| Index: src/snapshot/serializer.cc
|
| diff --git a/src/snapshot/serializer.cc b/src/snapshot/serializer.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..28d62403653268186b750a931fe68b3ae845785e
|
| --- /dev/null
|
| +++ b/src/snapshot/serializer.cc
|
| @@ -0,0 +1,769 @@
|
| +// Copyright 2016 the V8 project authors. All rights reserved.
|
| +// Use of this source code is governed by a BSD-style license that can be
|
| +// found in the LICENSE file.
|
| +
|
| +#include "src/snapshot/serializer.h"
|
| +
|
| +#include "src/macro-assembler.h"
|
| +#include "src/snapshot/natives.h"
|
| +
|
| +namespace v8 {
|
| +namespace internal {
|
| +
|
| +Serializer::Serializer(Isolate* isolate, SnapshotByteSink* sink)
|
| + : isolate_(isolate),
|
| + sink_(sink),
|
| + external_reference_encoder_(isolate),
|
| + root_index_map_(isolate),
|
| + recursion_depth_(0),
|
| + code_address_map_(NULL),
|
| + large_objects_total_size_(0),
|
| + seen_large_objects_index_(0) {
|
| + // The serializer is meant to be used only to generate initial heap images
|
| + // from a context in which there is only one isolate.
|
| + for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
|
| + pending_chunk_[i] = 0;
|
| + max_chunk_size_[i] = static_cast<uint32_t>(
|
| + MemoryAllocator::PageAreaSize(static_cast<AllocationSpace>(i)));
|
| + }
|
| +
|
| +#ifdef OBJECT_PRINT
|
| + if (FLAG_serialization_statistics) {
|
| + instance_type_count_ = NewArray<int>(kInstanceTypes);
|
| + instance_type_size_ = NewArray<size_t>(kInstanceTypes);
|
| + for (int i = 0; i < kInstanceTypes; i++) {
|
| + instance_type_count_[i] = 0;
|
| + instance_type_size_[i] = 0;
|
| + }
|
| + } else {
|
| + instance_type_count_ = NULL;
|
| + instance_type_size_ = NULL;
|
| + }
|
| +#endif // OBJECT_PRINT
|
| +}
|
| +
|
| +Serializer::~Serializer() {
|
| + if (code_address_map_ != NULL) delete code_address_map_;
|
| +#ifdef OBJECT_PRINT
|
| + if (instance_type_count_ != NULL) {
|
| + DeleteArray(instance_type_count_);
|
| + DeleteArray(instance_type_size_);
|
| + }
|
| +#endif // OBJECT_PRINT
|
| +}
|
| +
|
| +#ifdef OBJECT_PRINT
|
| +void Serializer::CountInstanceType(Map* map, int size) {
|
| + int instance_type = map->instance_type();
|
| + instance_type_count_[instance_type]++;
|
| + instance_type_size_[instance_type] += size;
|
| +}
|
| +#endif // OBJECT_PRINT
|
| +
|
| +void Serializer::OutputStatistics(const char* name) {
|
| + if (!FLAG_serialization_statistics) return;
|
| + PrintF("%s:\n", name);
|
| + PrintF(" Spaces (bytes):\n");
|
| + for (int space = 0; space < kNumberOfSpaces; space++) {
|
| + PrintF("%16s", AllocationSpaceName(static_cast<AllocationSpace>(space)));
|
| + }
|
| + PrintF("\n");
|
| + for (int space = 0; space < kNumberOfPreallocatedSpaces; space++) {
|
| + size_t s = pending_chunk_[space];
|
| + for (uint32_t chunk_size : completed_chunks_[space]) s += chunk_size;
|
| + PrintF("%16" V8_PTR_PREFIX "d", s);
|
| + }
|
| + PrintF("%16d\n", large_objects_total_size_);
|
| +#ifdef OBJECT_PRINT
|
| + PrintF(" Instance types (count and bytes):\n");
|
| +#define PRINT_INSTANCE_TYPE(Name) \
