Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(517)

Side by Side Diff: ui/gfx/geometry/r_tree_unittest.cc

Issue 245763002: Adds an RTree data structure to gfx/geometry (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: fixing some clang trybots Created 6 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « ui/gfx/geometry/r_tree.cc ('k') | ui/gfx/gfx.gyp » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright (c) 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "testing/gtest/include/gtest/gtest.h"
6 #include "ui/gfx/geometry/r_tree.h"
7 #include "ui/gfx/geometry/rect.h"
8
9 namespace gfx {
10
11 class RTreeTest : public ::testing::Test {
12 protected:
13 // Given a pointer to an RTree, traverse it and verify its internal structure
14 // is consistent with the RTree semantics.
15 void ValidateRTree(RTree* rt) {
16 // If RTree is empty it should have an empty rectangle.
17 if (!rt->root_->count()) {
18 EXPECT_TRUE(rt->root_->rect().IsEmpty());
19 EXPECT_EQ(rt->root_->level(), 0);
20 return;
21 }
22 // Root is allowed to have fewer than min_children_ but never more than
23 // max_children_.
24 EXPECT_LE(rt->root_->count(), rt->max_children_);
25 // The root should never be a record node.
26 EXPECT_GT(rt->root_->level(), -1);
27 EXPECT_FALSE(rt->root_->key());
28 // The root should never have a parent pointer.
29 EXPECT_FALSE(rt->root_->parent());
30 // Bounds must be consistent on the root.
31 CheckBoundsConsistent(rt->root_.get());
32 // We traverse root's children ourselves, so we can avoid asserts about
33 // root's potential inconsistencies.
34 for (size_t i = 0; i < rt->root_->children_.size(); ++i) {
35 ValidateNode(
36 rt->root_->children_[i], rt->min_children_, rt->max_children_);
37 }
38 }
39
40 // Recursive descent method used by ValidateRTree to check each node within
41 // the RTree for consistency with RTree semantics.
42 void ValidateNode(RTree::Node* node,
43 size_t min_children,
44 size_t max_children) {
45 // Record nodes have different requirements, handle up front.
46 if (node->level() == -1) {
47 // Record nodes may have no children.
48 EXPECT_EQ(node->count(), 0U);
49 // They must have an associated non-NULL key.
50 EXPECT_TRUE(node->key());
51 // They must always have a parent.
52 EXPECT_TRUE(node->parent());
53 return;
54 }
55 // Non-record node, normal expectations apply.
56 EXPECT_GE(node->count(), min_children);
57 EXPECT_LE(node->count(), max_children);
58 EXPECT_EQ(node->key(), 0);
59 CheckBoundsConsistent(node);
60 for (size_t i = 0; i < node->children_.size(); ++i) {
61 ValidateNode(node->children_[i], min_children, max_children);
62 }
63 }
64
65 // Check bounds are consistent with children bounds, and other checks
66 // convenient to do while enumerating the children of node.
67 void CheckBoundsConsistent(RTree::Node* node) {
68 EXPECT_FALSE(node->rect_.IsEmpty());
69 Rect check_bounds;
70 for (size_t i = 0; i < node->children_.size(); ++i) {
71 RTree::Node* child_node = node->children_[i];
72 check_bounds.Union(child_node->rect());
73 EXPECT_EQ(node->level() - 1, child_node->level());
74 EXPECT_EQ(node, child_node->parent());
75 }
76 EXPECT_EQ(node->rect_, check_bounds);
77 }
78
79 // Adds count squares stacked around the point (0,0) with key equal to width.
80 void AddStackedSquares(RTree* rt, int count) {
81 for (int i = 1; i <= count; ++i) {
82 rt->Insert(Rect(0, 0, i, i), i);
83 ValidateRTree(rt);
84 }
85 }
86
87 // Given an unordered list of matching keys, verify that it contains all
88 // values [1..length] for the length of that list.
89 void VerifyAllKeys(const base::hash_set<intptr_t>& keys) {
90 // Verify that the keys are in values [1,count].
91 for (size_t i = 1; i <= keys.size(); ++i) {
92 EXPECT_EQ(keys.count(i), 1U);
93 }
94 }
95
96 // Given a node and a rectangle, builds an expanded rectangle list where the
97 // ith element of the rectangle is union of the recangle of the ith child of
98 // the node and the argument rectangle.
99 void BuildExpandedRects(RTree::Node* node,
100 const Rect& rect,
101 std::vector<Rect>* expanded_rects) {
102 expanded_rects->clear();
103 expanded_rects->reserve(node->children_.size());
104 for (size_t i = 0; i < node->children_.size(); ++i) {
105 Rect expanded_rect(rect);
106 expanded_rect.Union(node->children_[i]->rect_);
107 expanded_rects->push_back(expanded_rect);
108 }
109 }
110 };
111
112 // An empty RTree should never return Query results, and RTrees should be empty
113 // upon construction.
114 TEST_F(RTreeTest, QueryEmptyTree) {
115 RTree rt(2, 10);
116 ValidateRTree(&rt);
117 base::hash_set<intptr_t> results;
118 Rect test_rect(25, 25);
119 rt.Query(test_rect, &results);
120 EXPECT_EQ(results.size(), 0U);
121 ValidateRTree(&rt);
122 }
123
124 // Clear should empty the tree, meaning that all queries should not return
125 // results after.
