| Index: ui/gfx/geometry/r_tree_unittest.cc
|
| diff --git a/ui/gfx/geometry/r_tree_unittest.cc b/ui/gfx/geometry/r_tree_unittest.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..9cc12bb3ac7a026ae2dea8a8f911b16f4c8451e3
|
| --- /dev/null
|
| +++ b/ui/gfx/geometry/r_tree_unittest.cc
|
| @@ -0,0 +1,869 @@
|
| +// Copyright (c) 2014 The Chromium Authors. All rights reserved.
|
| +// Use of this source code is governed by a BSD-style license that can be
|
| +// found in the LICENSE file.
|
| +
|
| +#include "testing/gtest/include/gtest/gtest.h"
|
| +#include "ui/gfx/geometry/r_tree.h"
|
| +#include "ui/gfx/geometry/rect.h"
|
| +
|
| +namespace gfx {
|
| +
|
| +class RTreeTest : public ::testing::Test {
|
| + protected:
|
| + // Given a pointer to an RTree, traverse it and verify its internal structure
|
| + // is consistent with the RTree semantics.
|
| + void ValidateRTree(RTree* rt) {
|
| + // If RTree is empty it should have an empty rectangle.
|
| + if (!rt->root_->count()) {
|
| + EXPECT_TRUE(rt->root_->rect().IsEmpty());
|
| + EXPECT_EQ(rt->root_->level(), 0);
|
| + return;
|
| + }
|
| + // Root is allowed to have fewer than min_children_ but never more than
|
| + // max_children_.
|
| + EXPECT_LE(rt->root_->count(), rt->max_children_);
|
| + // The root should never be a record node.
|
| + EXPECT_GT(rt->root_->level(), -1);
|
| + EXPECT_FALSE(rt->root_->key());
|
| + // The root should never have a parent pointer.
|
| + EXPECT_FALSE(rt->root_->parent());
|
| + // Bounds must be consistent on the root.
|
| + CheckBoundsConsistent(rt->root_.get());
|
| + // We traverse root's children ourselves, so we can avoid asserts about
|
| + // root's potential inconsistencies.
|
| + for (size_t i = 0; i < rt->root_->children_.size(); ++i) {
|
| + ValidateNode(
|
| + rt->root_->children_[i], rt->min_children_, rt->max_children_);
|
| + }
|
| + }
|
| +
|
| + // Recursive descent method used by ValidateRTree to check each node within
|
| + // the RTree for consistency with RTree semantics.
|
| + void ValidateNode(RTree::Node* node,
|
| + size_t min_children,
|
| + size_t max_children) {
|
| + // Record nodes have different requirements, handle up front.
|
| + if (node->level() == -1) {
|
| + // Record nodes may have no children.
|
| + EXPECT_EQ(node->count(), 0U);
|
| + // They must have an associated non-NULL key.
|
| + EXPECT_TRUE(node->key());
|
| + // They must always have a parent.
|
| + EXPECT_TRUE(node->parent());
|
| + return;
|
| + }
|
| + // Non-record node, normal expectations apply.
|
| + EXPECT_GE(node->count(), min_children);
|
| + EXPECT_LE(node->count(), max_children);
|
| + EXPECT_EQ(node->key(), 0);
|
| + CheckBoundsConsistent(node);
|
| + for (size_t i = 0; i < node->children_.size(); ++i) {
|
| + ValidateNode(node->children_[i], min_children, max_children);
|
| + }
|
| + }
|
| +
|
| + // Check bounds are consistent with children bounds, and other checks
|
| + // convenient to do while enumerating the children of node.
|
| + void CheckBoundsConsistent(RTree::Node* node) {
|
| + EXPECT_FALSE(node->rect_.IsEmpty());
|
| + Rect check_bounds;
|
| + for (size_t i = 0; i < node->children_.size(); ++i) {
|
| + RTree::Node* child_node = node->children_[i];
|
| + check_bounds.Union(child_node->rect());
|
| + EXPECT_EQ(node->level() - 1, child_node->level());
|
| + EXPECT_EQ(node, child_node->parent());
|
| + }
|
| + EXPECT_EQ(node->rect_, check_bounds);
|
| + }
|
| +
|
| + // Adds count squares stacked around the point (0,0) with key equal to width.
|
| + void AddStackedSquares(RTree* rt, int count) {
|
| + for (int i = 1; i <= count; ++i) {
|
| + rt->Insert(Rect(0, 0, i, i), i);
|
| + ValidateRTree(rt);
|
| + }
|
| + }
|
| +
|
| + // Given an unordered list of matching keys, verify that it contains all
|
| + // values [1..length] for the length of that list.
|
| + void VerifyAllKeys(const base::hash_set<intptr_t>& keys) {
|
| + // Verify that the keys are in values [1,count].
|
| + for (size_t i = 1; i <= keys.size(); ++i) {
|
| + EXPECT_EQ(keys.count(i), 1U);
|
| + }
|
| + }
|
| +
|
| + // Given a node and a rectangle, builds an expanded rectangle list where the
|
| + // ith element of the rectangle is union of the recangle of the ith child of
|
| + // the node and the argument rectangle.
|
| + void BuildExpandedRects(RTree::Node* node,
|
| + const Rect& rect,
|
| + std::vector<Rect>* expanded_rects) {
|
| + expanded_rects->clear();
|
| + expanded_rects->reserve(node->children_.size());
|
| + for (size_t i = 0; i < node->children_.size(); ++i) {
|
| + Rect expanded_rect(rect);
|
| + expanded_rect.Union(node->children_[i]->rect_);
|
| + expanded_rects->push_back(expanded_rect);
|
| + }
|
| + }
|
| +};
|
| +
|
| +// An empty RTree should never return Query results, and RTrees should be empty
|
| +// upon construction.
