Index: ui/gfx/geometry/r_tree_unittest.cc |
diff --git a/ui/gfx/geometry/r_tree_unittest.cc b/ui/gfx/geometry/r_tree_unittest.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..9cc12bb3ac7a026ae2dea8a8f911b16f4c8451e3 |
--- /dev/null |
+++ b/ui/gfx/geometry/r_tree_unittest.cc |
@@ -0,0 +1,869 @@ |
+// Copyright (c) 2014 The Chromium Authors. All rights reserved. |
+// Use of this source code is governed by a BSD-style license that can be |
+// found in the LICENSE file. |
+ |
+#include "testing/gtest/include/gtest/gtest.h" |
+#include "ui/gfx/geometry/r_tree.h" |
+#include "ui/gfx/geometry/rect.h" |
+ |
+namespace gfx { |
+ |
+class RTreeTest : public ::testing::Test { |
+ protected: |
+ // Given a pointer to an RTree, traverse it and verify its internal structure |
+ // is consistent with the RTree semantics. |
+ void ValidateRTree(RTree* rt) { |
+ // If RTree is empty it should have an empty rectangle. |
+ if (!rt->root_->count()) { |
+ EXPECT_TRUE(rt->root_->rect().IsEmpty()); |
+ EXPECT_EQ(rt->root_->level(), 0); |
+ return; |
+ } |
+ // Root is allowed to have fewer than min_children_ but never more than |
+ // max_children_. |
+ EXPECT_LE(rt->root_->count(), rt->max_children_); |
+ // The root should never be a record node. |
+ EXPECT_GT(rt->root_->level(), -1); |
+ EXPECT_FALSE(rt->root_->key()); |
+ // The root should never have a parent pointer. |
+ EXPECT_FALSE(rt->root_->parent()); |
+ // Bounds must be consistent on the root. |
+ CheckBoundsConsistent(rt->root_.get()); |
+ // We traverse root's children ourselves, so we can avoid asserts about |
+ // root's potential inconsistencies. |
+ for (size_t i = 0; i < rt->root_->children_.size(); ++i) { |
+ ValidateNode( |
+ rt->root_->children_[i], rt->min_children_, rt->max_children_); |
+ } |
+ } |
+ |
+ // Recursive descent method used by ValidateRTree to check each node within |
+ // the RTree for consistency with RTree semantics. |
+ void ValidateNode(RTree::Node* node, |
+ size_t min_children, |
+ size_t max_children) { |
+ // Record nodes have different requirements, handle up front. |
+ if (node->level() == -1) { |
+ // Record nodes may have no children. |
+ EXPECT_EQ(node->count(), 0U); |
+ // They must have an associated non-NULL key. |
+ EXPECT_TRUE(node->key()); |
+ // They must always have a parent. |
+ EXPECT_TRUE(node->parent()); |
+ return; |
+ } |
+ // Non-record node, normal expectations apply. |
+ EXPECT_GE(node->count(), min_children); |
+ EXPECT_LE(node->count(), max_children); |
+ EXPECT_EQ(node->key(), 0); |
+ CheckBoundsConsistent(node); |
+ for (size_t i = 0; i < node->children_.size(); ++i) { |
+ ValidateNode(node->children_[i], min_children, max_children); |
+ } |
+ } |
+ |
+ // Check bounds are consistent with children bounds, and other checks |
+ // convenient to do while enumerating the children of node. |
+ void CheckBoundsConsistent(RTree::Node* node) { |
+ EXPECT_FALSE(node->rect_.IsEmpty()); |
+ Rect check_bounds; |
+ for (size_t i = 0; i < node->children_.size(); ++i) { |
+ RTree::Node* child_node = node->children_[i]; |
+ check_bounds.Union(child_node->rect()); |
+ EXPECT_EQ(node->level() - 1, child_node->level()); |
+ EXPECT_EQ(node, child_node->parent()); |
+ } |
+ EXPECT_EQ(node->rect_, check_bounds); |
+ } |
+ |
+ // Adds count squares stacked around the point (0,0) with key equal to width. |
+ void AddStackedSquares(RTree* rt, int count) { |
+ for (int i = 1; i <= count; ++i) { |
+ rt->Insert(Rect(0, 0, i, i), i); |
+ ValidateRTree(rt); |
+ } |
+ } |
+ |
+ // Given an unordered list of matching keys, verify that it contains all |
+ // values [1..length] for the length of that list. |
+ void VerifyAllKeys(const base::hash_set<intptr_t>& keys) { |
+ // Verify that the keys are in values [1,count]. |
+ for (size_t i = 1; i <= keys.size(); ++i) { |
+ EXPECT_EQ(keys.count(i), 1U); |
+ } |
+ } |
+ |
+ // Given a node and a rectangle, builds an expanded rectangle list where the |
+ // ith element of the rectangle is union of the recangle of the ith child of |
