Index: third_party/sqlite/sqlite-src-3080704/src/utf.c |
diff --git a/third_party/sqlite/sqlite-src-3080704/src/utf.c b/third_party/sqlite/sqlite-src-3080704/src/utf.c |
deleted file mode 100644 |
index 25f4dadf0c7eb912bbcbe7c01ef4605c327575cd..0000000000000000000000000000000000000000 |
--- a/third_party/sqlite/sqlite-src-3080704/src/utf.c |
+++ /dev/null |
@@ -1,530 +0,0 @@ |
-/* |
-** 2004 April 13 |
-** |
-** The author disclaims copyright to this source code. In place of |
-** a legal notice, here is a blessing: |
-** |
-** May you do good and not evil. |
-** May you find forgiveness for yourself and forgive others. |
-** May you share freely, never taking more than you give. |
-** |
-************************************************************************* |
-** This file contains routines used to translate between UTF-8, |
-** UTF-16, UTF-16BE, and UTF-16LE. |
-** |
-** Notes on UTF-8: |
-** |
-** Byte-0 Byte-1 Byte-2 Byte-3 Value |
-** 0xxxxxxx 00000000 00000000 0xxxxxxx |
-** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx |
-** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx |
-** 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx 000uuuuu zzzzyyyy yyxxxxxx |
-** |
-** |
-** Notes on UTF-16: (with wwww+1==uuuuu) |
-** |
-** Word-0 Word-1 Value |
-** 110110ww wwzzzzyy 110111yy yyxxxxxx 000uuuuu zzzzyyyy yyxxxxxx |
-** zzzzyyyy yyxxxxxx 00000000 zzzzyyyy yyxxxxxx |
-** |
-** |
-** BOM or Byte Order Mark: |
-** 0xff 0xfe little-endian utf-16 follows |
-** 0xfe 0xff big-endian utf-16 follows |
-** |
-*/ |
-#include "sqliteInt.h" |
-#include <assert.h> |
-#include "vdbeInt.h" |
- |
-#ifndef SQLITE_AMALGAMATION |
-/* |
-** The following constant value is used by the SQLITE_BIGENDIAN and |
-** SQLITE_LITTLEENDIAN macros. |
-*/ |
-const int sqlite3one = 1; |
-#endif /* SQLITE_AMALGAMATION */ |
- |
-/* |
-** This lookup table is used to help decode the first byte of |
-** a multi-byte UTF8 character. |
-*/ |
-static const unsigned char sqlite3Utf8Trans1[] = { |
- 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, |
- 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, |
- 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, |
- 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, |
- 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, |
- 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, |
- 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, |
- 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00, |
-}; |
- |
- |
-#define WRITE_UTF8(zOut, c) { \ |
- if( c<0x00080 ){ \ |
- *zOut++ = (u8)(c&0xFF); \ |
- } \ |
- else if( c<0x00800 ){ \ |
- *zOut++ = 0xC0 + (u8)((c>>6)&0x1F); \ |
- *zOut++ = 0x80 + (u8)(c & 0x3F); \ |
- } \ |
- else if( c<0x10000 ){ \ |
- *zOut++ = 0xE0 + (u8)((c>>12)&0x0F); \ |
- *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \ |
- *zOut++ = 0x80 + (u8)(c & 0x3F); \ |
- }else{ \ |
- *zOut++ = 0xF0 + (u8)((c>>18) & 0x07); \ |
- *zOut++ = 0x80 + (u8)((c>>12) & 0x3F); \ |
- *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \ |
- *zOut++ = 0x80 + (u8)(c & 0x3F); \ |
- } \ |
-} |
- |
-#define WRITE_UTF16LE(zOut, c) { \ |
- if( c<=0xFFFF ){ \ |
