| Index: third_party/sqlite/sqlite-src-3080704/src/util.c
|
| diff --git a/third_party/sqlite/sqlite-src-3080704/src/util.c b/third_party/sqlite/sqlite-src-3080704/src/util.c
|
| deleted file mode 100644
|
| index 9bb8d89157764c3cb98e7b5dfe3ca304e891cc3f..0000000000000000000000000000000000000000
|
| --- a/third_party/sqlite/sqlite-src-3080704/src/util.c
|
| +++ /dev/null
|
| @@ -1,1364 +0,0 @@
|
| -/*
|
| -** 2001 September 15
|
| -**
|
| -** The author disclaims copyright to this source code. In place of
|
| -** a legal notice, here is a blessing:
|
| -**
|
| -** May you do good and not evil.
|
| -** May you find forgiveness for yourself and forgive others.
|
| -** May you share freely, never taking more than you give.
|
| -**
|
| -*************************************************************************
|
| -** Utility functions used throughout sqlite.
|
| -**
|
| -** This file contains functions for allocating memory, comparing
|
| -** strings, and stuff like that.
|
| -**
|
| -*/
|
| -#include "sqliteInt.h"
|
| -#include <stdarg.h>
|
| -#ifdef SQLITE_HAVE_ISNAN
|
| -# include <math.h>
|
| -#endif
|
| -
|
| -/*
|
| -** Routine needed to support the testcase() macro.
|
| -*/
|
| -#ifdef SQLITE_COVERAGE_TEST
|
| -void sqlite3Coverage(int x){
|
| - static unsigned dummy = 0;
|
| - dummy += (unsigned)x;
|
| -}
|
| -#endif
|
| -
|
| -/*
|
| -** Give a callback to the test harness that can be used to simulate faults
|
| -** in places where it is difficult or expensive to do so purely by means
|
| -** of inputs.
|
| -**
|
| -** The intent of the integer argument is to let the fault simulator know
|
| -** which of multiple sqlite3FaultSim() calls has been hit.
|
| -**
|
| -** Return whatever integer value the test callback returns, or return
|
| -** SQLITE_OK if no test callback is installed.
|
| -*/
|
| -#ifndef SQLITE_OMIT_BUILTIN_TEST
|
| -int sqlite3FaultSim(int iTest){
|
| - int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
|
| - return xCallback ? xCallback(iTest) : SQLITE_OK;
|
| -}
|
| -#endif
|
| -
|
| -#ifndef SQLITE_OMIT_FLOATING_POINT
|
| -/*
|
| -** Return true if the floating point value is Not a Number (NaN).
|
| -**
|
| -** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
|
| -** Otherwise, we have our own implementation that works on most systems.
|
| -*/
|
| -int sqlite3IsNaN(double x){
|
| - int rc; /* The value return */
|
| -#if !defined(SQLITE_HAVE_ISNAN)
|
| - /*
|
| - ** Systems that support the isnan() library function should probably
|
| - ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have
|
| - ** found that many systems do not have a working isnan() function so
|
| - ** this implementation is provided as an alternative.
|
| - **
|
| - ** This NaN test sometimes fails if compiled on GCC with -ffast-math.
|
| - ** On the other hand, the use of -ffast-math comes with the following
|
| - ** warning:
|
| - **
|
| - ** This option [-ffast-math] should never be turned on by any
|
| - ** -O option since it can result in incorrect output for programs
|
| - ** which depend on an exact implementation of IEEE or ISO
|
| - ** rules/specifications for math functions.
|
| - **
|
| - ** Under MSVC, this NaN test may fail if compiled with a floating-
|
| - ** point precision mode other than /fp:precise. From the MSDN
|
| - ** documentation:
|
| - **
|
| - ** The compiler [with /fp:precise] will properly handle comparisons
|
| - ** involving NaN. For example, x != x evaluates to true if x is NaN
|
| - ** ...
|
| - */
|
| -#ifdef __FAST_MATH__
|
| -# error SQLite will not work correctly with the -ffast-math option of GCC.
|
| -#endif
|
| - volatile double y = x;
|
| - volatile double z = y;
|
| - rc = (y!=z);
|
| -#else /* if defined(SQLITE_HAVE_ISNAN) */
|
| - rc = isnan(x);
|
| -#endif /* SQLITE_HAVE_ISNAN */
|
| - testcase( rc );
|
| - return rc;
|
| -}
|
| -#endif /* SQLITE_OMIT_FLOATING_POINT */
|
| -
|
| -/*
|
| -** Compute a string length that is limited to what can be stored in
|
| -** lower 30 bits of a 32-bit signed integer.
|
| -**
|
| -** The value returned will never be negative. Nor will it ever be greater
|
| -** than the actual length of the string. For very long strings (greater
|
| -** than 1GiB) the value returned might be less than the true string length.
|
| -*/
|
| -int sqlite3Strlen30(const char *z){
|
| - const char *z2 = z;
|
| - if( z==0 ) return 0;
|
| - while( *z2 ){ z2++; }
|
| - return 0x3fffffff & (int)(z2 - z);
|
| -}
|
| -
|
| -/*
|
| -** Set the current error code to err_code and clear any prior error message.
|
| -*/
|
| -void sqlite3Error(sqlite3 *db, int err_code){
|
| - assert( db!=0 );
|
| - db->errCode = err_code;
|
| - if( db->pErr ) sqlite3ValueSetNull(db->pErr);
|
| -}
|
| -
|
| -/*
|
| -** Set the most recent error code and error string for the sqlite
|
| -** handle "db". The error code is set to "err_code".
|
| -**
|
| -** If it is not NULL, string zFormat specifies the format of the
|
| -** error string in the style of the printf functions: The following
|
| -** format characters are allowed:
|
| -**
|
| -** %s Insert a string
|
| -** %z A string that should be freed after use
|
| -** %d Insert an integer
|
| -** %T Insert a token
|
| -** %S Insert the first element of a SrcList
|
| -**
|
| -** zFormat and any string tokens that follow it are assumed to be
|
| -** encoded in UTF-8.
|
| -**
|
| -** To clear the most recent error for sqlite handle "db", sqlite3Error
|
| -** should be called with err_code set to SQLITE_OK and zFormat set
|
| -** to NULL.