126 TEST_F(RTreeTest, ClearEmptiesTreeOfSingleNode) {
127 RTree rt(2, 5);
128 rt.Insert(Rect(0, 0, 100, 100), 1);
129 rt.Clear();
130 base::hash_set<intptr_t> results;
131 Rect test_rect(1, 1);
132 rt.Query(test_rect, &results);
133 EXPECT_EQ(results.size(), 0U);
134 ValidateRTree(&rt);
135 }
136
137 // Even with a complex internal structure, clear should empty the tree, meaning
138 // that all queries should not return results after.
139 TEST_F(RTreeTest, ClearEmptiesTreeOfManyNodes) {
140 RTree rt(2, 5);
141 AddStackedSquares(&rt, 100);
142 rt.Clear();
143 base::hash_set<intptr_t> results;
144 Rect test_rect(1, 1);
145 rt.Query(test_rect, &results);
146 EXPECT_EQ(results.size(), 0U);
147 ValidateRTree(&rt);
148 }
149
150 // Duplicate inserts should overwrite previous inserts.
151 TEST_F(RTreeTest, DuplicateInsertsOverwrite) {
152 RTree rt(2, 5);
153 // Add 100 stacked squares, but always with duplicate key of 1.
154 for (int i = 1; i <= 100; ++i) {
155 rt.Insert(Rect(0, 0, i, i), 1);
156 ValidateRTree(&rt);
157 }
158 base::hash_set<intptr_t> results;
159 Rect test_rect(1, 1);
160 rt.Query(test_rect, &results);
161 EXPECT_EQ(results.size(), 1U);
162 EXPECT_EQ(results.count(1), 1U);
163 }
164
165 // Call Remove() once on something that's been inserted repeatedly.
166 TEST_F(RTreeTest, DuplicateInsertRemove) {
167 RTree rt(3, 9);
168 AddStackedSquares(&rt, 25);
169 for (int i = 1; i <= 100; ++i) {
170 rt.Insert(Rect(0, 0, i, i), 26);
171 ValidateRTree(&rt);
172 }
173 rt.Remove(26);
174 base::hash_set<intptr_t> results;
175 Rect test_rect(1, 1);
176 rt.Query(test_rect, &results);
177 EXPECT_EQ(results.size(), 25U);
178 VerifyAllKeys(results);
179 }
180
181 // Call Remove() repeatedly on something that's been inserted once.
182 TEST_F(RTreeTest, InsertDuplicateRemove) {
183 RTree rt(7, 15);
184 AddStackedSquares(&rt, 101);
185 for (int i = 0; i < 100; ++i) {
186 rt.Remove(101);
187 ValidateRTree(&rt);
188 }
189 base::hash_set<intptr_t> results;
190 Rect test_rect(1, 1);
191 rt.Query(test_rect, &results);
192 EXPECT_EQ(results.size(), 100U);
193 VerifyAllKeys(results);
194 }
195
196 // Stacked rects should meet all matching queries regardless of nesting.
197 TEST_F(RTreeTest, QueryStackedSquaresNestedHit) {
198 RTree rt(2, 5);
199 AddStackedSquares(&rt, 100);
200 base::hash_set<intptr_t> results;
201 Rect test_rect(1, 1);
202 rt.Query(test_rect, &results);
203 EXPECT_EQ(results.size(), 100U);
204 VerifyAllKeys(results);
205 }
206
207 // Stacked rects should meet all matching queries when contained completely by
208 // the query rectangle.
209 TEST_F(RTreeTest, QueryStackedSquaresContainedHit) {
210 RTree rt(2, 10);
211 AddStackedSquares(&rt, 100);
212 base::hash_set<intptr_t> results;
213 Rect test_rect(0, 0, 100, 100);
214 rt.Query(test_rect, &results);
215 EXPECT_EQ(results.size(), 100U);
216 VerifyAllKeys(results);
217 }
218
219 // Stacked rects should miss a missing query when the query has no intersection
220 // with the rects.
221 TEST_F(RTreeTest, QueryStackedSquaresCompleteMiss) {
222 RTree rt(2, 7);
223 AddStackedSquares(&rt, 100);
224 base::hash_set<intptr_t> results;
225 Rect test_rect(150, 150, 100, 100);
226 rt.Query(test_rect, &results);
227 EXPECT_EQ(results.size(), 0U);
228 }
229
230 // Removing half the nodes after insertion should still result in a valid tree.
231 TEST_F(RTreeTest, RemoveHalfStackedRects) {
232 RTree rt(2, 11);
233 AddStackedSquares(&rt, 200);
234 for (int i = 101; i <= 200; ++i) {
235 rt.Remove(i);
236 ValidateRTree(&rt);
237 }
238 base::hash_set<intptr_t> results;
239 Rect test_rect(1, 1);
240 rt.Query(test_rect, &results);
241 EXPECT_EQ(results.size(), 100U);
242 VerifyAllKeys(results);
243 // Add the nodes back in.