|
| + if (instance_type_count_[Name]) { \
|
| + PrintF("%10d %10" V8_PTR_PREFIX "d %s\n", instance_type_count_[Name], \
|
| + instance_type_size_[Name], #Name); \
|
| + }
|
| + INSTANCE_TYPE_LIST(PRINT_INSTANCE_TYPE)
|
| +#undef PRINT_INSTANCE_TYPE
|
| + PrintF("\n");
|
| +#endif // OBJECT_PRINT
|
| +}
|
| +
|
| +void Serializer::SerializeDeferredObjects() {
|
| + while (deferred_objects_.length() > 0) {
|
| + HeapObject* obj = deferred_objects_.RemoveLast();
|
| + ObjectSerializer obj_serializer(this, obj, sink_, kPlain, kStartOfObject);
|
| + obj_serializer.SerializeDeferred();
|
| + }
|
| + sink_->Put(kSynchronize, "Finished with deferred objects");
|
| +}
|
| +
|
| +bool Serializer::ShouldBeSkipped(Object** current) {
|
| + Object** roots = isolate()->heap()->roots_array_start();
|
| + return current == &roots[Heap::kStoreBufferTopRootIndex] ||
|
| + current == &roots[Heap::kStackLimitRootIndex] ||
|
| + current == &roots[Heap::kRealStackLimitRootIndex];
|
| +}
|
| +
|
| +void Serializer::VisitPointers(Object** start, Object** end) {
|
| + for (Object** current = start; current < end; current++) {
|
| + if ((*current)->IsSmi()) {
|
| + sink_->Put(kOnePointerRawData, "Smi");
|
| + for (int i = 0; i < kPointerSize; i++) {
|
| + sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
|
| + }
|
| + } else {
|
| + SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0);
|
| + }
|
| + }
|
| +}
|
| +
|
| +void Serializer::EncodeReservations(
|
| + List<SerializedData::Reservation>* out) const {
|
| + for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
|
| + for (int j = 0; j < completed_chunks_[i].length(); j++) {
|
| + out->Add(SerializedData::Reservation(completed_chunks_[i][j]));
|
| + }
|
| +
|
| + if (pending_chunk_[i] > 0 || completed_chunks_[i].length() == 0) {
|
| + out->Add(SerializedData::Reservation(pending_chunk_[i]));
|
| + }
|
| + out->last().mark_as_last();
|
| + }
|
| +
|
| + out->Add(SerializedData::Reservation(large_objects_total_size_));
|
| + out->last().mark_as_last();
|
| +}
|
| +
|
| +#ifdef DEBUG
|
| +bool Serializer::BackReferenceIsAlreadyAllocated(BackReference reference) {
|
| + DCHECK(reference.is_valid());
|
| + DCHECK(!reference.is_source());
|
| + DCHECK(!reference.is_global_proxy());
|
| + AllocationSpace space = reference.space();
|
| + int chunk_index = reference.chunk_index();
|
| + if (space == LO_SPACE) {
|
| + return chunk_index == 0 &&
|
| + reference.large_object_index() < seen_large_objects_index_;
|
| + } else if (chunk_index == completed_chunks_[space].length()) {
|
| + return reference.chunk_offset() < pending_chunk_[space];
|
| + } else {
|
| + return chunk_index < completed_chunks_[space].length() &&
|
| + reference.chunk_offset() < completed_chunks_[space][chunk_index];
|
| + }
|
| +}
|
| +#endif // DEBUG
|
| +
|
| +bool Serializer::SerializeKnownObject(HeapObject* obj, HowToCode how_to_code,
|
| + WhereToPoint where_to_point, int skip) {
|
| + if (how_to_code == kPlain && where_to_point == kStartOfObject) {
|
| + // Encode a reference to a hot object by its index in the working set.