+ // the node and the argument rectangle. |
+ void BuildExpandedRects(RTree::Node* node, |
+ const Rect& rect, |
+ std::vector<Rect>* expanded_rects) { |
+ expanded_rects->clear(); |
+ expanded_rects->reserve(node->children_.size()); |
+ for (size_t i = 0; i < node->children_.size(); ++i) { |
+ Rect expanded_rect(rect); |
+ expanded_rect.Union(node->children_[i]->rect_); |
+ expanded_rects->push_back(expanded_rect); |
+ } |
+ } |
+}; |
+ |
+// An empty RTree should never return Query results, and RTrees should be empty |
+// upon construction. |
+TEST_F(RTreeTest, QueryEmptyTree) { |
+ RTree rt(2, 10); |
+ ValidateRTree(&rt); |
+ base::hash_set<intptr_t> results; |
+ Rect test_rect(25, 25); |
+ rt.Query(test_rect, &results); |
+ EXPECT_EQ(results.size(), 0U); |
+ ValidateRTree(&rt); |
+} |
+ |
+// Clear should empty the tree, meaning that all queries should not return |
+// results after. |
+TEST_F(RTreeTest, ClearEmptiesTreeOfSingleNode) { |
+ RTree rt(2, 5); |
+ rt.Insert(Rect(0, 0, 100, 100), 1); |
+ rt.Clear(); |
+ base::hash_set<intptr_t> results; |
+ Rect test_rect(1, 1); |
+ rt.Query(test_rect, &results); |
+ EXPECT_EQ(results.size(), 0U); |
+ ValidateRTree(&rt); |
+} |
+ |
+// Even with a complex internal structure, clear should empty the tree, meaning |
+// that all queries should not return results after. |
+TEST_F(RTreeTest, ClearEmptiesTreeOfManyNodes) { |
+ RTree rt(2, 5); |
+ AddStackedSquares(&rt, 100); |
+ rt.Clear(); |
+ base::hash_set<intptr_t> results; |
+ Rect test_rect(1, 1); |
+ rt.Query(test_rect, &results); |
+ EXPECT_EQ(results.size(), 0U); |
+ ValidateRTree(&rt); |
+} |
+ |
+// Duplicate inserts should overwrite previous inserts. |
+TEST_F(RTreeTest, DuplicateInsertsOverwrite) { |
+ RTree rt(2, 5); |
+ // Add 100 stacked squares, but always with duplicate key of 1. |
+ for (int i = 1; i <= 100; ++i) { |
+ rt.Insert(Rect(0, 0, i, i), 1); |
+ ValidateRTree(&rt); |
+ } |
+ base::hash_set<intptr_t> results; |
+ Rect test_rect(1, 1); |
+ rt.Query(test_rect, &results); |
+ EXPECT_EQ(results.size(), 1U); |
+ EXPECT_EQ(results.count(1), 1U); |
+} |
+ |
+// Call Remove() once on something that's been inserted repeatedly. |
+TEST_F(RTreeTest, DuplicateInsertRemove) { |
+ RTree rt(3, 9); |
+ AddStackedSquares(&rt, 25); |
+ for (int i = 1; i <= 100; ++i) { |
+ rt.Insert(Rect(0, 0, i, i), 26); |
+ ValidateRTree(&rt); |
+ } |
+ rt.Remove(26); |
+ base::hash_set<intptr_t> results; |
+ Rect test_rect(1, 1); |
+ rt.Query(test_rect, &results); |
+ EXPECT_EQ(results.size(), 25U); |
+ VerifyAllKeys(results); |
+} |
+ |
+// Call Remove() repeatedly on something that's been inserted once. |
+TEST_F(RTreeTest, InsertDuplicateRemove) { |
+ RTree rt(7, 15); |
+ AddStackedSquares(&rt, 101); |
+ for (int i = 0; i < 100; ++i) { |
+ rt.Remove(101); |
+ ValidateRTree(&rt); |
+ } |
+ base::hash_set<intptr_t> results; |
+ Rect test_rect(1, 1); |
+ rt.Query(test_rect, &results); |
+ EXPECT_EQ(results.size(), 100U); |
+ VerifyAllKeys(results); |
+} |
+ |
+// Stacked rects should meet all matching queries regardless of nesting. |
+TEST_F(RTreeTest, QueryStackedSquaresNestedHit) { |
+ RTree rt(2, 5); |
+ AddStackedSquares(&rt, 100); |
+ base::hash_set<intptr_t> results; |
+ Rect test_rect(1, 1); |
+ rt.Query(test_rect, &results); |
+ EXPECT_EQ(results.size(), 100U); |
+ VerifyAllKeys(results); |
+} |
+ |
+// Stacked rects should meet all matching queries when contained completely by |
+// the query rectangle. |
+TEST_F(RTreeTest, QueryStackedSquaresContainedHit) { |
+ RTree rt(2, 10); |
+ AddStackedSquares(&rt, 100); |
+ base::hash_set<intptr_t> results; |
+ Rect test_rect(0, 0, 100, 100); |
+ rt.Query(test_rect, &results); |
+ EXPECT_EQ(results.size(), 100U); |
+ VerifyAllKeys(results); |
+} |
+ |
+// Stacked rects should miss a missing query when the query has no intersection |
+// with the rects. |
+TEST_F(RTreeTest, QueryStackedSquaresCompleteMiss) { |
+ RTree rt(2, 7); |
+ AddStackedSquares(&rt, 100); |
+ base::hash_set<intptr_t> results; |
