Index: ui/gfx/geometry/r_tree.cc |
diff --git a/ui/gfx/geometry/r_tree.cc b/ui/gfx/geometry/r_tree.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..9706a20e13c0064ccb544c32e5b05316a317d190 |
--- /dev/null |
+++ b/ui/gfx/geometry/r_tree.cc |
@@ -0,0 +1,745 @@ |
+// Copyright (c) 2014 The Chromium Authors. All rights reserved. |
+// Use of this source code is governed by a BSD-style license that can be |
+// found in the LICENSE file. |
+ |
+#include "ui/gfx/geometry/r_tree.h" |
+ |
+#include <algorithm> |
+#include <limits> |
+ |
+#include "base/logging.h" |
+ |
+namespace { |
+ |
+// Returns the center coordinates of the given rectangle. |
+gfx::Vector2d CenterOfRect(const gfx::Rect& rect) { |
+ return rect.OffsetFromOrigin() + |
+ gfx::Vector2d(rect.width() / 2, rect.height() / 2); |
+} |
+} |
+ |
+namespace gfx { |
+ |
+RTree::Node::Node(int level) : level_(level), parent_(NULL), key_(0) { |
+} |
+ |
+RTree::Node::Node(const Rect& rect, intptr_t key) |
+ : rect_(rect), level_(-1), parent_(NULL), key_(key) { |
+} |
+ |
+RTree::Node::~Node() { |
+ Clear(); |
+} |
+ |
+void RTree::Node::Clear() { |
+ // Iterate through children and delete them all. |
+ children_.clear(); |
+ key_ = 0; |
+} |
+ |
+void RTree::Node::Query(const Rect& query_rect, |
+ base::hash_set<intptr_t>* matches_out) const { |
+ // Check own bounding box for intersection, can cull all children if no |
+ // intersection. |
+ if (!rect_.Intersects(query_rect)) { |
+ return; |
+ } |
+ |
+ // Conversely if we are completely contained within the query rect we can |
+ // confidently skip all bounds checks for ourselves and all our children. |
+ if (query_rect.Contains(rect_)) { |
+ GetAllValues(matches_out); |
+ return; |
+ } |
+ |
+ // We intersect the query rect but we are not are not contained within it. |
+ // If we are a record node, then add our record value. Otherwise we must |
+ // query each of our children in turn. |
+ if (key_) { |
+ DCHECK_EQ(level_, -1); |
+ matches_out->insert(key_); |
+ } else { |
+ for (size_t i = 0; i < children_.size(); ++i) { |
+ // Sanity-check our children. |
+ Node* node = children_[i]; |
+ DCHECK_EQ(node->parent_, this); |
+ DCHECK_EQ(level_ - 1, node->level_); |
+ DCHECK(rect_.Contains(node->rect_)); |
+ node->Query(query_rect, matches_out); |
+ } |
+ } |
+} |
+ |
+void RTree::Node::RecomputeBounds() { |
+ RecomputeBoundsNoParents(); |
+ // Recompute our parent's bounds recursively up to the root. |
+ if (parent_) { |
+ parent_->RecomputeBounds(); |
+ } |
+} |
+ |
+void RTree::Node::RemoveNodesForReinsert(size_t number_to_remove, |
+ ScopedVector<Node>* nodes) { |
+ DCHECK_GE(children_.size(), number_to_remove); |
+ |
+ // Sort our children by their distance from the center of their rectangles to |
+ // the center of our bounding rectangle. |
+ std::sort(children_.begin(), |
+ children_.end(), |
+ &RTree::Node::CompareCenterDistanceFromParent); |
+ |
+ // Add lowest distance nodes from our children list to the returned vector. |
+ nodes->insert( |
+ nodes->end(), children_.begin(), children_.begin() + number_to_remove); |
+ // Remove those same nodes from our list, without deleting them. |
+ children_.weak_erase(children_.begin(), children_.begin() + number_to_remove); |
+} |
+ |
+size_t RTree::Node::RemoveChild(Node* child_node, ScopedVector<Node>* orphans) { |
+ // Should actually be one of our children. |
+ DCHECK_EQ(child_node->parent_, this); |