244 for (int i = 101; i <= 200; ++i) {
245 rt.Insert(Rect(0, 0, i, i), i);
246 ValidateRTree(&rt);
247 }
248 results.clear();
249 rt.Query(test_rect, &results);
250 EXPECT_EQ(results.size(), 200U);
251 VerifyAllKeys(results);
252 }
253
254 TEST_F(RTreeTest, InsertNegativeCoordsRect) {
255 RTree rt(5, 11);
256 for (int i = 1; i <= 100; ++i) {
257 rt.Insert(Rect(-i, -i, i, i), (i * 2) - 1);
258 ValidateRTree(&rt);
259 rt.Insert(Rect(0, 0, i, i), i * 2);
260 ValidateRTree(&rt);
261 }
262 base::hash_set<intptr_t> results;
263 Rect test_rect(-1, -1, 2, 2);
264 rt.Query(test_rect, &results);
265 EXPECT_EQ(results.size(), 200U);
266 VerifyAllKeys(results);
267 }
268
269 TEST_F(RTreeTest, RemoveNegativeCoordsRect) {
270 RTree rt(7, 21);
271 // Add 100 positive stacked squares.
272 AddStackedSquares(&rt, 100);
273 // Now add 100 negative stacked squares.
274 for (int i = 101; i <= 200; ++i) {
275 rt.Insert(Rect(100 - i, 100 - i, i - 100, i - 100), 301 - i);
276 ValidateRTree(&rt);
277 }
278 // Now remove half of the negative squares.
279 for (int i = 101; i <= 150; ++i) {
280 rt.Remove(301 - i);
281 ValidateRTree(&rt);
282 }
283 // Queries should return 100 positive and 50 negative stacked squares.
284 base::hash_set<intptr_t> results;
285 Rect test_rect(-1, -1, 2, 2);
286 rt.Query(test_rect, &results);
287 EXPECT_EQ(results.size(), 150U);
288 VerifyAllKeys(results);
289 }
290
291 TEST_F(RTreeTest, InsertEmptyRectReplacementRemovesKey) {
292 RTree rt(10, 31);
293 AddStackedSquares(&rt, 50);
294 ValidateRTree(&rt);
295
296 // Replace last square with empty rect.
297 rt.Insert(Rect(), 50);
298 ValidateRTree(&rt);
299
300 // Now query large area to get all rects in tree.
301 base::hash_set<intptr_t> results;
302 Rect test_rect(0, 0, 100, 100);
303 rt.Query(test_rect, &results);
304
305 // Should only be 49 rects in tree.
306 EXPECT_EQ(results.size(), 49U);
307 VerifyAllKeys(results);
308 }
309
310 TEST_F(RTreeTest, NodeRemoveNodesForReinsert) {
311 // Make a leaf node for testing removal from.
312 scoped_ptr<RTree::Node> test_node(new RTree::Node(0));
313 // Build 20 record nodes with rectangle centers going from (1,1) to (20,20)
314 for (int i = 1; i <= 20; ++i) {
315 test_node->AddChild(new RTree::Node(Rect(i - 1, i - 1, 2, 2), i));
316 }
317 // Quick verification of the node before removing children.
318 ValidateNode(test_node.get(), 1U, 20U);
319 // Use a scoped vector to delete all children that get removed from the Node.
320 ScopedVector<RTree::Node> removals;
321 test_node->RemoveNodesForReinsert(1, &removals);
322 // Should have gotten back 1 node pointers.
323 EXPECT_EQ(removals.size(), 1U);
324 // There should be 19 left in the test_node.
325 EXPECT_EQ(test_node->count(), 19U);
326 // If we fix up the bounds on the test_node, it should verify.
327 test_node->RecomputeBoundsNoParents();
328 ValidateNode(test_node.get(), 2U, 20U);
329 // The node we removed should be node 10, as it was exactly in the center.
330 EXPECT_EQ(removals[0]->key(), 10);
331
332 // Now remove the next 2.
333 removals.clear();
334 test_node->RemoveNodesForReinsert(2, &removals);
335 EXPECT_EQ(removals.size(), 2U);
336 EXPECT_EQ(test_node->count(), 17U);
337 test_node->RecomputeBoundsNoParents();
338 ValidateNode(test_node.get(), 2U, 20U);
339 // Lastly the 2 nodes we should have gotten back are keys 9 and 11, as their
340 // centers were the closest to the center of the node bounding box.
341 base::hash_set<intptr_t> results_hash;
342 results_hash.insert(removals[0]->key());
343 results_hash.insert(removals[1]->key());
344 EXPECT_EQ(results_hash.count(9), 1U);
345 EXPECT_EQ(results_hash.count(11), 1U);
346 }
347
348 TEST_F(RTreeTest, NodeCompareVertical) {
349 // One rect with lower y than another should always sort lower than higher y.
350 RTree::Node low(Rect(0, 1, 10, 10), 1);
351 RTree::Node middle(Rect(0, 5, 10, 10), 5);
352 EXPECT_TRUE(RTree::Node::CompareVertical(&low, &middle));
353 EXPECT_FALSE(RTree::Node::CompareVertical(&middle, &low));
354
355 // Try a non-overlapping higher-y rectangle.