+ Rect test_rect(150, 150, 100, 100); |
+ rt.Query(test_rect, &results); |
+ EXPECT_EQ(results.size(), 0U); |
+} |
+ |
+// Removing half the nodes after insertion should still result in a valid tree. |
+TEST_F(RTreeTest, RemoveHalfStackedRects) { |
+ RTree rt(2, 11); |
+ AddStackedSquares(&rt, 200); |
+ for (int i = 101; i <= 200; ++i) { |
+ rt.Remove(i); |
+ ValidateRTree(&rt); |
+ } |
+ base::hash_set<intptr_t> results; |
+ Rect test_rect(1, 1); |
+ rt.Query(test_rect, &results); |
+ EXPECT_EQ(results.size(), 100U); |
+ VerifyAllKeys(results); |
+ // Add the nodes back in. |
+ for (int i = 101; i <= 200; ++i) { |
+ rt.Insert(Rect(0, 0, i, i), i); |
+ ValidateRTree(&rt); |
+ } |
+ results.clear(); |
+ rt.Query(test_rect, &results); |
+ EXPECT_EQ(results.size(), 200U); |
+ VerifyAllKeys(results); |
+} |
+ |
+TEST_F(RTreeTest, InsertNegativeCoordsRect) { |
+ RTree rt(5, 11); |
+ for (int i = 1; i <= 100; ++i) { |
+ rt.Insert(Rect(-i, -i, i, i), (i * 2) - 1); |
+ ValidateRTree(&rt); |
+ rt.Insert(Rect(0, 0, i, i), i * 2); |
+ ValidateRTree(&rt); |
+ } |
+ base::hash_set<intptr_t> results; |
+ Rect test_rect(-1, -1, 2, 2); |
+ rt.Query(test_rect, &results); |
+ EXPECT_EQ(results.size(), 200U); |
+ VerifyAllKeys(results); |
+} |
+ |
+TEST_F(RTreeTest, RemoveNegativeCoordsRect) { |
+ RTree rt(7, 21); |
+ // Add 100 positive stacked squares. |
+ AddStackedSquares(&rt, 100); |
+ // Now add 100 negative stacked squares. |
+ for (int i = 101; i <= 200; ++i) { |
+ rt.Insert(Rect(100 - i, 100 - i, i - 100, i - 100), 301 - i); |
+ ValidateRTree(&rt); |
+ } |
+ // Now remove half of the negative squares. |
+ for (int i = 101; i <= 150; ++i) { |
+ rt.Remove(301 - i); |
+ ValidateRTree(&rt); |
+ } |
+ // Queries should return 100 positive and 50 negative stacked squares. |
+ base::hash_set<intptr_t> results; |
+ Rect test_rect(-1, -1, 2, 2); |
+ rt.Query(test_rect, &results); |
+ EXPECT_EQ(results.size(), 150U); |
+ VerifyAllKeys(results); |
+} |
+ |
+TEST_F(RTreeTest, InsertEmptyRectReplacementRemovesKey) { |
+ RTree rt(10, 31); |
+ AddStackedSquares(&rt, 50); |
+ ValidateRTree(&rt); |
+ |
+ // Replace last square with empty rect. |
+ rt.Insert(Rect(), 50); |
+ ValidateRTree(&rt); |
+ |
+ // Now query large area to get all rects in tree. |
+ base::hash_set<intptr_t> results; |
+ Rect test_rect(0, 0, 100, 100); |
+ rt.Query(test_rect, &results); |
+ |
+ // Should only be 49 rects in tree. |
+ EXPECT_EQ(results.size(), 49U); |
+ VerifyAllKeys(results); |
+} |
+ |
+TEST_F(RTreeTest, NodeRemoveNodesForReinsert) { |
+ // Make a leaf node for testing removal from. |
+ scoped_ptr<RTree::Node> test_node(new RTree::Node(0)); |
+ // Build 20 record nodes with rectangle centers going from (1,1) to (20,20) |
+ for (int i = 1; i <= 20; ++i) { |
+ test_node->AddChild(new RTree::Node(Rect(i - 1, i - 1, 2, 2), i)); |
+ } |
+ // Quick verification of the node before removing children. |
+ ValidateNode(test_node.get(), 1U, 20U); |
+ // Use a scoped vector to delete all children that get removed from the Node. |
+ ScopedVector<RTree::Node> removals; |
+ test_node->RemoveNodesForReinsert(1, &removals); |
+ // Should have gotten back 1 node pointers. |
+ EXPECT_EQ(removals.size(), 1U); |
+ // There should be 19 left in the test_node. |
+ EXPECT_EQ(test_node->count(), 19U); |
+ // If we fix up the bounds on the test_node, it should verify. |
+ test_node->RecomputeBoundsNoParents(); |
+ ValidateNode(test_node.get(), 2U, 20U); |
+ // The node we removed should be node 10, as it was exactly in the center. |
+ EXPECT_EQ(removals[0]->key(), 10); |
+ |
+ // Now remove the next 2. |
+ removals.clear(); |
+ test_node->RemoveNodesForReinsert(2, &removals); |
+ EXPECT_EQ(removals.size(), 2U); |
+ EXPECT_EQ(test_node->count(), 17U); |
+ test_node->RecomputeBoundsNoParents(); |
+ ValidateNode(test_node.get(), 2U, 20U); |
+ // Lastly the 2 nodes we should have gotten back are keys 9 and 11, as their |
+ // centers were the closest to the center of the node bounding box. |
+ base::hash_set<intptr_t> results_hash; |
