Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(82)

Side by Side Diff: src/utils/SkTextureCompressor.cpp

Issue 403383003: Refactor texture compressors into separate files (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: Handle improper dimensions Created 6 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « src/utils/SkTextureCompressor.h ('k') | src/utils/SkTextureCompressor_LATC.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 /* 1 /*
2 * Copyright 2014 Google Inc. 2 * Copyright 2014 Google Inc.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license that can be 4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file. 5 * found in the LICENSE file.
6 */ 6 */
7 7
8 #include "SkTextureCompressor.h" 8 #include "SkTextureCompressor.h"
9 #include "SkTextureCompressor_R11EAC.h"
10 #include "SkTextureCompressor_LATC.h"
9 11
10 #include "SkBitmap.h" 12 #include "SkBitmap.h"
11 #include "SkData.h" 13 #include "SkData.h"
12 #include "SkEndian.h" 14 #include "SkEndian.h"
13 15
14 #include "SkTextureCompression_opts.h" 16 #include "SkTextureCompression_opts.h"
15 17
16 //////////////////////////////////////////////////////////////////////////////// 18 ////////////////////////////////////////////////////////////////////////////////
17 //
18 // Utility Functions
19 //
20 ////////////////////////////////////////////////////////////////////////////////
21
22 // Absolute difference between two values. More correct than SkTAbs(a - b)
23 // because it works on unsigned values.
24 template <typename T> inline T abs_diff(const T &a, const T &b) {
25 return (a > b) ? (a - b) : (b - a);
26 }
27
28 static bool is_extremal(uint8_t pixel) {
29 return 0 == pixel || 255 == pixel;
30 }
31
32 typedef uint64_t (*A84x4To64BitProc)(const uint8_t block[]);
33
34 // This function is used by both R11 EAC and LATC to compress 4x4 blocks
35 // of 8-bit alpha into 64-bit values that comprise the compressed data.
36 // For both formats, we need to make sure that the dimensions of the
37 // src pixels are divisible by 4, and copy 4x4 blocks one at a time
38 // for compression.
39 static bool compress_4x4_a8_to_64bit(uint8_t* dst, const uint8_t* src,
40 int width, int height, int rowBytes,
41 A84x4To64BitProc proc) {
42 // Make sure that our data is well-formed enough to be considered for compre ssion
43 if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) {
44 return false;
45 }
46
47 int blocksX = width >> 2;
48 int blocksY = height >> 2;
49
50 uint8_t block[16];
51 uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst);
52 for (int y = 0; y < blocksY; ++y) {
53 for (int x = 0; x < blocksX; ++x) {
54 // Load block
55 for (int k = 0; k < 4; ++k) {
56 memcpy(block + k*4, src + k*rowBytes + 4*x, 4);
57 }
58
59 // Compress it
60 *encPtr = proc(block);
61 ++encPtr;
62 }
63 src += 4 * rowBytes;
64 }
65
66 return true;
67 }
68
69 ////////////////////////////////////////////////////////////////////////////////
70 //
71 // LATC compressor
72 //
73 ////////////////////////////////////////////////////////////////////////////////
74
75 // LATC compressed texels down into square 4x4 blocks
76 static const int kLATCPaletteSize = 8;
77 static const int kLATCBlockSize = 4;
78 static const int kLATCPixelsPerBlock = kLATCBlockSize * kLATCBlockSize;
79
80 // Generates an LATC palette. LATC constructs
81 // a palette of eight colors from LUM0 and LUM1 using the algorithm:
82 //
83 // LUM0, if lum0 > lum1 and code(x,y) == 0
84 // LUM1, if lum0 > lum1 and code(x,y) == 1
85 // (6*LUM0+ LUM1)/7, if lum0 > lum1 and code(x,y) == 2
86 // (5*LUM0+2*LUM1)/7, if lum0 > lum1 and code(x,y) == 3
87 // (4*LUM0+3*LUM1)/7, if lum0 > lum1 and code(x,y) == 4
88 // (3*LUM0+4*LUM1)/7, if lum0 > lum1 and code(x,y) == 5
89 // (2*LUM0+5*LUM1)/7, if lum0 > lum1 and code(x,y) == 6
90 // ( LUM0+6*LUM1)/7, if lum0 > lum1 and code(x,y) == 7
91 //
92 // LUM0, if lum0 <= lum1 and code(x,y) == 0
93 // LUM1, if lum0 <= lum1 and code(x,y) == 1
94 // (4*LUM0+ LUM1)/5, if lum0 <= lum1 and code(x,y) == 2
95 // (3*LUM0+2*LUM1)/5, if lum0 <= lum1 and code(x,y) == 3
96 // (2*LUM0+3*LUM1)/5, if lum0 <= lum1 and code(x,y) == 4
97 // ( LUM0+4*LUM1)/5, if lum0 <= lum1 and code(x,y) == 5
98 // 0, if lum0 <= lum1 and code(x,y) == 6
99 // 255, if lum0 <= lum1 and code(x,y) == 7
100
101 static void generate_latc_palette(uint8_t palette[], uint8_t lum0, uint8_t lum1) {
102 palette[0] = lum0;
103 palette[1] = lum1;
104 if (lum0 > lum1) {
105 for (int i = 1; i < 7; i++) {
106 palette[i+1] = ((7-i)*lum0 + i*lum1) / 7;
107 }
108 } else {
109 for (int i = 1; i < 5; i++) {
110 palette[i+1] = ((5-i)*lum0 + i*lum1) / 5;
111 }
112 palette[6] = 0;
113 palette[7] = 255;
114 }
115 }
116
117 // Compress a block by using the bounding box of the pixels. It is assumed that
118 // there are no extremal pixels in this block otherwise we would have used
119 // compressBlockBBIgnoreExtremal.