356 RTree::Node high(Rect(-10, 20, 10, 1), 10);
357 EXPECT_TRUE(RTree::Node::CompareVertical(&low, &high));
358 EXPECT_FALSE(RTree::Node::CompareVertical(&high, &low));
359
360 // Ties are broken by lowest bottom y value.
361 RTree::Node shorter_tie(Rect(10, 1, 100, 2), 2);
362 EXPECT_TRUE(RTree::Node::CompareVertical(&shorter_tie, &low));
363 EXPECT_FALSE(RTree::Node::CompareVertical(&low, &shorter_tie));
364 }
365
366 TEST_F(RTreeTest, NodeCompareHorizontal) {
367 // One rect with lower x than another should always sort lower than higher x.
368 RTree::Node low(Rect(1, 0, 10, 10), 1);
369 RTree::Node middle(Rect(5, 0, 10, 10), 5);
370 EXPECT_TRUE(RTree::Node::CompareHorizontal(&low, &middle));
371 EXPECT_FALSE(RTree::Node::CompareHorizontal(&middle, &low));
372
373 // Try a non-overlapping higher-x rectangle.
374 RTree::Node high(Rect(20, -10, 1, 10), 10);
375 EXPECT_TRUE(RTree::Node::CompareHorizontal(&low, &high));
376 EXPECT_FALSE(RTree::Node::CompareHorizontal(&high, &low));
377
378 // Ties are broken by lowest bottom x value.
379 RTree::Node shorter_tie(Rect(1, 10, 2, 100), 2);
380 EXPECT_TRUE(RTree::Node::CompareHorizontal(&shorter_tie, &low));
381 EXPECT_FALSE(RTree::Node::CompareHorizontal(&low, &shorter_tie));
382 }
383
384 TEST_F(RTreeTest, NodeCompareCenterDistanceFromParent) {
385 // Create a test node we can add children to, for distance comparisons.
386 scoped_ptr<RTree::Node> parent(new RTree::Node(0));
387
388 // Add three children, one each with centers at (0, 0), (10, 10), (-9, -9),
389 // around which a bounding box will be centered at (0, 0)
390 RTree::Node* center_zero = new RTree::Node(Rect(-1, -1, 2, 2), 1);
391 parent->AddChild(center_zero);
392
393 RTree::Node* center_positive = new RTree::Node(Rect(9, 9, 2, 2), 2);
394 parent->AddChild(center_positive);
395
396 RTree::Node* center_negative = new RTree::Node(Rect(-10, -10, 2, 2), 3);
397 parent->AddChild(center_negative);
398
399 ValidateNode(parent.get(), 1U, 5U);
400 EXPECT_EQ(parent->rect_, Rect(-10, -10, 21, 21));
401
402 EXPECT_TRUE(RTree::Node::CompareCenterDistanceFromParent(center_zero,
403 center_positive));
404 EXPECT_FALSE(RTree::Node::CompareCenterDistanceFromParent(center_positive,
405 center_zero));
406
407 EXPECT_TRUE(RTree::Node::CompareCenterDistanceFromParent(center_zero,
408 center_negative));
409 EXPECT_FALSE(RTree::Node::CompareCenterDistanceFromParent(center_negative,
410 center_zero));
411
412 EXPECT_TRUE(RTree::Node::CompareCenterDistanceFromParent(center_negative,
413 center_positive));
414 EXPECT_FALSE(RTree::Node::CompareCenterDistanceFromParent(center_positive,
415 center_negative));
416 }
417
418 TEST_F(RTreeTest, NodeOverlapIncreaseToAdd) {
419 // Create a test node with three children, for overlap comparisons.
420 scoped_ptr<RTree::Node> parent(new RTree::Node(0));
421
422 // Add three children, each 4 wide and tall, at (0, 0), (3, 3), (6, 6) with
423 // overlapping corners.
424 Rect top(0, 0, 4, 4);
425 parent->AddChild(new RTree::Node(top, 1));
426 Rect middle(3, 3, 4, 4);
427 parent->AddChild(new RTree::Node(middle, 2));
428 Rect bottom(6, 6, 4, 4);
429 parent->AddChild(new RTree::Node(bottom, 3));
430 ValidateNode(parent.get(), 1U, 5U);
431
432 // Test a rect in corner.
433 Rect corner(0, 0, 1, 1);
434 Rect expanded = top;
435 expanded.Union(corner);
436 // It should not add any overlap to add this to the first child at (0, 0);
437 EXPECT_EQ(parent->OverlapIncreaseToAdd(corner, 0, expanded), 0);
438
439 expanded = middle;
440 expanded.Union(corner);
441 // Overlap for middle rectangle should increase from 2 pixels at (3, 3) and
442 // (6, 6) to 17 pixels, as it will now cover 4x4 rectangle top,
443 // so a change of +15
444 EXPECT_EQ(parent->OverlapIncreaseToAdd(corner, 1, expanded), 15);
445
446 expanded = bottom;
447 expanded.Union(corner);
448 // Overlap for bottom rectangle should increase from 1 pixel at (6, 6) to
449 // 32 pixels, as it will now cover both 4x4 rectangles top and middle,
450 // so a change of 31
451 EXPECT_EQ(parent->OverlapIncreaseToAdd(corner, 2, expanded), 31);
452
453 // Test a rect that doesn't overlap with anything, in the far right corner.