+ results_hash.insert(removals[0]->key()); |
+ results_hash.insert(removals[1]->key()); |
+ EXPECT_EQ(results_hash.count(9), 1U); |
+ EXPECT_EQ(results_hash.count(11), 1U); |
+} |
+ |
+TEST_F(RTreeTest, NodeCompareVertical) { |
+ // One rect with lower y than another should always sort lower than higher y. |
+ RTree::Node low(Rect(0, 1, 10, 10), 1); |
+ RTree::Node middle(Rect(0, 5, 10, 10), 5); |
+ EXPECT_TRUE(RTree::Node::CompareVertical(&low, &middle)); |
+ EXPECT_FALSE(RTree::Node::CompareVertical(&middle, &low)); |
+ |
+ // Try a non-overlapping higher-y rectangle. |
+ RTree::Node high(Rect(-10, 20, 10, 1), 10); |
+ EXPECT_TRUE(RTree::Node::CompareVertical(&low, &high)); |
+ EXPECT_FALSE(RTree::Node::CompareVertical(&high, &low)); |
+ |
+ // Ties are broken by lowest bottom y value. |
+ RTree::Node shorter_tie(Rect(10, 1, 100, 2), 2); |
+ EXPECT_TRUE(RTree::Node::CompareVertical(&shorter_tie, &low)); |
+ EXPECT_FALSE(RTree::Node::CompareVertical(&low, &shorter_tie)); |
+} |
+ |
+TEST_F(RTreeTest, NodeCompareHorizontal) { |
+ // One rect with lower x than another should always sort lower than higher x. |
+ RTree::Node low(Rect(1, 0, 10, 10), 1); |
+ RTree::Node middle(Rect(5, 0, 10, 10), 5); |
+ EXPECT_TRUE(RTree::Node::CompareHorizontal(&low, &middle)); |
+ EXPECT_FALSE(RTree::Node::CompareHorizontal(&middle, &low)); |
+ |
+ // Try a non-overlapping higher-x rectangle. |
+ RTree::Node high(Rect(20, -10, 1, 10), 10); |
+ EXPECT_TRUE(RTree::Node::CompareHorizontal(&low, &high)); |
+ EXPECT_FALSE(RTree::Node::CompareHorizontal(&high, &low)); |
+ |
+ // Ties are broken by lowest bottom x value. |
+ RTree::Node shorter_tie(Rect(1, 10, 2, 100), 2); |
+ EXPECT_TRUE(RTree::Node::CompareHorizontal(&shorter_tie, &low)); |
+ EXPECT_FALSE(RTree::Node::CompareHorizontal(&low, &shorter_tie)); |
+} |
+ |
+TEST_F(RTreeTest, NodeCompareCenterDistanceFromParent) { |
+ // Create a test node we can add children to, for distance comparisons. |
+ scoped_ptr<RTree::Node> parent(new RTree::Node(0)); |
+ |
+ // Add three children, one each with centers at (0, 0), (10, 10), (-9, -9), |
+ // around which a bounding box will be centered at (0, 0) |
+ RTree::Node* center_zero = new RTree::Node(Rect(-1, -1, 2, 2), 1); |
+ parent->AddChild(center_zero); |
+ |
+ RTree::Node* center_positive = new RTree::Node(Rect(9, 9, 2, 2), 2); |
+ parent->AddChild(center_positive); |
+ |
+ RTree::Node* center_negative = new RTree::Node(Rect(-10, -10, 2, 2), 3); |
+ parent->AddChild(center_negative); |
+ |
+ ValidateNode(parent.get(), 1U, 5U); |
+ EXPECT_EQ(parent->rect_, Rect(-10, -10, 21, 21)); |
+ |
+ EXPECT_TRUE(RTree::Node::CompareCenterDistanceFromParent(center_zero, |
+ center_positive)); |
+ EXPECT_FALSE(RTree::Node::CompareCenterDistanceFromParent(center_positive, |
+ center_zero)); |
+ |
+ EXPECT_TRUE(RTree::Node::CompareCenterDistanceFromParent(center_zero, |
+ center_negative)); |
+ EXPECT_FALSE(RTree::Node::CompareCenterDistanceFromParent(center_negative, |
+ center_zero)); |
+ |
+ EXPECT_TRUE(RTree::Node::CompareCenterDistanceFromParent(center_negative, |
+ center_positive)); |
+ EXPECT_FALSE(RTree::Node::CompareCenterDistanceFromParent(center_positive, |
+ center_negative)); |
+} |
+ |
+TEST_F(RTreeTest, NodeOverlapIncreaseToAdd) { |
+ // Create a test node with three children, for overlap comparisons. |
+ scoped_ptr<RTree::Node> parent(new RTree::Node(0)); |
+ |
+ // Add three children, each 4 wide and tall, at (0, 0), (3, 3), (6, 6) with |
+ // overlapping corners. |
+ Rect top(0, 0, 4, 4); |
+ parent->AddChild(new RTree::Node(top, 1)); |
+ Rect middle(3, 3, 4, 4); |
+ parent->AddChild(new RTree::Node(middle, 2)); |
+ Rect bottom(6, 6, 4, 4); |
+ parent->AddChild(new RTree::Node(bottom, 3)); |
+ ValidateNode(parent.get(), 1U, 5U); |
+ |
+ // Test a rect in corner. |
+ Rect corner(0, 0, 1, 1); |
+ Rect expanded = top; |
+ expanded.Union(corner); |
+ // It should not add any overlap to add this to the first child at (0, 0); |
+ EXPECT_EQ(parent->OverlapIncreaseToAdd(corner, 0, expanded), 0); |
