OLD | NEW |
| (Empty) |
1 /* | |
2 ** 2004 April 13 | |
3 ** | |
4 ** The author disclaims copyright to this source code. In place of | |
5 ** a legal notice, here is a blessing: | |
6 ** | |
7 ** May you do good and not evil. | |
8 ** May you find forgiveness for yourself and forgive others. | |
9 ** May you share freely, never taking more than you give. | |
10 ** | |
11 ************************************************************************* | |
12 ** This file contains routines used to translate between UTF-8, | |
13 ** UTF-16, UTF-16BE, and UTF-16LE. | |
14 ** | |
15 ** Notes on UTF-8: | |
16 ** | |
17 ** Byte-0 Byte-1 Byte-2 Byte-3 Value | |
18 ** 0xxxxxxx 00000000 00000000 0xxxxxxx | |
19 ** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx | |
20 ** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx | |
21 ** 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx 000uuuuu zzzzyyyy yyxxxxxx | |
22 ** | |
23 ** | |
24 ** Notes on UTF-16: (with wwww+1==uuuuu) | |
25 ** | |
26 ** Word-0 Word-1 Value | |
27 ** 110110ww wwzzzzyy 110111yy yyxxxxxx 000uuuuu zzzzyyyy yyxxxxxx | |
28 ** zzzzyyyy yyxxxxxx 00000000 zzzzyyyy yyxxxxxx | |
29 ** | |
30 ** | |
31 ** BOM or Byte Order Mark: | |
32 ** 0xff 0xfe little-endian utf-16 follows | |
33 ** 0xfe 0xff big-endian utf-16 follows | |
34 ** | |
35 */ | |
36 #include "sqliteInt.h" | |
37 #include <assert.h> | |
38 #include "vdbeInt.h" | |
39 | |
40 #ifndef SQLITE_AMALGAMATION | |
41 /* | |
42 ** The following constant value is used by the SQLITE_BIGENDIAN and | |
43 ** SQLITE_LITTLEENDIAN macros. | |
44 */ | |
45 const int sqlite3one = 1; | |
46 #endif /* SQLITE_AMALGAMATION */ | |
47 | |
48 /* | |
49 ** This lookup table is used to help decode the first byte of | |
50 ** a multi-byte UTF8 character. | |
51 */ | |
52 static const unsigned char sqlite3Utf8Trans1[] = { | |
53 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, | |
54 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, | |
55 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, | |
56 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, | |
57 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, | |
58 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, | |
59 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, | |
60 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00, | |
61 }; | |
62 | |
63 | |
64 #define WRITE_UTF8(zOut, c) { \ | |
65 if( c<0x00080 ){ \ | |
66 *zOut++ = (u8)(c&0xFF); \ | |
67 } \ | |
68 else if( c<0x00800 ){ \ | |
69 *zOut++ = 0xC0 + (u8)((c>>6)&0x1F); \ | |
70 *zOut++ = 0x80 + (u8)(c & 0x3F); \ | |
71 } \ | |
72 else if( c<0x10000 ){ \ | |
73 *zOut++ = 0xE0 + (u8)((c>>12)&0x0F); \ | |
74 *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \ | |
75 *zOut++ = 0x80 + (u8)(c & 0x3F); \ | |
76 }else{ \ | |
77 *zOut++ = 0xF0 + (u8)((c>>18) & 0x07); \ | |
78 *zOut++ = 0x80 + (u8)((c>>12) & 0x3F); \ | |
79 *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \ | |
80 *zOut++ = 0x80 + (u8)(c & 0x3F); \ | |
81 } \ | |
82 } | |
83 | |
84 #define WRITE_UTF16LE(zOut, c) { \ | |
85 if( c<=0xFFFF ){ \ | |
86 *zOut++ = (u8)(c&0x00FF); \ | |
87 *zOut++ = (u8)((c>>8)&0x00FF); \ | |
88 }else{ \ | |
89 *zOut++ = (u8)(((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \ | |
90 *zOut++ = (u8)(0x00D8 + (((c-0x10000)>>18)&0x03)); \ | |
91 *zOut++ = (u8)(c&0x00FF); \ | |
92 *zOut++ = (u8)(0x00DC + ((c>>8)&0x03)); \ | |
93 } \ | |
94 } | |
95 | |
96 #define WRITE_UTF16BE(zOut, c) { \ | |
97 if( c<=0xFFFF ){ \ | |
98 *zOut++ = (u8)((c>>8)&0x00FF); \ | |
99 *zOut++ = (u8)(c&0x00FF); \ | |
100 }else{ \ | |
101 *zOut++ = (u8)(0x00D8 + (((c-0x10000)>>18)&0x03)); \ | |
102 *zOut++ = (u8)(((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \ | |
103 *zOut++ = (u8)(0x00DC + ((c>>8)&0x03)); \ | |
104 *zOut++ = (u8)(c&0x00FF); \ | |
105 } \ | |
106 } | |
107 | |
108 #define READ_UTF16LE(zIn, TERM, c){ \ | |
109 c = (*zIn++); \ | |
110 c += ((*zIn++)<<8); \ | |
111 if( c>=0xD800 && c<0xE000 && TERM ){ \ | |
112 int c2 = (*zIn++); \ | |
113 c2 += ((*zIn++)<<8); \ | |
114 c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \ | |
115 } \ | |
116 } | |
117 | |
118 #define READ_UTF16BE(zIn, TERM, c){ \ | |
119 c = ((*zIn++)<<8); \ | |
120 c += (*zIn++); \ | |
121 if( c>=0xD800 && c<0xE000 && TERM ){ \ | |
122 int c2 = ((*zIn++)<<8); \ | |
123 c2 += (*zIn++); \ | |
124 c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \ | |
125 } \ | |
126 } | |
127 | |
128 /* | |
129 ** Translate a single UTF-8 character. Return the unicode value. | |
130 ** | |
131 ** During translation, assume that the byte that zTerm points | |
132 ** is a 0x00. | |
133 ** | |
134 ** Write a pointer to the next unread byte back into *pzNext. | |
135 ** | |
136 ** Notes On Invalid UTF-8: | |
137 ** | |
138 ** * This routine never allows a 7-bit character (0x00 through 0x7f) to | |
139 ** be encoded as a multi-byte character. Any multi-byte character that | |
140 ** attempts to encode a value between 0x00 and 0x7f is rendered as 0xfffd. | |
141 ** | |
142 ** * This routine never allows a UTF16 surrogate value to be encoded. | |
143 ** If a multi-byte character attempts to encode a value between | |
144 ** 0xd800 and 0xe000 then it is rendered as 0xfffd. | |
145 ** | |
146 ** * Bytes in the range of 0x80 through 0xbf which occur as the first | |
147 ** byte of a character are interpreted as single-byte characters | |
148 ** and rendered as themselves even though they are technically | |
149 ** invalid characters. | |
150 ** | |
151 ** * This routine accepts over-length UTF8 encodings | |
152 ** for unicode values 0x80 and greater. It does not change over-length | |
153 ** encodings to 0xfffd as some systems recommend. | |
154 */ | |
155 #define READ_UTF8(zIn, zTerm, c) \ | |
156 c = *(zIn++); \ | |
157 if( c>=0xc0 ){ \ | |
158 c = sqlite3Utf8Trans1[c-0xc0]; \ | |
159 while( zIn!=zTerm && (*zIn & 0xc0)==0x80 ){ \ | |