+ |
+ // Add children of child_node to the orphans vector. |
+ orphans->insert(orphans->end(), |
+ child_node->children_.begin(), |
+ child_node->children_.end()); |
+ // Remove without deletion those children from the child_node vector. |
+ child_node->children_.weak_clear(); |
+ |
+ // Find an iterator to this Node in our own children_ vector. |
+ ScopedVector<Node>::iterator child_it = children_.end(); |
+ for (size_t i = 0; i < children_.size(); ++i) { |
+ if (children_[i] == child_node) { |
+ child_it = children_.begin() + i; |
+ break; |
+ } |
+ } |
+ // Should have found the pointer in our children_ vector. |
+ DCHECK(child_it != children_.end()); |
+ // Remove without deleting the child node from our children_ vector. |
+ children_.weak_erase(child_it); |
+ |
+ return children_.size(); |
+} |
+ |
+scoped_ptr<RTree::Node> RTree::Node::RemoveAndReturnLastChild() { |
+ if (!children_.size()) |
+ return scoped_ptr<Node>(); |
+ |
+ scoped_ptr<Node> last_child(children_[children_.size() - 1]); |
+ DCHECK_EQ(last_child->parent_, this); |
+ children_.weak_erase(children_.begin() + children_.size() - 1); |
+ // Invalidate parent, as this child may even become the new root. |
+ last_child->parent_ = NULL; |
+ return last_child.Pass(); |
+} |
+ |
+// Uses the R*-Tree algorithm CHOOSELEAF proposed by Beckmann et al. |
+RTree::Node* RTree::Node::ChooseSubtree(Node* node) { |
+ // Should never be called on a record node. |
+ DCHECK(!key_); |
+ DCHECK(level_ >= 0); |
+ DCHECK(node); |
+ |
+ // If we are a parent of nodes on the provided node level, we are done. |
+ if (level_ == node->level_ + 1) |
+ return this; |
+ |
+ // We are an internal node, and thus guaranteed to have children. |
+ DCHECK_GT(children_.size(), 0U); |
+ |
+ // Iterate over all children to find best candidate for insertion. |
+ Node* best_candidate = NULL; |
+ |
+ // Precompute a vector of expanded rects, used both by LeastOverlapIncrease |
+ // and LeastAreaEnlargement. |
+ std::vector<Rect> expanded_rects; |
+ expanded_rects.reserve(children_.size()); |
+ for (size_t i = 0; i < children_.size(); ++i) { |
+ Rect expanded_rect(node->rect_); |
+ expanded_rect.Union(children_[i]->rect_); |
+ expanded_rects.push_back(expanded_rect); |
+ } |
+ |
+ // For parents of leaf nodes, we pick the node that will cause the least |
+ // increase in overlap by the addition of this new node. This may detect a |
+ // tie, in which case it will return NULL. |
+ if (level_ == 1) |
+ best_candidate = LeastOverlapIncrease(node->rect_, expanded_rects); |
+ |
+ // For non-parents of leaf nodes, or for parents of leaf nodes with ties in |
+ // overlap increase, we choose the subtree with least area enlargement caused |
+ // by the addition of the new node. |
+ if (!best_candidate) |
+ best_candidate = LeastAreaEnlargement(node->rect_, expanded_rects); |
+ |
+ DCHECK(best_candidate); |
+ return best_candidate->ChooseSubtree(node); |
+} |
+ |
+RTree::Node* RTree::Node::LeastAreaEnlargement( |
+ const Rect& node_rect, |
+ const std::vector<Rect>& expanded_rects) { |
+ Node* best_node = NULL; |
+ int least_area_enlargement = std::numeric_limits<int>::max(); |
+ for (size_t i = 0; i < children_.size(); ++i) { |
+ Node* candidate_node = children_[i]; |
+ int area_change = expanded_rects[i].size().GetArea() - |
+ candidate_node->rect_.size().GetArea(); |
+ if (area_change < least_area_enlargement) { |