+ |
+ expanded = middle; |
+ expanded.Union(corner); |
+ // Overlap for middle rectangle should increase from 2 pixels at (3, 3) and |
+ // (6, 6) to 17 pixels, as it will now cover 4x4 rectangle top, |
+ // so a change of +15 |
+ EXPECT_EQ(parent->OverlapIncreaseToAdd(corner, 1, expanded), 15); |
+ |
+ expanded = bottom; |
+ expanded.Union(corner); |
+ // Overlap for bottom rectangle should increase from 1 pixel at (6, 6) to |
+ // 32 pixels, as it will now cover both 4x4 rectangles top and middle, |
+ // so a change of 31 |
+ EXPECT_EQ(parent->OverlapIncreaseToAdd(corner, 2, expanded), 31); |
+ |
+ // Test a rect that doesn't overlap with anything, in the far right corner. |
+ Rect far_corner(9, 0, 1, 1); |
+ expanded = top; |
+ expanded.Union(far_corner); |
+ // Overlap of top should go from 1 to 4, as it will now cover the entire first |
+ // row of pixels in middle. |
+ EXPECT_EQ(parent->OverlapIncreaseToAdd(far_corner, 0, expanded), 3); |
+ |
+ expanded = middle; |
+ expanded.Union(far_corner); |
+ // Overlap of middle should go from 2 to 8, as it will cover the rightmost 4 |
+ // pixels of top and the top 4 pixles of bottom as it expands. |
+ EXPECT_EQ(parent->OverlapIncreaseToAdd(far_corner, 1, expanded), 6); |
+ |
+ expanded = bottom; |
+ expanded.Union(far_corner); |
+ // Overlap of bottom should go from 1 to 4, as it will now cover the rightmost |
+ // 4 pixels of middle. |
+ EXPECT_EQ(parent->OverlapIncreaseToAdd(far_corner, 2, expanded), 3); |
+} |
+ |
+TEST_F(RTreeTest, NodeBuildLowBounds) { |
+ ScopedVector<RTree::Node> nodes; |
+ nodes.reserve(10); |
+ for (int i = 1; i <= 10; ++i) { |
+ nodes.push_back(new RTree::Node(Rect(0, 0, i, i), i)); |
+ } |
+ std::vector<Rect> vertical_bounds; |
+ std::vector<Rect> horizontal_bounds; |
+ RTree::Node::BuildLowBounds( |
+ nodes.get(), nodes.get(), &vertical_bounds, &horizontal_bounds); |
+ for (int i = 0; i < 10; ++i) { |
+ EXPECT_EQ(vertical_bounds[i], Rect(0, 0, i + 1, i + 1)); |
+ EXPECT_EQ(horizontal_bounds[i], Rect(0, 0, i + 1, i + 1)); |
+ } |
+} |
+ |
+TEST_F(RTreeTest, NodeBuildHighBounds) { |
+ ScopedVector<RTree::Node> nodes; |
+ nodes.reserve(25); |
+ for (int i = 0; i < 25; ++i) { |
+ nodes.push_back(new RTree::Node(Rect(i, i, 25 - i, 25 - i), i)); |
+ } |
+ std::vector<Rect> vertical_bounds; |
+ std::vector<Rect> horizontal_bounds; |
+ RTree::Node::BuildHighBounds( |
+ nodes.get(), nodes.get(), &vertical_bounds, &horizontal_bounds); |
+ for (int i = 0; i < 25; ++i) { |
+ EXPECT_EQ(vertical_bounds[i], Rect(i, i, 25 - i, 25 - i)); |
+ EXPECT_EQ(horizontal_bounds[i], Rect(i, i, 25 - i, 25 - i)); |
+ } |
+} |
+ |
+TEST_F(RTreeTest, NodeChooseSplitAxisAndIndex) { |
+ std::vector<Rect> low_vertical_bounds; |
+ std::vector<Rect> high_vertical_bounds; |
+ std::vector<Rect> low_horizontal_bounds; |
+ std::vector<Rect> high_horizontal_bounds; |
+ // In this test scenario we describe a mirrored, stacked configuration of |
+ // horizontal, 1 pixel high rectangles labeled a-f like this: |
+ // |
+ // shape: | v sort: | h sort: | |
+ // -------+---------+---------+ |
+ // aaaaa | 0 | 0 | |
+ // bbb | 1 | 2 | |
+ // c | 2 | 4 | |
+ // d | 3 | 5 | |
+ // eee | 4 | 3 | |
+ // fffff | 5 | 1 | |
+ // |
+ // These are already sorted vertically from top to bottom. Bounding rectangles |
+ // of these vertically sorted will be 5 wide, i tall bounding boxes. |
+ for (int i = 0; i < 6; ++i) { |
+ low_vertical_bounds.push_back(Rect(0, 0, 5, i + 1)); |
+ high_vertical_bounds.push_back(Rect(0, i, 5, 6 - i)); |
+ } |
+ |
+ // Low bounds of horizontal sort start with bounds of box a and then jump to |
+ // cover everything, as box f is second in horizontal sort. |
+ low_horizontal_bounds.push_back(Rect(0, 0, 5, 1)); |
+ for (int i = 0; i < 5; ++i) { |
+ low_horizontal_bounds.push_back(Rect(0, 0, 5, 6)); |
+ } |
+ |
+ // High horizontal bounds are hand-calculated. |
+ high_horizontal_bounds.push_back(Rect(0, 0, 5, 6)); |
+ high_horizontal_bounds.push_back(Rect(0, 1, 5, 5)); |