|
| -*/
|
| -void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
|
| - assert( db!=0 );
|
| - db->errCode = err_code;
|
| - if( zFormat==0 ){
|
| - sqlite3Error(db, err_code);
|
| - }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
|
| - char *z;
|
| - va_list ap;
|
| - va_start(ap, zFormat);
|
| - z = sqlite3VMPrintf(db, zFormat, ap);
|
| - va_end(ap);
|
| - sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Add an error message to pParse->zErrMsg and increment pParse->nErr.
|
| -** The following formatting characters are allowed:
|
| -**
|
| -** %s Insert a string
|
| -** %z A string that should be freed after use
|
| -** %d Insert an integer
|
| -** %T Insert a token
|
| -** %S Insert the first element of a SrcList
|
| -**
|
| -** This function should be used to report any error that occurs while
|
| -** compiling an SQL statement (i.e. within sqlite3_prepare()). The
|
| -** last thing the sqlite3_prepare() function does is copy the error
|
| -** stored by this function into the database handle using sqlite3Error().
|
| -** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
|
| -** during statement execution (sqlite3_step() etc.).
|
| -*/
|
| -void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
|
| - char *zMsg;
|
| - va_list ap;
|
| - sqlite3 *db = pParse->db;
|
| - va_start(ap, zFormat);
|
| - zMsg = sqlite3VMPrintf(db, zFormat, ap);
|
| - va_end(ap);
|
| - if( db->suppressErr ){
|
| - sqlite3DbFree(db, zMsg);
|
| - }else{
|
| - pParse->nErr++;
|
| - sqlite3DbFree(db, pParse->zErrMsg);
|
| - pParse->zErrMsg = zMsg;
|
| - pParse->rc = SQLITE_ERROR;
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Convert an SQL-style quoted string into a normal string by removing
|
| -** the quote characters. The conversion is done in-place. If the
|
| -** input does not begin with a quote character, then this routine
|
| -** is a no-op.
|
| -**
|
| -** The input string must be zero-terminated. A new zero-terminator
|
| -** is added to the dequoted string.
|
| -**
|
| -** The return value is -1 if no dequoting occurs or the length of the
|
| -** dequoted string, exclusive of the zero terminator, if dequoting does
|
| -** occur.
|
| -**
|
| -** 2002-Feb-14: This routine is extended to remove MS-Access style
|
| -** brackets from around identifiers. For example: "[a-b-c]" becomes
|
| -** "a-b-c".
|
| -*/
|
| -int sqlite3Dequote(char *z){
|
| - char quote;
|
| - int i, j;
|
| - if( z==0 ) return -1;
|
| - quote = z[0];
|
| - switch( quote ){
|
| - case '\'': break;
|
| - case '"': break;
|
| - case '`': break; /* For MySQL compatibility */
|
| - case '[': quote = ']'; break; /* For MS SqlServer compatibility */
|
| - default: return -1;
|
| - }
|
| - for(i=1, j=0;; i++){
|
| - assert( z[i] );
|
| - if( z[i]==quote ){
|
| - if( z[i+1]==quote ){
|
| - z[j++] = quote;
|
| - i++;
|
| - }else{
|
| - break;
|
| - }
|
| - }else{
|
| - z[j++] = z[i];
|
| - }
|
| - }
|
| - z[j] = 0;
|
| - return j;
|
| -}
|
| -
|
| -/* Convenient short-hand */
|
| -#define UpperToLower sqlite3UpperToLower
|
| -
|
| -/*
|
| -** Some systems have stricmp(). Others have strcasecmp(). Because
|
| -** there is no consistency, we will define our own.
|
| -**
|
| -** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
|
| -** sqlite3_strnicmp() APIs allow applications and extensions to compare
|
| -** the contents of two buffers containing UTF-8 strings in a
|
| -** case-independent fashion, using the same definition of "case
|
| -** independence" that SQLite uses internally when comparing identifiers.
|
| -*/
|
| -int sqlite3_stricmp(const char *zLeft, const char *zRight){
|
| - register unsigned char *a, *b;
|
| - a = (unsigned char *)zLeft;
|
| - b = (unsigned char *)zRight;
|
| - while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
|
| - return UpperToLower[*a] - UpperToLower[*b];
|
| -}
|
| -int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
|
| - register unsigned char *a, *b;
|
| - a = (unsigned char *)zLeft;
|
| - b = (unsigned char *)zRight;
|
| - while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
|
| - return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
|
| -}
|
| -
|
| -/*
|
| -** The string z[] is an text representation of a real number.
|
| -** Convert this string to a double and write it into *pResult.
|
| -**
|
| -** The string z[] is length bytes in length (bytes, not characters) and
|
| -** uses the encoding enc. The string is not necessarily zero-terminated.
|
| -**
|
| -** Return TRUE if the result is a valid real number (or integer) and FALSE
|
| -** if the string is empty or contains extraneous text. Valid numbers
|
| -** are in one of these formats:
|
| -**
|
| -** [+-]digits[E[+-]digits]
|
| -** [+-]digits.[digits][E[+-]digits]
|
| -** [+-].digits[E[+-]digits]
|
| -**
|
| -** Leading and trailing whitespace is ignored for the purpose of determining
|
| -** validity.
|
| -**
|
| -** If some prefix of the input string is a valid number, this routine
|
| -** returns FALSE but it still converts the prefix and writes the result
|
| -** into *pResult.