+ best_node = candidate_node; |
+ least_area_enlargement = area_change; |
+ } else if (area_change == least_area_enlargement) { |
+ // Ties are broken by choosing entry with least area. |
+ DCHECK(best_node); |
+ if (candidate_node->rect_.size().GetArea() < |
+ best_node->rect_.size().GetArea()) { |
+ best_node = candidate_node; |
+ } |
+ } |
+ } |
+ |
+ DCHECK(best_node); |
+ return best_node; |
+} |
+ |
+RTree::Node* RTree::Node::LeastOverlapIncrease( |
+ const Rect& node_rect, |
+ const std::vector<Rect>& expanded_rects) { |
+ Node* best_node = NULL; |
+ bool has_tied_node = false; |
+ int least_overlap_increase = std::numeric_limits<int>::max(); |
+ for (size_t i = 0; i < children_.size(); ++i) { |
+ int overlap_increase = |
+ OverlapIncreaseToAdd(node_rect, i, expanded_rects[i]); |
+ if (overlap_increase < least_overlap_increase) { |
+ least_overlap_increase = overlap_increase; |
+ best_node = children_[i]; |
+ has_tied_node = false; |
+ } else if (overlap_increase == least_overlap_increase) { |
+ has_tied_node = true; |
+ // If we are tied at zero there is no possible better overlap increase, |
+ // so we can report a tie early. |
+ if (overlap_increase == 0) { |
+ return NULL; |
+ } |
+ } |
+ } |
+ |
+ // If we ended up with a tie return NULL to report it. |
+ if (has_tied_node) |
+ return NULL; |
+ |
+ return best_node; |
+} |
+ |
+int RTree::Node::OverlapIncreaseToAdd(const Rect& rect, |
+ size_t candidate, |
+ const Rect& expanded_rect) { |
+ Node* candidate_node = children_[candidate]; |
+ |
+ // Early-out option for when rect is contained completely within candidate. |
+ if (candidate_node->rect_.Contains(rect)) { |
+ return 0; |
+ } |
+ |
+ int total_original_overlap = 0; |
+ int total_expanded_overlap = 0; |
+ |
+ // Now calculate overlap with all other rects in this node. |
+ for (size_t i = 0; i < children_.size(); ++i) { |
+ // Skip calculating overlap with the candidate rect. |
+ if (i == candidate) |
+ continue; |
+ Node* overlap_node = children_[i]; |
+ Rect overlap_rect = candidate_node->rect_; |
+ overlap_rect.Intersect(overlap_node->rect_); |
+ total_original_overlap += overlap_rect.size().GetArea(); |
+ Rect expanded_overlap_rect = expanded_rect; |
+ expanded_overlap_rect.Intersect(overlap_node->rect_); |
+ total_expanded_overlap += expanded_overlap_rect.size().GetArea(); |
+ } |
+ |
+ // Compare this overlap increase with best one to date, update best. |
+ int overlap_increase = total_expanded_overlap - total_original_overlap; |
+ return overlap_increase; |
+} |
+ |
+size_t RTree::Node::AddChild(Node* node) { |
+ DCHECK(node); |
+ // Sanity-check that the level of the child being added is one more than ours. |
+ DCHECK_EQ(level_ - 1, node->level_); |
+ node->parent_ = this; |
+ children_.push_back(node); |
+ rect_.Union(node->rect_); |
+ return children_.size(); |
+} |
+ |
+RTree::Node* RTree::Node::Split(size_t min_children, size_t max_children) { |
+ // Please don't attempt to split a record Node. |
+ DCHECK(!key_); |
+ // We should have too many children to begin with. |
+ DCHECK_GT(children_.size(), max_children); |
+ // First determine if splitting along the horizontal or vertical axis. We |
+ // sort the rectangles of our children by lower then upper values along both |
+ // horizontal and vertical axes. |
+ std::vector<Node*> vertical_sort(children_.get()); |
+ std::vector<Node*> horizontal_sort(children_.get()); |