+ high_horizontal_bounds.push_back(Rect(1, 1, 3, 4)); |
+ high_horizontal_bounds.push_back(Rect(1, 2, 3, 3)); |
+ high_horizontal_bounds.push_back(Rect(2, 2, 1, 2)); |
+ high_horizontal_bounds.push_back(Rect(2, 3, 1, 1)); |
+ |
+ // This should split vertically, right down the middle. |
+ EXPECT_TRUE(RTree::Node::ChooseSplitAxis(low_vertical_bounds, |
+ high_vertical_bounds, |
+ low_horizontal_bounds, |
+ high_horizontal_bounds, |
+ 2, |
+ 5)); |
+ EXPECT_EQ(3U, |
+ RTree::Node::ChooseSplitIndex( |
+ 2, 5, low_vertical_bounds, high_vertical_bounds)); |
+ |
+ // We rotate the shape to test horizontal split axis detection: |
+ // |
+ // +--------+ |
+ // | a f | |
+ // | ab ef | |
+ // sort: | abcdef | |
+ // | ab ef | |
+ // | a f | |
+ // |--------+ |
+ // v sort: | 024531 | |
+ // h sort: | 012345 | |
+ // +--------+ |
+ // |
+ // Clear out old bounds first. |
+ low_vertical_bounds.clear(); |
+ high_vertical_bounds.clear(); |
+ low_horizontal_bounds.clear(); |
+ high_horizontal_bounds.clear(); |
+ |
+ // Low bounds of vertical sort start with bounds of box a and then jump to |
+ // cover everything, as box f is second in vertical sort. |
+ low_vertical_bounds.push_back(Rect(0, 0, 1, 5)); |
+ for (int i = 0; i < 5; ++i) { |
+ low_vertical_bounds.push_back(Rect(0, 0, 6, 5)); |
+ } |
+ |
+ // High vertical bounds are hand-calculated. |
+ high_vertical_bounds.push_back(Rect(0, 0, 6, 5)); |
+ high_vertical_bounds.push_back(Rect(1, 0, 5, 5)); |
+ high_vertical_bounds.push_back(Rect(1, 1, 4, 3)); |
+ high_vertical_bounds.push_back(Rect(2, 1, 3, 3)); |
+ high_vertical_bounds.push_back(Rect(2, 2, 2, 1)); |
+ high_vertical_bounds.push_back(Rect(3, 2, 1, 1)); |
+ |
+ // These are already sorted horizontally from left to right. Bounding |
+ // rectangles of these horizontally sorted will be i wide, 5 tall bounding |
+ // boxes. |
+ for (int i = 0; i < 6; ++i) { |
+ low_horizontal_bounds.push_back(Rect(0, 0, i + 1, 5)); |
+ high_horizontal_bounds.push_back(Rect(i, 0, 6 - i, 5)); |
+ } |
+ |
+ // This should split horizontally, right down the middle. |
+ EXPECT_FALSE(RTree::Node::ChooseSplitAxis(low_vertical_bounds, |
+ high_vertical_bounds, |
+ low_horizontal_bounds, |
+ high_horizontal_bounds, |
+ 2, |
+ 5)); |
+ EXPECT_EQ(3U, |
+ RTree::Node::ChooseSplitIndex( |
+ 2, 5, low_horizontal_bounds, high_horizontal_bounds)); |
+} |
+ |
+TEST_F(RTreeTest, NodeDivideChildren) { |
+ // Create a test node to split. |
+ scoped_ptr<RTree::Node> test_node(new RTree::Node(0)); |
+ std::vector<RTree::Node*> sorted_children; |
+ std::vector<Rect> low_bounds; |
+ std::vector<Rect> high_bounds; |
+ // Insert 10 record nodes, also inserting them into our children array. |
+ for (int i = 1; i <= 10; ++i) { |
+ RTree::Node* node = new RTree::Node(Rect(0, 0, i, i), i); |
+ test_node->AddChild(node); |
+ sorted_children.push_back(node); |
+ low_bounds.push_back(Rect(0, 0, i, i)); |
+ high_bounds.push_back(Rect(0, 0, 10, 10)); |
+ } |
+ // Split the children in half. |
+ scoped_ptr<RTree::Node> split_node( |
+ test_node->DivideChildren(low_bounds, high_bounds, sorted_children, 5)); |
+ // Both nodes should be valid. |
+ ValidateNode(test_node.get(), 1U, 10U); |
+ ValidateNode(split_node.get(), 1U, 10U); |
+ // Both nodes should have five children. |
+ EXPECT_EQ(test_node->children_.size(), 5U); |
+ EXPECT_EQ(split_node->children_.size(), 5U); |
+ // Test node should have children 1-5, split node should have children 6-10. |
+ for (int i = 0; i < 5; ++i) { |
+ EXPECT_EQ(test_node->children_[i]->key(), i + 1); |
+ EXPECT_EQ(split_node->children_[i]->key(), i + 6); |
+ } |
+} |
+ |
+TEST_F(RTreeTest, NodeRemoveChildNoOrphans) { |
+ scoped_ptr<RTree::Node> test_parent(new RTree::Node(0)); |
+ scoped_ptr<RTree::Node> child_one(new RTree::Node(Rect(0, 0, 1, 1), 1)); |
+ scoped_ptr<RTree::Node> child_two(new RTree::Node(Rect(0, 0, 2, 2), 2)); |
+ scoped_ptr<RTree::Node> child_three(new RTree::Node(Rect(0, 0, 3, 3), 3)); |
+ test_parent->AddChild(child_one.get()); |
+ test_parent->AddChild(child_two.get()); |