- *zOut++ = (u8)(c&0x00FF); \ |
- *zOut++ = (u8)((c>>8)&0x00FF); \ |
- }else{ \ |
- *zOut++ = (u8)(((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \ |
- *zOut++ = (u8)(0x00D8 + (((c-0x10000)>>18)&0x03)); \ |
- *zOut++ = (u8)(c&0x00FF); \ |
- *zOut++ = (u8)(0x00DC + ((c>>8)&0x03)); \ |
- } \ |
-} |
- |
-#define WRITE_UTF16BE(zOut, c) { \ |
- if( c<=0xFFFF ){ \ |
- *zOut++ = (u8)((c>>8)&0x00FF); \ |
- *zOut++ = (u8)(c&0x00FF); \ |
- }else{ \ |
- *zOut++ = (u8)(0x00D8 + (((c-0x10000)>>18)&0x03)); \ |
- *zOut++ = (u8)(((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \ |
- *zOut++ = (u8)(0x00DC + ((c>>8)&0x03)); \ |
- *zOut++ = (u8)(c&0x00FF); \ |
- } \ |
-} |
- |
-#define READ_UTF16LE(zIn, TERM, c){ \ |
- c = (*zIn++); \ |
- c += ((*zIn++)<<8); \ |
- if( c>=0xD800 && c<0xE000 && TERM ){ \ |
- int c2 = (*zIn++); \ |
- c2 += ((*zIn++)<<8); \ |
- c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \ |
- } \ |
-} |
- |
-#define READ_UTF16BE(zIn, TERM, c){ \ |
- c = ((*zIn++)<<8); \ |
- c += (*zIn++); \ |
- if( c>=0xD800 && c<0xE000 && TERM ){ \ |
- int c2 = ((*zIn++)<<8); \ |
- c2 += (*zIn++); \ |
- c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \ |
- } \ |
-} |
- |
-/* |
-** Translate a single UTF-8 character. Return the unicode value. |
-** |
-** During translation, assume that the byte that zTerm points |
-** is a 0x00. |
-** |
-** Write a pointer to the next unread byte back into *pzNext. |
-** |
-** Notes On Invalid UTF-8: |
-** |
-** * This routine never allows a 7-bit character (0x00 through 0x7f) to |
-** be encoded as a multi-byte character. Any multi-byte character that |
-** attempts to encode a value between 0x00 and 0x7f is rendered as 0xfffd. |
-** |
-** * This routine never allows a UTF16 surrogate value to be encoded. |
-** If a multi-byte character attempts to encode a value between |
-** 0xd800 and 0xe000 then it is rendered as 0xfffd. |
-** |
-** * Bytes in the range of 0x80 through 0xbf which occur as the first |
-** byte of a character are interpreted as single-byte characters |
-** and rendered as themselves even though they are technically |
-** invalid characters. |
-** |
-** * This routine accepts over-length UTF8 encodings |
-** for unicode values 0x80 and greater. It does not change over-length |
-** encodings to 0xfffd as some systems recommend. |
-*/ |
-#define READ_UTF8(zIn, zTerm, c) \ |
- c = *(zIn++); \ |
- if( c>=0xc0 ){ \ |
- c = sqlite3Utf8Trans1[c-0xc0]; \ |
- while( zIn!=zTerm && (*zIn & 0xc0)==0x80 ){ \ |
- c = (c<<6) + (0x3f & *(zIn++)); \ |
- } \ |
- if( c<0x80 \ |
- || (c&0xFFFFF800)==0xD800 \ |
- || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } \ |
- } |
-u32 sqlite3Utf8Read( |
- const unsigned char **pz /* Pointer to string from which to read char */ |
-){ |
- unsigned int c; |
- |
- /* Same as READ_UTF8() above but without the zTerm parameter. |
- ** For this routine, we assume the UTF8 string is always zero-terminated. |
- */ |
- c = *((*pz)++); |
- if( c>=0xc0 ){ |
- c = sqlite3Utf8Trans1[c-0xc0]; |
- while( (*(*pz) & 0xc0)==0x80 ){ |
- c = (c<<6) + (0x3f & *((*pz)++)); |
- } |
- if( c<0x80 |
- || (c&0xFFFFF800)==0xD800 |
- || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } |
- } |
- return c; |
-} |
- |
- |
- |
- |
-/* |
-** If the TRANSLATE_TRACE macro is defined, the value of each Mem is |
-** printed on stderr on the way into and out of sqlite3VdbeMemTranslate(). |
-*/ |
-/* #define TRANSLATE_TRACE 1 */ |
- |
-#ifndef SQLITE_OMIT_UTF16 |
-/* |
-** This routine transforms the internal text encoding used by pMem to |
-** desiredEnc. It is an error if the string is already of the desired |
-** encoding, or if *pMem does not contain a string value. |
-*/ |
-SQLITE_NOINLINE int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){ |
- int len; /* Maximum length of output string in bytes */ |
- unsigned char *zOut; /* Output buffer */ |
- unsigned char *zIn; /* Input iterator */ |
- unsigned char *zTerm; /* End of input */ |
- unsigned char *z; /* Output iterator */ |
- unsigned int c; |
- |
- assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
- assert( pMem->flags&MEM_Str ); |
- assert( pMem->enc!=desiredEnc ); |
- assert( pMem->enc!=0 ); |
- assert( pMem->n>=0 ); |
- |
-#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) |
- { |
- char zBuf[100]; |
- sqlite3VdbeMemPrettyPrint(pMem, zBuf); |
- fprintf(stderr, "INPUT: %s\n", zBuf); |
- } |
-#endif |
- |
- /* If the translation is between UTF-16 little and big endian, then |
- ** all that is required is to swap the byte order. This case is handled |
- ** differently from the others. |
- */ |
- if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){ |
- u8 temp; |
- int rc; |
- rc = sqlite3VdbeMemMakeWriteable(pMem); |
- if( rc!=SQLITE_OK ){ |
- assert( rc==SQLITE_NOMEM ); |
- return SQLITE_NOMEM; |
- } |
- zIn = (u8*)pMem->z; |
- zTerm = &zIn[pMem->n&~1]; |
- while( zIn<zTerm ){ |
- temp = *zIn; |
- *zIn = *(zIn+1); |
- zIn++; |
- *zIn++ = temp; |
- } |
- pMem->enc = desiredEnc; |
- goto translate_out; |
- } |
- |
- /* Set len to the maximum number of bytes required in the output buffer. */ |
- if( desiredEnc==SQLITE_UTF8 ){ |
- /* When converting from UTF-16, the maximum growth results from |
- ** translating a 2-byte character to a 4-byte UTF-8 character. |
- ** A single byte is required for the output string |
- ** nul-terminator. |
- */ |
- pMem->n &= ~1; |
- len = pMem->n * 2 + 1; |
- }else{ |
- /* When converting from UTF-8 to UTF-16 the maximum growth is caused |
- ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16 |
- ** character. Two bytes are required in the output buffer for the |
- ** nul-terminator. |
- */ |
- len = pMem->n * 2 + 2; |
- } |
- |
- /* Set zIn to point at the start of the input buffer and zTerm to point 1 |
- ** byte past the end. |
- ** |
- ** Variable zOut is set to point at the output buffer, space obtained |
- ** from sqlite3_malloc(). |
- */ |
- zIn = (u8*)pMem->z; |
- zTerm = &zIn[pMem->n]; |
- zOut = sqlite3DbMallocRaw(pMem->db, len); |
- if( !zOut ){ |
- return SQLITE_NOMEM; |
- } |
- z = zOut; |
- |
- if( pMem->enc==SQLITE_UTF8 ){ |
- if( desiredEnc==SQLITE_UTF16LE ){ |
- /* UTF-8 -> UTF-16 Little-endian */ |
- while( zIn<zTerm ){ |
- READ_UTF8(zIn, zTerm, c); |
- WRITE_UTF16LE(z, c); |
- } |
- }else{ |
- assert( desiredEnc==SQLITE_UTF16BE ); |
- /* UTF-8 -> UTF-16 Big-endian */ |