|
| +TEST_F(RTreeTest, QueryEmptyTree) {
|
| + RTree rt(2, 10);
|
| + ValidateRTree(&rt);
|
| + base::hash_set<intptr_t> results;
|
| + Rect test_rect(25, 25);
|
| + rt.Query(test_rect, &results);
|
| + EXPECT_EQ(results.size(), 0U);
|
| + ValidateRTree(&rt);
|
| +}
|
| +
|
| +// Clear should empty the tree, meaning that all queries should not return
|
| +// results after.
|
| +TEST_F(RTreeTest, ClearEmptiesTreeOfSingleNode) {
|
| + RTree rt(2, 5);
|
| + rt.Insert(Rect(0, 0, 100, 100), 1);
|
| + rt.Clear();
|
| + base::hash_set<intptr_t> results;
|
| + Rect test_rect(1, 1);
|
| + rt.Query(test_rect, &results);
|
| + EXPECT_EQ(results.size(), 0U);
|
| + ValidateRTree(&rt);
|
| +}
|
| +
|
| +// Even with a complex internal structure, clear should empty the tree, meaning
|
| +// that all queries should not return results after.
|
| +TEST_F(RTreeTest, ClearEmptiesTreeOfManyNodes) {
|
| + RTree rt(2, 5);
|
| + AddStackedSquares(&rt, 100);
|
| + rt.Clear();
|
| + base::hash_set<intptr_t> results;
|
| + Rect test_rect(1, 1);
|
| + rt.Query(test_rect, &results);
|
| + EXPECT_EQ(results.size(), 0U);
|
| + ValidateRTree(&rt);
|
| +}
|
| +
|
| +// Duplicate inserts should overwrite previous inserts.
|
| +TEST_F(RTreeTest, DuplicateInsertsOverwrite) {
|
| + RTree rt(2, 5);
|
| + // Add 100 stacked squares, but always with duplicate key of 1.
|
| + for (int i = 1; i <= 100; ++i) {
|
| + rt.Insert(Rect(0, 0, i, i), 1);
|
| + ValidateRTree(&rt);
|
| + }
|
| + base::hash_set<intptr_t> results;
|
| + Rect test_rect(1, 1);
|
| + rt.Query(test_rect, &results);
|
| + EXPECT_EQ(results.size(), 1U);
|
| + EXPECT_EQ(results.count(1), 1U);
|
| +}
|
| +
|
| +// Call Remove() once on something that's been inserted repeatedly.
|
| +TEST_F(RTreeTest, DuplicateInsertRemove) {
|
| + RTree rt(3, 9);
|
| + AddStackedSquares(&rt, 25);
|
| + for (int i = 1; i <= 100; ++i) {
|
| + rt.Insert(Rect(0, 0, i, i), 26);
|
| + ValidateRTree(&rt);
|
| + }
|
| + rt.Remove(26);
|
| + base::hash_set<intptr_t> results;
|
| + Rect test_rect(1, 1);
|
| + rt.Query(test_rect, &results);
|
| + EXPECT_EQ(results.size(), 25U);
|
| + VerifyAllKeys(results);
|
| +}
|
| +
|
| +// Call Remove() repeatedly on something that's been inserted once.
|
| +TEST_F(RTreeTest, InsertDuplicateRemove) {
|
| + RTree rt(7, 15);
|
| + AddStackedSquares(&rt, 101);
|
| + for (int i = 0; i < 100; ++i) {
|
| + rt.Remove(101);
|
| + ValidateRTree(&rt);
|
| + }
|
| + base::hash_set<intptr_t> results;
|
| + Rect test_rect(1, 1);
|
| + rt.Query(test_rect, &results);
|
| + EXPECT_EQ(results.size(), 100U);
|
| + VerifyAllKeys(results);
|
| +}
|
| +
|
| +// Stacked rects should meet all matching queries regardless of nesting.
|
| +TEST_F(RTreeTest, QueryStackedSquaresNestedHit) {
|
| + RTree rt(2, 5);
|
| + AddStackedSquares(&rt, 100);
|
| + base::hash_set<intptr_t> results;
|
| + Rect test_rect(1, 1);
|
| + rt.Query(test_rect, &results);
|
| + EXPECT_EQ(results.size(), 100U);
|
| + VerifyAllKeys(results);
|
| +}
|
| +
|
| +// Stacked rects should meet all matching queries when contained completely by
|
| +// the query rectangle.
|
| +TEST_F(RTreeTest, QueryStackedSquaresContainedHit) {
|
| + RTree rt(2, 10);
|
| + AddStackedSquares(&rt, 100);
|
| + base::hash_set<intptr_t> results;
|
| + Rect test_rect(0, 0, 100, 100);
|
| + rt.Query(test_rect, &results);
|
| + EXPECT_EQ(results.size(), 100U);
|
| + VerifyAllKeys(results);
|
| +}
|
| +
|
| +// Stacked rects should miss a missing query when the query has no intersection
|
| +// with the rects.
|
| +TEST_F(RTreeTest, QueryStackedSquaresCompleteMiss) {
|
| + RTree rt(2, 7);
|
| + AddStackedSquares(&rt, 100);
|
| + base::hash_set<intptr_t> results;
|
| + Rect test_rect(150, 150, 100, 100);
|
| + rt.Query(test_rect, &results);
|
| + EXPECT_EQ(results.size(), 0U);
|
| +}
|
| +
|
| +// Removing half the nodes after insertion should still result in a valid tree.