+ std::sort(vertical_sort.begin(), |
+ vertical_sort.end(), |
+ &RTree::Node::CompareVertical); |
+ std::sort(horizontal_sort.begin(), |
+ horizontal_sort.end(), |
+ &RTree::Node::CompareHorizontal); |
+ |
+ // We will be examining the bounding boxes of different splits of our children |
+ // sorted along each axis. Here we precompute the bounding boxes of these |
+ // distributions. For the low bounds the ith element can be considered the |
+ // union of all rects [0,i] in the relevant sorted axis array. |
+ std::vector<Rect> low_vertical_bounds; |
+ std::vector<Rect> low_horizontal_bounds; |
+ BuildLowBounds(vertical_sort, |
+ horizontal_sort, |
+ &low_vertical_bounds, |
+ &low_horizontal_bounds); |
+ |
+ // For the high bounds the ith element can be considered the union of all |
+ // rects [i, children_.size()) in the relevant sorted axis array. |
+ std::vector<Rect> high_vertical_bounds; |
+ std::vector<Rect> high_horizontal_bounds; |
+ BuildHighBounds(vertical_sort, |
+ horizontal_sort, |
+ &high_vertical_bounds, |
+ &high_horizontal_bounds); |
+ |
+ bool is_vertical_split = ChooseSplitAxis(low_vertical_bounds, |
+ high_vertical_bounds, |
+ low_horizontal_bounds, |
+ high_horizontal_bounds, |
+ min_children, |
+ max_children); |
+ |
+ // Lastly we determine optimal index and do the split. |
+ Node* sibling = NULL; |
+ if (is_vertical_split) { |
+ size_t split_index = ChooseSplitIndex( |
+ min_children, max_children, low_vertical_bounds, high_vertical_bounds); |
+ sibling = DivideChildren( |
+ low_vertical_bounds, high_vertical_bounds, vertical_sort, split_index); |
+ } else { |
+ size_t split_index = ChooseSplitIndex(min_children, |
+ max_children, |
+ low_horizontal_bounds, |
+ high_horizontal_bounds); |
+ sibling = DivideChildren(low_horizontal_bounds, |
+ high_horizontal_bounds, |
+ horizontal_sort, |
+ split_index); |
+ } |
+ |
+ return sibling; |
+} |
+ |
+// static |
+void RTree::Node::BuildLowBounds(const std::vector<Node*>& vertical_sort, |
+ const std::vector<Node*>& horizontal_sort, |
+ std::vector<Rect>* vertical_bounds, |
+ std::vector<Rect>* horizontal_bounds) { |
+ DCHECK_EQ(vertical_sort.size(), horizontal_sort.size()); |
+ Rect vertical_bounds_rect; |
+ Rect horizontal_bounds_rect; |
+ vertical_bounds->reserve(vertical_sort.size()); |
+ horizontal_bounds->reserve(horizontal_sort.size()); |
+ for (size_t i = 0; i < vertical_sort.size(); ++i) { |
+ vertical_bounds_rect.Union(vertical_sort[i]->rect_); |
+ horizontal_bounds_rect.Union(horizontal_sort[i]->rect_); |
+ vertical_bounds->push_back(vertical_bounds_rect); |
+ horizontal_bounds->push_back(horizontal_bounds_rect); |
+ } |
+} |
+ |
+// static |
+void RTree::Node::BuildHighBounds(const std::vector<Node*>& vertical_sort, |
+ const std::vector<Node*>& horizontal_sort, |
+ std::vector<Rect>* vertical_bounds, |
+ std::vector<Rect>* horizontal_bounds) { |
+ DCHECK_EQ(vertical_sort.size(), horizontal_sort.size()); |
+ Rect vertical_bounds_rect; |
+ Rect horizontal_bounds_rect; |
+ vertical_bounds->resize(vertical_sort.size()); |
+ horizontal_bounds->resize(horizontal_sort.size()); |
+ for (int i = static_cast<int>(vertical_sort.size()) - 1; i >= 0; --i) { |
+ vertical_bounds_rect.Union(vertical_sort[i]->rect_); |
+ horizontal_bounds_rect.Union(horizontal_sort[i]->rect_); |
+ vertical_bounds->at(i) = vertical_bounds_rect; |
+ horizontal_bounds->at(i) = horizontal_bounds_rect; |
+ } |