- while( zIn<zTerm ){ |
- READ_UTF8(zIn, zTerm, c); |
- WRITE_UTF16BE(z, c); |
- } |
- } |
- pMem->n = (int)(z - zOut); |
- *z++ = 0; |
- }else{ |
- assert( desiredEnc==SQLITE_UTF8 ); |
- if( pMem->enc==SQLITE_UTF16LE ){ |
- /* UTF-16 Little-endian -> UTF-8 */ |
- while( zIn<zTerm ){ |
- READ_UTF16LE(zIn, zIn<zTerm, c); |
- WRITE_UTF8(z, c); |
- } |
- }else{ |
- /* UTF-16 Big-endian -> UTF-8 */ |
- while( zIn<zTerm ){ |
- READ_UTF16BE(zIn, zIn<zTerm, c); |
- WRITE_UTF8(z, c); |
- } |
- } |
- pMem->n = (int)(z - zOut); |
- } |
- *z = 0; |
- assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len ); |
- |
- c = pMem->flags; |
- sqlite3VdbeMemRelease(pMem); |
- pMem->flags = MEM_Str|MEM_Term|(c&MEM_AffMask); |
- pMem->enc = desiredEnc; |
- pMem->z = (char*)zOut; |
- pMem->zMalloc = pMem->z; |
- pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->z); |
- |
-translate_out: |
-#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) |
- { |
- char zBuf[100]; |
- sqlite3VdbeMemPrettyPrint(pMem, zBuf); |
- fprintf(stderr, "OUTPUT: %s\n", zBuf); |
- } |
-#endif |
- return SQLITE_OK; |
-} |
- |
-/* |
-** This routine checks for a byte-order mark at the beginning of the |
-** UTF-16 string stored in *pMem. If one is present, it is removed and |
-** the encoding of the Mem adjusted. This routine does not do any |
-** byte-swapping, it just sets Mem.enc appropriately. |
-** |
-** The allocation (static, dynamic etc.) and encoding of the Mem may be |
-** changed by this function. |
-*/ |
-int sqlite3VdbeMemHandleBom(Mem *pMem){ |
- int rc = SQLITE_OK; |
- u8 bom = 0; |
- |
- assert( pMem->n>=0 ); |
- if( pMem->n>1 ){ |
- u8 b1 = *(u8 *)pMem->z; |
- u8 b2 = *(((u8 *)pMem->z) + 1); |
- if( b1==0xFE && b2==0xFF ){ |
- bom = SQLITE_UTF16BE; |
- } |
- if( b1==0xFF && b2==0xFE ){ |
- bom = SQLITE_UTF16LE; |
- } |
- } |
- |
- if( bom ){ |
- rc = sqlite3VdbeMemMakeWriteable(pMem); |
- if( rc==SQLITE_OK ){ |
- pMem->n -= 2; |
- memmove(pMem->z, &pMem->z[2], pMem->n); |
- pMem->z[pMem->n] = '\0'; |
- pMem->z[pMem->n+1] = '\0'; |
- pMem->flags |= MEM_Term; |
- pMem->enc = bom; |
- } |
- } |
- return rc; |
-} |
-#endif /* SQLITE_OMIT_UTF16 */ |
- |
-/* |
-** pZ is a UTF-8 encoded unicode string. If nByte is less than zero, |
-** return the number of unicode characters in pZ up to (but not including) |
-** the first 0x00 byte. If nByte is not less than zero, return the |
-** number of unicode characters in the first nByte of pZ (or up to |
-** the first 0x00, whichever comes first). |
-*/ |
-int sqlite3Utf8CharLen(const char *zIn, int nByte){ |
- int r = 0; |
- const u8 *z = (const u8*)zIn; |
- const u8 *zTerm; |
- if( nByte>=0 ){ |
- zTerm = &z[nByte]; |
- }else{ |
- zTerm = (const u8*)(-1); |
- } |
- assert( z<=zTerm ); |
- while( *z!=0 && z<zTerm ){ |
- SQLITE_SKIP_UTF8(z); |
- r++; |
- } |
- return r; |
-} |
- |
-/* This test function is not currently used by the automated test-suite. |
-** Hence it is only available in debug builds. |
-*/ |
-#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) |
-/* |
-** Translate UTF-8 to UTF-8. |
-** |
-** This has the effect of making sure that the string is well-formed |