|
| +TEST_F(RTreeTest, RemoveHalfStackedRects) {
|
| + RTree rt(2, 11);
|
| + AddStackedSquares(&rt, 200);
|
| + for (int i = 101; i <= 200; ++i) {
|
| + rt.Remove(i);
|
| + ValidateRTree(&rt);
|
| + }
|
| + base::hash_set<intptr_t> results;
|
| + Rect test_rect(1, 1);
|
| + rt.Query(test_rect, &results);
|
| + EXPECT_EQ(results.size(), 100U);
|
| + VerifyAllKeys(results);
|
| + // Add the nodes back in.
|
| + for (int i = 101; i <= 200; ++i) {
|
| + rt.Insert(Rect(0, 0, i, i), i);
|
| + ValidateRTree(&rt);
|
| + }
|
| + results.clear();
|
| + rt.Query(test_rect, &results);
|
| + EXPECT_EQ(results.size(), 200U);
|
| + VerifyAllKeys(results);
|
| +}
|
| +
|
| +TEST_F(RTreeTest, InsertNegativeCoordsRect) {
|
| + RTree rt(5, 11);
|
| + for (int i = 1; i <= 100; ++i) {
|
| + rt.Insert(Rect(-i, -i, i, i), (i * 2) - 1);
|
| + ValidateRTree(&rt);
|
| + rt.Insert(Rect(0, 0, i, i), i * 2);
|
| + ValidateRTree(&rt);
|
| + }
|
| + base::hash_set<intptr_t> results;
|
| + Rect test_rect(-1, -1, 2, 2);
|
| + rt.Query(test_rect, &results);
|
| + EXPECT_EQ(results.size(), 200U);
|
| + VerifyAllKeys(results);
|
| +}
|
| +
|
| +TEST_F(RTreeTest, RemoveNegativeCoordsRect) {
|
| + RTree rt(7, 21);
|
| + // Add 100 positive stacked squares.
|
| + AddStackedSquares(&rt, 100);
|
| + // Now add 100 negative stacked squares.
|
| + for (int i = 101; i <= 200; ++i) {
|
| + rt.Insert(Rect(100 - i, 100 - i, i - 100, i - 100), 301 - i);
|
| + ValidateRTree(&rt);
|
| + }
|
| + // Now remove half of the negative squares.
|
| + for (int i = 101; i <= 150; ++i) {
|
| + rt.Remove(301 - i);
|
| + ValidateRTree(&rt);
|
| + }
|
| + // Queries should return 100 positive and 50 negative stacked squares.
|
| + base::hash_set<intptr_t> results;
|
| + Rect test_rect(-1, -1, 2, 2);
|
| + rt.Query(test_rect, &results);
|
| + EXPECT_EQ(results.size(), 150U);
|
| + VerifyAllKeys(results);
|
| +}
|
| +
|
| +TEST_F(RTreeTest, InsertEmptyRectReplacementRemovesKey) {
|
| + RTree rt(10, 31);
|
| + AddStackedSquares(&rt, 50);
|
| + ValidateRTree(&rt);
|
| +
|
| + // Replace last square with empty rect.
|
| + rt.Insert(Rect(), 50);
|
| + ValidateRTree(&rt);
|
| +
|
| + // Now query large area to get all rects in tree.
|
| + base::hash_set<intptr_t> results;
|
| + Rect test_rect(0, 0, 100, 100);
|
| + rt.Query(test_rect, &results);
|
| +
|
| + // Should only be 49 rects in tree.
|
| + EXPECT_EQ(results.size(), 49U);
|
| + VerifyAllKeys(results);
|
| +}
|
| +
|
| +TEST_F(RTreeTest, NodeRemoveNodesForReinsert) {
|
| + // Make a leaf node for testing removal from.
|
| + scoped_ptr<RTree::Node> test_node(new RTree::Node(0));
|
| + // Build 20 record nodes with rectangle centers going from (1,1) to (20,20)
|
| + for (int i = 1; i <= 20; ++i) {
|
| + test_node->AddChild(new RTree::Node(Rect(i - 1, i - 1, 2, 2), i));
|
| + }
|
| + // Quick verification of the node before removing children.
|
| + ValidateNode(test_node.get(), 1U, 20U);
|
| + // Use a scoped vector to delete all children that get removed from the Node.
|
| + ScopedVector<RTree::Node> removals;
|
| + test_node->RemoveNodesForReinsert(1, &removals);
|
| + // Should have gotten back 1 node pointers.
|
| + EXPECT_EQ(removals.size(), 1U);
|
| + // There should be 19 left in the test_node.
|
| + EXPECT_EQ(test_node->count(), 19U);
|
| + // If we fix up the bounds on the test_node, it should verify.
|
| + test_node->RecomputeBoundsNoParents();
|
| + ValidateNode(test_node.get(), 2U, 20U);
|
| + // The node we removed should be node 10, as it was exactly in the center.
|
| + EXPECT_EQ(removals[0]->key(), 10);
|
| +
|
| + // Now remove the next 2.
|
| + removals.clear();
|
| + test_node->RemoveNodesForReinsert(2, &removals);
|
| + EXPECT_EQ(removals.size(), 2U);
|
| + EXPECT_EQ(test_node->count(), 17U);
|
| + test_node->RecomputeBoundsNoParents();
|
| + ValidateNode(test_node.get(), 2U, 20U);
|
| + // Lastly the 2 nodes we should have gotten back are keys 9 and 11, as their
|
| + // centers were the closest to the center of the node bounding box.
|
| + base::hash_set<intptr_t> results_hash;
|
| + results_hash.insert(removals[0]->key());
|
| + results_hash.insert(removals[1]->key());
|
| + EXPECT_EQ(results_hash.count(9), 1U);
|
| + EXPECT_EQ(results_hash.count(11), 1U);
|
| +}
|
| +
|
| +TEST_F(RTreeTest, NodeCompareVertical) {
|
| + // One rect with lower y than another should always sort lower than higher y.