|
| + int index = hot_objects_.Find(obj);
|
| + if (index != HotObjectsList::kNotFound) {
|
| + DCHECK(index >= 0 && index < kNumberOfHotObjects);
|
| + if (FLAG_trace_serializer) {
|
| + PrintF(" Encoding hot object %d:", index);
|
| + obj->ShortPrint();
|
| + PrintF("\n");
|
| + }
|
| + if (skip != 0) {
|
| + sink_->Put(kHotObjectWithSkip + index, "HotObjectWithSkip");
|
| + sink_->PutInt(skip, "HotObjectSkipDistance");
|
| + } else {
|
| + sink_->Put(kHotObject + index, "HotObject");
|
| + }
|
| + return true;
|
| + }
|
| + }
|
| + BackReference back_reference = back_reference_map_.Lookup(obj);
|
| + if (back_reference.is_valid()) {
|
| + // Encode the location of an already deserialized object in order to write
|
| + // its location into a later object. We can encode the location as an
|
| + // offset fromthe start of the deserialized objects or as an offset
|
| + // backwards from thecurrent allocation pointer.
|
| + if (back_reference.is_source()) {
|
| + FlushSkip(skip);
|
| + if (FLAG_trace_serializer) PrintF(" Encoding source object\n");
|
| + DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject);
|
| + sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Source");
|
| + sink_->PutInt(kSourceObjectReference, "kSourceObjectReference");
|
| + } else if (back_reference.is_global_proxy()) {
|
| + FlushSkip(skip);
|
| + if (FLAG_trace_serializer) PrintF(" Encoding global proxy\n");
|
| + DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject);
|
| + sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Global Proxy");
|
| + sink_->PutInt(kGlobalProxyReference, "kGlobalProxyReference");
|
| + } else {
|
| + if (FLAG_trace_serializer) {
|
| + PrintF(" Encoding back reference to: ");
|
| + obj->ShortPrint();
|
| + PrintF("\n");
|
| + }
|
| +
|
| + PutAlignmentPrefix(obj);
|
| + AllocationSpace space = back_reference.space();
|
| + if (skip == 0) {
|
| + sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRef");
|
| + } else {
|
| + sink_->Put(kBackrefWithSkip + how_to_code + where_to_point + space,
|
| + "BackRefWithSkip");
|
| + sink_->PutInt(skip, "BackRefSkipDistance");
|
| + }
|
| + PutBackReference(obj, back_reference);
|
| + }
|
| + return true;
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +void Serializer::PutRoot(int root_index, HeapObject* object,
|
| + SerializerDeserializer::HowToCode how_to_code,
|
| + SerializerDeserializer::WhereToPoint where_to_point,
|
| + int skip) {
|
| + if (FLAG_trace_serializer) {
|
| + PrintF(" Encoding root %d:", root_index);
|
| + object->ShortPrint();
|
| + PrintF("\n");
|
| + }
|
| +
|
| + if (how_to_code == kPlain && where_to_point == kStartOfObject &&
|
| + root_index < kNumberOfRootArrayConstants &&
|
| + !isolate()->heap()->InNewSpace(object)) {
|
| + if (skip == 0) {
|
| + sink_->Put(kRootArrayConstants + root_index, "RootConstant");
|
| + } else {
|
| + sink_->Put(kRootArrayConstantsWithSkip + root_index, "RootConstant");
|
| + sink_->PutInt(skip, "SkipInPutRoot");
|
| + }
|
| + } else {
|
| + FlushSkip(skip);
|
| + sink_->Put(kRootArray + how_to_code + where_to_point, "RootSerialization");
|
| + sink_->PutInt(root_index, "root_index");
|
| + }
|
| +}
|
| +
|
| +void Serializer::PutBackReference(HeapObject* object, BackReference reference) {
|
| + DCHECK(BackReferenceIsAlreadyAllocated(reference));
|
| + sink_->PutInt(reference.reference(), "BackRefValue");
|
| + hot_objects_.Add(object);
|
| +}
|
| +
|
| +int Serializer::PutAlignmentPrefix(HeapObject* object) {
|
| + AllocationAlignment alignment = object->RequiredAlignment();
|
| + if (alignment != kWordAligned) {
|
| + DCHECK(1 <= alignment && alignment <= 3);
|
| + byte prefix = (kAlignmentPrefix - 1) + alignment;
|
| + sink_->Put(prefix, "Alignment");
|
| + return Heap::GetMaximumFillToAlign(alignment);
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +BackReference Serializer::AllocateLargeObject(int size) {
|
| + // Large objects are allocated one-by-one when deserializing. We do not
|
| + // have to keep track of multiple chunks.