+} |
+ |
+// static |
+bool RTree::Node::ChooseSplitAxis( |
+ const std::vector<Rect>& low_vertical_bounds, |
+ const std::vector<Rect>& high_vertical_bounds, |
+ const std::vector<Rect>& low_horizontal_bounds, |
+ const std::vector<Rect>& high_horizontal_bounds, |
+ size_t min_children, |
+ size_t max_children) { |
+ // Examine the possible distributions of each sorted list by iterating through |
+ // valid split points p, min_children <= p <= max_children - min_children, and |
+ // computing the sums of the margins of the bounding boxes in each group. |
+ // Smallest margin sum will determine split axis. |
+ int smallest_horizontal_margin_sum = std::numeric_limits<int>::max(); |
+ int smallest_vertical_margin_sum = std::numeric_limits<int>::max(); |
+ for (size_t p = min_children; p < max_children - min_children; ++p) { |
+ int horizontal_margin_sum = |
+ low_horizontal_bounds[p].width() + low_horizontal_bounds[p].height() + |
+ high_horizontal_bounds[p].width() + high_horizontal_bounds[p].height(); |
+ int vertical_margin_sum = |
+ low_vertical_bounds[p].width() + low_vertical_bounds[p].height() + |
+ high_vertical_bounds[p].width() + high_vertical_bounds[p].height(); |
+ // Update margin minima if necessary. |
+ smallest_horizontal_margin_sum = |
+ std::min(horizontal_margin_sum, smallest_horizontal_margin_sum); |
+ smallest_vertical_margin_sum = |
+ std::min(vertical_margin_sum, smallest_vertical_margin_sum); |
+ } |
+ |
+ // Split along the axis perpendicular to the axis with the overall smallest |
+ // margin sum. Meaning the axis sort resulting in two boxes with the smallest |
+ // combined margin will become the axis along which the sorted rectangles are |
+ // distributed to the two Nodes. |
+ bool is_vertical_split = |
+ smallest_vertical_margin_sum < smallest_horizontal_margin_sum; |
+ return is_vertical_split; |
+} |
+ |
+RTree::Node* RTree::Node::DivideChildren( |
+ const std::vector<Rect>& low_bounds, |
+ const std::vector<Rect>& high_bounds, |
+ const std::vector<Node*>& sorted_children, |
+ size_t split_index) { |
+ Node* sibling = new Node(level_); |
+ sibling->parent_ = parent_; |
+ rect_ = low_bounds[split_index - 1]; |
+ sibling->rect_ = high_bounds[split_index]; |
+ // Our own children_ vector is unsorted, so we wipe it out and divide the |
+ // sorted bounds rects between ourselves and our sibling. |
+ children_.weak_clear(); |
+ children_.insert(children_.end(), |
+ sorted_children.begin(), |
+ sorted_children.begin() + split_index); |
+ sibling->children_.insert(sibling->children_.end(), |
+ sorted_children.begin() + split_index, |
+ sorted_children.end()); |
+ |
+ // Fix up sibling parentage or it's gonna be an awkward Thanksgiving. |
+ for (size_t i = 0; i < sibling->children_.size(); ++i) { |
+ sibling->children_[i]->parent_ = sibling; |
+ } |
+ |
+ return sibling; |
+} |
+ |
+void RTree::Node::SetRect(const Rect& rect) { |
+ // Record nodes only, please. |
+ DCHECK(key_); |
+ rect_ = rect; |
+} |
+ |
+// Returns all contained record_node values for this node and all children. |
+void RTree::Node::GetAllValues(base::hash_set<intptr_t>* matches_out) const { |
+ if (key_) { |
+ DCHECK_EQ(level_, -1); |
+ matches_out->insert(key_); |
+ } else { |
+ for (size_t i = 0; i < children_.size(); ++i) { |
+ Node* node = children_[i]; |
+ // Sanity-check our children. |
+ DCHECK_EQ(node->parent_, this); |
+ DCHECK_EQ(level_ - 1, node->level_); |