160 c = (c<<6) + (0x3f & *(zIn++)); \ | |
161 } \ | |
162 if( c<0x80 \ | |
163 || (c&0xFFFFF800)==0xD800 \ | |
164 || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } \ | |
165 } | |
166 u32 sqlite3Utf8Read( | |
167 const unsigned char **pz /* Pointer to string from which to read char */ | |
168 ){ | |
169 unsigned int c; | |
170 | |
171 /* Same as READ_UTF8() above but without the zTerm parameter. | |
172 ** For this routine, we assume the UTF8 string is always zero-terminated. | |
173 */ | |
174 c = *((*pz)++); | |
175 if( c>=0xc0 ){ | |
176 c = sqlite3Utf8Trans1[c-0xc0]; | |
177 while( (*(*pz) & 0xc0)==0x80 ){ | |
178 c = (c<<6) + (0x3f & *((*pz)++)); | |
179 } | |
180 if( c<0x80 | |
181 || (c&0xFFFFF800)==0xD800 | |
182 || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } | |
183 } | |
184 return c; | |
185 } | |
186 | |
187 | |
188 | |
189 | |
190 /* | |
191 ** If the TRANSLATE_TRACE macro is defined, the value of each Mem is | |
192 ** printed on stderr on the way into and out of sqlite3VdbeMemTranslate(). | |
193 */ | |
194 /* #define TRANSLATE_TRACE 1 */ | |
195 | |
196 #ifndef SQLITE_OMIT_UTF16 | |
197 /* | |
198 ** This routine transforms the internal text encoding used by pMem to | |
199 ** desiredEnc. It is an error if the string is already of the desired | |
200 ** encoding, or if *pMem does not contain a string value. | |
201 */ | |
202 SQLITE_NOINLINE int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){ | |
203 int len; /* Maximum length of output string in bytes */ | |
204 unsigned char *zOut; /* Output buffer */ | |
205 unsigned char *zIn; /* Input iterator */ | |
206 unsigned char *zTerm; /* End of input */ | |
207 unsigned char *z; /* Output iterator */ | |
208 unsigned int c; | |
209 | |
210 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); | |
211 assert( pMem->flags&MEM_Str ); | |
212 assert( pMem->enc!=desiredEnc ); | |
213 assert( pMem->enc!=0 ); | |
214 assert( pMem->n>=0 ); | |
215 | |
216 #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) | |
217 { | |
218 char zBuf[100]; | |
219 sqlite3VdbeMemPrettyPrint(pMem, zBuf); | |
220 fprintf(stderr, "INPUT: %s\n", zBuf); | |
221 } | |
222 #endif | |
223 | |
224 /* If the translation is between UTF-16 little and big endian, then | |
225 ** all that is required is to swap the byte order. This case is handled | |
226 ** differently from the others. | |
227 */ | |
228 if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){ | |
229 u8 temp; | |
230 int rc; | |
231 rc = sqlite3VdbeMemMakeWriteable(pMem); | |
232 if( rc!=SQLITE_OK ){ | |
233 assert( rc==SQLITE_NOMEM ); | |
234 return SQLITE_NOMEM; | |
235 } | |
236 zIn = (u8*)pMem->z; | |
237 zTerm = &zIn[pMem->n&~1]; | |
238 while( zIn<zTerm ){ | |
239 temp = *zIn; | |
240 *zIn = *(zIn+1); | |
241 zIn++; | |
242 *zIn++ = temp; | |
243 } | |
244 pMem->enc = desiredEnc; | |
245 goto translate_out; | |
246 } | |
247 | |