|
| + large_objects_total_size_ += size;
|
| + return BackReference::LargeObjectReference(seen_large_objects_index_++);
|
| +}
|
| +
|
| +BackReference Serializer::Allocate(AllocationSpace space, int size) {
|
| + DCHECK(space >= 0 && space < kNumberOfPreallocatedSpaces);
|
| + DCHECK(size > 0 && size <= static_cast<int>(max_chunk_size(space)));
|
| + uint32_t new_chunk_size = pending_chunk_[space] + size;
|
| + if (new_chunk_size > max_chunk_size(space)) {
|
| + // The new chunk size would not fit onto a single page. Complete the
|
| + // current chunk and start a new one.
|
| + sink_->Put(kNextChunk, "NextChunk");
|
| + sink_->Put(space, "NextChunkSpace");
|
| + completed_chunks_[space].Add(pending_chunk_[space]);
|
| + DCHECK_LE(completed_chunks_[space].length(), BackReference::kMaxChunkIndex);
|
| + pending_chunk_[space] = 0;
|
| + new_chunk_size = size;
|
| + }
|
| + uint32_t offset = pending_chunk_[space];
|
| + pending_chunk_[space] = new_chunk_size;
|
| + return BackReference::Reference(space, completed_chunks_[space].length(),
|
| + offset);
|
| +}
|
| +
|
| +void Serializer::Pad() {
|
| + // The non-branching GetInt will read up to 3 bytes too far, so we need
|
| + // to pad the snapshot to make sure we don't read over the end.
|
| + for (unsigned i = 0; i < sizeof(int32_t) - 1; i++) {
|
| + sink_->Put(kNop, "Padding");
|
| + }
|
| + // Pad up to pointer size for checksum.
|
| + while (!IsAligned(sink_->Position(), kPointerAlignment)) {
|
| + sink_->Put(kNop, "Padding");
|
| + }
|
| +}
|
| +
|
| +void Serializer::InitializeCodeAddressMap() {
|
| + isolate_->InitializeLoggingAndCounters();
|
| + code_address_map_ = new CodeAddressMap(isolate_);
|
| +}
|
| +
|
| +Code* Serializer::CopyCode(Code* code) {
|
| + code_buffer_.Rewind(0); // Clear buffer without deleting backing store.
|
| + int size = code->CodeSize();
|
| + code_buffer_.AddAll(Vector<byte>(code->address(), size));
|
| + return Code::cast(HeapObject::FromAddress(&code_buffer_.first()));
|
| +}
|
| +
|
| +void Serializer::ObjectSerializer::SerializePrologue(AllocationSpace space,
|
| + int size, Map* map) {
|
| + if (serializer_->code_address_map_) {
|
| + const char* code_name =
|
| + serializer_->code_address_map_->Lookup(object_->address());
|
| + LOG(serializer_->isolate_,
|
| + CodeNameEvent(object_->address(), sink_->Position(), code_name));
|
| + LOG(serializer_->isolate_,
|
| + SnapshotPositionEvent(object_->address(), sink_->Position()));
|
| + }
|
| +
|
| + BackReference back_reference;
|
| + if (space == LO_SPACE) {
|
| + sink_->Put(kNewObject + reference_representation_ + space,
|
| + "NewLargeObject");
|
| + sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords");
|
| + if (object_->IsCode()) {
|
| + sink_->Put(EXECUTABLE, "executable large object");
|
| + } else {
|
| + sink_->Put(NOT_EXECUTABLE, "not executable large object");
|
| + }
|
| + back_reference = serializer_->AllocateLargeObject(size);
|
| + } else {
|
| + int fill = serializer_->PutAlignmentPrefix(object_);
|
| + back_reference = serializer_->Allocate(space, size + fill);
|
| + sink_->Put(kNewObject + reference_representation_ + space, "NewObject");
|
| + sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords");
|
| + }
|
| +
|
| +#ifdef OBJECT_PRINT
|
| + if (FLAG_serialization_statistics) {
|
| + serializer_->CountInstanceType(map, size);
|
| + }
|
| +#endif // OBJECT_PRINT
|
| +
|
| + // Mark this object as already serialized.