+ DCHECK(rect_.Contains(node->rect_)); |
+ node->GetAllValues(matches_out); |
+ } |
+ } |
+} |
+ |
+// static |
+bool RTree::Node::CompareVertical(Node* a, Node* b) { |
+ // Sort nodes by top coordinate first. |
+ if (a->rect_.y() < b->rect_.y()) { |
+ return true; |
+ } else if (a->rect_.y() == b->rect_.y()) { |
+ // If top coordinate is equal, sort by lowest bottom coordinate. |
+ return a->rect_.height() < b->rect_.height(); |
+ } |
+ return false; |
+} |
+ |
+// static |
+bool RTree::Node::CompareHorizontal(Node* a, Node* b) { |
+ // Sort nodes by left coordinate first. |
+ if (a->rect_.x() < b->rect_.x()) { |
+ return true; |
+ } else if (a->rect_.x() == b->rect_.x()) { |
+ // If left coordinate is equal, sort by lowest right coordinate. |
+ return a->rect_.width() < b->rect_.width(); |
+ } |
+ return false; |
+} |
+ |
+// Sort these two nodes by the distance of the center of their rects from the |
+// center of their parent's rect. We don't bother with square roots because we |
+// are only comparing the two values for sorting purposes. |
+// static |
+bool RTree::Node::CompareCenterDistanceFromParent(Node* a, Node* b) { |
+ // This comparison assumes the nodes have the same parent. |
+ DCHECK(a->parent_ == b->parent_); |
+ // This comparison requires that each node have a parent. |
+ DCHECK(a->parent_); |
+ // Sanity-check level_ of these nodes is equal. |
+ DCHECK_EQ(a->level_, b->level_); |
+ // Also the parent of the nodes should have level one higher. |
+ DCHECK_EQ(a->level_, a->parent_->level_ - 1); |
+ |
+ // Find the parent. |
+ Node* p = a->parent(); |
+ |
+ Vector2d p_center = CenterOfRect(p->rect_); |
+ Vector2d a_center = CenterOfRect(a->rect_); |
+ Vector2d b_center = CenterOfRect(b->rect_); |
+ |
+ return (a_center - p_center).LengthSquared() < |
+ (b_center - p_center).LengthSquared(); |
+} |
+ |
+size_t RTree::Node::ChooseSplitIndex(size_t min_children, |
+ size_t max_children, |
+ const std::vector<Rect>& low_bounds, |
+ const std::vector<Rect>& high_bounds) { |
+ int smallest_overlap_area = std::numeric_limits<int>::max(); |
+ int smallest_combined_area = std::numeric_limits<int>::max(); |
+ size_t optimal_split_index = 0; |
+ for (size_t p = min_children; p < max_children - min_children; ++p) { |
+ Rect overlap_bounds = low_bounds[p]; |
+ overlap_bounds.Union(high_bounds[p]); |
+ int overlap_area = overlap_bounds.size().GetArea(); |
+ if (overlap_area < smallest_overlap_area) { |
+ smallest_overlap_area = overlap_area; |
+ smallest_combined_area = |
+ low_bounds[p].size().GetArea() + high_bounds[p].size().GetArea(); |
+ optimal_split_index = p; |
+ } else if (overlap_area == smallest_overlap_area) { |
+ // Break ties with smallest combined area of the two bounding boxes. |
+ int combined_area = |
+ low_bounds[p].size().GetArea() + high_bounds[p].size().GetArea(); |
+ if (combined_area < smallest_combined_area) { |
+ smallest_combined_area = combined_area; |
+ optimal_split_index = p; |
+ } |
+ } |
+ } |
+ |
+ // optimal_split_index currently points at the last element in the first set, |
+ // so advance it by 1 to point at the first element in the second set. |
+ return optimal_split_index + 1; |
+} |
+ |
+void RTree::Node::RecomputeBoundsNoParents() { |
+ // Clear our rectangle, then reset it to union of our children. |
+ rect_.SetRect(0, 0, 0, 0); |
+ for (size_t i = 0; i < children_.size(); ++i) { |