454 Rect far_corner(9, 0, 1, 1);
455 expanded = top;
456 expanded.Union(far_corner);
457 // Overlap of top should go from 1 to 4, as it will now cover the entire first
458 // row of pixels in middle.
459 EXPECT_EQ(parent->OverlapIncreaseToAdd(far_corner, 0, expanded), 3);
460
461 expanded = middle;
462 expanded.Union(far_corner);
463 // Overlap of middle should go from 2 to 8, as it will cover the rightmost 4
464 // pixels of top and the top 4 pixles of bottom as it expands.
465 EXPECT_EQ(parent->OverlapIncreaseToAdd(far_corner, 1, expanded), 6);
466
467 expanded = bottom;
468 expanded.Union(far_corner);
469 // Overlap of bottom should go from 1 to 4, as it will now cover the rightmost
470 // 4 pixels of middle.
471 EXPECT_EQ(parent->OverlapIncreaseToAdd(far_corner, 2, expanded), 3);
472 }
473
474 TEST_F(RTreeTest, NodeBuildLowBounds) {
475 ScopedVector<RTree::Node> nodes;
476 nodes.reserve(10);
477 for (int i = 1; i <= 10; ++i) {
478 nodes.push_back(new RTree::Node(Rect(0, 0, i, i), i));
479 }
480 std::vector<Rect> vertical_bounds;
481 std::vector<Rect> horizontal_bounds;
482 RTree::Node::BuildLowBounds(
483 nodes.get(), nodes.get(), &vertical_bounds, &horizontal_bounds);
484 for (int i = 0; i < 10; ++i) {
485 EXPECT_EQ(vertical_bounds[i], Rect(0, 0, i + 1, i + 1));
486 EXPECT_EQ(horizontal_bounds[i], Rect(0, 0, i + 1, i + 1));
487 }
488 }
489
490 TEST_F(RTreeTest, NodeBuildHighBounds) {
491 ScopedVector<RTree::Node> nodes;
492 nodes.reserve(25);
493 for (int i = 0; i < 25; ++i) {
494 nodes.push_back(new RTree::Node(Rect(i, i, 25 - i, 25 - i), i));
495 }
496 std::vector<Rect> vertical_bounds;
497 std::vector<Rect> horizontal_bounds;
498 RTree::Node::BuildHighBounds(
499 nodes.get(), nodes.get(), &vertical_bounds, &horizontal_bounds);
500 for (int i = 0; i < 25; ++i) {
501 EXPECT_EQ(vertical_bounds[i], Rect(i, i, 25 - i, 25 - i));
502 EXPECT_EQ(horizontal_bounds[i], Rect(i, i, 25 - i, 25 - i));
503 }
504 }
505
506 TEST_F(RTreeTest, NodeChooseSplitAxisAndIndex) {
507 std::vector<Rect> low_vertical_bounds;
508 std::vector<Rect> high_vertical_bounds;
509 std::vector<Rect> low_horizontal_bounds;
510 std::vector<Rect> high_horizontal_bounds;
511 // In this test scenario we describe a mirrored, stacked configuration of
512 // horizontal, 1 pixel high rectangles labeled a-f like this:
513 //
514 // shape: | v sort: | h sort: |
515 // -------+---------+---------+
516 // aaaaa | 0 | 0 |
517 // bbb | 1 | 2 |
518 // c | 2 | 4 |
519 // d | 3 | 5 |
520 // eee | 4 | 3 |
521 // fffff | 5 | 1 |
522 //
523 // These are already sorted vertically from top to bottom. Bounding rectangles
524 // of these vertically sorted will be 5 wide, i tall bounding boxes.
525 for (int i = 0; i < 6; ++i) {
526 low_vertical_bounds.push_back(Rect(0, 0, 5, i + 1));
527 high_vertical_bounds.push_back(Rect(0, i, 5, 6 - i));
528 }
529
530 // Low bounds of horizontal sort start with bounds of box a and then jump to
531 // cover everything, as box f is second in horizontal sort.
532 low_horizontal_bounds.push_back(Rect(0, 0, 5, 1));
533 for (int i = 0; i < 5; ++i) {
534 low_horizontal_bounds.push_back(Rect(0, 0, 5, 6));
535 }
536
537 // High horizontal bounds are hand-calculated.
538 high_horizontal_bounds.push_back(Rect(0, 0, 5, 6));
539 high_horizontal_bounds.push_back(Rect(0, 1, 5, 5));
540 high_horizontal_bounds.push_back(Rect(1, 1, 3, 4));
541 high_horizontal_bounds.push_back(Rect(1, 2, 3, 3));
542 high_horizontal_bounds.push_back(Rect(2, 2, 1, 2));
543 high_horizontal_bounds.push_back(Rect(2, 3, 1, 1));
544
545 // This should split vertically, right down the middle.