|
| + serializer_->back_reference_map()->Add(object_, back_reference);
|
| +
|
| + // Serialize the map (first word of the object).
|
| + serializer_->SerializeObject(map, kPlain, kStartOfObject, 0);
|
| +}
|
| +
|
| +void Serializer::ObjectSerializer::SerializeExternalString() {
|
| + // Instead of serializing this as an external string, we serialize
|
| + // an imaginary sequential string with the same content.
|
| + Isolate* isolate = serializer_->isolate();
|
| + DCHECK(object_->IsExternalString());
|
| + DCHECK(object_->map() != isolate->heap()->native_source_string_map());
|
| + ExternalString* string = ExternalString::cast(object_);
|
| + int length = string->length();
|
| + Map* map;
|
| + int content_size;
|
| + int allocation_size;
|
| + const byte* resource;
|
| + // Find the map and size for the imaginary sequential string.
|
| + bool internalized = object_->IsInternalizedString();
|
| + if (object_->IsExternalOneByteString()) {
|
| + map = internalized ? isolate->heap()->one_byte_internalized_string_map()
|
| + : isolate->heap()->one_byte_string_map();
|
| + allocation_size = SeqOneByteString::SizeFor(length);
|
| + content_size = length * kCharSize;
|
| + resource = reinterpret_cast<const byte*>(
|
| + ExternalOneByteString::cast(string)->resource()->data());
|
| + } else {
|
| + map = internalized ? isolate->heap()->internalized_string_map()
|
| + : isolate->heap()->string_map();
|
| + allocation_size = SeqTwoByteString::SizeFor(length);
|
| + content_size = length * kShortSize;
|
| + resource = reinterpret_cast<const byte*>(
|
| + ExternalTwoByteString::cast(string)->resource()->data());
|
| + }
|
| +
|
| + AllocationSpace space = (allocation_size > Page::kMaxRegularHeapObjectSize)
|
| + ? LO_SPACE
|
| + : OLD_SPACE;
|
| + SerializePrologue(space, allocation_size, map);
|
| +
|
| + // Output the rest of the imaginary string.
|
| + int bytes_to_output = allocation_size - HeapObject::kHeaderSize;
|
| +
|
| + // Output raw data header. Do not bother with common raw length cases here.
|
| + sink_->Put(kVariableRawData, "RawDataForString");
|
| + sink_->PutInt(bytes_to_output, "length");
|
| +
|
| + // Serialize string header (except for map).
|
| + Address string_start = string->address();
|
| + for (int i = HeapObject::kHeaderSize; i < SeqString::kHeaderSize; i++) {
|
| + sink_->PutSection(string_start[i], "StringHeader");
|
| + }
|
| +
|
| + // Serialize string content.
|
| + sink_->PutRaw(resource, content_size, "StringContent");
|
| +
|
| + // Since the allocation size is rounded up to object alignment, there
|
| + // maybe left-over bytes that need to be padded.
|
| + int padding_size = allocation_size - SeqString::kHeaderSize - content_size;
|
| + DCHECK(0 <= padding_size && padding_size < kObjectAlignment);
|
| + for (int i = 0; i < padding_size; i++) sink_->PutSection(0, "StringPadding");
|
| +
|
| + sink_->Put(kSkip, "SkipAfterString");
|
| + sink_->PutInt(bytes_to_output, "SkipDistance");
|
| +}
|
| +
|
| +// Clear and later restore the next link in the weak cell or allocation site.
|
| +// TODO(all): replace this with proper iteration of weak slots in serializer.