|
| + RTree::Node low(Rect(0, 1, 10, 10), 1);
|
| + RTree::Node middle(Rect(0, 5, 10, 10), 5);
|
| + EXPECT_TRUE(RTree::Node::CompareVertical(&low, &middle));
|
| + EXPECT_FALSE(RTree::Node::CompareVertical(&middle, &low));
|
| +
|
| + // Try a non-overlapping higher-y rectangle.
|
| + RTree::Node high(Rect(-10, 20, 10, 1), 10);
|
| + EXPECT_TRUE(RTree::Node::CompareVertical(&low, &high));
|
| + EXPECT_FALSE(RTree::Node::CompareVertical(&high, &low));
|
| +
|
| + // Ties are broken by lowest bottom y value.
|
| + RTree::Node shorter_tie(Rect(10, 1, 100, 2), 2);
|
| + EXPECT_TRUE(RTree::Node::CompareVertical(&shorter_tie, &low));
|
| + EXPECT_FALSE(RTree::Node::CompareVertical(&low, &shorter_tie));
|
| +}
|
| +
|
| +TEST_F(RTreeTest, NodeCompareHorizontal) {
|
| + // One rect with lower x than another should always sort lower than higher x.
|
| + RTree::Node low(Rect(1, 0, 10, 10), 1);
|
| + RTree::Node middle(Rect(5, 0, 10, 10), 5);
|
| + EXPECT_TRUE(RTree::Node::CompareHorizontal(&low, &middle));
|
| + EXPECT_FALSE(RTree::Node::CompareHorizontal(&middle, &low));
|
| +
|
| + // Try a non-overlapping higher-x rectangle.
|
| + RTree::Node high(Rect(20, -10, 1, 10), 10);
|
| + EXPECT_TRUE(RTree::Node::CompareHorizontal(&low, &high));
|
| + EXPECT_FALSE(RTree::Node::CompareHorizontal(&high, &low));
|
| +
|
| + // Ties are broken by lowest bottom x value.
|
| + RTree::Node shorter_tie(Rect(1, 10, 2, 100), 2);
|
| + EXPECT_TRUE(RTree::Node::CompareHorizontal(&shorter_tie, &low));
|
| + EXPECT_FALSE(RTree::Node::CompareHorizontal(&low, &shorter_tie));
|
| +}
|
| +
|
| +TEST_F(RTreeTest, NodeCompareCenterDistanceFromParent) {
|
| + // Create a test node we can add children to, for distance comparisons.
|
| + scoped_ptr<RTree::Node> parent(new RTree::Node(0));
|
| +
|
| + // Add three children, one each with centers at (0, 0), (10, 10), (-9, -9),
|
| + // around which a bounding box will be centered at (0, 0)
|
| + RTree::Node* center_zero = new RTree::Node(Rect(-1, -1, 2, 2), 1);
|
| + parent->AddChild(center_zero);
|
| +
|
| + RTree::Node* center_positive = new RTree::Node(Rect(9, 9, 2, 2), 2);
|
| + parent->AddChild(center_positive);
|
| +
|
| + RTree::Node* center_negative = new RTree::Node(Rect(-10, -10, 2, 2), 3);
|
| + parent->AddChild(center_negative);
|
| +
|
| + ValidateNode(parent.get(), 1U, 5U);
|
| + EXPECT_EQ(parent->rect_, Rect(-10, -10, 21, 21));
|
| +
|
| + EXPECT_TRUE(RTree::Node::CompareCenterDistanceFromParent(center_zero,
|
| + center_positive));
|
| + EXPECT_FALSE(RTree::Node::CompareCenterDistanceFromParent(center_positive,
|
| + center_zero));
|
| +
|
| + EXPECT_TRUE(RTree::Node::CompareCenterDistanceFromParent(center_zero,
|
| + center_negative));
|
| + EXPECT_FALSE(RTree::Node::CompareCenterDistanceFromParent(center_negative,
|
| + center_zero));
|
| +
|
| + EXPECT_TRUE(RTree::Node::CompareCenterDistanceFromParent(center_negative,
|
| + center_positive));
|
| + EXPECT_FALSE(RTree::Node::CompareCenterDistanceFromParent(center_positive,
|
| + center_negative));
|
| +}
|
| +
|
| +TEST_F(RTreeTest, NodeOverlapIncreaseToAdd) {
|
| + // Create a test node with three children, for overlap comparisons.
|
| + scoped_ptr<RTree::Node> parent(new RTree::Node(0));
|
| +
|
| + // Add three children, each 4 wide and tall, at (0, 0), (3, 3), (6, 6) with
|
| + // overlapping corners.
|
| + Rect top(0, 0, 4, 4);
|
| + parent->AddChild(new RTree::Node(top, 1));
|
| + Rect middle(3, 3, 4, 4);
|
| + parent->AddChild(new RTree::Node(middle, 2));
|
| + Rect bottom(6, 6, 4, 4);
|
| + parent->AddChild(new RTree::Node(bottom, 3));
|
| + ValidateNode(parent.get(), 1U, 5U);
|
| +
|
| + // Test a rect in corner.
|
| + Rect corner(0, 0, 1, 1);
|
| + Rect expanded = top;
|
| + expanded.Union(corner);
|
| + // It should not add any overlap to add this to the first child at (0, 0);
|
| + EXPECT_EQ(parent->OverlapIncreaseToAdd(corner, 0, expanded), 0);
|
| +
|
| + expanded = middle;
|
| + expanded.Union(corner);
|
| + // Overlap for middle rectangle should increase from 2 pixels at (3, 3) and
|
| + // (6, 6) to 17 pixels, as it will now cover 4x4 rectangle top,
|
| + // so a change of +15
|
| + EXPECT_EQ(parent->OverlapIncreaseToAdd(corner, 1, expanded), 15);
|
| +
|
| + expanded = bottom;
|
| + expanded.Union(corner);
|
| + // Overlap for bottom rectangle should increase from 1 pixel at (6, 6) to
|
| + // 32 pixels, as it will now cover both 4x4 rectangles top and middle,
|
| + // so a change of 31
|
| + EXPECT_EQ(parent->OverlapIncreaseToAdd(corner, 2, expanded), 31);
|
| +
|
| + // Test a rect that doesn't overlap with anything, in the far right corner.