546 EXPECT_TRUE(RTree::Node::ChooseSplitAxis(low_vertical_bounds,
547 high_vertical_bounds,
548 low_horizontal_bounds,
549 high_horizontal_bounds,
550 2,
551 5));
552 EXPECT_EQ(3U,
553 RTree::Node::ChooseSplitIndex(
554 2, 5, low_vertical_bounds, high_vertical_bounds));
555
556 // We rotate the shape to test horizontal split axis detection:
557 //
558 // +--------+
559 // | a f |
560 // | ab ef |
561 // sort: | abcdef |
562 // | ab ef |
563 // | a f |
564 // |--------+
565 // v sort: | 024531 |
566 // h sort: | 012345 |
567 // +--------+
568 //
569 // Clear out old bounds first.
570 low_vertical_bounds.clear();
571 high_vertical_bounds.clear();
572 low_horizontal_bounds.clear();
573 high_horizontal_bounds.clear();
574
575 // Low bounds of vertical sort start with bounds of box a and then jump to
576 // cover everything, as box f is second in vertical sort.
577 low_vertical_bounds.push_back(Rect(0, 0, 1, 5));
578 for (int i = 0; i < 5; ++i) {
579 low_vertical_bounds.push_back(Rect(0, 0, 6, 5));
580 }
581
582 // High vertical bounds are hand-calculated.
583 high_vertical_bounds.push_back(Rect(0, 0, 6, 5));
584 high_vertical_bounds.push_back(Rect(1, 0, 5, 5));
585 high_vertical_bounds.push_back(Rect(1, 1, 4, 3));
586 high_vertical_bounds.push_back(Rect(2, 1, 3, 3));
587 high_vertical_bounds.push_back(Rect(2, 2, 2, 1));
588 high_vertical_bounds.push_back(Rect(3, 2, 1, 1));
589
590 // These are already sorted horizontally from left to right. Bounding
591 // rectangles of these horizontally sorted will be i wide, 5 tall bounding
592 // boxes.
593 for (int i = 0; i < 6; ++i) {
594 low_horizontal_bounds.push_back(Rect(0, 0, i + 1, 5));
595 high_horizontal_bounds.push_back(Rect(i, 0, 6 - i, 5));
596 }
597
598 // This should split horizontally, right down the middle.
599 EXPECT_FALSE(RTree::Node::ChooseSplitAxis(low_vertical_bounds,
600 high_vertical_bounds,
601 low_horizontal_bounds,
602 high_horizontal_bounds,
603 2,
604 5));
605 EXPECT_EQ(3U,
606 RTree::Node::ChooseSplitIndex(
607 2, 5, low_horizontal_bounds, high_horizontal_bounds));
608 }
609
610 TEST_F(RTreeTest, NodeDivideChildren) {
611 // Create a test node to split.
612 scoped_ptr<RTree::Node> test_node(new RTree::Node(0));
613 std::vector<RTree::Node*> sorted_children;
614 std::vector<Rect> low_bounds;
615 std::vector<Rect> high_bounds;
616 // Insert 10 record nodes, also inserting them into our children array.
617 for (int i = 1; i <= 10; ++i) {
618 RTree::Node* node = new RTree::Node(Rect(0, 0, i, i), i);
619 test_node->AddChild(node);
620 sorted_children.push_back(node);
621 low_bounds.push_back(Rect(0, 0, i, i));
622 high_bounds.push_back(Rect(0, 0, 10, 10));
623 }
624 // Split the children in half.
625 scoped_ptr<RTree::Node> split_node(
626 test_node->DivideChildren(low_bounds, high_bounds, sorted_children, 5));
627 // Both nodes should be valid.
628 ValidateNode(test_node.get(), 1U, 10U);
629 ValidateNode(split_node.get(), 1U, 10U);
630 // Both nodes should have five children.
631 EXPECT_EQ(test_node->children_.size(), 5U);
632 EXPECT_EQ(split_node->children_.size(), 5U);
633 // Test node should have children 1-5, split node should have children 6-10.
634 for (int i = 0; i < 5; ++i) {
635 EXPECT_EQ(test_node->children_[i]->key(), i + 1);
636 EXPECT_EQ(split_node->children_[i]->key(), i + 6);
637 }
638 }
639
640 TEST_F(RTreeTest, NodeRemoveChildNoOrphans) {
641 scoped_ptr<RTree::Node> test_parent(new RTree::Node(0));
642 scoped_ptr<RTree::Node> child_one(new RTree::Node(Rect(0, 0, 1, 1), 1));
643 scoped_ptr<RTree::Node> child_two(new RTree::Node(Rect(0, 0, 2, 2), 2));
644 scoped_ptr<RTree::Node> child_three(new RTree::Node(Rect(0, 0, 3, 3), 3));
645 test_parent->AddChild(child_one.get());
646 test_parent->AddChild(child_two.get());
647 test_parent->AddChild(child_three.get());
648 ValidateNode(test_parent.get(), 1U, 5U);
649 // Remove the middle node.
650 ScopedVector<RTree::Node> orphans;
651 EXPECT_EQ(test_parent->RemoveChild(child_two.get(), &orphans), 2U);
652 EXPECT_EQ(orphans.size(), 0U);
653 EXPECT_EQ(test_parent->count(), 2U);
654 test_parent->RecomputeBoundsNoParents();
655 ValidateNode(test_parent.get(), 1U, 5U);
656 // Remove the end node.