|
| +class UnlinkWeakNextScope {
|
| + public:
|
| + explicit UnlinkWeakNextScope(HeapObject* object) : object_(nullptr) {
|
| + if (object->IsWeakCell()) {
|
| + object_ = object;
|
| + next_ = WeakCell::cast(object)->next();
|
| + WeakCell::cast(object)->clear_next(object->GetHeap()->the_hole_value());
|
| + } else if (object->IsAllocationSite()) {
|
| + object_ = object;
|
| + next_ = AllocationSite::cast(object)->weak_next();
|
| + AllocationSite::cast(object)->set_weak_next(
|
| + object->GetHeap()->undefined_value());
|
| + }
|
| + }
|
| +
|
| + ~UnlinkWeakNextScope() {
|
| + if (object_ != nullptr) {
|
| + if (object_->IsWeakCell()) {
|
| + WeakCell::cast(object_)->set_next(next_, UPDATE_WEAK_WRITE_BARRIER);
|
| + } else {
|
| + AllocationSite::cast(object_)->set_weak_next(next_,
|
| + UPDATE_WEAK_WRITE_BARRIER);
|
| + }
|
| + }
|
| + }
|
| +
|
| + private:
|
| + HeapObject* object_;
|
| + Object* next_;
|
| + DisallowHeapAllocation no_gc_;
|
| +};
|
| +
|
| +void Serializer::ObjectSerializer::Serialize() {
|
| + if (FLAG_trace_serializer) {
|
| + PrintF(" Encoding heap object: ");
|
| + object_->ShortPrint();
|
| + PrintF("\n");
|
| + }
|
| +
|
| + // We cannot serialize typed array objects correctly.
|
| + DCHECK(!object_->IsJSTypedArray());
|
| +
|
| + // We don't expect fillers.
|
| + DCHECK(!object_->IsFiller());
|
| +
|
| + if (object_->IsScript()) {
|
| + // Clear cached line ends.
|
| + Object* undefined = serializer_->isolate()->heap()->undefined_value();
|
| + Script::cast(object_)->set_line_ends(undefined);
|
| + }
|
| +
|
| + if (object_->IsExternalString()) {
|
| + Heap* heap = serializer_->isolate()->heap();
|
| + if (object_->map() != heap->native_source_string_map()) {
|
| + // Usually we cannot recreate resources for external strings. To work
|
| + // around this, external strings are serialized to look like ordinary
|
| + // sequential strings.
|
| + // The exception are native source code strings, since we can recreate
|
| + // their resources. In that case we fall through and leave it to
|
| + // VisitExternalOneByteString further down.
|
| + SerializeExternalString();
|
| + return;
|
| + }
|
| + }
|
| +
|
| + int size = object_->Size();
|
| + Map* map = object_->map();
|
| + AllocationSpace space =
|
| + MemoryChunk::FromAddress(object_->address())->owner()->identity();
|
| + SerializePrologue(space, size, map);
|
| +
|
| + // Serialize the rest of the object.
|
| + CHECK_EQ(0, bytes_processed_so_far_);
|
| + bytes_processed_so_far_ = kPointerSize;
|
| +
|
| + RecursionScope recursion(serializer_);
|
| + // Objects that are immediately post processed during deserialization
|
| + // cannot be deferred, since post processing requires the object content.
|
| + if (recursion.ExceedsMaximum() && CanBeDeferred(object_)) {
|
| + serializer_->QueueDeferredObject(object_);
|
| + sink_->Put(kDeferred, "Deferring object content");
|
| + return;
|
| + }
|
| +
|
| + UnlinkWeakNextScope unlink_weak_next(object_);
|
| +
|
| + object_->IterateBody(map->instance_type(), size, this);
|
| + OutputRawData(object_->address() + size);
|
| +}
|
| +
|
| +void Serializer::ObjectSerializer::SerializeDeferred() {
|
| + if (FLAG_trace_serializer) {
|
| + PrintF(" Encoding deferred heap object: ");
|
| + object_->ShortPrint();
|
| + PrintF("\n");
|
| + }
|
| +
|
| + int size = object_->Size();
|
| + Map* map = object_->map();
|
| + BackReference reference = serializer_->back_reference_map()->Lookup(object_);
|
| +
|
| + // Serialize the rest of the object.