|
| + Rect far_corner(9, 0, 1, 1);
|
| + expanded = top;
|
| + expanded.Union(far_corner);
|
| + // Overlap of top should go from 1 to 4, as it will now cover the entire first
|
| + // row of pixels in middle.
|
| + EXPECT_EQ(parent->OverlapIncreaseToAdd(far_corner, 0, expanded), 3);
|
| +
|
| + expanded = middle;
|
| + expanded.Union(far_corner);
|
| + // Overlap of middle should go from 2 to 8, as it will cover the rightmost 4
|
| + // pixels of top and the top 4 pixles of bottom as it expands.
|
| + EXPECT_EQ(parent->OverlapIncreaseToAdd(far_corner, 1, expanded), 6);
|
| +
|
| + expanded = bottom;
|
| + expanded.Union(far_corner);
|
| + // Overlap of bottom should go from 1 to 4, as it will now cover the rightmost
|
| + // 4 pixels of middle.
|
| + EXPECT_EQ(parent->OverlapIncreaseToAdd(far_corner, 2, expanded), 3);
|
| +}
|
| +
|
| +TEST_F(RTreeTest, NodeBuildLowBounds) {
|
| + ScopedVector<RTree::Node> nodes;
|
| + nodes.reserve(10);
|
| + for (int i = 1; i <= 10; ++i) {
|
| + nodes.push_back(new RTree::Node(Rect(0, 0, i, i), i));
|
| + }
|
| + std::vector<Rect> vertical_bounds;
|
| + std::vector<Rect> horizontal_bounds;
|
| + RTree::Node::BuildLowBounds(
|
| + nodes.get(), nodes.get(), &vertical_bounds, &horizontal_bounds);
|
| + for (int i = 0; i < 10; ++i) {
|
| + EXPECT_EQ(vertical_bounds[i], Rect(0, 0, i + 1, i + 1));
|
| + EXPECT_EQ(horizontal_bounds[i], Rect(0, 0, i + 1, i + 1));
|
| + }
|
| +}
|
| +
|
| +TEST_F(RTreeTest, NodeBuildHighBounds) {
|
| + ScopedVector<RTree::Node> nodes;
|
| + nodes.reserve(25);
|
| + for (int i = 0; i < 25; ++i) {
|
| + nodes.push_back(new RTree::Node(Rect(i, i, 25 - i, 25 - i), i));
|
| + }
|
| + std::vector<Rect> vertical_bounds;
|
| + std::vector<Rect> horizontal_bounds;
|
| + RTree::Node::BuildHighBounds(
|
| + nodes.get(), nodes.get(), &vertical_bounds, &horizontal_bounds);
|
| + for (int i = 0; i < 25; ++i) {
|
| + EXPECT_EQ(vertical_bounds[i], Rect(i, i, 25 - i, 25 - i));
|
| + EXPECT_EQ(horizontal_bounds[i], Rect(i, i, 25 - i, 25 - i));
|
| + }
|
| +}
|
| +
|
| +TEST_F(RTreeTest, NodeChooseSplitAxisAndIndex) {
|
| + std::vector<Rect> low_vertical_bounds;
|
| + std::vector<Rect> high_vertical_bounds;
|
| + std::vector<Rect> low_horizontal_bounds;
|
| + std::vector<Rect> high_horizontal_bounds;
|
| + // In this test scenario we describe a mirrored, stacked configuration of
|
| + // horizontal, 1 pixel high rectangles labeled a-f like this:
|
| + //
|
| + // shape: | v sort: | h sort: |
|
| + // -------+---------+---------+
|
| + // aaaaa | 0 | 0 |
|
| + // bbb | 1 | 2 |
|
| + // c | 2 | 4 |
|
| + // d | 3 | 5 |
|
| + // eee | 4 | 3 |
|
| + // fffff | 5 | 1 |
|
| + //
|
| + // These are already sorted vertically from top to bottom. Bounding rectangles
|
| + // of these vertically sorted will be 5 wide, i tall bounding boxes.
|
| + for (int i = 0; i < 6; ++i) {
|
| + low_vertical_bounds.push_back(Rect(0, 0, 5, i + 1));
|
| + high_vertical_bounds.push_back(Rect(0, i, 5, 6 - i));
|
| + }
|
| +
|
| + // Low bounds of horizontal sort start with bounds of box a and then jump to
|
| + // cover everything, as box f is second in horizontal sort.
|
| + low_horizontal_bounds.push_back(Rect(0, 0, 5, 1));
|
| + for (int i = 0; i < 5; ++i) {
|
| + low_horizontal_bounds.push_back(Rect(0, 0, 5, 6));
|
| + }
|
| +
|
| + // High horizontal bounds are hand-calculated.
|
| + high_horizontal_bounds.push_back(Rect(0, 0, 5, 6));
|
| + high_horizontal_bounds.push_back(Rect(0, 1, 5, 5));
|
| + high_horizontal_bounds.push_back(Rect(1, 1, 3, 4));
|
| + high_horizontal_bounds.push_back(Rect(1, 2, 3, 3));
|
| + high_horizontal_bounds.push_back(Rect(2, 2, 1, 2));
|
| + high_horizontal_bounds.push_back(Rect(2, 3, 1, 1));
|
| +
|
| + // This should split vertically, right down the middle.