248 /* Set len to the maximum number of bytes required in the output buffer. */ | |
249 if( desiredEnc==SQLITE_UTF8 ){ | |
250 /* When converting from UTF-16, the maximum growth results from | |
251 ** translating a 2-byte character to a 4-byte UTF-8 character. | |
252 ** A single byte is required for the output string | |
253 ** nul-terminator. | |
254 */ | |
255 pMem->n &= ~1; | |
256 len = pMem->n * 2 + 1; | |
257 }else{ | |
258 /* When converting from UTF-8 to UTF-16 the maximum growth is caused | |
259 ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16 | |
260 ** character. Two bytes are required in the output buffer for the | |
261 ** nul-terminator. | |
262 */ | |
263 len = pMem->n * 2 + 2; | |
264 } | |
265 | |
266 /* Set zIn to point at the start of the input buffer and zTerm to point 1 | |
267 ** byte past the end. | |
268 ** | |
269 ** Variable zOut is set to point at the output buffer, space obtained | |
270 ** from sqlite3_malloc(). | |
271 */ | |
272 zIn = (u8*)pMem->z; | |
273 zTerm = &zIn[pMem->n]; | |
274 zOut = sqlite3DbMallocRaw(pMem->db, len); | |
275 if( !zOut ){ | |
276 return SQLITE_NOMEM; | |
277 } | |
278 z = zOut; | |
279 | |
280 if( pMem->enc==SQLITE_UTF8 ){ | |
281 if( desiredEnc==SQLITE_UTF16LE ){ | |
282 /* UTF-8 -> UTF-16 Little-endian */ | |
283 while( zIn<zTerm ){ | |
284 READ_UTF8(zIn, zTerm, c); | |
285 WRITE_UTF16LE(z, c); | |
286 } | |
287 }else{ | |
288 assert( desiredEnc==SQLITE_UTF16BE ); | |
289 /* UTF-8 -> UTF-16 Big-endian */ | |
290 while( zIn<zTerm ){ | |
291 READ_UTF8(zIn, zTerm, c); | |
292 WRITE_UTF16BE(z, c); | |
293 } | |
294 } | |
295 pMem->n = (int)(z - zOut); | |
296 *z++ = 0; | |
297 }else{ | |
298 assert( desiredEnc==SQLITE_UTF8 ); | |
299 if( pMem->enc==SQLITE_UTF16LE ){ | |
300 /* UTF-16 Little-endian -> UTF-8 */ | |
301 while( zIn<zTerm ){ | |
302 READ_UTF16LE(zIn, zIn<zTerm, c); | |
303 WRITE_UTF8(z, c); | |
304 } | |
305 }else{ | |
306 /* UTF-16 Big-endian -> UTF-8 */ | |
307 while( zIn<zTerm ){ | |
308 READ_UTF16BE(zIn, zIn<zTerm, c); | |
309 WRITE_UTF8(z, c); | |
310 } | |
311 } | |
312 pMem->n = (int)(z - zOut); | |
313 } | |
314 *z = 0; | |
315 assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len ); | |
316 | |
317 c = pMem->flags; | |
318 sqlite3VdbeMemRelease(pMem); | |
319 pMem->flags = MEM_Str|MEM_Term|(c&MEM_AffMask); | |
320 pMem->enc = desiredEnc; | |
321 pMem->z = (char*)zOut; | |
322 pMem->zMalloc = pMem->z; | |
323 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->z); | |
324 | |
325 translate_out: | |
326 #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) | |
327 { | |
328 char zBuf[100]; | |
329 sqlite3VdbeMemPrettyPrint(pMem, zBuf); | |
330 fprintf(stderr, "OUTPUT: %s\n", zBuf); | |
331 } | |
332 #endif | |
333 return SQLITE_OK; | |
334 } | |
335 | |
336 /* | |
337 ** This routine checks for a byte-order mark at the beginning of the | |
338 ** UTF-16 string stored in *pMem. If one is present, it is removed and | |