+ test_parent->AddChild(child_three.get()); |
+ ValidateNode(test_parent.get(), 1U, 5U); |
+ // Remove the middle node. |
+ ScopedVector<RTree::Node> orphans; |
+ EXPECT_EQ(test_parent->RemoveChild(child_two.get(), &orphans), 2U); |
+ EXPECT_EQ(orphans.size(), 0U); |
+ EXPECT_EQ(test_parent->count(), 2U); |
+ test_parent->RecomputeBoundsNoParents(); |
+ ValidateNode(test_parent.get(), 1U, 5U); |
+ // Remove the end node. |
+ EXPECT_EQ(test_parent->RemoveChild(child_three.get(), &orphans), 1U); |
+ EXPECT_EQ(orphans.size(), 0U); |
+ EXPECT_EQ(test_parent->count(), 1U); |
+ test_parent->RecomputeBoundsNoParents(); |
+ ValidateNode(test_parent.get(), 1U, 5U); |
+ // Remove the first node. |
+ EXPECT_EQ(test_parent->RemoveChild(child_one.get(), &orphans), 0U); |
+ EXPECT_EQ(orphans.size(), 0U); |
+ EXPECT_EQ(test_parent->count(), 0U); |
+} |
+ |
+TEST_F(RTreeTest, NodeRemoveChildOrphans) { |
+ // Build flattened binary tree of Nodes 4 deep, from the record nodes up. |
+ ScopedVector<RTree::Node> nodes; |
+ nodes.resize(15); |
+ // Indicies 7 through 15 are record nodes. |
+ for (int i = 7; i < 15; ++i) { |
+ nodes[i] = new RTree::Node(Rect(0, 0, i, i), i); |
+ } |
+ // Nodes 3 through 6 are level 0 (leaves) and get 2 record nodes each. |
+ for (int i = 3; i < 7; ++i) { |
+ nodes[i] = new RTree::Node(0); |
+ nodes[i]->AddChild(nodes[(i * 2) + 1]); |
+ nodes[i]->AddChild(nodes[(i * 2) + 2]); |
+ } |
+ // Nodes 1 and 2 are level 1 and get 2 leaves each. |
+ for (int i = 1; i < 3; ++i) { |
+ nodes[i] = new RTree::Node(1); |
+ nodes[i]->AddChild(nodes[(i * 2) + 1]); |
+ nodes[i]->AddChild(nodes[(i * 2) + 2]); |
+ } |
+ // Node 0 is level 2 and gets 2 childen. |
+ nodes[0] = new RTree::Node(2); |
+ nodes[0]->AddChild(nodes[1]); |
+ nodes[0]->AddChild(nodes[2]); |
+ // This should now be a valid node structure. |
+ ValidateNode(nodes[0], 2U, 2U); |
+ |
+ // Now remove the level 0 nodes, so we get the record nodes as orphans. |
+ ScopedVector<RTree::Node> orphans; |
+ EXPECT_EQ(nodes[1]->RemoveChild(nodes[3], &orphans), 1U); |
+ EXPECT_EQ(nodes[1]->RemoveChild(nodes[4], &orphans), 0U); |
+ EXPECT_EQ(nodes[2]->RemoveChild(nodes[5], &orphans), 1U); |
+ EXPECT_EQ(nodes[2]->RemoveChild(nodes[6], &orphans), 0U); |
+ |
+ // Orphans should be nodes 7 through 15 in order. |
+ EXPECT_EQ(orphans.size(), 8U); |
+ for (int i = 0; i < 8; ++i) { |
+ EXPECT_EQ(orphans[i], nodes[i + 7]); |
+ } |
+ |
+ // Now we remove nodes 1 and 2 from the root, expecting no further orphans. |
+ // This prevents a crash due to double-delete on test exit, as no node should |
+ // own any other node right now. |
+ EXPECT_EQ(nodes[0]->RemoveChild(nodes[1], &orphans), 1U); |
+ EXPECT_EQ(orphans.size(), 8U); |
+ EXPECT_EQ(nodes[0]->RemoveChild(nodes[2], &orphans), 0U); |
+ EXPECT_EQ(orphans.size(), 8U); |
+ |
+ // Prevent double-delete of nodes by both nodes and orphans. |
+ orphans.weak_clear(); |
+} |
+ |
+TEST_F(RTreeTest, NodeRemoveAndReturnLastChild) { |
+ scoped_ptr<RTree::Node> test_parent(new RTree::Node(0)); |
+ scoped_ptr<RTree::Node> child_one(new RTree::Node(Rect(0, 0, 1, 1), 1)); |
+ scoped_ptr<RTree::Node> child_two(new RTree::Node(Rect(0, 0, 2, 2), 2)); |
+ scoped_ptr<RTree::Node> child_three(new RTree::Node(Rect(0, 0, 3, 3), 3)); |
+ test_parent->AddChild(child_one.get()); |
+ test_parent->AddChild(child_two.get()); |
+ test_parent->AddChild(child_three.get()); |
+ ValidateNode(test_parent.get(), 1U, 5U); |
+ |
+ EXPECT_EQ(test_parent->RemoveAndReturnLastChild().release(), |
+ child_three.get()); |
+ EXPECT_EQ(test_parent->count(), 2U); |
+ test_parent->RecomputeBoundsNoParents(); |
+ ValidateNode(test_parent.get(), 1U, 5U); |
+ |
+ EXPECT_EQ(test_parent->RemoveAndReturnLastChild().release(), child_two.get()); |
+ EXPECT_EQ(test_parent->count(), 1U); |
+ test_parent->RecomputeBoundsNoParents(); |
+ ValidateNode(test_parent.get(), 1U, 5U); |
+ |
+ EXPECT_EQ(test_parent->RemoveAndReturnLastChild().release(), child_one.get()); |
+ EXPECT_EQ(test_parent->count(), 0U); |
+} |
+ |