|
| + EXPECT_TRUE(RTree::Node::ChooseSplitAxis(low_vertical_bounds,
|
| + high_vertical_bounds,
|
| + low_horizontal_bounds,
|
| + high_horizontal_bounds,
|
| + 2,
|
| + 5));
|
| + EXPECT_EQ(3U,
|
| + RTree::Node::ChooseSplitIndex(
|
| + 2, 5, low_vertical_bounds, high_vertical_bounds));
|
| +
|
| + // We rotate the shape to test horizontal split axis detection:
|
| + //
|
| + // +--------+
|
| + // | a f |
|
| + // | ab ef |
|
| + // sort: | abcdef |
|
| + // | ab ef |
|
| + // | a f |
|
| + // |--------+
|
| + // v sort: | 024531 |
|
| + // h sort: | 012345 |
|
| + // +--------+
|
| + //
|
| + // Clear out old bounds first.
|
| + low_vertical_bounds.clear();
|
| + high_vertical_bounds.clear();
|
| + low_horizontal_bounds.clear();
|
| + high_horizontal_bounds.clear();
|
| +
|
| + // Low bounds of vertical sort start with bounds of box a and then jump to
|
| + // cover everything, as box f is second in vertical sort.
|
| + low_vertical_bounds.push_back(Rect(0, 0, 1, 5));
|
| + for (int i = 0; i < 5; ++i) {
|
| + low_vertical_bounds.push_back(Rect(0, 0, 6, 5));
|
| + }
|
| +
|
| + // High vertical bounds are hand-calculated.
|
| + high_vertical_bounds.push_back(Rect(0, 0, 6, 5));
|
| + high_vertical_bounds.push_back(Rect(1, 0, 5, 5));
|
| + high_vertical_bounds.push_back(Rect(1, 1, 4, 3));
|
| + high_vertical_bounds.push_back(Rect(2, 1, 3, 3));
|
| + high_vertical_bounds.push_back(Rect(2, 2, 2, 1));
|
| + high_vertical_bounds.push_back(Rect(3, 2, 1, 1));
|
| +
|
| + // These are already sorted horizontally from left to right. Bounding
|
| + // rectangles of these horizontally sorted will be i wide, 5 tall bounding
|
| + // boxes.
|
| + for (int i = 0; i < 6; ++i) {
|
| + low_horizontal_bounds.push_back(Rect(0, 0, i + 1, 5));
|
| + high_horizontal_bounds.push_back(Rect(i, 0, 6 - i, 5));
|
| + }
|
| +
|
| + // This should split horizontally, right down the middle.
|
| + EXPECT_FALSE(RTree::Node::ChooseSplitAxis(low_vertical_bounds,
|
| + high_vertical_bounds,
|
| + low_horizontal_bounds,
|
| + high_horizontal_bounds,
|
| + 2,
|
| + 5));
|
| + EXPECT_EQ(3U,
|
| + RTree::Node::ChooseSplitIndex(
|
| + 2, 5, low_horizontal_bounds, high_horizontal_bounds));
|
| +}
|
| +
|
| +TEST_F(RTreeTest, NodeDivideChildren) {
|
| + // Create a test node to split.
|
| + scoped_ptr<RTree::Node> test_node(new RTree::Node(0));
|
| + std::vector<RTree::Node*> sorted_children;
|
| + std::vector<Rect> low_bounds;
|
| + std::vector<Rect> high_bounds;
|
| + // Insert 10 record nodes, also inserting them into our children array.
|
| + for (int i = 1; i <= 10; ++i) {
|
| + RTree::Node* node = new RTree::Node(Rect(0, 0, i, i), i);
|
| + test_node->AddChild(node);
|
| + sorted_children.push_back(node);
|
| + low_bounds.push_back(Rect(0, 0, i, i));
|
| + high_bounds.push_back(Rect(0, 0, 10, 10));
|
| + }
|
| + // Split the children in half.
|
| + scoped_ptr<RTree::Node> split_node(
|
| + test_node->DivideChildren(low_bounds, high_bounds, sorted_children, 5));
|
| + // Both nodes should be valid.
|
| + ValidateNode(test_node.get(), 1U, 10U);
|
| + ValidateNode(split_node.get(), 1U, 10U);
|
| + // Both nodes should have five children.
|
| + EXPECT_EQ(test_node->children_.size(), 5U);
|
| + EXPECT_EQ(split_node->children_.size(), 5U);
|
| + // Test node should have children 1-5, split node should have children 6-10.
|
| + for (int i = 0; i < 5; ++i) {
|
| + EXPECT_EQ(test_node->children_[i]->key(), i + 1);
|
| + EXPECT_EQ(split_node->children_[i]->key(), i + 6);
|
| + }
|
| +}
|
| +
|
| +TEST_F(RTreeTest, NodeRemoveChildNoOrphans) {
|
| + scoped_ptr<RTree::Node> test_parent(new RTree::Node(0));
|
| + scoped_ptr<RTree::Node> child_one(new RTree::Node(Rect(0, 0, 1, 1), 1));
|
| + scoped_ptr<RTree::Node> child_two(new RTree::Node(Rect(0, 0, 2, 2), 2));
|
| + scoped_ptr<RTree::Node> child_three(new RTree::Node(Rect(0, 0, 3, 3), 3));
|
| + test_parent->AddChild(child_one.get());
|
| + test_parent->AddChild(child_two.get());
|
| + test_parent->AddChild(child_three.get());
|
| + ValidateNode(test_parent.get(), 1U, 5U);
|
| + // Remove the middle node.