|
| -*/
|
| -int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
|
| -#ifndef SQLITE_OMIT_FLOATING_POINT
|
| - int incr;
|
| - const char *zEnd = z + length;
|
| - /* sign * significand * (10 ^ (esign * exponent)) */
|
| - int sign = 1; /* sign of significand */
|
| - i64 s = 0; /* significand */
|
| - int d = 0; /* adjust exponent for shifting decimal point */
|
| - int esign = 1; /* sign of exponent */
|
| - int e = 0; /* exponent */
|
| - int eValid = 1; /* True exponent is either not used or is well-formed */
|
| - double result;
|
| - int nDigits = 0;
|
| - int nonNum = 0;
|
| -
|
| - assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
|
| - *pResult = 0.0; /* Default return value, in case of an error */
|
| -
|
| - if( enc==SQLITE_UTF8 ){
|
| - incr = 1;
|
| - }else{
|
| - int i;
|
| - incr = 2;
|
| - assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
|
| - for(i=3-enc; i<length && z[i]==0; i+=2){}
|
| - nonNum = i<length;
|
| - zEnd = z+i+enc-3;
|
| - z += (enc&1);
|
| - }
|
| -
|
| - /* skip leading spaces */
|
| - while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
|
| - if( z>=zEnd ) return 0;
|
| -
|
| - /* get sign of significand */
|
| - if( *z=='-' ){
|
| - sign = -1;
|
| - z+=incr;
|
| - }else if( *z=='+' ){
|
| - z+=incr;
|
| - }
|
| -
|
| - /* skip leading zeroes */
|
| - while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++;
|
| -
|
| - /* copy max significant digits to significand */
|
| - while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
|
| - s = s*10 + (*z - '0');
|
| - z+=incr, nDigits++;
|
| - }
|
| -
|
| - /* skip non-significant significand digits
|
| - ** (increase exponent by d to shift decimal left) */
|
| - while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++;
|
| - if( z>=zEnd ) goto do_atof_calc;
|
| -
|
| - /* if decimal point is present */
|
| - if( *z=='.' ){
|
| - z+=incr;
|
| - /* copy digits from after decimal to significand
|
| - ** (decrease exponent by d to shift decimal right) */
|
| - while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
|
| - s = s*10 + (*z - '0');
|
| - z+=incr, nDigits++, d--;
|
| - }
|
| - /* skip non-significant digits */
|
| - while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++;
|
| - }
|
| - if( z>=zEnd ) goto do_atof_calc;
|
| -
|
| - /* if exponent is present */
|
| - if( *z=='e' || *z=='E' ){
|
| - z+=incr;
|
| - eValid = 0;
|
| - if( z>=zEnd ) goto do_atof_calc;
|
| - /* get sign of exponent */
|
| - if( *z=='-' ){
|
| - esign = -1;
|
| - z+=incr;
|
| - }else if( *z=='+' ){
|
| - z+=incr;
|
| - }
|
| - /* copy digits to exponent */
|
| - while( z<zEnd && sqlite3Isdigit(*z) ){
|
| - e = e<10000 ? (e*10 + (*z - '0')) : 10000;
|
| - z+=incr;
|
| - eValid = 1;
|
| - }
|
| - }
|
| -
|
| - /* skip trailing spaces */
|
| - if( nDigits && eValid ){
|
| - while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
|
| - }
|
| -
|
| -do_atof_calc:
|
| - /* adjust exponent by d, and update sign */
|
| - e = (e*esign) + d;
|
| - if( e<0 ) {
|
| - esign = -1;
|
| - e *= -1;
|
| - } else {
|
| - esign = 1;
|
| - }
|
| -
|
| - /* if 0 significand */
|
| - if( !s ) {
|
| - /* In the IEEE 754 standard, zero is signed.
|
| - ** Add the sign if we've seen at least one digit */
|
| - result = (sign<0 && nDigits) ? -(double)0 : (double)0;
|
| - } else {
|
| - /* attempt to reduce exponent */
|
| - if( esign>0 ){
|
| - while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10;
|
| - }else{
|
| - while( !(s%10) && e>0 ) e--,s/=10;
|
| - }
|
| -
|
| - /* adjust the sign of significand */
|
| - s = sign<0 ? -s : s;
|
| -
|
| - /* if exponent, scale significand as appropriate
|
| - ** and store in result. */
|
| - if( e ){
|
| - LONGDOUBLE_TYPE scale = 1.0;
|
| - /* attempt to handle extremely small/large numbers better */
|
| - if( e>307 && e<342 ){
|
| - while( e%308 ) { scale *= 1.0e+1; e -= 1; }
|
| - if( esign<0 ){
|
| - result = s / scale;
|
| - result /= 1.0e+308;
|
| - }else{
|
| - result = s * scale;
|
| - result *= 1.0e+308;
|
| - }
|
| - }else if( e>=342 ){
|
| - if( esign<0 ){
|
| - result = 0.0*s;
|
| - }else{
|
| - result = 1e308*1e308*s; /* Infinity */
|
| - }
|
| - }else{
|
| - /* 1.0e+22 is the largest power of 10 than can be
|
| - ** represented exactly. */
|
| - while( e%22 ) { scale *= 1.0e+1; e -= 1; }
|
| - while( e>0 ) { scale *= 1.0e+22; e -= 22; }
|
| - if( esign<0 ){
|
| - result = s / scale;
|
| - }else{
|
| - result = s * scale;
|
| - }
|
| - }
|
| - } else {
|
| - result = (double)s;
|
| - }
|
| - }
|
| -
|
| - /* store the result */
|
| - *pResult = result;
|
| -
|
| - /* return true if number and no extra non-whitespace chracters after */
|
| - return z>=zEnd && nDigits>0 && eValid && nonNum==0;
|
| -#else
|
| - return !sqlite3Atoi64(z, pResult, length, enc);
|
| -#endif /* SQLITE_OMIT_FLOATING_POINT */
|
| -}
|
| -
|
| -/*
|
| -** Compare the 19-character string zNum against the text representation
|
| -** value 2^63: 9223372036854775808. Return negative, zero, or positive
|
| -** if zNum is less than, equal to, or greater than the string.
|
| -** Note that zNum must contain exactly 19 characters.
|
| -**
|
| -** Unlike memcmp() this routine is guaranteed to return the difference
|
| -** in the values of the last digit if the only difference is in the
|
| -** last digit. So, for example,
|
| -**
|
| -** compare2pow63("9223372036854775800", 1)
|
| -**
|
| -** will return -8.
|
| -*/
|
| -static int compare2pow63(const char *zNum, int incr){
|
| - int c = 0;
|
| - int i;
|
| - /* 012345678901234567 */
|
| - const char *pow63 = "922337203685477580";
|
| - for(i=0; c==0 && i<18; i++){
|
| - c = (zNum[i*incr]-pow63[i])*10;
|
| - }
|
| - if( c==0 ){
|
| - c = zNum[18*incr] - '8';
|
| - testcase( c==(-1) );
|
| - testcase( c==0 );
|
| - testcase( c==(+1) );
|
| - }
|
| - return c;
|
| -}
|
| -
|
| -/*
|
| -** Convert zNum to a 64-bit signed integer. zNum must be decimal. This
|
| -** routine does *not* accept hexadecimal notation.