120 static uint64_t compress_latc_block_bb(const uint8_t pixels[]) {
121 uint8_t minVal = 255;
122 uint8_t maxVal = 0;
123 for (int i = 0; i < kLATCPixelsPerBlock; ++i) {
124 minVal = SkTMin(pixels[i], minVal);
125 maxVal = SkTMax(pixels[i], maxVal);
126 }
127
128 SkASSERT(!is_extremal(minVal));
129 SkASSERT(!is_extremal(maxVal));
130
131 uint8_t palette[kLATCPaletteSize];
132 generate_latc_palette(palette, maxVal, minVal);
133
134 uint64_t indices = 0;
135 for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) {
136
137 // Find the best palette index
138 uint8_t bestError = abs_diff(pixels[i], palette[0]);
139 uint8_t idx = 0;
140 for (int j = 1; j < kLATCPaletteSize; ++j) {
141 uint8_t error = abs_diff(pixels[i], palette[j]);
142 if (error < bestError) {
143 bestError = error;
144 idx = j;
145 }
146 }
147
148 indices <<= 3;
149 indices |= idx;
150 }
151
152 return
153 SkEndian_SwapLE64(
154 static_cast<uint64_t>(maxVal) |
155 (static_cast<uint64_t>(minVal) << 8) |
156 (indices << 16));
157 }
158
159 // Compress a block by using the bounding box of the pixels without taking into
160 // account the extremal values. The generated palette will contain extremal valu es
161 // and fewer points along the line segment to interpolate.
162 static uint64_t compress_latc_block_bb_ignore_extremal(const uint8_t pixels[]) {
163 uint8_t minVal = 255;
164 uint8_t maxVal = 0;
165 for (int i = 0; i < kLATCPixelsPerBlock; ++i) {
166 if (is_extremal(pixels[i])) {
167 continue;
168 }
169
170 minVal = SkTMin(pixels[i], minVal);
171 maxVal = SkTMax(pixels[i], maxVal);
172 }
173
174 SkASSERT(!is_extremal(minVal));
175 SkASSERT(!is_extremal(maxVal));
176
177 uint8_t palette[kLATCPaletteSize];
178 generate_latc_palette(palette, minVal, maxVal);
179
180 uint64_t indices = 0;
181 for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) {
182
183 // Find the best palette index
184 uint8_t idx = 0;
185 if (is_extremal(pixels[i])) {
186 if (0xFF == pixels[i]) {
187 idx = 7;
188 } else if (0 == pixels[i]) {
189 idx = 6;
190 } else {
191 SkFAIL("Pixel is extremal but not really?!");
192 }
193 } else {
194 uint8_t bestError = abs_diff(pixels[i], palette[0]);
195 for (int j = 1; j < kLATCPaletteSize - 2; ++j) {
196 uint8_t error = abs_diff(pixels[i], palette[j]);
197 if (error < bestError) {
198 bestError = error;
199 idx = j;
200 }
201 }
202 }
203
204 indices <<= 3;
205 indices |= idx;
206 }
207
208 return
209 SkEndian_SwapLE64(
210 static_cast<uint64_t>(minVal) |
211 (static_cast<uint64_t>(maxVal) << 8) |
212 (indices << 16));
213 }
214
215
216 // Compress LATC block. Each 4x4 block of pixels is decompressed by LATC from tw o
217 // values LUM0 and LUM1, and an index into the generated palette. Details of how
218 // the palette is generated can be found in the comments of generatePalette abov e.
219 //
220 // We choose which palette type to use based on whether or not 'pixels' contains
221 // any extremal values (0 or 255). If there are extremal values, then we use the
222 // palette that has the extremal values built in. Otherwise, we use the full bou nding
223 // box.
224
225 static uint64_t compress_latc_block(const uint8_t pixels[]) {
226 // Collect unique pixels
227 int nUniquePixels = 0;
228 uint8_t uniquePixels[kLATCPixelsPerBlock];
229 for (int i = 0; i < kLATCPixelsPerBlock; ++i) {
230 bool foundPixel = false;
231 for (int j = 0; j < nUniquePixels; ++j) {
232 foundPixel = foundPixel || uniquePixels[j] == pixels[i];
233 }
234
235 if (!foundPixel) {
236 uniquePixels[nUniquePixels] = pixels[i];
237 ++nUniquePixels;
238 }
239 }
240
241 // If there's only one unique pixel, then our compression is easy.
242 if (1 == nUniquePixels) {
243 return SkEndian_SwapLE64(pixels[0] | (pixels[0] << 8));
244
245 // Similarly, if there are only two unique pixels, then our compression is
246 // easy again: place the pixels in the block header, and assign the indices
247 // with one or zero depending on which pixel they belong to.
248 } else if (2 == nUniquePixels) {
249 uint64_t outBlock = 0;
250 for (int i = kLATCPixelsPerBlock - 1; i >= 0; --i) {
251 int idx = 0;
252 if (pixels[i] == uniquePixels[1]) {
253 idx = 1;
254 }
255
256 outBlock <<= 3;
257 outBlock |= idx;
258 }
259 outBlock <<= 16;
260 outBlock |= (uniquePixels[0] | (uniquePixels[1] << 8));
261 return SkEndian_SwapLE64(outBlock);
262 }
263
264 // Count non-maximal pixel values
265 int nonExtremalPixels = 0;
266 for (int i = 0; i < nUniquePixels; ++i) {
267 if (!is_extremal(uniquePixels[i])) {
268 ++nonExtremalPixels;
269 }
270 }
271
272 // If all the pixels are nonmaximal then compute the palette using
273 // the bounding box of all the pixels.
274 if (nonExtremalPixels == nUniquePixels) {
275 // This is really just for correctness, in all of my tests we
276 // never take this step. We don't lose too much perf here because
277 // most of the processing in this function is worth it for the
278 // 1 == nUniquePixels optimization.
279 return compress_latc_block_bb(pixels);
280 } else {
281 return compress_latc_block_bb_ignore_extremal(pixels);
282 }
283 }
284
285 static inline bool compress_a8_to_latc(uint8_t* dst, const uint8_t* src,
286 int width, int height, int rowBytes) {
287 return compress_4x4_a8_to_64bit(dst, src, width, height, rowBytes, compress_ latc_block);
288 }
289
290 ////////////////////////////////////////////////////////////////////////////////
291 //
292 // R11 EAC Compressor
293 //
294 ////////////////////////////////////////////////////////////////////////////////
295
296 // #define COMPRESS_R11_EAC_SLOW 1
297 // #define COMPRESS_R11_EAC_FAST 1
298 #define COMPRESS_R11_EAC_FASTEST 1
299
300 // Blocks compressed into R11 EAC are represented as follows:
301 // 0000000000000000000000000000000000000000000000000000000000000000
302 // |base_cw|mod|mul| ----------------- indices -------------------
303 //
304 // To reconstruct the value of a given pixel, we use the formula:
305 // clamp[0, 2047](base_cw * 8 + 4 + mod_val*mul*8)
306 //
307 // mod_val is chosen from a palette of values based on the index of the
308 // given pixel. The palette is chosen by the value stored in mod.