|
| + ScopedVector<RTree::Node> orphans;
|
| + EXPECT_EQ(test_parent->RemoveChild(child_two.get(), &orphans), 2U);
|
| + EXPECT_EQ(orphans.size(), 0U);
|
| + EXPECT_EQ(test_parent->count(), 2U);
|
| + test_parent->RecomputeBoundsNoParents();
|
| + ValidateNode(test_parent.get(), 1U, 5U);
|
| + // Remove the end node.
|
| + EXPECT_EQ(test_parent->RemoveChild(child_three.get(), &orphans), 1U);
|
| + EXPECT_EQ(orphans.size(), 0U);
|
| + EXPECT_EQ(test_parent->count(), 1U);
|
| + test_parent->RecomputeBoundsNoParents();
|
| + ValidateNode(test_parent.get(), 1U, 5U);
|
| + // Remove the first node.
|
| + EXPECT_EQ(test_parent->RemoveChild(child_one.get(), &orphans), 0U);
|
| + EXPECT_EQ(orphans.size(), 0U);
|
| + EXPECT_EQ(test_parent->count(), 0U);
|
| +}
|
| +
|
| +TEST_F(RTreeTest, NodeRemoveChildOrphans) {
|
| + // Build flattened binary tree of Nodes 4 deep, from the record nodes up.
|
| + ScopedVector<RTree::Node> nodes;
|
| + nodes.resize(15);
|
| + // Indicies 7 through 15 are record nodes.
|
| + for (int i = 7; i < 15; ++i) {
|
| + nodes[i] = new RTree::Node(Rect(0, 0, i, i), i);
|
| + }
|
| + // Nodes 3 through 6 are level 0 (leaves) and get 2 record nodes each.
|
| + for (int i = 3; i < 7; ++i) {
|
| + nodes[i] = new RTree::Node(0);
|
| + nodes[i]->AddChild(nodes[(i * 2) + 1]);
|
| + nodes[i]->AddChild(nodes[(i * 2) + 2]);
|
| + }
|
| + // Nodes 1 and 2 are level 1 and get 2 leaves each.
|
| + for (int i = 1; i < 3; ++i) {
|
| + nodes[i] = new RTree::Node(1);
|
| + nodes[i]->AddChild(nodes[(i * 2) + 1]);
|
| + nodes[i]->AddChild(nodes[(i * 2) + 2]);
|
| + }
|
| + // Node 0 is level 2 and gets 2 childen.
|
| + nodes[0] = new RTree::Node(2);
|
| + nodes[0]->AddChild(nodes[1]);
|
| + nodes[0]->AddChild(nodes[2]);
|
| + // This should now be a valid node structure.
|
| + ValidateNode(nodes[0], 2U, 2U);
|
| +
|
| + // Now remove the level 0 nodes, so we get the record nodes as orphans.
|
| + ScopedVector<RTree::Node> orphans;
|
| + EXPECT_EQ(nodes[1]->RemoveChild(nodes[3], &orphans), 1U);
|
| + EXPECT_EQ(nodes[1]->RemoveChild(nodes[4], &orphans), 0U);
|
| + EXPECT_EQ(nodes[2]->RemoveChild(nodes[5], &orphans), 1U);
|
| + EXPECT_EQ(nodes[2]->RemoveChild(nodes[6], &orphans), 0U);
|
| +
|
| + // Orphans should be nodes 7 through 15 in order.
|
| + EXPECT_EQ(orphans.size(), 8U);
|
| + for (int i = 0; i < 8; ++i) {
|
| + EXPECT_EQ(orphans[i], nodes[i + 7]);
|
| + }
|
| +
|
| + // Now we remove nodes 1 and 2 from the root, expecting no further orphans.
|
| + // This prevents a crash due to double-delete on test exit, as no node should
|
| + // own any other node right now.
|
| + EXPECT_EQ(nodes[0]->RemoveChild(nodes[1], &orphans), 1U);
|
| + EXPECT_EQ(orphans.size(), 8U);
|
| + EXPECT_EQ(nodes[0]->RemoveChild(nodes[2], &orphans), 0U);
|
| + EXPECT_EQ(orphans.size(), 8U);
|
| +
|
| + // Prevent double-delete of nodes by both nodes and orphans.
|
| + orphans.weak_clear();
|
| +}
|
| +
|
| +TEST_F(RTreeTest, NodeRemoveAndReturnLastChild) {
|
| + scoped_ptr<RTree::Node> test_parent(new RTree::Node(0));
|
| + scoped_ptr<RTree::Node> child_one(new RTree::Node(Rect(0, 0, 1, 1), 1));
|
| + scoped_ptr<RTree::Node> child_two(new RTree::Node(Rect(0, 0, 2, 2), 2));
|
| + scoped_ptr<RTree::Node> child_three(new RTree::Node(Rect(0, 0, 3, 3), 3));
|
| + test_parent->AddChild(child_one.get());
|
| + test_parent->AddChild(child_two.get());
|
| + test_parent->AddChild(child_three.get());
|
| + ValidateNode(test_parent.get(), 1U, 5U);
|
| +
|
| + EXPECT_EQ(test_parent->RemoveAndReturnLastChild().release(),
|
| + child_three.get());
|
| + EXPECT_EQ(test_parent->count(), 2U);
|
| + test_parent->RecomputeBoundsNoParents();
|
| + ValidateNode(test_parent.get(), 1U, 5U);
|
| +
|
| + EXPECT_EQ(test_parent->RemoveAndReturnLastChild().release(), child_two.get());
|
| + EXPECT_EQ(test_parent->count(), 1U);
|
| + test_parent->RecomputeBoundsNoParents();
|
| + ValidateNode(test_parent.get(), 1U, 5U);
|
| +
|
| + EXPECT_EQ(test_parent->RemoveAndReturnLastChild().release(), child_one.get());
|
| + EXPECT_EQ(test_parent->count(), 0U);
|
| +}
|
| +
|
| +TEST_F(RTreeTest, NodeLeastOverlapIncrease) {
|
| + scoped_ptr<RTree::Node> test_parent(new RTree::Node(0));