|
| -**
|
| -** If the zNum value is representable as a 64-bit twos-complement
|
| -** integer, then write that value into *pNum and return 0.
|
| -**
|
| -** If zNum is exactly 9223372036854775808, return 2. This special
|
| -** case is broken out because while 9223372036854775808 cannot be a
|
| -** signed 64-bit integer, its negative -9223372036854775808 can be.
|
| -**
|
| -** If zNum is too big for a 64-bit integer and is not
|
| -** 9223372036854775808 or if zNum contains any non-numeric text,
|
| -** then return 1.
|
| -**
|
| -** length is the number of bytes in the string (bytes, not characters).
|
| -** The string is not necessarily zero-terminated. The encoding is
|
| -** given by enc.
|
| -*/
|
| -int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
|
| - int incr;
|
| - u64 u = 0;
|
| - int neg = 0; /* assume positive */
|
| - int i;
|
| - int c = 0;
|
| - int nonNum = 0;
|
| - const char *zStart;
|
| - const char *zEnd = zNum + length;
|
| - assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
|
| - if( enc==SQLITE_UTF8 ){
|
| - incr = 1;
|
| - }else{
|
| - incr = 2;
|
| - assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
|
| - for(i=3-enc; i<length && zNum[i]==0; i+=2){}
|
| - nonNum = i<length;
|
| - zEnd = zNum+i+enc-3;
|
| - zNum += (enc&1);
|
| - }
|
| - while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
|
| - if( zNum<zEnd ){
|
| - if( *zNum=='-' ){
|
| - neg = 1;
|
| - zNum+=incr;
|
| - }else if( *zNum=='+' ){
|
| - zNum+=incr;
|
| - }
|
| - }
|
| - zStart = zNum;
|
| - while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
|
| - for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
|
| - u = u*10 + c - '0';
|
| - }
|
| - if( u>LARGEST_INT64 ){
|
| - *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
|
| - }else if( neg ){
|
| - *pNum = -(i64)u;
|
| - }else{
|
| - *pNum = (i64)u;
|
| - }
|
| - testcase( i==18 );
|
| - testcase( i==19 );
|
| - testcase( i==20 );
|
| - if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19*incr || nonNum ){
|
| - /* zNum is empty or contains non-numeric text or is longer
|
| - ** than 19 digits (thus guaranteeing that it is too large) */
|
| - return 1;
|
| - }else if( i<19*incr ){
|
| - /* Less than 19 digits, so we know that it fits in 64 bits */
|
| - assert( u<=LARGEST_INT64 );
|
| - return 0;
|
| - }else{
|
| - /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */
|
| - c = compare2pow63(zNum, incr);
|
| - if( c<0 ){
|
| - /* zNum is less than 9223372036854775808 so it fits */
|
| - assert( u<=LARGEST_INT64 );
|
| - return 0;
|
| - }else if( c>0 ){
|
| - /* zNum is greater than 9223372036854775808 so it overflows */
|
| - return 1;
|
| - }else{
|
| - /* zNum is exactly 9223372036854775808. Fits if negative. The
|
| - ** special case 2 overflow if positive */
|
| - assert( u-1==LARGEST_INT64 );
|
| - return neg ? 0 : 2;
|
| - }
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
|
| -** into a 64-bit signed integer. This routine accepts hexadecimal literals,
|
| -** whereas sqlite3Atoi64() does not.
|
| -**
|
| -** Returns:
|
| -**
|
| -** 0 Successful transformation. Fits in a 64-bit signed integer.
|
| -** 1 Integer too large for a 64-bit signed integer or is malformed
|
| -** 2 Special case of 9223372036854775808
|
| -*/
|
| -int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
|
| -#ifndef SQLITE_OMIT_HEX_INTEGER
|
| - if( z[0]=='0'
|
| - && (z[1]=='x' || z[1]=='X')
|
| - && sqlite3Isxdigit(z[2])
|
| - ){
|
| - u64 u = 0;
|
| - int i, k;
|
| - for(i=2; z[i]=='0'; i++){}
|
| - for(k=i; sqlite3Isxdigit(z[k]); k++){
|
| - u = u*16 + sqlite3HexToInt(z[k]);
|
| - }
|
| - memcpy(pOut, &u, 8);
|
| - return (z[k]==0 && k-i<=16) ? 0 : 1;
|
| - }else
|
| -#endif /* SQLITE_OMIT_HEX_INTEGER */
|
| - {
|
| - return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** If zNum represents an integer that will fit in 32-bits, then set
|
| -** *pValue to that integer and return true. Otherwise return false.
|
| -**
|
| -** This routine accepts both decimal and hexadecimal notation for integers.
|
| -**
|
| -** Any non-numeric characters that following zNum are ignored.
|
| -** This is different from sqlite3Atoi64() which requires the
|
| -** input number to be zero-terminated.
|
| -*/
|
| -int sqlite3GetInt32(const char *zNum, int *pValue){
|
| - sqlite_int64 v = 0;
|
| - int i, c;
|
| - int neg = 0;
|
| - if( zNum[0]=='-' ){
|
| - neg = 1;
|
| - zNum++;
|
| - }else if( zNum[0]=='+' ){
|
| - zNum++;
|
| - }
|
| -#ifndef SQLITE_OMIT_HEX_INTEGER
|
| - else if( zNum[0]=='0'
|
| - && (zNum[1]=='x' || zNum[1]=='X')
|
| - && sqlite3Isxdigit(zNum[2])
|
| - ){
|
| - u32 u = 0;
|
| - zNum += 2;
|
| - while( zNum[0]=='0' ) zNum++;
|
| - for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){
|
| - u = u*16 + sqlite3HexToInt(zNum[i]);
|
| - }
|
| - if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
|
| - memcpy(pValue, &u, 4);
|
| - return 1;
|
| - }else{
|
| - return 0;
|
| - }
|
| - }
|
| -#endif
|
| - for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
|
| - v = v*10 + c;
|
| - }
|
| -
|
| - /* The longest decimal representation of a 32 bit integer is 10 digits:
|
| - **
|
| - ** 1234567890
|
| - ** 2^31 -> 2147483648
|
| - */
|
| - testcase( i==10 );
|
| - if( i>10 ){
|
| - return 0;
|
| - }
|
| - testcase( v-neg==2147483647 );
|
| - if( v-neg>2147483647 ){
|
| - return 0;
|
| - }
|
| - if( neg ){
|
| - v = -v;
|
| - }
|
| - *pValue = (int)v;
|
| - return 1;
|
| -}
|
| -
|
| -/*
|
| -** Return a 32-bit integer value extracted from a string. If the
|
| -** string is not an integer, just return 0.