657 EXPECT_EQ(test_parent->RemoveChild(child_three.get(), &orphans), 1U);
658 EXPECT_EQ(orphans.size(), 0U);
659 EXPECT_EQ(test_parent->count(), 1U);
660 test_parent->RecomputeBoundsNoParents();
661 ValidateNode(test_parent.get(), 1U, 5U);
662 // Remove the first node.
663 EXPECT_EQ(test_parent->RemoveChild(child_one.get(), &orphans), 0U);
664 EXPECT_EQ(orphans.size(), 0U);
665 EXPECT_EQ(test_parent->count(), 0U);
666 }
667
668 TEST_F(RTreeTest, NodeRemoveChildOrphans) {
669 // Build flattened binary tree of Nodes 4 deep, from the record nodes up.
670 ScopedVector<RTree::Node> nodes;
671 nodes.resize(15);
672 // Indicies 7 through 15 are record nodes.
673 for (int i = 7; i < 15; ++i) {
674 nodes[i] = new RTree::Node(Rect(0, 0, i, i), i);
675 }
676 // Nodes 3 through 6 are level 0 (leaves) and get 2 record nodes each.
677 for (int i = 3; i < 7; ++i) {
678 nodes[i] = new RTree::Node(0);
679 nodes[i]->AddChild(nodes[(i * 2) + 1]);
680 nodes[i]->AddChild(nodes[(i * 2) + 2]);
681 }
682 // Nodes 1 and 2 are level 1 and get 2 leaves each.
683 for (int i = 1; i < 3; ++i) {
684 nodes[i] = new RTree::Node(1);
685 nodes[i]->AddChild(nodes[(i * 2) + 1]);
686 nodes[i]->AddChild(nodes[(i * 2) + 2]);
687 }
688 // Node 0 is level 2 and gets 2 childen.
689 nodes[0] = new RTree::Node(2);
690 nodes[0]->AddChild(nodes[1]);
691 nodes[0]->AddChild(nodes[2]);
692 // This should now be a valid node structure.
693 ValidateNode(nodes[0], 2U, 2U);
694
695 // Now remove the level 0 nodes, so we get the record nodes as orphans.
696 ScopedVector<RTree::Node> orphans;
697 EXPECT_EQ(nodes[1]->RemoveChild(nodes[3], &orphans), 1U);
698 EXPECT_EQ(nodes[1]->RemoveChild(nodes[4], &orphans), 0U);
699 EXPECT_EQ(nodes[2]->RemoveChild(nodes[5], &orphans), 1U);
700 EXPECT_EQ(nodes[2]->RemoveChild(nodes[6], &orphans), 0U);
701
702 // Orphans should be nodes 7 through 15 in order.
703 EXPECT_EQ(orphans.size(), 8U);
704 for (int i = 0; i < 8; ++i) {
705 EXPECT_EQ(orphans[i], nodes[i + 7]);
706 }
707
708 // Now we remove nodes 1 and 2 from the root, expecting no further orphans.
709 // This prevents a crash due to double-delete on test exit, as no node should
710 // own any other node right now.
711 EXPECT_EQ(nodes[0]->RemoveChild(nodes[1], &orphans), 1U);
712 EXPECT_EQ(orphans.size(), 8U);
713 EXPECT_EQ(nodes[0]->RemoveChild(nodes[2], &orphans), 0U);
714 EXPECT_EQ(orphans.size(), 8U);
715
716 // Prevent double-delete of nodes by both nodes and orphans.
717 orphans.weak_clear();
718 }
719
720 TEST_F(RTreeTest, NodeRemoveAndReturnLastChild) {
721 scoped_ptr<RTree::Node> test_parent(new RTree::Node(0));
722 scoped_ptr<RTree::Node> child_one(new RTree::Node(Rect(0, 0, 1, 1), 1));
723 scoped_ptr<RTree::Node> child_two(new RTree::Node(Rect(0, 0, 2, 2), 2));
724 scoped_ptr<RTree::Node> child_three(new RTree::Node(Rect(0, 0, 3, 3), 3));
725 test_parent->AddChild(child_one.get());
726 test_parent->AddChild(child_two.get());
727 test_parent->AddChild(child_three.get());
728 ValidateNode(test_parent.get(), 1U, 5U);
729
730 EXPECT_EQ(test_parent->RemoveAndReturnLastChild().release(),
731 child_three.get());
732 EXPECT_EQ(test_parent->count(), 2U);
733 test_parent->RecomputeBoundsNoParents();
734 ValidateNode(test_parent.get(), 1U, 5U);
735
736 EXPECT_EQ(test_parent->RemoveAndReturnLastChild().release(), child_two.get());
737 EXPECT_EQ(test_parent->count(), 1U);
738 test_parent->RecomputeBoundsNoParents();
739 ValidateNode(test_parent.get(), 1U, 5U);
740
741 EXPECT_EQ(test_parent->RemoveAndReturnLastChild().release(), child_one.get());
742 EXPECT_EQ(test_parent->count(), 0U);
743 }
744
745 TEST_F(RTreeTest, NodeLeastOverlapIncrease) {
746 scoped_ptr<RTree::Node> test_parent(new RTree::Node(0));
747 // Construct 4 nodes with 1x2 retangles spaced horizontally 1 pixel apart, or:
748 //
749 // a b c d
750 // a b c d
751 //
752 for (int i = 0; i < 4; ++i) {