309 // This formula returns a value between 0 and 2047, which is converted
310 // to a float from 0 to 1 in OpenGL.
311 //
312 // If mul is zero, then we set mul = 1/8, so that the formula becomes
313 // clamp[0, 2047](base_cw * 8 + 4 + mod_val)
314
315 #if COMPRESS_R11_EAC_SLOW
316
317 static const int kNumR11EACPalettes = 16;
318 static const int kR11EACPaletteSize = 8;
319 static const int kR11EACModifierPalettes[kNumR11EACPalettes][kR11EACPaletteSize] = {
320 {-3, -6, -9, -15, 2, 5, 8, 14},
321 {-3, -7, -10, -13, 2, 6, 9, 12},
322 {-2, -5, -8, -13, 1, 4, 7, 12},
323 {-2, -4, -6, -13, 1, 3, 5, 12},
324 {-3, -6, -8, -12, 2, 5, 7, 11},
325 {-3, -7, -9, -11, 2, 6, 8, 10},
326 {-4, -7, -8, -11, 3, 6, 7, 10},
327 {-3, -5, -8, -11, 2, 4, 7, 10},
328 {-2, -6, -8, -10, 1, 5, 7, 9},
329 {-2, -5, -8, -10, 1, 4, 7, 9},
330 {-2, -4, -8, -10, 1, 3, 7, 9},
331 {-2, -5, -7, -10, 1, 4, 6, 9},
332 {-3, -4, -7, -10, 2, 3, 6, 9},
333 {-1, -2, -3, -10, 0, 1, 2, 9},
334 {-4, -6, -8, -9, 3, 5, 7, 8},
335 {-3, -5, -7, -9, 2, 4, 6, 8}
336 };
337
338 // Pack the base codeword, palette, and multiplier into the 64 bits necessary
339 // to decode it.
340 static uint64_t pack_r11eac_block(uint16_t base_cw, uint16_t palette, uint16_t m ultiplier,
341 uint64_t indices) {
342 SkASSERT(palette < 16);
343 SkASSERT(multiplier < 16);
344 SkASSERT(indices < (static_cast<uint64_t>(1) << 48));
345
346 const uint64_t b = static_cast<uint64_t>(base_cw) << 56;
347 const uint64_t m = static_cast<uint64_t>(multiplier) << 52;
348 const uint64_t p = static_cast<uint64_t>(palette) << 48;
349 return SkEndian_SwapBE64(b | m | p | indices);
350 }
351
352 // Given a base codeword, a modifier, and a multiplier, compute the proper
353 // pixel value in the range [0, 2047].
354 static uint16_t compute_r11eac_pixel(int base_cw, int modifier, int multiplier) {
355 int ret = (base_cw * 8 + 4) + (modifier * multiplier * 8);
356 return (ret > 2047)? 2047 : ((ret < 0)? 0 : ret);
357 }
358
359 // Compress a block into R11 EAC format.
360 // The compression works as follows:
361 // 1. Find the center of the span of the block's values. Use this as the base co deword.
362 // 2. Choose a multiplier based roughly on the size of the span of block values
363 // 3. Iterate through each palette and choose the one with the most accurate
364 // modifiers.
365 static inline uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[1 6]) {
366 // Find the center of the data...
367 uint16_t bmin = block[0];
368 uint16_t bmax = block[0];
369 for (int i = 1; i < 16; ++i) {
370 bmin = SkTMin<uint16_t>(bmin, block[i]);
371 bmax = SkTMax<uint16_t>(bmax, block[i]);
372 }
373
374 uint16_t center = (bmax + bmin) >> 1;
375 SkASSERT(center <= 255);
376
377 // Based on the min and max, we can guesstimate a proper multiplier
378 // This is kind of a magic choice to start with.
379 uint16_t multiplier = (bmax - center) / 10;
380
381 // Now convert the block to 11 bits and transpose it to match
382 // the proper layout
383 uint16_t cblock[16];
384 for (int i = 0; i < 4; ++i) {
385 for (int j = 0; j < 4; ++j) {
386 int srcIdx = i*4+j;
387 int dstIdx = j*4+i;
388 cblock[dstIdx] = (block[srcIdx] << 3) | (block[srcIdx] >> 5);
389 }
390 }
391
392 // Finally, choose the proper palette and indices
393 uint32_t bestError = 0xFFFFFFFF;
394 uint64_t bestIndices = 0;
395 uint16_t bestPalette = 0;
396 for (uint16_t paletteIdx = 0; paletteIdx < kNumR11EACPalettes; ++paletteIdx) {
397 const int *palette = kR11EACModifierPalettes[paletteIdx];
398
399 // Iterate through each pixel to find the best palette index
400 // and update the indices with the choice. Also store the error
401 // for this palette to be compared against the best error...
402 uint32_t error = 0;
403 uint64_t indices = 0;
404 for (int pixelIdx = 0; pixelIdx < 16; ++pixelIdx) {
405 const uint16_t pixel = cblock[pixelIdx];
406
407 // Iterate through each palette value to find the best index
408 // for this particular pixel for this particular palette.
409 uint16_t bestPixelError =
410 abs_diff(pixel, compute_r11eac_pixel(center, palette[0], multipl ier));
411 int bestIndex = 0;
412 for (int i = 1; i < kR11EACPaletteSize; ++i) {
413 const uint16_t p = compute_r11eac_pixel(center, palette[i], mult iplier);
414 const uint16_t perror = abs_diff(pixel, p);
415
416 // Is this index better?
417 if (perror < bestPixelError) {
418 bestIndex = i;
419 bestPixelError = perror;
420 }
421 }
422
423 SkASSERT(bestIndex < 8);
424
425 error += bestPixelError;
426 indices <<= 3;
427 indices |= bestIndex;
428 }
429
430 SkASSERT(indices < (static_cast<uint64_t>(1) << 48));
431
432 // Is this palette better?
433 if (error < bestError) {
434 bestPalette = paletteIdx;
435 bestIndices = indices;
436 bestError = error;
437 }
438 }
439
440 // Finally, pack everything together...