+TEST_F(RTreeTest, NodeLeastOverlapIncrease) { |
+ scoped_ptr<RTree::Node> test_parent(new RTree::Node(0)); |
+ // Construct 4 nodes with 1x2 retangles spaced horizontally 1 pixel apart, or: |
+ // |
+ // a b c d |
+ // a b c d |
+ // |
+ for (int i = 0; i < 4; ++i) { |
+ test_parent->AddChild(new RTree::Node(Rect(i * 2, 0, 1, 2), i + 1)); |
+ } |
+ |
+ ValidateNode(test_parent.get(), 1U, 5U); |
+ |
+ // Test rect at (7, 0) should require minimum overlap on the part of the |
+ // fourth rectangle to add: |
+ // |
+ // a b c dT |
+ // a b c d |
+ // |
+ Rect test_rect_far(7, 0, 1, 1); |
+ std::vector<Rect> expanded_rects; |
+ BuildExpandedRects(test_parent.get(), test_rect_far, &expanded_rects); |
+ RTree::Node* result = |
+ test_parent->LeastOverlapIncrease(test_rect_far, expanded_rects); |
+ EXPECT_EQ(result->key(), 4); |
+ |
+ // Test rect covering the bottom half of all children should be a 4-way tie, |
+ // so LeastOverlapIncrease should return NULL: |
+ // |
+ // a b c d |
+ // TTTTTTT |
+ // |
+ Rect test_rect_tie(0, 1, 7, 1); |
+ BuildExpandedRects(test_parent.get(), test_rect_tie, &expanded_rects); |
+ result = test_parent->LeastOverlapIncrease(test_rect_tie, expanded_rects); |
+ EXPECT_TRUE(result == NULL); |
+ |
+ // Test rect completely inside c should return the third rectangle: |
+ // |
+ // a b T d |
+ // a b c d |
+ // |
+ Rect test_rect_inside(4, 0, 1, 1); |
+ BuildExpandedRects(test_parent.get(), test_rect_inside, &expanded_rects); |
+ result = test_parent->LeastOverlapIncrease(test_rect_inside, expanded_rects); |
+ EXPECT_EQ(result->key(), 3); |
+ |
+ // Add a rectangle that overlaps completely with rectangle c, to test |
+ // when there is a tie between two completely contained rectangles: |
+ // |
+ // a b Ted |
+ // a b eed |
+ // |
+ test_parent->AddChild(new RTree::Node(Rect(4, 0, 2, 2), 9)); |
+ BuildExpandedRects(test_parent.get(), test_rect_inside, &expanded_rects); |
+ result = test_parent->LeastOverlapIncrease(test_rect_inside, expanded_rects); |
+ EXPECT_TRUE(result == NULL); |
+} |
+ |
+TEST_F(RTreeTest, NodeLeastAreaEnlargement) { |
+ scoped_ptr<RTree::Node> test_parent(new RTree::Node(0)); |
+ // Construct 4 nodes in a cross-hairs style configuration: |
+ // |
+ // a |
+ // b c |
+ // d |
+ // |
+ test_parent->AddChild(new RTree::Node(Rect(1, 0, 1, 1), 1)); |
+ test_parent->AddChild(new RTree::Node(Rect(0, 1, 1, 1), 2)); |
+ test_parent->AddChild(new RTree::Node(Rect(2, 1, 1, 1), 3)); |
+ test_parent->AddChild(new RTree::Node(Rect(1, 2, 1, 1), 4)); |
+ |
+ ValidateNode(test_parent.get(), 1U, 5U); |
+ |
+ // Test rect at (1, 3) should require minimum area to add to Node d: |
+ // |
+ // a |
+ // b c |
+ // d |
+ // T |
+ // |
+ Rect test_rect_below(1, 3, 1, 1); |
+ std::vector<Rect> expanded_rects; |
+ BuildExpandedRects(test_parent.get(), test_rect_below, &expanded_rects); |
+ RTree::Node* result = |
+ test_parent->LeastAreaEnlargement(test_rect_below, expanded_rects); |
+ EXPECT_EQ(result->key(), 4); |
+ |
+ // Test rect completely inside b should require minimum area to add to Node b: |
+ // |
+ // a |
+ // T c |
+ // d |
+ // |
+ Rect test_rect_inside(0, 1, 1, 1); |
+ BuildExpandedRects(test_parent.get(), test_rect_inside, &expanded_rects); |
+ result = test_parent->LeastAreaEnlargement(test_rect_inside, expanded_rects); |
+ EXPECT_EQ(result->key(), 2); |
+ |
+ // Add e at (0, 1) to overlap b and c, to test tie-breaking: |
+ // |
+ // a |
+ // eee |
+ // d |
+ // |
+ test_parent->AddChild(new RTree::Node(Rect(0, 1, 3, 1), 7)); |
+ |
+ ValidateNode(test_parent.get(), 1U, 5U); |
+ |
+ // Test rect at (3, 1) should tie between c and e, but c has smaller area so |
+ // the algorithm should select c: |
+ // |
+ // |
+ // a |
+ // eeeT |
+ // d |
+ // |
+ Rect test_rect_tie_breaker(3, 1, 1, 1); |
+ BuildExpandedRects(test_parent.get(), test_rect_tie_breaker, &expanded_rects); |
+ result = |
+ test_parent->LeastAreaEnlargement(test_rect_tie_breaker, expanded_rects); |
+ EXPECT_EQ(result->key(), 3); |
+} |
+ |
+} // namespace gfx |