|
| + CHECK_EQ(0, bytes_processed_so_far_);
|
| + bytes_processed_so_far_ = kPointerSize;
|
| +
|
| + serializer_->PutAlignmentPrefix(object_);
|
| + sink_->Put(kNewObject + reference.space(), "deferred object");
|
| + serializer_->PutBackReference(object_, reference);
|
| + sink_->PutInt(size >> kPointerSizeLog2, "deferred object size");
|
| +
|
| + UnlinkWeakNextScope unlink_weak_next(object_);
|
| +
|
| + object_->IterateBody(map->instance_type(), size, this);
|
| + OutputRawData(object_->address() + size);
|
| +}
|
| +
|
| +void Serializer::ObjectSerializer::VisitPointers(Object** start, Object** end) {
|
| + Object** current = start;
|
| + while (current < end) {
|
| + while (current < end && (*current)->IsSmi()) current++;
|
| + if (current < end) OutputRawData(reinterpret_cast<Address>(current));
|
| +
|
| + while (current < end && !(*current)->IsSmi()) {
|
| + HeapObject* current_contents = HeapObject::cast(*current);
|
| + int root_index = serializer_->root_index_map()->Lookup(current_contents);
|
| + // Repeats are not subject to the write barrier so we can only use
|
| + // immortal immovable root members. They are never in new space.
|
| + if (current != start && root_index != RootIndexMap::kInvalidRootIndex &&
|
| + Heap::RootIsImmortalImmovable(root_index) &&
|
| + current_contents == current[-1]) {
|
| + DCHECK(!serializer_->isolate()->heap()->InNewSpace(current_contents));
|
| + int repeat_count = 1;
|
| + while (¤t[repeat_count] < end - 1 &&
|
| + current[repeat_count] == current_contents) {
|
| + repeat_count++;
|
| + }
|
| + current += repeat_count;
|
| + bytes_processed_so_far_ += repeat_count * kPointerSize;
|
| + if (repeat_count > kNumberOfFixedRepeat) {
|
| + sink_->Put(kVariableRepeat, "VariableRepeat");
|
| + sink_->PutInt(repeat_count, "repeat count");
|
| + } else {
|
| + sink_->Put(kFixedRepeatStart + repeat_count, "FixedRepeat");
|
| + }
|
| + } else {
|
| + serializer_->SerializeObject(current_contents, kPlain, kStartOfObject,
|
| + 0);
|
| + bytes_processed_so_far_ += kPointerSize;
|
| + current++;
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +void Serializer::ObjectSerializer::VisitEmbeddedPointer(RelocInfo* rinfo) {
|
| + int skip = OutputRawData(rinfo->target_address_address(),
|
| + kCanReturnSkipInsteadOfSkipping);
|
| + HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
|
| + Object* object = rinfo->target_object();
|
| + serializer_->SerializeObject(HeapObject::cast(object), how_to_code,
|
| + kStartOfObject, skip);
|
| + bytes_processed_so_far_ += rinfo->target_address_size();
|
| +}
|
| +
|
| +void Serializer::ObjectSerializer::VisitExternalReference(Address* p) {
|
| + int skip = OutputRawData(reinterpret_cast<Address>(p),
|
| + kCanReturnSkipInsteadOfSkipping);
|
| + sink_->Put(kExternalReference + kPlain + kStartOfObject, "ExternalRef");
|
| + sink_->PutInt(skip, "SkipB4ExternalRef");
|
| + Address target = *p;
|
| + sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
|
| + bytes_processed_so_far_ += kPointerSize;
|
| +}
|
| +
|
| +void Serializer::ObjectSerializer::VisitExternalReference(RelocInfo* rinfo) {
|
| + int skip = OutputRawData(rinfo->target_address_address(),
|
| + kCanReturnSkipInsteadOfSkipping);
|
| + HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
|
| + sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
|
| + sink_->PutInt(skip, "SkipB4ExternalRef");
|
| + Address target = rinfo->target_external_reference();
|
| + sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
|
| + bytes_processed_so_far_ += rinfo->target_address_size();
|
| +}
|
| +
|
| +void Serializer::ObjectSerializer::VisitInternalReference(RelocInfo* rinfo) {
|
| + // We can only reference to internal references of code that has been output.
