src, width, height, rowBytes, compress_r11eac_block); |
-#elif COMPRESS_R11_EAC_FASTEST |
- return compress_a8_to_r11eac_fast(dst, src, width, height, rowBytes); |
-#else |
-#error "Must choose R11 EAC algorithm" |
-#endif |
-} |
- |
-// Updates the block whose columns are stored in blockColN. curAlphai is expected |
-// to store, as an integer, the four alpha values that will be placed within each |
-// of the columns in the range [col, col+colsLeft). |
-static inline void update_block_columns( |
- uint32_t* blockCol1, uint32_t* blockCol2, uint32_t* blockCol3, uint32_t* blockCol4, |
- const int col, const int colsLeft, const uint32_t curAlphai) { |
- SkASSERT(NULL != blockCol1); |
- SkASSERT(NULL != blockCol2); |
- SkASSERT(NULL != blockCol3); |
- SkASSERT(NULL != blockCol4); |
- SkASSERT(col + colsLeft <= 4); |
- for (int i = col; i < (col + colsLeft); ++i) { |
- switch(i) { |
- case 0: |
- *blockCol1 = curAlphai; |
- break; |
- case 1: |
- *blockCol2 = curAlphai; |
- break; |
- case 2: |
- *blockCol3 = curAlphai; |
- break; |
- case 3: |
- *blockCol4 = curAlphai; |
- break; |
- } |
- } |
-} |
- |
-//////////////////////////////////////////////////////////////////////////////// |
namespace SkTextureCompressor { |
-static inline size_t get_compressed_data_size(Format fmt, int width, int height) { |
+int GetCompressedDataSize(Format fmt, int width, int height) { |
switch (fmt) { |
// These formats are 64 bits per 4x4 block. |
case kR11_EAC_Format: |
case kLATC_Format: |
{ |
- static const int kLATCEncodedBlockSize = 8; |
+ static const int kBlockDimension = 4; |
+ static const int kEncodedBlockSize = 8; |
- const int blocksX = width / kLATCBlockSize; |
- const int blocksY = height / kLATCBlockSize; |
+ if(((width % kBlockDimension) == 0) && ((height % kBlockDimension) == 0)) { |
- return blocksX * blocksY * kLATCEncodedBlockSize; |
+ const int blocksX = width / kBlockDimension; |
+ const int blocksY = height / kBlockDimension; |
+ |
+ return blocksX * blocksY * kEncodedBlockSize; |
+ } |
+ |
+ return -1; |
} |
default: |
SkFAIL("Unknown compressed format!"); |
- return 0; |
+ return -1; |
} |
} |
@@ -872,10 +58,10 @@ bool CompressBufferToFormat(uint8_t* dst, const uint8_t* src, SkColorType srcCol |
{ |
switch (format) { |
case kLATC_Format: |
- proc = compress_a8_to_latc; |
+ proc = CompressA8ToLATC; |
break; |
case kR11_EAC_Format: |
- proc = compress_a8_to_r11eac; |
+ proc = CompressA8ToR11EAC; |
break; |
default: |
// Do nothing... |
@@ -900,9 +86,14 @@ bool CompressBufferToFormat(uint8_t* dst, const uint8_t* src, SkColorType srcCol |
SkData *CompressBitmapToFormat(const SkBitmap &bitmap, Format format) { |
SkAutoLockPixels alp(bitmap); |
- int compressedDataSize = get_compressed_data_size(format, bitmap.width(), bitmap.height()); |
+ int compressedDataSize = GetCompressedDataSize(format, bitmap.width(), bitmap.height()); |
+ if (compressedDataSize < 0) { |
+ return NULL; |
+ } |
+ |
const uint8_t* src = reinterpret_cast<const uint8_t*>(bitmap.getPixels()); |
uint8_t* dst = reinterpret_cast<uint8_t*>(sk_malloc_throw(compressedDataSize)); |
+ |
if (CompressBufferToFormat(dst, src, bitmap.colorType(), bitmap.width(), bitmap.height(), |
bitmap.rowBytes(), format)) { |
return SkData::NewFromMalloc(dst, compressedDataSize); |
@@ -912,221 +103,19 @@ SkData *CompressBitmapToFormat(const SkBitmap &bitmap, Format format) { |
return NULL; |
} |
-R11_EACBlitter::R11_EACBlitter(int width, int height, void *latcBuffer) |
- // 0x7FFE is one minus the largest positive 16-bit int. We use it for |
- // debugging to make sure that we're properly setting the nextX distance |
- // in flushRuns(). |
- : kLongestRun(0x7FFE), kZeroAlpha(0) |
- , fNextRun(0) |
- , fWidth(width) |