441 return pack_r11eac_block(center, bestPalette, multiplier, bestIndices);
442 }
443 #endif // COMPRESS_R11_EAC_SLOW
444
445 #if COMPRESS_R11_EAC_FAST
446 // This function takes into account that most blocks that we compress have a gra dation from
447 // fully opaque to fully transparent. The compression scheme works by selecting the
448 // palette and multiplier that has the tightest fit to the 0-255 range. This is encoded
449 // as the block header (0x8490). The indices are then selected by considering th e top
450 // three bits of each alpha value. For alpha masks, this reduces the dynamic ran ge from
451 // 17 to 8, but the quality is still acceptable.
452 //
453 // There are a few caveats that need to be taken care of...
454 //
455 // 1. The block is read in as scanlines, so the indices are stored as:
456 // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
457 // However, the decomrpession routine reads them in column-major order, so th ey
458 // need to be packed as:
459 // 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15
460 // So when reading, they must be transposed.
461 //
462 // 2. We cannot use the top three bits as an index directly, since the R11 EAC p alettes
463 // above store the modulation values first decreasing and then increasing:
464 // e.g. {-3, -6, -9, -15, 2, 5, 8, 14}
465 // Hence, we need to convert the indices with the following mapping:
466 // From: 0 1 2 3 4 5 6 7
467 // To: 3 2 1 0 4 5 6 7
468 static inline uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[1 6]) {
469 uint64_t retVal = static_cast<uint64_t>(0x8490) << 48;
470 for(int i = 0; i < 4; ++i) {
471 for(int j = 0; j < 4; ++j) {
472 const int shift = 45-3*(j*4+i);
473 SkASSERT(shift <= 45);
474 const uint64_t idx = block[i*4+j] >> 5;
475 SkASSERT(idx < 8);
476
477 // !SPEED! This is slightly faster than having an if-statement.
478 switch(idx) {
479 case 0:
480 case 1:
481 case 2:
482 case 3:
483 retVal |= (3-idx) << shift;
484 break;
485 default:
486 retVal |= idx << shift;
487 break;
488 }
489 }
490 }
491
492 return SkEndian_SwapBE64(retVal);
493 }
494 #endif // COMPRESS_R11_EAC_FAST
495
496 #if (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST)
497 static uint64_t compress_r11eac_block(const uint8_t block[16]) {
498 // Are all blocks a solid color?
499 bool solid = true;
500 for (int i = 1; i < 16; ++i) {
501 if (block[i] != block[0]) {
502 solid = false;
503 break;
504 }
505 }
506
507 if (solid) {
508 switch(block[0]) {
509 // Fully transparent? We know the encoding...
510 case 0:
511 // (0x0020 << 48) produces the following:
512 // basw_cw: 0
513 // mod: 0, palette: {-3, -6, -9, -15, 2, 5, 8, 14}
514 // multiplier: 2
515 // mod_val: -3
516 //
517 // this gives the following formula:
518 // clamp[0, 2047](0*8+4+(-3)*2*8) = 0
519 //
520 // Furthermore, it is impervious to endianness:
521 // 0x0020000000002000ULL
522 // Will produce one pixel with index 2, which gives:
523 // clamp[0, 2047](0*8+4+(-9)*2*8) = 0
524 return 0x0020000000002000ULL;
525
526 // Fully opaque? We know this encoding too...
527 case 255:
528
529 // -1 produces the following:
530 // basw_cw: 255
531 // mod: 15, palette: {-3, -5, -7, -9, 2, 4, 6, 8}
532 // mod_val: 8
533 //
534 // this gives the following formula:
535 // clamp[0, 2047](255*8+4+8*8*8) = clamp[0, 2047](2556) = 2047
536 return 0xFFFFFFFFFFFFFFFFULL;
537
538 default:
539 // !TODO! krajcevski:
540 // This will probably never happen, since we're using this forma t
541 // primarily for compressing alpha maps. Usually the only
542 // non-fullly opaque or fully transparent blocks are not a solid
543 // intermediate color. If we notice that they are, then we can
544 // add another optimization...
545 break;
546 }
547 }
548
549 return compress_heterogeneous_r11eac_block(block);
550 }
551 #endif // (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST)
552
553 #if COMPRESS_R11_EAC_FASTEST
554 static inline uint64_t interleave6(uint64_t topRows, uint64_t bottomRows) {
555 // If our 3-bit block indices are laid out as:
556 // a b c d
557 // e f g h
558 // i j k l
559 // m n o p
560 //
561 // This function expects topRows and bottomRows to contain the first two row s
562 // of indices interleaved in the least significant bits of a and b. In other words...
563 //
564 // If the architecture is big endian, then topRows and bottomRows will conta in the following:
565 // Bits 31-0:
566 // a: 00 a e 00 b f 00 c g 00 d h
567 // b: 00 i m 00 j n 00 k o 00 l p
568 //
569 // If the architecture is little endian, then topRows and bottomRows will co ntain
570 // the following:
571 // Bits 31-0:
572 // a: 00 d h 00 c g 00 b f 00 a e
573 // b: 00 l p 00 k o 00 j n 00 i m
574 //
575 // This function returns a 48-bit packing of the form:
576 // a e i m b f j n c g k o d h l p
577 //
578 // !SPEED! this function might be even faster if certain SIMD intrinsics are
579 // used..
580
581 // For both architectures, we can figure out a packing of the bits by
582 // using a shuffle and a few shift-rotates...