|
| -*/
|
| -int sqlite3Atoi(const char *z){
|
| - int x = 0;
|
| - if( z ) sqlite3GetInt32(z, &x);
|
| - return x;
|
| -}
|
| -
|
| -/*
|
| -** The variable-length integer encoding is as follows:
|
| -**
|
| -** KEY:
|
| -** A = 0xxxxxxx 7 bits of data and one flag bit
|
| -** B = 1xxxxxxx 7 bits of data and one flag bit
|
| -** C = xxxxxxxx 8 bits of data
|
| -**
|
| -** 7 bits - A
|
| -** 14 bits - BA
|
| -** 21 bits - BBA
|
| -** 28 bits - BBBA
|
| -** 35 bits - BBBBA
|
| -** 42 bits - BBBBBA
|
| -** 49 bits - BBBBBBA
|
| -** 56 bits - BBBBBBBA
|
| -** 64 bits - BBBBBBBBC
|
| -*/
|
| -
|
| -/*
|
| -** Write a 64-bit variable-length integer to memory starting at p[0].
|
| -** The length of data write will be between 1 and 9 bytes. The number
|
| -** of bytes written is returned.
|
| -**
|
| -** A variable-length integer consists of the lower 7 bits of each byte
|
| -** for all bytes that have the 8th bit set and one byte with the 8th
|
| -** bit clear. Except, if we get to the 9th byte, it stores the full
|
| -** 8 bits and is the last byte.
|
| -*/
|
| -static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
|
| - int i, j, n;
|
| - u8 buf[10];
|
| - if( v & (((u64)0xff000000)<<32) ){
|
| - p[8] = (u8)v;
|
| - v >>= 8;
|
| - for(i=7; i>=0; i--){
|
| - p[i] = (u8)((v & 0x7f) | 0x80);
|
| - v >>= 7;
|
| - }
|
| - return 9;
|
| - }
|
| - n = 0;
|
| - do{
|
| - buf[n++] = (u8)((v & 0x7f) | 0x80);
|
| - v >>= 7;
|
| - }while( v!=0 );
|
| - buf[0] &= 0x7f;
|
| - assert( n<=9 );
|
| - for(i=0, j=n-1; j>=0; j--, i++){
|
| - p[i] = buf[j];
|
| - }
|
| - return n;
|
| -}
|
| -int sqlite3PutVarint(unsigned char *p, u64 v){
|
| - if( v<=0x7f ){
|
| - p[0] = v&0x7f;
|
| - return 1;
|
| - }
|
| - if( v<=0x3fff ){
|
| - p[0] = ((v>>7)&0x7f)|0x80;
|
| - p[1] = v&0x7f;
|
| - return 2;
|
| - }
|
| - return putVarint64(p,v);
|
| -}
|
| -
|
| -/*
|
| -** Bitmasks used by sqlite3GetVarint(). These precomputed constants
|
| -** are defined here rather than simply putting the constant expressions
|
| -** inline in order to work around bugs in the RVT compiler.
|
| -**
|
| -** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
|
| -**
|
| -** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
|
| -*/
|
| -#define SLOT_2_0 0x001fc07f
|
| -#define SLOT_4_2_0 0xf01fc07f
|
| -
|
| -
|
| -/*
|
| -** Read a 64-bit variable-length integer from memory starting at p[0].
|
| -** Return the number of bytes read. The value is stored in *v.
|
| -*/
|
| -u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
|
| - u32 a,b,s;
|
| -
|
| - a = *p;
|
| - /* a: p0 (unmasked) */
|
| - if (!(a&0x80))
|
| - {
|
| - *v = a;
|
| - return 1;
|
| - }
|
| -
|
| - p++;
|
| - b = *p;
|
| - /* b: p1 (unmasked) */
|
| - if (!(b&0x80))
|
| - {
|
| - a &= 0x7f;
|
| - a = a<<7;
|
| - a |= b;
|
| - *v = a;
|
| - return 2;
|
| - }
|
| -
|
| - /* Verify that constants are precomputed correctly */
|
| - assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
|
| - assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
|
| -
|
| - p++;
|
| - a = a<<14;
|
| - a |= *p;
|
| - /* a: p0<<14 | p2 (unmasked) */
|
| - if (!(a&0x80))
|
| - {
|
| - a &= SLOT_2_0;
|
| - b &= 0x7f;
|
| - b = b<<7;
|
| - a |= b;
|
| - *v = a;
|
| - return 3;
|
| - }
|
| -
|
| - /* CSE1 from below */
|
| - a &= SLOT_2_0;
|
| - p++;
|
| - b = b<<14;
|
| - b |= *p;
|
| - /* b: p1<<14 | p3 (unmasked) */
|
| - if (!(b&0x80))
|
| - {
|
| - b &= SLOT_2_0;
|
| - /* moved CSE1 up */
|
| - /* a &= (0x7f<<14)|(0x7f); */
|
| - a = a<<7;
|
| - a |= b;
|
| - *v = a;
|
| - return 4;
|
| - }
|
| -
|
| - /* a: p0<<14 | p2 (masked) */
|
| - /* b: p1<<14 | p3 (unmasked) */
|
| - /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
|
| - /* moved CSE1 up */
|
| - /* a &= (0x7f<<14)|(0x7f); */
|
| - b &= SLOT_2_0;
|
| - s = a;
|
| - /* s: p0<<14 | p2 (masked) */
|
| -
|
| - p++;
|
| - a = a<<14;
|
| - a |= *p;
|
| - /* a: p0<<28 | p2<<14 | p4 (unmasked) */
|
| - if (!(a&0x80))
|
| - {
|
| - /* we can skip these cause they were (effectively) done above in calc'ing s */
|