753 test_parent->AddChild(new RTree::Node(Rect(i * 2, 0, 1, 2), i + 1));
754 }
755
756 ValidateNode(test_parent.get(), 1U, 5U);
757
758 // Test rect at (7, 0) should require minimum overlap on the part of the
759 // fourth rectangle to add:
760 //
761 // a b c dT
762 // a b c d
763 //
764 Rect test_rect_far(7, 0, 1, 1);
765 std::vector<Rect> expanded_rects;
766 BuildExpandedRects(test_parent.get(), test_rect_far, &expanded_rects);
767 RTree::Node* result =
768 test_parent->LeastOverlapIncrease(test_rect_far, expanded_rects);
769 EXPECT_EQ(result->key(), 4);
770
771 // Test rect covering the bottom half of all children should be a 4-way tie,
772 // so LeastOverlapIncrease should return NULL:
773 //
774 // a b c d
775 // TTTTTTT
776 //
777 Rect test_rect_tie(0, 1, 7, 1);
778 BuildExpandedRects(test_parent.get(), test_rect_tie, &expanded_rects);
779 result = test_parent->LeastOverlapIncrease(test_rect_tie, expanded_rects);
780 EXPECT_TRUE(result == NULL);
781
782 // Test rect completely inside c should return the third rectangle:
783 //
784 // a b T d
785 // a b c d
786 //
787 Rect test_rect_inside(4, 0, 1, 1);
788 BuildExpandedRects(test_parent.get(), test_rect_inside, &expanded_rects);
789 result = test_parent->LeastOverlapIncrease(test_rect_inside, expanded_rects);
790 EXPECT_EQ(result->key(), 3);
791
792 // Add a rectangle that overlaps completely with rectangle c, to test
793 // when there is a tie between two completely contained rectangles:
794 //
795 // a b Ted
796 // a b eed
797 //
798 test_parent->AddChild(new RTree::Node(Rect(4, 0, 2, 2), 9));
799 BuildExpandedRects(test_parent.get(), test_rect_inside, &expanded_rects);
800 result = test_parent->LeastOverlapIncrease(test_rect_inside, expanded_rects);
801 EXPECT_TRUE(result == NULL);
802 }
803
804 TEST_F(RTreeTest, NodeLeastAreaEnlargement) {
805 scoped_ptr<RTree::Node> test_parent(new RTree::Node(0));
806 // Construct 4 nodes in a cross-hairs style configuration:
807 //
808 // a
809 // b c
810 // d
811 //
812 test_parent->AddChild(new RTree::Node(Rect(1, 0, 1, 1), 1));
813 test_parent->AddChild(new RTree::Node(Rect(0, 1, 1, 1), 2));
814 test_parent->AddChild(new RTree::Node(Rect(2, 1, 1, 1), 3));
815 test_parent->AddChild(new RTree::Node(Rect(1, 2, 1, 1), 4));
816
817 ValidateNode(test_parent.get(), 1U, 5U);
818
819 // Test rect at (1, 3) should require minimum area to add to Node d:
820 //
821 // a
822 // b c
823 // d
824 // T
825 //
826 Rect test_rect_below(1, 3, 1, 1);
827 std::vector<Rect> expanded_rects;
828 BuildExpandedRects(test_parent.get(), test_rect_below, &expanded_rects);
829 RTree::Node* result =
830 test_parent->LeastAreaEnlargement(test_rect_below, expanded_rects);
831 EXPECT_EQ(result->key(), 4);
832
833 // Test rect completely inside b should require minimum area to add to Node b:
834 //
835 // a
836 // T c
837 // d
838 //
839 Rect test_rect_inside(0, 1, 1, 1);
840 BuildExpandedRects(test_parent.get(), test_rect_inside, &expanded_rects);
841 result = test_parent->LeastAreaEnlargement(test_rect_inside, expanded_rects);
842 EXPECT_EQ(result->key(), 2);
843
844 // Add e at (0, 1) to overlap b and c, to test tie-breaking:
845 //
846 // a
847 // eee
848 // d
849 //
850 test_parent->AddChild(new RTree::Node(Rect(0, 1, 3, 1), 7));
851
852 ValidateNode(test_parent.get(), 1U, 5U);
853
854 // Test rect at (3, 1) should tie between c and e, but c has smaller area so
855 // the algorithm should select c:
856 //
857 //
858 // a
859 // eeeT
860 // d
861 //
862 Rect test_rect_tie_breaker(3, 1, 1, 1);
863 BuildExpandedRects(test_parent.get(), test_rect_tie_breaker, &expanded_rects);
864 result =
865 test_parent->LeastAreaEnlargement(test_rect_tie_breaker, expanded_rects);
866 EXPECT_EQ(result->key(), 3);
867 }
868
869 } // namespace gfx
OLDNEW
« no previous file with comments | « ui/gfx/geometry/r_tree.cc ('k') | ui/gfx/gfx.gyp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698