339 ** the encoding of the Mem adjusted. This routine does not do any | |
340 ** byte-swapping, it just sets Mem.enc appropriately. | |
341 ** | |
342 ** The allocation (static, dynamic etc.) and encoding of the Mem may be | |
343 ** changed by this function. | |
344 */ | |
345 int sqlite3VdbeMemHandleBom(Mem *pMem){ | |
346 int rc = SQLITE_OK; | |
347 u8 bom = 0; | |
348 | |
349 assert( pMem->n>=0 ); | |
350 if( pMem->n>1 ){ | |
351 u8 b1 = *(u8 *)pMem->z; | |
352 u8 b2 = *(((u8 *)pMem->z) + 1); | |
353 if( b1==0xFE && b2==0xFF ){ | |
354 bom = SQLITE_UTF16BE; | |
355 } | |
356 if( b1==0xFF && b2==0xFE ){ | |
357 bom = SQLITE_UTF16LE; | |
358 } | |
359 } | |
360 | |
361 if( bom ){ | |
362 rc = sqlite3VdbeMemMakeWriteable(pMem); | |
363 if( rc==SQLITE_OK ){ | |
364 pMem->n -= 2; | |
365 memmove(pMem->z, &pMem->z[2], pMem->n); | |
366 pMem->z[pMem->n] = '\0'; | |
367 pMem->z[pMem->n+1] = '\0'; | |
368 pMem->flags |= MEM_Term; | |
369 pMem->enc = bom; | |
370 } | |
371 } | |
372 return rc; | |
373 } | |
374 #endif /* SQLITE_OMIT_UTF16 */ | |
375 | |
376 /* | |
377 ** pZ is a UTF-8 encoded unicode string. If nByte is less than zero, | |
378 ** return the number of unicode characters in pZ up to (but not including) | |
379 ** the first 0x00 byte. If nByte is not less than zero, return the | |
380 ** number of unicode characters in the first nByte of pZ (or up to | |
381 ** the first 0x00, whichever comes first). | |
382 */ | |
383 int sqlite3Utf8CharLen(const char *zIn, int nByte){ | |
384 int r = 0; | |
385 const u8 *z = (const u8*)zIn; | |
386 const u8 *zTerm; | |
387 if( nByte>=0 ){ | |
388 zTerm = &z[nByte]; | |
389 }else{ | |
390 zTerm = (const u8*)(-1); | |
391 } | |
392 assert( z<=zTerm ); | |
393 while( *z!=0 && z<zTerm ){ | |
394 SQLITE_SKIP_UTF8(z); | |
395 r++; | |
396 } | |
397 return r; | |
398 } | |
399 | |
400 /* This test function is not currently used by the automated test-suite. | |
401 ** Hence it is only available in debug builds. | |
402 */ | |
403 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) | |
404 /* | |
405 ** Translate UTF-8 to UTF-8. | |
406 ** | |
407 ** This has the effect of making sure that the string is well-formed | |
408 ** UTF-8. Miscoded characters are removed. | |
409 ** | |
410 ** The translation is done in-place and aborted if the output | |
411 ** overruns the input. | |
412 */ | |
413 int sqlite3Utf8To8(unsigned char *zIn){ | |
414 unsigned char *zOut = zIn; | |
415 unsigned char *zStart = zIn; | |
416 u32 c; | |
417 | |
418 while( zIn[0] && zOut<=zIn ){ | |
419 c = sqlite3Utf8Read((const u8**)&zIn); | |
420 if( c!=0xfffd ){ | |
421 WRITE_UTF8(zOut, c); | |
422 } | |
423 } | |
424 *zOut = 0; | |
425 return (int)(zOut - zStart); | |
426 } | |
427 #endif | |
428 | |
429 #ifndef SQLITE_OMIT_UTF16 | |
430 /* | |
431 ** Convert a UTF-16 string in the native encoding into a UTF-8 string. | |
432 ** Memory to hold the UTF-8 string is obtained from sqlite3_malloc and must | |