583 uint64_t x = (static_cast<uint64_t>(topRows) << 32) | static_cast<uint64_t>( bottomRows);
584
585 // x: 00 a e 00 b f 00 c g 00 d h 00 i m 00 j n 00 k o 00 l p
586
587 uint64_t t = (x ^ (x >> 10)) & 0x3FC0003FC00000ULL;
588 x = x ^ t ^ (t << 10);
589
590 // x: b f 00 00 00 a e c g i m 00 00 00 d h j n 00 k o 00 l p
591
592 x = (x | ((x << 52) & (0x3FULL << 52)) | ((x << 20) & (0x3FULL << 28))) >> 1 6;
593
594 // x: 00 00 00 00 00 00 00 00 b f l p a e c g i m k o d h j n
595
596 t = (x ^ (x >> 6)) & 0xFC0000ULL;
597 x = x ^ t ^ (t << 6);
598
599 #if defined (SK_CPU_BENDIAN)
600 // x: 00 00 00 00 00 00 00 00 b f l p a e i m c g k o d h j n
601
602 t = (x ^ (x >> 36)) & 0x3FULL;
603 x = x ^ t ^ (t << 36);
604
605 // x: 00 00 00 00 00 00 00 00 b f j n a e i m c g k o d h l p
606
607 t = (x ^ (x >> 12)) & 0xFFF000000ULL;
608 x = x ^ t ^ (t << 12);
609
610 // x: 00 00 00 00 00 00 00 00 a e i m b f j n c g k o d h l p
611 return x;
612 #else
613 // If our CPU is little endian, then the above logic will
614 // produce the following indices:
615 // x: 00 00 00 00 00 00 00 00 c g i m d h l p b f j n a e k o
616
617 t = (x ^ (x >> 36)) & 0xFC0ULL;
618 x = x ^ t ^ (t << 36);
619
620 // x: 00 00 00 00 00 00 00 00 a e i m d h l p b f j n c g k o
621
622 x = (x & (0xFFFULL << 36)) | ((x & 0xFFFFFFULL) << 12) | ((x >> 24) & 0xFFFU LL);
623
624 // x: 00 00 00 00 00 00 00 00 a e i m b f j n c g k o d h l p
625
626 return x;
627 #endif
628 }
629
630 // This function converts an integer containing four bytes of alpha
631 // values into an integer containing four bytes of indices into R11 EAC.
632 // Note, there needs to be a mapping of indices:
633 // 0 1 2 3 4 5 6 7
634 // 3 2 1 0 4 5 6 7
635 //
636 // To compute this, we first negate each byte, and then add three, which
637 // gives the mapping
638 // 3 2 1 0 -1 -2 -3 -4
639 //
640 // Then we mask out the negative values, take their absolute value, and
641 // add three.
642 //
643 // Most of the voodoo in this function comes from Hacker's Delight, section 2-18
644 static inline uint32_t convert_indices(uint32_t x) {
645 // Take the top three bits...
646 x = (x & 0xE0E0E0E0) >> 5;
647
648 // Negate...
649 x = ~((0x80808080 - x) ^ 0x7F7F7F7F);
650
651 // Add three
652 const uint32_t s = (x & 0x7F7F7F7F) + 0x03030303;
653 x = ((x ^ 0x03030303) & 0x80808080) ^ s;
654
655 // Absolute value
656 const uint32_t a = x & 0x80808080;
657 const uint32_t b = a >> 7;
658
659 // Aside: mask negatives (m is three if the byte was negative)
660 const uint32_t m = (a >> 6) | b;
661
662 // .. continue absolute value
663 x = (x ^ ((a - b) | a)) + b;
664
665 // Add three
666 return x + m;
667 }
668
669 // This function follows the same basic procedure as compress_heterogeneous_r11e ac_block
670 // above when COMPRESS_R11_EAC_FAST is defined, but it avoids a few loads/stores and
671 // tries to optimize where it can using SIMD.
672 static uint64_t compress_r11eac_block_fast(const uint8_t* src, int rowBytes) {
673 // Store each row of alpha values in an integer
674 const uint32_t alphaRow1 = *(reinterpret_cast<const uint32_t*>(src));
675 const uint32_t alphaRow2 = *(reinterpret_cast<const uint32_t*>(src + rowByte s));
676 const uint32_t alphaRow3 = *(reinterpret_cast<const uint32_t*>(src + 2*rowBy tes));
677 const uint32_t alphaRow4 = *(reinterpret_cast<const uint32_t*>(src + 3*rowBy tes));
678
679 // Check for solid blocks. The explanations for these values
680 // can be found in the comments of compress_r11eac_block above
681 if (alphaRow1 == alphaRow2 && alphaRow1 == alphaRow3 && alphaRow1 == alphaRo w4) {
682 if (0 == alphaRow1) {
683 // Fully transparent block
684 return 0x0020000000002000ULL;
685 } else if (0xFFFFFFFF == alphaRow1) {
686 // Fully opaque block
687 return 0xFFFFFFFFFFFFFFFFULL;
688 }
689 }
690
691 // Convert each integer of alpha values into an integer of indices
692 const uint32_t indexRow1 = convert_indices(alphaRow1);
693 const uint32_t indexRow2 = convert_indices(alphaRow2);
694 const uint32_t indexRow3 = convert_indices(alphaRow3);
695 const uint32_t indexRow4 = convert_indices(alphaRow4);
696
697 // Interleave the indices from the top two rows and bottom two rows
698 // prior to passing them to interleave6. Since each index is at most
699 // three bits, then each byte can hold two indices... The way that the
700 // compression scheme expects the packing allows us to efficiently pack
701 // the top two rows and bottom two rows. Interleaving each 6-bit sequence
702 // and tightly packing it into a uint64_t is a little trickier, which is
703 // taken care of in interleave6.
704 const uint32_t r1r2 = (indexRow1 << 3) | indexRow2;
705 const uint32_t r3r4 = (indexRow3 << 3) | indexRow4;
706 const uint64_t indices = interleave6(r1r2, r3r4);
707
708 // Return the packed incdices in the least significant bits with the magic h eader
709 return SkEndian_SwapBE64(0x8490000000000000ULL | indices);
710 }
711
712 static bool compress_a8_to_r11eac_fast(uint8_t* dst, const uint8_t* src,
713 int width, int height, int rowBytes) {
714 // Make sure that our data is well-formed enough to be considered for compre ssion
715 if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) {
716 return false;
717 }
718
719 const int blocksX = width >> 2;
720 const int blocksY = height >> 2;
721
722 uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst);
723 for (int y = 0; y < blocksY; ++y) {
724 for (int x = 0; x < blocksX; ++x) {
725 // Compress it
726 *encPtr = compress_r11eac_block_fast(src + 4*x, rowBytes);
727 ++encPtr;
728 }
729 src += 4 * rowBytes;
730 }
731 return true;
732 }
733 #endif // COMPRESS_R11_EAC_FASTEST
734
735 // The R11 EAC format expects that indices are given in column-major order. Sinc e
736 // we receive alpha values in raster order, this usually means that we have to u se
737 // pack6 above to properly pack our indices. However, if our indices come from t he
738 // blitter, then each integer will be a column of indices, and hence can be effi ciently
739 // packed. This function takes the bottom three bits of each byte and places the m in
740 // the least significant 12 bits of the resulting integer.