+ rect_.Union(children_[i]->rect_); |
+ } |
+} |
+ |
+RTree::RTree(size_t min_children, size_t max_children) |
+ : root_(new Node(0)), |
+ min_children_(min_children), |
+ max_children_(max_children) { |
+ // R-Trees require min_children >= 2 |
+ DCHECK_GE(min_children_, 2U); |
+ // R-Trees also require min_children <= max_children / 2 |
+ DCHECK_LE(min_children_, max_children_ / 2U); |
+ root_.reset(new Node(0)); |
+} |
+ |
+RTree::~RTree() { |
+ Clear(); |
+} |
+ |
+void RTree::Insert(const Rect& rect, intptr_t key) { |
+ // Non-NULL keys, please. |
+ DCHECK(key); |
+ |
+ Node* record_node = NULL; |
+ // Check if this key is already present in the tree. |
+ base::hash_map<intptr_t, Node*>::iterator it = record_map_.find(key); |
+ if (it != record_map_.end()) { |
+ // We will re-use this node structure, regardless of re-insert or return. |
+ record_node = it->second; |
+ // If the new rect and the current rect are identical we can skip rest of |
+ // Insert() as nothing has changed. |
+ if (record_node->rect() == rect) |
+ return; |
+ |
+ // Remove the node from the tree in its current position. |
+ RemoveNode(record_node); |
+ |
+ // If we are replacing this key with an empty rectangle we just remove the |
+ // old node from the list and return, thus preventing insertion of empty |
+ // rectangles into our spatial database. |
+ if (rect.IsEmpty()) { |
+ record_map_.erase(it); |
+ delete record_node; |
+ return; |
+ } |
+ |
+ // Reset the rectangle to the new value. |
+ record_node->SetRect(rect); |
+ } else { |
+ if (rect.IsEmpty()) |
+ return; |
+ // Build a new record Node for insertion in to tree. |
+ record_node = new Node(rect, key); |
+ // Add this new node to our map, for easy retrieval later. |
+ record_map_.insert(std::make_pair(key, record_node)); |
+ } |
+ |
+ // Call internal Insert with this new node and allowing all re-inserts. |
+ int starting_level = -1; |
+ InsertNode(record_node, &starting_level); |
+} |
+ |
+void RTree::Remove(intptr_t key) { |
+ // Search the map for the leaf parent that has the provided record. |
+ base::hash_map<intptr_t, Node*>::iterator it = record_map_.find(key); |
+ // If not in the map it's not in the tree, we're done. |
+ if (it == record_map_.end()) |
+ return; |
+ |
+ Node* node = it->second; |
+ // Remove this node from the map. |
+ record_map_.erase(it); |
+ // Now remove it from the RTree. |
+ RemoveNode(node); |
+ delete node; |
+ |
+ // Lastly check the root. If it has only one non-leaf child, delete it and |
+ // replace it with its child. |
+ if (root_->count() == 1 && root_->level() > 0) { |
+ scoped_ptr<Node> new_root(root_->RemoveAndReturnLastChild()); |
+ root_.swap(new_root); |
+ } |
+} |
+ |
+void RTree::Query(const Rect& query_rect, |
+ base::hash_set<intptr_t>* matches_out) const { |
+ root_->Query(query_rect, matches_out); |
+} |
+ |
+void RTree::Clear() { |
+ record_map_.clear(); |
+ root_.reset(new Node(0)); |
+} |
+ |
+void RTree::InsertNode(Node* node, int* highest_reinsert_level) { |
+ // Find the most appropriate parent to insert node into. |
+ Node* parent = root_->ChooseSubtree(node); |
+ DCHECK(parent); |
+ // Verify ChooseSubtree returned a Node at the correct level. |
+ DCHECK_EQ(parent->level(), node->level() + 1); |
+ Node* insert_node = node; |
+ Node* insert_parent = parent; |
+ Node* needs_bounds_recomputed = insert_parent->parent(); |
+ ScopedVector<Node> reinserts; |