433 ** be freed by the calling function. | |
434 ** | |
435 ** NULL is returned if there is an allocation error. | |
436 */ | |
437 char *sqlite3Utf16to8(sqlite3 *db, const void *z, int nByte, u8 enc){ | |
438 Mem m; | |
439 memset(&m, 0, sizeof(m)); | |
440 m.db = db; | |
441 sqlite3VdbeMemSetStr(&m, z, nByte, enc, SQLITE_STATIC); | |
442 sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8); | |
443 if( db->mallocFailed ){ | |
444 sqlite3VdbeMemRelease(&m); | |
445 m.z = 0; | |
446 } | |
447 assert( (m.flags & MEM_Term)!=0 || db->mallocFailed ); | |
448 assert( (m.flags & MEM_Str)!=0 || db->mallocFailed ); | |
449 assert( m.z || db->mallocFailed ); | |
450 return m.z; | |
451 } | |
452 | |
453 /* | |
454 ** zIn is a UTF-16 encoded unicode string at least nChar characters long. | |
455 ** Return the number of bytes in the first nChar unicode characters | |
456 ** in pZ. nChar must be non-negative. | |
457 */ | |
458 int sqlite3Utf16ByteLen(const void *zIn, int nChar){ | |
459 int c; | |
460 unsigned char const *z = zIn; | |
461 int n = 0; | |
462 | |
463 if( SQLITE_UTF16NATIVE==SQLITE_UTF16BE ){ | |
464 while( n<nChar ){ | |
465 READ_UTF16BE(z, 1, c); | |
466 n++; | |
467 } | |
468 }else{ | |
469 while( n<nChar ){ | |
470 READ_UTF16LE(z, 1, c); | |
471 n++; | |
472 } | |
473 } | |
474 return (int)(z-(unsigned char const *)zIn); | |
475 } | |
476 | |
477 #if defined(SQLITE_TEST) | |
478 /* | |
479 ** This routine is called from the TCL test function "translate_selftest". | |
480 ** It checks that the primitives for serializing and deserializing | |
481 ** characters in each encoding are inverses of each other. | |
482 */ | |
483 void sqlite3UtfSelfTest(void){ | |
484 unsigned int i, t; | |
485 unsigned char zBuf[20]; | |
486 unsigned char *z; | |
487 int n; | |
488 unsigned int c; | |
489 | |
490 for(i=0; i<0x00110000; i++){ | |
491 z = zBuf; | |
492 WRITE_UTF8(z, i); | |
493 n = (int)(z-zBuf); | |
494 assert( n>0 && n<=4 ); | |
495 z[0] = 0; | |
496 z = zBuf; | |
497 c = sqlite3Utf8Read((const u8**)&z); | |
498 t = i; | |
499 if( i>=0xD800 && i<=0xDFFF ) t = 0xFFFD; | |
500 if( (i&0xFFFFFFFE)==0xFFFE ) t = 0xFFFD; | |
501 assert( c==t ); | |
502 assert( (z-zBuf)==n ); | |
503 } | |
504 for(i=0; i<0x00110000; i++){ | |
505 if( i>=0xD800 && i<0xE000 ) continue; | |
506 z = zBuf; | |
507 WRITE_UTF16LE(z, i); | |
508 n = (int)(z-zBuf); | |
509 assert( n>0 && n<=4 ); | |
510 z[0] = 0; | |
511 z = zBuf; | |
512 READ_UTF16LE(z, 1, c); | |
513 assert( c==i ); | |
514 assert( (z-zBuf)==n ); | |
515 } | |
516 for(i=0; i<0x00110000; i++){ | |
517 if( i>=0xD800 && i<0xE000 ) continue; | |
518 z = zBuf; | |
519 WRITE_UTF16BE(z, i); | |
520 n = (int)(z-zBuf); | |
521 assert( n>0 && n<=4 ); | |
522 z[0] = 0; | |
523 z = zBuf; | |
524 READ_UTF16BE(z, 1, c); | |
525 assert( c==i ); | |
526 assert( (z-zBuf)==n ); | |
527 } | |
528 } | |
529 #endif /* SQLITE_TEST */ | |
530 #endif /* SQLITE_OMIT_UTF16 */ | |
OLD | NEW |