|
| + // Construct 4 nodes with 1x2 retangles spaced horizontally 1 pixel apart, or:
|
| + //
|
| + // a b c d
|
| + // a b c d
|
| + //
|
| + for (int i = 0; i < 4; ++i) {
|
| + test_parent->AddChild(new RTree::Node(Rect(i * 2, 0, 1, 2), i + 1));
|
| + }
|
| +
|
| + ValidateNode(test_parent.get(), 1U, 5U);
|
| +
|
| + // Test rect at (7, 0) should require minimum overlap on the part of the
|
| + // fourth rectangle to add:
|
| + //
|
| + // a b c dT
|
| + // a b c d
|
| + //
|
| + Rect test_rect_far(7, 0, 1, 1);
|
| + std::vector<Rect> expanded_rects;
|
| + BuildExpandedRects(test_parent.get(), test_rect_far, &expanded_rects);
|
| + RTree::Node* result =
|
| + test_parent->LeastOverlapIncrease(test_rect_far, expanded_rects);
|
| + EXPECT_EQ(result->key(), 4);
|
| +
|
| + // Test rect covering the bottom half of all children should be a 4-way tie,
|
| + // so LeastOverlapIncrease should return NULL:
|
| + //
|
| + // a b c d
|
| + // TTTTTTT
|
| + //
|
| + Rect test_rect_tie(0, 1, 7, 1);
|
| + BuildExpandedRects(test_parent.get(), test_rect_tie, &expanded_rects);
|
| + result = test_parent->LeastOverlapIncrease(test_rect_tie, expanded_rects);
|
| + EXPECT_TRUE(result == NULL);
|
| +
|
| + // Test rect completely inside c should return the third rectangle:
|
| + //
|
| + // a b T d
|
| + // a b c d
|
| + //
|
| + Rect test_rect_inside(4, 0, 1, 1);
|
| + BuildExpandedRects(test_parent.get(), test_rect_inside, &expanded_rects);
|
| + result = test_parent->LeastOverlapIncrease(test_rect_inside, expanded_rects);
|
| + EXPECT_EQ(result->key(), 3);
|
| +
|
| + // Add a rectangle that overlaps completely with rectangle c, to test
|
| + // when there is a tie between two completely contained rectangles:
|
| + //
|
| + // a b Ted
|
| + // a b eed
|
| + //
|
| + test_parent->AddChild(new RTree::Node(Rect(4, 0, 2, 2), 9));
|
| + BuildExpandedRects(test_parent.get(), test_rect_inside, &expanded_rects);
|
| + result = test_parent->LeastOverlapIncrease(test_rect_inside, expanded_rects);
|
| + EXPECT_TRUE(result == NULL);
|
| +}
|
| +
|
| +TEST_F(RTreeTest, NodeLeastAreaEnlargement) {
|
| + scoped_ptr<RTree::Node> test_parent(new RTree::Node(0));
|
| + // Construct 4 nodes in a cross-hairs style configuration:
|
| + //
|
| + // a
|
| + // b c
|
| + // d
|
| + //
|
| + test_parent->AddChild(new RTree::Node(Rect(1, 0, 1, 1), 1));
|
| + test_parent->AddChild(new RTree::Node(Rect(0, 1, 1, 1), 2));
|
| + test_parent->AddChild(new RTree::Node(Rect(2, 1, 1, 1), 3));
|
| + test_parent->AddChild(new RTree::Node(Rect(1, 2, 1, 1), 4));
|
| +
|
| + ValidateNode(test_parent.get(), 1U, 5U);
|
| +
|
| + // Test rect at (1, 3) should require minimum area to add to Node d:
|
| + //
|
| + // a
|
| + // b c
|
| + // d
|
| + // T
|
| + //
|
| + Rect test_rect_below(1, 3, 1, 1);
|
| + std::vector<Rect> expanded_rects;
|
| + BuildExpandedRects(test_parent.get(), test_rect_below, &expanded_rects);
|
| + RTree::Node* result =
|
| + test_parent->LeastAreaEnlargement(test_rect_below, expanded_rects);
|
| + EXPECT_EQ(result->key(), 4);
|
| +
|
| + // Test rect completely inside b should require minimum area to add to Node b:
|
| + //
|
| + // a
|
| + // T c
|
| + // d
|
| + //
|
| + Rect test_rect_inside(0, 1, 1, 1);
|
| + BuildExpandedRects(test_parent.get(), test_rect_inside, &expanded_rects);
|
| + result = test_parent->LeastAreaEnlargement(test_rect_inside, expanded_rects);
|
| + EXPECT_EQ(result->key(), 2);
|
| +
|
| + // Add e at (0, 1) to overlap b and c, to test tie-breaking:
|
| + //
|
| + // a
|
| + // eee
|
| + // d
|
| + //
|
| + test_parent->AddChild(new RTree::Node(Rect(0, 1, 3, 1), 7));
|
| +
|
| + ValidateNode(test_parent.get(), 1U, 5U);
|
| +
|
| + // Test rect at (3, 1) should tie between c and e, but c has smaller area so
|
| + // the algorithm should select c:
|
| + //
|
| + //
|
| + // a
|
| + // eeeT
|
| + // d
|
| + //
|
| + Rect test_rect_tie_breaker(3, 1, 1, 1);
|
| + BuildExpandedRects(test_parent.get(), test_rect_tie_breaker, &expanded_rects);
|
| + result =
|
| + test_parent->LeastAreaEnlargement(test_rect_tie_breaker, expanded_rects);
|
| + EXPECT_EQ(result->key(), 3);
|
| +}
|
| +
|
| +} // namespace gfx
|
|
|