- , fHeight(height) |
- , fBuffer(reinterpret_cast<uint64_t*const>(latcBuffer)) |
-{ |
- SkASSERT((width % kR11_EACBlockSz) == 0); |
- SkASSERT((height % kR11_EACBlockSz) == 0); |
-} |
- |
-void R11_EACBlitter::blitAntiH(int x, int y, |
- const SkAlpha* antialias, |
- const int16_t* runs) { |
- // Make sure that the new row to blit is either the first |
- // row that we're blitting, or it's exactly the next scan row |
- // since the last row that we blit. This is to ensure that when |
- // we go to flush the runs, that they are all the same four |
- // runs. |
- if (fNextRun > 0 && |
- ((x != fBufferedRuns[fNextRun-1].fX) || |
- (y-1 != fBufferedRuns[fNextRun-1].fY))) { |
- this->flushRuns(); |
- } |
- |
- // Align the rows to a block boundary. If we receive rows that |
- // are not on a block boundary, then fill in the preceding runs |
- // with zeros. We do this by producing a single RLE that says |
- // that we have 0x7FFE pixels of zero (0x7FFE = 32766). |
- const int row = y & ~3; |
- while ((row + fNextRun) < y) { |
- fBufferedRuns[fNextRun].fAlphas = &kZeroAlpha; |
- fBufferedRuns[fNextRun].fRuns = &kLongestRun; |
- fBufferedRuns[fNextRun].fX = 0; |
- fBufferedRuns[fNextRun].fY = row + fNextRun; |
- ++fNextRun; |
- } |
- |
- // Make sure that our assumptions aren't violated... |
- SkASSERT(fNextRun == (y & 3)); |
- SkASSERT(fNextRun == 0 || fBufferedRuns[fNextRun - 1].fY < y); |
- |
- // Set the values of the next run |
- fBufferedRuns[fNextRun].fAlphas = antialias; |
- fBufferedRuns[fNextRun].fRuns = runs; |
- fBufferedRuns[fNextRun].fX = x; |
- fBufferedRuns[fNextRun].fY = y; |
- |
- // If we've output four scanlines in a row that don't violate our |
- // assumptions, then it's time to flush them... |
- if (4 == ++fNextRun) { |
- this->flushRuns(); |
- } |
-} |
- |
-void R11_EACBlitter::flushRuns() { |
- |
- // If we don't have any runs, then just return. |
- if (0 == fNextRun) { |
- return; |
- } |
- |
-#ifndef NDEBUG |
- // Make sure that if we have any runs, they all match |
- for (int i = 1; i < fNextRun; ++i) { |
- SkASSERT(fBufferedRuns[i].fY == fBufferedRuns[i-1].fY + 1); |
- SkASSERT(fBufferedRuns[i].fX == fBufferedRuns[i-1].fX); |
- } |
-#endif |
- |
- // If we dont have as many runs as we have rows, fill in the remaining |
- // runs with constant zeros. |
- for (int i = fNextRun; i < kR11_EACBlockSz; ++i) { |
- fBufferedRuns[i].fY = fBufferedRuns[0].fY + i; |
- fBufferedRuns[i].fX = fBufferedRuns[0].fX; |
- fBufferedRuns[i].fAlphas = &kZeroAlpha; |
- fBufferedRuns[i].fRuns = &kLongestRun; |
- } |
- |
- // Make sure that our assumptions aren't violated. |
- SkASSERT(fNextRun > 0 && fNextRun <= 4); |
- SkASSERT((fBufferedRuns[0].fY & 3) == 0); |
- |
- // The following logic walks four rows at a time and outputs compressed |
- // blocks to the buffer passed into the constructor. |
- // We do the following: |
- // |
- // c1 c2 c3 c4 |
- // ----------------------------------------------------------------------- |
- // ... | | | | | ----> fBufferedRuns[0] |
- // ----------------------------------------------------------------------- |
- // ... | | | | | ----> fBufferedRuns[1] |
- // ----------------------------------------------------------------------- |
- // ... | | | | | ----> fBufferedRuns[2] |
- // ----------------------------------------------------------------------- |
- // ... | | | | | ----> fBufferedRuns[3] |
- // ----------------------------------------------------------------------- |
- // |
- // curX -- the macro X value that we've gotten to. |
- // c1, c2, c3, c4 -- the integers that represent the columns of the current block |
- // that we're operating on |
- // curAlphaColumn -- integer containing the column of alpha values from fBufferedRuns. |