| - /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
|
| - /* b &= (0x7f<<14)|(0x7f); */
|
| - b = b<<7;
|
| - a |= b;
|
| - s = s>>18;
|
| - *v = ((u64)s)<<32 | a;
|
| - return 5;
|
| - }
|
| -
|
| - /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
|
| - s = s<<7;
|
| - s |= b;
|
| - /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
|
| -
|
| - p++;
|
| - b = b<<14;
|
| - b |= *p;
|
| - /* b: p1<<28 | p3<<14 | p5 (unmasked) */
|
| - if (!(b&0x80))
|
| - {
|
| - /* we can skip this cause it was (effectively) done above in calc'ing s */
|
| - /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
|
| - a &= SLOT_2_0;
|
| - a = a<<7;
|
| - a |= b;
|
| - s = s>>18;
|
| - *v = ((u64)s)<<32 | a;
|
| - return 6;
|
| - }
|
| -
|
| - p++;
|
| - a = a<<14;
|
| - a |= *p;
|
| - /* a: p2<<28 | p4<<14 | p6 (unmasked) */
|
| - if (!(a&0x80))
|
| - {
|
| - a &= SLOT_4_2_0;
|
| - b &= SLOT_2_0;
|
| - b = b<<7;
|
| - a |= b;
|
| - s = s>>11;
|
| - *v = ((u64)s)<<32 | a;
|
| - return 7;
|
| - }
|
| -
|
| - /* CSE2 from below */
|
| - a &= SLOT_2_0;
|
| - p++;
|
| - b = b<<14;
|
| - b |= *p;
|
| - /* b: p3<<28 | p5<<14 | p7 (unmasked) */
|
| - if (!(b&0x80))
|
| - {
|
| - b &= SLOT_4_2_0;
|
| - /* moved CSE2 up */
|
| - /* a &= (0x7f<<14)|(0x7f); */
|
| - a = a<<7;
|
| - a |= b;
|
| - s = s>>4;
|
| - *v = ((u64)s)<<32 | a;
|
| - return 8;
|
| - }
|
| -
|
| - p++;
|
| - a = a<<15;
|
| - a |= *p;
|
| - /* a: p4<<29 | p6<<15 | p8 (unmasked) */
|
| -
|
| - /* moved CSE2 up */
|
| - /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
|
| - b &= SLOT_2_0;
|
| - b = b<<8;
|
| - a |= b;
|
| -
|
| - s = s<<4;
|
| - b = p[-4];
|
| - b &= 0x7f;
|
| - b = b>>3;
|
| - s |= b;
|
| -
|
| - *v = ((u64)s)<<32 | a;
|
| -
|
| - return 9;
|
| -}
|
| -
|
| -/*
|
| -** Read a 32-bit variable-length integer from memory starting at p[0].
|
| -** Return the number of bytes read. The value is stored in *v.
|
| -**
|
| -** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
|
| -** integer, then set *v to 0xffffffff.
|
| -**
|
| -** A MACRO version, getVarint32, is provided which inlines the
|
| -** single-byte case. All code should use the MACRO version as
|
| -** this function assumes the single-byte case has already been handled.
|
| -*/
|
| -u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
|
| - u32 a,b;
|
| -
|
| - /* The 1-byte case. Overwhelmingly the most common. Handled inline
|
| - ** by the getVarin32() macro */
|
| - a = *p;
|
| - /* a: p0 (unmasked) */
|
| -#ifndef getVarint32
|
| - if (!(a&0x80))
|
| - {
|
| - /* Values between 0 and 127 */
|
| - *v = a;
|
| - return 1;
|
| - }
|
| -#endif
|
| -
|
| - /* The 2-byte case */
|
| - p++;
|
| - b = *p;
|
| - /* b: p1 (unmasked) */
|
| - if (!(b&0x80))
|
| - {
|
| - /* Values between 128 and 16383 */
|
| - a &= 0x7f;
|
| - a = a<<7;
|
| - *v = a | b;
|
| - return 2;
|
| - }
|
| -
|
| - /* The 3-byte case */
|
| - p++;
|
| - a = a<<14;
|
| - a |= *p;
|
| - /* a: p0<<14 | p2 (unmasked) */
|
| - if (!(a&0x80))
|
| - {
|
| - /* Values between 16384 and 2097151 */
|
| - a &= (0x7f<<14)|(0x7f);
|
| - b &= 0x7f;
|
| - b = b<<7;
|
| - *v = a | b;
|
| - return 3;
|
| - }
|
| -
|
| - /* A 32-bit varint is used to store size information in btrees.
|
| - ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
|
| - ** A 3-byte varint is sufficient, for example, to record the size
|
| - ** of a 1048569-byte BLOB or string.
|
| - **
|
| - ** We only unroll the first 1-, 2-, and 3- byte cases. The very
|
| - ** rare larger cases can be handled by the slower 64-bit varint
|
| - ** routine.
|
| - */
|
| -#if 1
|
| - {
|
| - u64 v64;
|
| - u8 n;
|
| -
|
| - p -= 2;
|
| - n = sqlite3GetVarint(p, &v64);
|
| - assert( n>3 && n<=9 );
|
| - if( (v64 & SQLITE_MAX_U32)!=v64 ){
|
| - *v = 0xffffffff;
|
| - }else{
|
| - *v = (u32)v64;
|
| - }
|
| - return n;
|
| - }
|
| -
|
| -#else
|
| - /* For following code (kept for historical record only) shows an
|
| - ** unrolling for the 3- and 4-byte varint cases. This code is
|
| - ** slightly faster, but it is also larger and much harder to test.