741 static inline uint32_t pack_indices_vertical(uint32_t x) {
742 #if defined (SK_CPU_BENDIAN)
743 return
744 (x & 7) |
745 ((x >> 5) & (7 << 3)) |
746 ((x >> 10) & (7 << 6)) |
747 ((x >> 15) & (7 << 9));
748 #else
749 return
750 ((x >> 24) & 7) |
751 ((x >> 13) & (7 << 3)) |
752 ((x >> 2) & (7 << 6)) |
753 ((x << 9) & (7 << 9));
754 #endif
755 }
756
757 // This function returns the compressed format of a block given as four columns of
758 // alpha values. Each column is assumed to be loaded from top to bottom, and hen ce
759 // must first be converted to indices and then packed into the resulting 64-bit
760 // integer.
761 static inline uint64_t compress_block_vertical(const uint32_t alphaColumn0,
762 const uint32_t alphaColumn1,
763 const uint32_t alphaColumn2,
764 const uint32_t alphaColumn3) {
765
766 if (alphaColumn0 == alphaColumn1 &&
767 alphaColumn2 == alphaColumn3 &&
768 alphaColumn0 == alphaColumn2) {
769
770 if (0 == alphaColumn0) {
771 // Transparent
772 return 0x0020000000002000ULL;
773 }
774 else if (0xFFFFFFFF == alphaColumn0) {
775 // Opaque
776 return 0xFFFFFFFFFFFFFFFFULL;
777 }
778 }
779
780 const uint32_t indexColumn0 = convert_indices(alphaColumn0);
781 const uint32_t indexColumn1 = convert_indices(alphaColumn1);
782 const uint32_t indexColumn2 = convert_indices(alphaColumn2);
783 const uint32_t indexColumn3 = convert_indices(alphaColumn3);
784
785 const uint32_t packedIndexColumn0 = pack_indices_vertical(indexColumn0);
786 const uint32_t packedIndexColumn1 = pack_indices_vertical(indexColumn1);
787 const uint32_t packedIndexColumn2 = pack_indices_vertical(indexColumn2);
788 const uint32_t packedIndexColumn3 = pack_indices_vertical(indexColumn3);
789
790 return SkEndian_SwapBE64(0x8490000000000000ULL |
791 (static_cast<uint64_t>(packedIndexColumn0) << 36) |
792 (static_cast<uint64_t>(packedIndexColumn1) << 24) |
793 static_cast<uint64_t>(packedIndexColumn2 << 12) |
794 static_cast<uint64_t>(packedIndexColumn3));
795
796 }
797
798 static inline bool compress_a8_to_r11eac(uint8_t* dst, const uint8_t* src,
799 int width, int height, int rowBytes) {
800 #if (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST)
801 return compress_4x4_a8_to_64bit(dst, src, width, height, rowBytes, compress_ r11eac_block);
802 #elif COMPRESS_R11_EAC_FASTEST
803 return compress_a8_to_r11eac_fast(dst, src, width, height, rowBytes);
804 #else
805 #error "Must choose R11 EAC algorithm"
806 #endif
807 }
808
809 // Updates the block whose columns are stored in blockColN. curAlphai is expecte d
810 // to store, as an integer, the four alpha values that will be placed within eac h
811 // of the columns in the range [col, col+colsLeft).
812 static inline void update_block_columns(
813 uint32_t* blockCol1, uint32_t* blockCol2, uint32_t* blockCol3, uint32_t* blo ckCol4,
814 const int col, const int colsLeft, const uint32_t curAlphai) {
815 SkASSERT(NULL != blockCol1);
816 SkASSERT(NULL != blockCol2);
817 SkASSERT(NULL != blockCol3);
818 SkASSERT(NULL != blockCol4);
819 SkASSERT(col + colsLeft <= 4);
820 for (int i = col; i < (col + colsLeft); ++i) {
821 switch(i) {
822 case 0:
823 *blockCol1 = curAlphai;
824 break;
825 case 1:
826 *blockCol2 = curAlphai;
827 break;
828 case 2:
829 *blockCol3 = curAlphai;
830 break;
831 case 3:
832 *blockCol4 = curAlphai;
833 break;
834 }
835 }
836 }
837
838 ////////////////////////////////////////////////////////////////////////////////
839 19
840 namespace SkTextureCompressor { 20 namespace SkTextureCompressor {
841 21
842 static inline size_t get_compressed_data_size(Format fmt, int width, int height) { 22 int GetCompressedDataSize(Format fmt, int width, int height) {
843 switch (fmt) { 23 switch (fmt) {
844 // These formats are 64 bits per 4x4 block. 24 // These formats are 64 bits per 4x4 block.
845 case kR11_EAC_Format: 25 case kR11_EAC_Format:
846 case kLATC_Format: 26 case kLATC_Format:
847 { 27 {
848 static const int kLATCEncodedBlockSize = 8; 28 static const int kBlockDimension = 4;
29 static const int kEncodedBlockSize = 8;
849 30
850 const int blocksX = width / kLATCBlockSize; 31 if(((width % kBlockDimension) == 0) && ((height % kBlockDimension) = = 0)) {
851 const int blocksY = height / kLATCBlockSize;
852 32
853 return blocksX * blocksY * kLATCEncodedBlockSize; 33 const int blocksX = width / kBlockDimension;
34 const int blocksY = height / kBlockDimension;
35
36 return blocksX * blocksY * kEncodedBlockSize;
37 }
38
39 return -1;
854 } 40 }
855 41
856 default: 42 default:
857 SkFAIL("Unknown compressed format!"); 43 SkFAIL("Unknown compressed format!");
858 return 0; 44 return -1;
859 } 45 }
860 } 46 }
861 47
862 bool CompressBufferToFormat(uint8_t* dst, const uint8_t* src, SkColorType srcCol orType, 48 bool CompressBufferToFormat(uint8_t* dst, const uint8_t* src, SkColorType srcCol orType,
863 int width, int height, int rowBytes, Format format, bool opt) { 49 int width, int height, int rowBytes, Format format, bool opt) {
864 CompressionProc proc = NULL; 50 CompressionProc proc = NULL;
865 if (opt) { 51 if (opt) {
866 proc = SkTextureCompressorGetPlatformProc(srcColorType, format); 52 proc = SkTextureCompressorGetPlatformProc(srcColorType, format);
867 } 53 }
868 54
869 if (NULL == proc) { 55 if (NULL == proc) {
870 switch (srcColorType) { 56 switch (srcColorType) {
871 case kAlpha_8_SkColorType: 57 case kAlpha_8_SkColorType:
872 { 58 {
873 switch (format) { 59 switch (format) {
874 case kLATC_Format: 60 case kLATC_Format:
875 proc = compress_a8_to_latc; 61 proc = CompressA8ToLATC;
876 break; 62 break;
877 case kR11_EAC_Format: 63 case kR11_EAC_Format:
878 proc = compress_a8_to_r11eac; 64 proc = CompressA8ToR11EAC;
879 break; 65 break;
880 default: 66 default:
881 // Do nothing... 67 // Do nothing...