- // nextX -- for each run, the next point at which we need to update curAlphaColumn |
- // after the value of curX. |
- // finalX -- the minimum of all the nextX values. |
- // |
- // curX advances to finalX outputting any blocks that it passes along |
- // the way. Since finalX will not change when we reach the end of a |
- // run, the termination criteria will be whenever curX == finalX at the |
- // end of a loop. |
- |
- // Setup: |
- uint32_t c1 = 0; |
- uint32_t c2 = 0; |
- uint32_t c3 = 0; |
- uint32_t c4 = 0; |
- |
- uint32_t curAlphaColumn = 0; |
- SkAlpha *curAlpha = reinterpret_cast<SkAlpha*>(&curAlphaColumn); |
- |
- int nextX[kR11_EACBlockSz]; |
- for (int i = 0; i < kR11_EACBlockSz; ++i) { |
- nextX[i] = 0x7FFFFF; |
- } |
- |
- uint64_t* outPtr = this->getBlock(fBufferedRuns[0].fX, fBufferedRuns[0].fY); |
- |
- // Populate the first set of runs and figure out how far we need to |
- // advance on the first step |
- int curX = 0; |
- int finalX = 0xFFFFF; |
- for (int i = 0; i < kR11_EACBlockSz; ++i) { |
- nextX[i] = *(fBufferedRuns[i].fRuns); |
- curAlpha[i] = *(fBufferedRuns[i].fAlphas); |
- |
- finalX = SkMin32(nextX[i], finalX); |
- } |
- |
- // Make sure that we have a valid right-bound X value |
- SkASSERT(finalX < 0xFFFFF); |
- |
- // Run the blitter... |
- while (curX != finalX) { |
- SkASSERT(finalX >= curX); |
- |
- // Do we need to populate the rest of the block? |
- if ((finalX - (curX & ~3)) >= kR11_EACBlockSz) { |
- const int col = curX & 3; |
- const int colsLeft = 4 - col; |
- SkASSERT(curX + colsLeft <= finalX); |
- |
- update_block_columns(&c1, &c2, &c3, &c4, col, colsLeft, curAlphaColumn); |
- |
- // Write this block |
- *outPtr = compress_block_vertical(c1, c2, c3, c4); |
- ++outPtr; |
- curX += colsLeft; |
- } |
- |
- // If we can advance even further, then just keep memsetting the block |
- if ((finalX - curX) >= kR11_EACBlockSz) { |
- SkASSERT((curX & 3) == 0); |
- |
- const int col = 0; |
- const int colsLeft = kR11_EACBlockSz; |
- |
- update_block_columns(&c1, &c2, &c3, &c4, col, colsLeft, curAlphaColumn); |
- |
- // While we can keep advancing, just keep writing the block. |
- uint64_t lastBlock = compress_block_vertical(c1, c2, c3, c4); |
- while((finalX - curX) >= kR11_EACBlockSz) { |
- *outPtr = lastBlock; |
- ++outPtr; |
- curX += kR11_EACBlockSz; |
- } |
- } |
- |
- // If we haven't advanced within the block then do so. |
- if (curX < finalX) { |
- const int col = curX & 3; |
- const int colsLeft = finalX - curX; |
- |
- update_block_columns(&c1, &c2, &c3, &c4, col, colsLeft, curAlphaColumn); |
- |
- curX += colsLeft; |
- } |
- |
- SkASSERT(curX == finalX); |
- |
- // Figure out what the next advancement is... |
- for (int i = 0; i < kR11_EACBlockSz; ++i) { |
- if (nextX[i] == finalX) { |
- const int16_t run = *(fBufferedRuns[i].fRuns); |
- fBufferedRuns[i].fRuns += run; |
- fBufferedRuns[i].fAlphas += run; |
- curAlpha[i] = *(fBufferedRuns[i].fAlphas); |
- nextX[i] += *(fBufferedRuns[i].fRuns); |
- } |
- } |
+SkBlitter* CreateBlitterForFormat(int width, int height, void* compressedBuffer, Format format) { |
+ switch(format) { |
+ case kLATC_Format: |
+ return CreateLATCBlitter(width, height, compressedBuffer); |
- finalX = 0xFFFFF; |
- for (int i = 0; i < kR11_EACBlockSz; ++i) { |
- finalX = SkMin32(nextX[i], finalX); |
- } |
- } |
+ case kR11_EAC_Format: |
+ return CreateR11EACBlitter(width, height, compressedBuffer); |
- // If we didn't land on a block boundary, output the block... |
- if ((curX & 3) > 1) { |
- *outPtr = compress_block_vertical(c1, c2, c3, c4); |
+ default: |
+ return NULL; |
} |
- fNextRun = 0; |
+ return NULL; |
} |
} // namespace SkTextureCompressor |