|
| - */
|
| - p++;
|
| - b = b<<14;
|
| - b |= *p;
|
| - /* b: p1<<14 | p3 (unmasked) */
|
| - if (!(b&0x80))
|
| - {
|
| - /* Values between 2097152 and 268435455 */
|
| - b &= (0x7f<<14)|(0x7f);
|
| - a &= (0x7f<<14)|(0x7f);
|
| - a = a<<7;
|
| - *v = a | b;
|
| - return 4;
|
| - }
|
| -
|
| - p++;
|
| - a = a<<14;
|
| - a |= *p;
|
| - /* a: p0<<28 | p2<<14 | p4 (unmasked) */
|
| - if (!(a&0x80))
|
| - {
|
| - /* Values between 268435456 and 34359738367 */
|
| - a &= SLOT_4_2_0;
|
| - b &= SLOT_4_2_0;
|
| - b = b<<7;
|
| - *v = a | b;
|
| - return 5;
|
| - }
|
| -
|
| - /* We can only reach this point when reading a corrupt database
|
| - ** file. In that case we are not in any hurry. Use the (relatively
|
| - ** slow) general-purpose sqlite3GetVarint() routine to extract the
|
| - ** value. */
|
| - {
|
| - u64 v64;
|
| - u8 n;
|
| -
|
| - p -= 4;
|
| - n = sqlite3GetVarint(p, &v64);
|
| - assert( n>5 && n<=9 );
|
| - *v = (u32)v64;
|
| - return n;
|
| - }
|
| -#endif
|
| -}
|
| -
|
| -/*
|
| -** Return the number of bytes that will be needed to store the given
|
| -** 64-bit integer.
|
| -*/
|
| -int sqlite3VarintLen(u64 v){
|
| - int i = 0;
|
| - do{
|
| - i++;
|
| - v >>= 7;
|
| - }while( v!=0 && ALWAYS(i<9) );
|
| - return i;
|
| -}
|
| -
|
| -
|
| -/*
|
| -** Read or write a four-byte big-endian integer value.
|
| -*/
|
| -u32 sqlite3Get4byte(const u8 *p){
|
| - testcase( p[0]&0x80 );
|
| - return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
|
| -}
|
| -void sqlite3Put4byte(unsigned char *p, u32 v){
|
| - p[0] = (u8)(v>>24);
|
| - p[1] = (u8)(v>>16);
|
| - p[2] = (u8)(v>>8);
|
| - p[3] = (u8)v;
|
| -}
|
| -
|
| -
|
| -
|
| -/*
|
| -** Translate a single byte of Hex into an integer.
|
| -** This routine only works if h really is a valid hexadecimal
|
| -** character: 0..9a..fA..F
|
| -*/
|
| -u8 sqlite3HexToInt(int h){
|
| - assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
|
| -#ifdef SQLITE_ASCII
|
| - h += 9*(1&(h>>6));
|
| -#endif
|
| -#ifdef SQLITE_EBCDIC
|
| - h += 9*(1&~(h>>4));
|
| -#endif
|
| - return (u8)(h & 0xf);
|
| -}
|
| -
|
| -#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
|
| -/*
|
| -** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
|
| -** value. Return a pointer to its binary value. Space to hold the
|
| -** binary value has been obtained from malloc and must be freed by
|
| -** the calling routine.
|
| -*/
|
| -void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
|
| - char *zBlob;
|
| - int i;
|
| -
|
| - zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1);
|
| - n--;
|
| - if( zBlob ){
|
| - for(i=0; i<n; i+=2){
|
| - zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
|
| - }
|
| - zBlob[i/2] = 0;
|
| - }
|
| - return zBlob;
|
| -}
|
| -#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
|
| -
|
| -/*
|
| -** Log an error that is an API call on a connection pointer that should
|
| -** not have been used. The "type" of connection pointer is given as the
|
| -** argument. The zType is a word like "NULL" or "closed" or "invalid".
|
| -*/
|
| -static void logBadConnection(const char *zType){
|
| - sqlite3_log(SQLITE_MISUSE,
|
| - "API call with %s database connection pointer",
|
| - zType
|
| - );
|
| -}
|
| -
|
| -/*
|
| -** Check to make sure we have a valid db pointer. This test is not
|
| -** foolproof but it does provide some measure of protection against
|
| -** misuse of the interface such as passing in db pointers that are
|
| -** NULL or which have been previously closed. If this routine returns
|
| -** 1 it means that the db pointer is valid and 0 if it should not be
|
| -** dereferenced for any reason. The calling function should invoke
|
| -** SQLITE_MISUSE immediately.
|
| -**
|
| -** sqlite3SafetyCheckOk() requires that the db pointer be valid for
|
| -** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
|
| -** open properly and is not fit for general use but which can be
|
| -** used as an argument to sqlite3_errmsg() or sqlite3_close().
|
| -*/
|
| -int sqlite3SafetyCheckOk(sqlite3 *db){
|
| - u32 magic;
|
| - if( db==0 ){
|
| - logBadConnection("NULL");
|
| - return 0;
|
| - }
|
| - magic = db->magic;
|
| - if( magic!=SQLITE_MAGIC_OPEN ){
|
| - if( sqlite3SafetyCheckSickOrOk(db) ){
|
| - testcase( sqlite3GlobalConfig.xLog!=0 );
|
| - logBadConnection("unopened");
|
| - }
|
| - return 0;
|
| - }else{
|
| - return 1;
|
| - }
|
| -}
|
| -int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
|
| - u32 magic;
|
| - magic = db->magic;
|
| - if( magic!=SQLITE_MAGIC_SICK &&
|
| - magic!=SQLITE_MAGIC_OPEN &&
|
| - magic!=SQLITE_MAGIC_BUSY ){
|
| - testcase( sqlite3GlobalConfig.xLog!=0 );
|
| - logBadConnection("invalid");
|
| - return 0;
|
| - }else{
|
| - return 1;
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Attempt to add, substract, or multiply the 64-bit signed value iB against
|
| -** the other 64-bit signed integer at *pA and store the result in *pA.
|
| -** Return 0 on success. Or if the operation would have resulted in an
|
| -** overflow, leave *pA unchanged and return 1.