+ // Attempt to insert the Node, if this overflows the Node we must handle it. |
+ while (insert_parent && |
+ insert_parent->AddChild(insert_node) > max_children_) { |
+ // If we have yet to re-insert nodes at this level during this data insert, |
+ // and we're not at the root, R*-Tree calls for re-insertion of some of the |
+ // nodes, resulting in a better balance on the tree. |
+ if (insert_parent->parent() && |
+ insert_parent->level() > *highest_reinsert_level) { |
+ insert_parent->RemoveNodesForReinsert(max_children_ / 3, &reinserts); |
+ // Adjust highest_reinsert_level to this level. |
+ *highest_reinsert_level = insert_parent->level(); |
+ // We didn't create any new nodes so we have nothing new to insert. |
+ insert_node = NULL; |
+ // RemoveNodesForReinsert() does not recompute bounds, so mark it. |
+ needs_bounds_recomputed = insert_parent; |
+ break; |
+ } |
+ |
+ // Split() will create a sibling to insert_parent both of which will have |
+ // valid bounds, but this invalidates their parent's bounds. |
+ insert_node = insert_parent->Split(min_children_, max_children_); |
+ insert_parent = insert_parent->parent(); |
+ needs_bounds_recomputed = insert_parent; |
+ } |
+ |
+ // If we have a Node to insert, and we hit the root of the current tree, |
+ // we create a new root which is the parent of the current root and the |
+ // insert_node |
+ if (!insert_parent && insert_node) { |
+ Node* old_root = root_.release(); |
+ root_.reset(new Node(old_root->level() + 1)); |
+ root_->AddChild(old_root); |
+ root_->AddChild(insert_node); |
+ } |
+ |
+ // Recompute bounds along insertion path. |
+ if (needs_bounds_recomputed) { |
+ needs_bounds_recomputed->RecomputeBounds(); |
+ } |
+ |
+ // Complete re-inserts, if any. |
+ for (size_t i = 0; i < reinserts.size(); ++i) { |
+ InsertNode(reinserts[i], highest_reinsert_level); |
+ } |
+ |
+ // Clear out reinserts without deleting any of the children, as they have been |
+ // re-inserted into the tree. |
+ reinserts.weak_clear(); |
+} |
+ |
+void RTree::RemoveNode(Node* node) { |
+ // We need to remove this node from its parent. |
+ Node* parent = node->parent(); |
+ // Record nodes are never allowed as the root, so we should always have a |
+ // parent. |
+ DCHECK(parent); |
+ // Should always be a leaf that had the record. |
+ DCHECK_EQ(parent->level(), 0); |
+ ScopedVector<Node> orphans; |
+ Node* child = node; |
+ |
+ // Traverse up the tree, removing the child from each parent and deleting |
+ // parent nodes, until we either encounter the root of the tree or a parent |
+ // that still has sufficient children. |
+ while (parent && parent->RemoveChild(child, &orphans) < min_children_) { |
+ if (child != node) { |
+ delete child; |
+ } |
+ child = parent; |
+ parent = parent->parent(); |
+ } |
+ |
+ // If we stopped deleting nodes up the tree before encountering the root, |
+ // we'll need to fix up the bounds from the first parent we didn't delete |
+ // up to the root. |
+ if (parent) { |
+ parent->RecomputeBounds(); |
+ } |
+ |
+ // Now re-insert each of the orphaned nodes back into the tree. |
+ for (size_t i = 0; i < orphans.size(); ++i) { |
+ int starting_level = -1; |
+ InsertNode(orphans[i], &starting_level); |
+ } |
+ |
+ // Clear out the orphans list without deleting any of the children, as they |
+ // have been re-inserted into the tree. |
+ orphans.weak_clear(); |
+} |
+ |
+} // namespace gfx |