-** UTF-8. Miscoded characters are removed. |
-** |
-** The translation is done in-place and aborted if the output |
-** overruns the input. |
-*/ |
-int sqlite3Utf8To8(unsigned char *zIn){ |
- unsigned char *zOut = zIn; |
- unsigned char *zStart = zIn; |
- u32 c; |
- |
- while( zIn[0] && zOut<=zIn ){ |
- c = sqlite3Utf8Read((const u8**)&zIn); |
- if( c!=0xfffd ){ |
- WRITE_UTF8(zOut, c); |
- } |
- } |
- *zOut = 0; |
- return (int)(zOut - zStart); |
-} |
-#endif |
- |
-#ifndef SQLITE_OMIT_UTF16 |
-/* |
-** Convert a UTF-16 string in the native encoding into a UTF-8 string. |
-** Memory to hold the UTF-8 string is obtained from sqlite3_malloc and must |
-** be freed by the calling function. |
-** |
-** NULL is returned if there is an allocation error. |
-*/ |
-char *sqlite3Utf16to8(sqlite3 *db, const void *z, int nByte, u8 enc){ |
- Mem m; |
- memset(&m, 0, sizeof(m)); |
- m.db = db; |
- sqlite3VdbeMemSetStr(&m, z, nByte, enc, SQLITE_STATIC); |
- sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8); |
- if( db->mallocFailed ){ |
- sqlite3VdbeMemRelease(&m); |
- m.z = 0; |
- } |
- assert( (m.flags & MEM_Term)!=0 || db->mallocFailed ); |
- assert( (m.flags & MEM_Str)!=0 || db->mallocFailed ); |
- assert( m.z || db->mallocFailed ); |
- return m.z; |
-} |
- |
-/* |
-** zIn is a UTF-16 encoded unicode string at least nChar characters long. |
-** Return the number of bytes in the first nChar unicode characters |
-** in pZ. nChar must be non-negative. |
-*/ |
-int sqlite3Utf16ByteLen(const void *zIn, int nChar){ |
- int c; |
- unsigned char const *z = zIn; |
- int n = 0; |
- |
- if( SQLITE_UTF16NATIVE==SQLITE_UTF16BE ){ |
- while( n<nChar ){ |
- READ_UTF16BE(z, 1, c); |
- n++; |
- } |
- }else{ |
- while( n<nChar ){ |
- READ_UTF16LE(z, 1, c); |
- n++; |
- } |
- } |
- return (int)(z-(unsigned char const *)zIn); |
-} |
- |
-#if defined(SQLITE_TEST) |
-/* |
-** This routine is called from the TCL test function "translate_selftest". |
-** It checks that the primitives for serializing and deserializing |
-** characters in each encoding are inverses of each other. |
-*/ |
-void sqlite3UtfSelfTest(void){ |
- unsigned int i, t; |
- unsigned char zBuf[20]; |
- unsigned char *z; |
- int n; |
- unsigned int c; |
- |
- for(i=0; i<0x00110000; i++){ |
- z = zBuf; |
- WRITE_UTF8(z, i); |
- n = (int)(z-zBuf); |
- assert( n>0 && n<=4 ); |
- z[0] = 0; |
- z = zBuf; |
- c = sqlite3Utf8Read((const u8**)&z); |
- t = i; |
- if( i>=0xD800 && i<=0xDFFF ) t = 0xFFFD; |
- if( (i&0xFFFFFFFE)==0xFFFE ) t = 0xFFFD; |
- assert( c==t ); |
- assert( (z-zBuf)==n ); |
- } |
- for(i=0; i<0x00110000; i++){ |
- if( i>=0xD800 && i<0xE000 ) continue; |
- z = zBuf; |
- WRITE_UTF16LE(z, i); |
- n = (int)(z-zBuf); |
- assert( n>0 && n<=4 ); |
- z[0] = 0; |
- z = zBuf; |
- READ_UTF16LE(z, 1, c); |
- assert( c==i ); |
- assert( (z-zBuf)==n ); |
- } |
- for(i=0; i<0x00110000; i++){ |
- if( i>=0xD800 && i<0xE000 ) continue; |
- z = zBuf; |
- WRITE_UTF16BE(z, i); |
- n = (int)(z-zBuf); |
- assert( n>0 && n<=4 ); |
- z[0] = 0; |
- z = zBuf; |
- READ_UTF16BE(z, 1, c); |
- assert( c==i ); |
- assert( (z-zBuf)==n ); |
- } |
-} |
-#endif /* SQLITE_TEST */ |
-#endif /* SQLITE_OMIT_UTF16 */ |