|
| -*/
|
| -int sqlite3AddInt64(i64 *pA, i64 iB){
|
| - i64 iA = *pA;
|
| - testcase( iA==0 ); testcase( iA==1 );
|
| - testcase( iB==-1 ); testcase( iB==0 );
|
| - if( iB>=0 ){
|
| - testcase( iA>0 && LARGEST_INT64 - iA == iB );
|
| - testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
|
| - if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
|
| - }else{
|
| - testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
|
| - testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
|
| - if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
|
| - }
|
| - *pA += iB;
|
| - return 0;
|
| -}
|
| -int sqlite3SubInt64(i64 *pA, i64 iB){
|
| - testcase( iB==SMALLEST_INT64+1 );
|
| - if( iB==SMALLEST_INT64 ){
|
| - testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
|
| - if( (*pA)>=0 ) return 1;
|
| - *pA -= iB;
|
| - return 0;
|
| - }else{
|
| - return sqlite3AddInt64(pA, -iB);
|
| - }
|
| -}
|
| -#define TWOPOWER32 (((i64)1)<<32)
|
| -#define TWOPOWER31 (((i64)1)<<31)
|
| -int sqlite3MulInt64(i64 *pA, i64 iB){
|
| - i64 iA = *pA;
|
| - i64 iA1, iA0, iB1, iB0, r;
|
| -
|
| - iA1 = iA/TWOPOWER32;
|
| - iA0 = iA % TWOPOWER32;
|
| - iB1 = iB/TWOPOWER32;
|
| - iB0 = iB % TWOPOWER32;
|
| - if( iA1==0 ){
|
| - if( iB1==0 ){
|
| - *pA *= iB;
|
| - return 0;
|
| - }
|
| - r = iA0*iB1;
|
| - }else if( iB1==0 ){
|
| - r = iA1*iB0;
|
| - }else{
|
| - /* If both iA1 and iB1 are non-zero, overflow will result */
|
| - return 1;
|
| - }
|
| - testcase( r==(-TWOPOWER31)-1 );
|
| - testcase( r==(-TWOPOWER31) );
|
| - testcase( r==TWOPOWER31 );
|
| - testcase( r==TWOPOWER31-1 );
|
| - if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1;
|
| - r *= TWOPOWER32;
|
| - if( sqlite3AddInt64(&r, iA0*iB0) ) return 1;
|
| - *pA = r;
|
| - return 0;
|
| -}
|
| -
|
| -/*
|
| -** Compute the absolute value of a 32-bit signed integer, of possible. Or
|
| -** if the integer has a value of -2147483648, return +2147483647
|
| -*/
|
| -int sqlite3AbsInt32(int x){
|
| - if( x>=0 ) return x;
|
| - if( x==(int)0x80000000 ) return 0x7fffffff;
|
| - return -x;
|
| -}
|
| -
|
| -#ifdef SQLITE_ENABLE_8_3_NAMES
|
| -/*
|
| -** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
|
| -** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
|
| -** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
|
| -** three characters, then shorten the suffix on z[] to be the last three
|
| -** characters of the original suffix.
|
| -**
|
| -** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
|
| -** do the suffix shortening regardless of URI parameter.
|
| -**
|
| -** Examples:
|
| -**
|
| -** test.db-journal => test.nal
|
| -** test.db-wal => test.wal
|
| -** test.db-shm => test.shm
|
| -** test.db-mj7f3319fa => test.9fa
|
| -*/
|
| -void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
|
| -#if SQLITE_ENABLE_8_3_NAMES<2
|
| - if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
|
| -#endif
|
| - {
|
| - int i, sz;
|
| - sz = sqlite3Strlen30(z);
|
| - for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
|
| - if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
|
| - }
|
| -}
|
| -#endif
|
| -
|
| -/*
|
| -** Find (an approximate) sum of two LogEst values. This computation is
|
| -** not a simple "+" operator because LogEst is stored as a logarithmic
|
| -** value.
|
| -**
|
| -*/
|
| -LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
|
| - static const unsigned char x[] = {
|
| - 10, 10, /* 0,1 */
|
| - 9, 9, /* 2,3 */
|
| - 8, 8, /* 4,5 */
|
| - 7, 7, 7, /* 6,7,8 */
|
| - 6, 6, 6, /* 9,10,11 */
|
| - 5, 5, 5, /* 12-14 */
|
| - 4, 4, 4, 4, /* 15-18 */
|
| - 3, 3, 3, 3, 3, 3, /* 19-24 */
|
| - 2, 2, 2, 2, 2, 2, 2, /* 25-31 */
|
| - };
|
| - if( a>=b ){
|
| - if( a>b+49 ) return a;
|
| - if( a>b+31 ) return a+1;
|
| - return a+x[a-b];
|
| - }else{
|
| - if( b>a+49 ) return b;
|
| - if( b>a+31 ) return b+1;
|
| - return b+x[b-a];
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Convert an integer into a LogEst. In other words, compute an
|
| -** approximation for 10*log2(x).
|
| -*/
|
| -LogEst sqlite3LogEst(u64 x){
|
| - static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
|
| - LogEst y = 40;
|
| - if( x<8 ){
|
| - if( x<2 ) return 0;
|
| - while( x<8 ){ y -= 10; x <<= 1; }
|
| - }else{
|
| - while( x>255 ){ y += 40; x >>= 4; }
|
| - while( x>15 ){ y += 10; x >>= 1; }
|
| - }
|
| - return a[x&7] + y - 10;
|
| -}
|
| -
|
| -#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| -/*
|
| -** Convert a double into a LogEst
|
| -** In other words, compute an approximation for 10*log2(x).
|
| -*/
|
| -LogEst sqlite3LogEstFromDouble(double x){
|
| - u64 a;
|
| - LogEst e;
|
| - assert( sizeof(x)==8 && sizeof(a)==8 );
|
| - if( x<=1 ) return 0;
|
| - if( x<=2000000000 ) return sqlite3LogEst((u64)x);
|
| - memcpy(&a, &x, 8);
|
| - e = (a>>52) - 1022;
|
| - return e*10;
|
| -}
|
| -#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
| -
|
| -/*
|
| -** Convert a LogEst into an integer.
|
| -*/
|
| -u64 sqlite3LogEstToInt(LogEst x){
|
| - u64 n;
|
| - if( x<10 ) return 1;
|
| - n = x%10;
|
| - x /= 10;
|
| - if( n>=5 ) n -= 2;
|
| - else if( n>=1 ) n -= 1;
|
| - if( x>=3 ){
|
| - return x>60 ? (u64)LARGEST_INT64 : (n+8)<<(x-3);
|
| - }
|
| - return (n+8)>>(3-x);
|
| -}
|
|
|