882 break; 68 break;
883 } 69 }
884 } 70 }
885 break; 71 break;
886 72
887 default: 73 default:
888 // Do nothing... 74 // Do nothing...
889 break; 75 break;
890 } 76 }
891 } 77 }
892 78
893 if (NULL != proc) { 79 if (NULL != proc) {
894 return proc(dst, src, width, height, rowBytes); 80 return proc(dst, src, width, height, rowBytes);
895 } 81 }
896 82
897 return false; 83 return false;
898 } 84 }
899 85
900 SkData *CompressBitmapToFormat(const SkBitmap &bitmap, Format format) { 86 SkData *CompressBitmapToFormat(const SkBitmap &bitmap, Format format) {
901 SkAutoLockPixels alp(bitmap); 87 SkAutoLockPixels alp(bitmap);
902 88
903 int compressedDataSize = get_compressed_data_size(format, bitmap.width(), bi tmap.height()); 89 int compressedDataSize = GetCompressedDataSize(format, bitmap.width(), bitma p.height());
90 if (compressedDataSize < 0) {
91 return NULL;
92 }
93
904 const uint8_t* src = reinterpret_cast<const uint8_t*>(bitmap.getPixels()); 94 const uint8_t* src = reinterpret_cast<const uint8_t*>(bitmap.getPixels());
905 uint8_t* dst = reinterpret_cast<uint8_t*>(sk_malloc_throw(compressedDataSize )); 95 uint8_t* dst = reinterpret_cast<uint8_t*>(sk_malloc_throw(compressedDataSize ));
96
906 if (CompressBufferToFormat(dst, src, bitmap.colorType(), bitmap.width(), bit map.height(), 97 if (CompressBufferToFormat(dst, src, bitmap.colorType(), bitmap.width(), bit map.height(),
907 bitmap.rowBytes(), format)) { 98 bitmap.rowBytes(), format)) {
908 return SkData::NewFromMalloc(dst, compressedDataSize); 99 return SkData::NewFromMalloc(dst, compressedDataSize);
909 } 100 }
910 101
911 sk_free(dst); 102 sk_free(dst);
912 return NULL; 103 return NULL;
913 } 104 }
914 105
915 R11_EACBlitter::R11_EACBlitter(int width, int height, void *latcBuffer) 106 SkBlitter* CreateBlitterForFormat(int width, int height, void* compressedBuffer, Format format) {
916 // 0x7FFE is one minus the largest positive 16-bit int. We use it for 107 switch(format) {
917 // debugging to make sure that we're properly setting the nextX distance 108 case kLATC_Format:
918 // in flushRuns(). 109 return CreateLATCBlitter(width, height, compressedBuffer);
919 : kLongestRun(0x7FFE), kZeroAlpha(0)
920 , fNextRun(0)
921 , fWidth(width)
922 , fHeight(height)
923 , fBuffer(reinterpret_cast<uint64_t*const>(latcBuffer))
924 {
925 SkASSERT((width % kR11_EACBlockSz) == 0);
926 SkASSERT((height % kR11_EACBlockSz) == 0);
927 }
928 110
929 void R11_EACBlitter::blitAntiH(int x, int y, 111 case kR11_EAC_Format:
930 const SkAlpha* antialias, 112 return CreateR11EACBlitter(width, height, compressedBuffer);
931 const int16_t* runs) { 113
932 // Make sure that the new row to blit is either the first 114 default:
933 // row that we're blitting, or it's exactly the next scan row 115 return NULL;
934 // since the last row that we blit. This is to ensure that when
935 // we go to flush the runs, that they are all the same four
936 // runs.
937 if (fNextRun > 0 &&
938 ((x != fBufferedRuns[fNextRun-1].fX) ||
939 (y-1 != fBufferedRuns[fNextRun-1].fY))) {
940 this->flushRuns();
941 } 116 }
942 117
943 // Align the rows to a block boundary. If we receive rows that 118 return NULL;
944 // are not on a block boundary, then fill in the preceding runs
945 // with zeros. We do this by producing a single RLE that says
946 // that we have 0x7FFE pixels of zero (0x7FFE = 32766).
947 const int row = y & ~3;
948 while ((row + fNextRun) < y) {
949 fBufferedRuns[fNextRun].fAlphas = &kZeroAlpha;
950 fBufferedRuns[fNextRun].fRuns = &kLongestRun;
951 fBufferedRuns[fNextRun].fX = 0;
952 fBufferedRuns[fNextRun].fY = row + fNextRun;
953 ++fNextRun;
954 }
955
956 // Make sure that our assumptions aren't violated...
957 SkASSERT(fNextRun == (y & 3));
958 SkASSERT(fNextRun == 0 || fBufferedRuns[fNextRun - 1].fY < y);
959
960 // Set the values of the next run
961 fBufferedRuns[fNextRun].fAlphas = antialias;
962 fBufferedRuns[fNextRun].fRuns = runs;
963 fBufferedRuns[fNextRun].fX = x;
964 fBufferedRuns[fNextRun].fY = y;
965
966 // If we've output four scanlines in a row that don't violate our
967 // assumptions, then it's time to flush them...
968 if (4 == ++fNextRun) {
969 this->flushRuns();
970 }
971 }
972
973 void R11_EACBlitter::flushRuns() {
974
975 // If we don't have any runs, then just return.
976 if (0 == fNextRun) {
977 return;
978 }
979
980 #ifndef NDEBUG
981 // Make sure that if we have any runs, they all match
982 for (int i = 1; i < fNextRun; ++i) {
983 SkASSERT(fBufferedRuns[i].fY == fBufferedRuns[i-1].fY + 1);
984 SkASSERT(fBufferedRuns[i].fX == fBufferedRuns[i-1].fX);
985 }
986 #endif
987
988 // If we dont have as many runs as we have rows, fill in the remaining
989 // runs with constant zeros.
990 for (int i = fNextRun; i < kR11_EACBlockSz; ++i) {
991 fBufferedRuns[i].fY = fBufferedRuns[0].fY + i;
992 fBufferedRuns[i].fX = fBufferedRuns[0].fX;
993 fBufferedRuns[i].fAlphas = &kZeroAlpha;
994 fBufferedRuns[i].fRuns = &kLongestRun;
995 }
996
997 // Make sure that our assumptions aren't violated.
998 SkASSERT(fNextRun > 0 && fNextRun <= 4);
999 SkASSERT((fBufferedRuns[0].fY & 3) == 0);
1000
1001 // The following logic walks four rows at a time and outputs compressed
1002 // blocks to the buffer passed into the constructor.
1003 // We do the following:
1004 //
1005 // c1 c2 c3 c4
1006 // -----------------------------------------------------------------------
1007 // ... | | | | | ----> fBufferedRuns[0]
1008 // -----------------------------------------------------------------------
1009 // ... | | | | | ----> fBufferedRuns[1]
1010 // -----------------------------------------------------------------------
1011 // ... | | | | | ----> fBufferedRuns[2]
1012 // -----------------------------------------------------------------------
1013 // ... | | | | | ----> fBufferedRuns[3]
1014 // -----------------------------------------------------------------------
1015 //
1016 // curX -- the macro X value that we've gotten to.
1017 // c1, c2, c3, c4 -- the integers that represent the columns of the current block
1018 // that we're operating on
1019 // curAlphaColumn -- integer containing the column of alpha values from fBuf feredRuns.
1020 // nextX -- for each run, the next point at which we need to update curAlpha Column
1021 // after the value of curX.
1022 // finalX -- the minimum of all the nextX values.
1023 //
1024 // curX advances to finalX outputting any blocks that it passes along
1025 // the way. Since finalX will not change when we reach the end of a
1026 // run, the termination criteria will be whenever curX == finalX at the
1027 // end of a loop.
1028
1029 // Setup:
1030 uint32_t c1 = 0;
1031 uint32_t c2 = 0;
1032 uint32_t c3 = 0;
1033 uint32_t c4 = 0;
1034
1035 uint32_t curAlphaColumn = 0;
1036 SkAlpha *curAlpha = reinterpret_cast<SkAlpha*>(&curAlphaColumn);
1037
1038 int nextX[kR11_EACBlockSz];
1039 for (int i = 0; i < kR11_EACBlockSz; ++i) {
1040 nextX[i] = 0x7FFFFF;
1041 }
1042
1043 uint64_t* outPtr = this->getBlock(fBufferedRuns[0].fX, fBufferedRuns[0].fY);
1044
1045 // Populate the first set of runs and figure out how far we need to
1046 // advance on the first step
1047 int curX = 0;
1048 int finalX = 0xFFFFF;
1049 for (int i = 0; i < kR11_EACBlockSz; ++i) {
1050 nextX[i] = *(fBufferedRuns[i].fRuns);
1051 curAlpha[i] = *(fBufferedRuns[i].fAlphas);
1052
1053 finalX = SkMin32(nextX[i], finalX);
1054 }
1055
1056 // Make sure that we have a valid right-bound X value
1057 SkASSERT(finalX < 0xFFFFF);
1058
1059 // Run the blitter...
1060 while (curX != finalX) {
1061 SkASSERT(finalX >= curX);
1062
1063 // Do we need to populate the rest of the block?
1064 if ((finalX - (curX & ~3)) >= kR11_EACBlockSz) {
1065 const int col = curX & 3;
1066 const int colsLeft = 4 - col;
1067 SkASSERT(curX + colsLeft <= finalX);
1068
1069 update_block_columns(&c1, &c2, &c3, &c4, col, colsLeft, curAlphaColu mn);
1070
1071 // Write this block
1072 *outPtr = compress_block_vertical(c1, c2, c3, c4);
1073 ++outPtr;
1074 curX += colsLeft;
1075 }
1076
1077 // If we can advance even further, then just keep memsetting the block
1078 if ((finalX - curX) >= kR11_EACBlockSz) {
1079 SkASSERT((curX & 3) == 0);
1080
1081 const int col = 0;
1082 const int colsLeft = kR11_EACBlockSz;
1083
1084 update_block_columns(&c1, &c2, &c3, &c4, col, colsLeft, curAlphaColu mn);
1085
1086 // While we can keep advancing, just keep writing the block.
1087 uint64_t lastBlock = compress_block_vertical(c1, c2, c3, c4);
1088 while((finalX - curX) >= kR11_EACBlockSz) {
1089 *outPtr = lastBlock;
1090 ++outPtr;
1091 curX += kR11_EACBlockSz;
1092 }
1093 }
1094
1095 // If we haven't advanced within the block then do so.
1096 if (curX < finalX) {
1097 const int col = curX & 3;
1098 const int colsLeft = finalX - curX;
1099
1100 update_block_columns(&c1, &c2, &c3, &c4, col, colsLeft, curAlphaColu mn);
1101
1102 curX += colsLeft;
1103 }
1104
1105 SkASSERT(curX == finalX);
1106
1107 // Figure out what the next advancement is...
1108 for (int i = 0; i < kR11_EACBlockSz; ++i) {
1109 if (nextX[i] == finalX) {
1110 const int16_t run = *(fBufferedRuns[i].fRuns);
1111 fBufferedRuns[i].fRuns += run;
1112 fBufferedRuns[i].fAlphas += run;
1113 curAlpha[i] = *(fBufferedRuns[i].fAlphas);
1114 nextX[i] += *(fBufferedRuns[i].fRuns);
1115 }
1116 }
1117
1118 finalX = 0xFFFFF;
1119 for (int i = 0; i < kR11_EACBlockSz; ++i) {
1120 finalX = SkMin32(nextX[i], finalX);
1121 }
1122 }
1123
1124 // If we didn't land on a block boundary, output the block...
1125 if ((curX & 3) > 1) {
1126 *outPtr = compress_block_vertical(c1, c2, c3, c4);
1127 }
1128
1129 fNextRun = 0;
1130 } 119 }
1131 120
1132 } // namespace SkTextureCompressor 121 } // namespace SkTextureCompressor
OLDNEW
« no previous file with comments | « src/utils/SkTextureCompressor.h ('k') | src/utils/SkTextureCompressor_LATC.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698