|
| + DCHECK(object_->IsCode() && code_has_been_output_);
|
| + // We do not use skip from last patched pc to find the pc to patch, since
|
| + // target_address_address may not return addresses in ascending order when
|
| + // used for internal references. External references may be stored at the
|
| + // end of the code in the constant pool, whereas internal references are
|
| + // inline. That would cause the skip to be negative. Instead, we store the
|
| + // offset from code entry.
|
| + Address entry = Code::cast(object_)->entry();
|
| + intptr_t pc_offset = rinfo->target_internal_reference_address() - entry;
|
| + intptr_t target_offset = rinfo->target_internal_reference() - entry;
|
| + DCHECK(0 <= pc_offset &&
|
| + pc_offset <= Code::cast(object_)->instruction_size());
|
| + DCHECK(0 <= target_offset &&
|
| + target_offset <= Code::cast(object_)->instruction_size());
|
| + sink_->Put(rinfo->rmode() == RelocInfo::INTERNAL_REFERENCE
|
| + ? kInternalReference
|
| + : kInternalReferenceEncoded,
|
| + "InternalRef");
|
| + sink_->PutInt(static_cast<uintptr_t>(pc_offset), "internal ref address");
|
| + sink_->PutInt(static_cast<uintptr_t>(target_offset), "internal ref value");
|
| +}
|
| +
|
| +void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) {
|
| + int skip = OutputRawData(rinfo->target_address_address(),
|
| + kCanReturnSkipInsteadOfSkipping);
|
| + HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
|
| + sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
|
| + sink_->PutInt(skip, "SkipB4ExternalRef");
|
| + Address target = rinfo->target_address();
|
| + sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
|
| + bytes_processed_so_far_ += rinfo->target_address_size();
|
| +}
|
| +
|
| +void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) {
|
| + int skip = OutputRawData(rinfo->target_address_address(),
|
| + kCanReturnSkipInsteadOfSkipping);
|
| + Code* object = Code::GetCodeFromTargetAddress(rinfo->target_address());
|
| + serializer_->SerializeObject(object, kFromCode, kInnerPointer, skip);
|
| + bytes_processed_so_far_ += rinfo->target_address_size();
|
| +}
|
| +
|
| +void Serializer::ObjectSerializer::VisitCodeEntry(Address entry_address) {
|
| + int skip = OutputRawData(entry_address, kCanReturnSkipInsteadOfSkipping);
|
| + Code* object = Code::cast(Code::GetObjectFromEntryAddress(entry_address));
|
| + serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
|
| + bytes_processed_so_far_ += kPointerSize;
|
| +}
|
| +
|
| +void Serializer::ObjectSerializer::VisitCell(RelocInfo* rinfo) {
|
| + int skip = OutputRawData(rinfo->pc(), kCanReturnSkipInsteadOfSkipping);
|
| + Cell* object = Cell::cast(rinfo->target_cell());
|
| + serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
|
| + bytes_processed_so_far_ += kPointerSize;
|
| +}
|
| +
|
| +bool Serializer::ObjectSerializer::SerializeExternalNativeSourceString(
|
| + int builtin_count,
|
| + v8::String::ExternalOneByteStringResource** resource_pointer,
|
| + FixedArray* source_cache, int resource_index) {
|
| + for (int i = 0; i < builtin_count; i++) {
|
| + Object* source = source_cache->get(i);
|
| + if (!source->IsUndefined()) {
|
| + ExternalOneByteString* string = ExternalOneByteString::cast(source);
|
| + typedef v8::String::ExternalOneByteStringResource Resource;
|
| + const Resource* resource = string->resource();
|
| + if (resource == *resource_pointer) {
|
| + sink_->Put(resource_index, "NativesStringResource");
|
| + sink_->PutSection(i, "NativesStringResourceEnd");
|
| + bytes_processed_so_far_ += sizeof(resource);
|
| + return true;
|
| + }
|
| + }
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +void Serializer::ObjectSerializer::VisitExternalOneByteString(
|
| + v8::String::ExternalOneByteStringResource** resource_pointer) {
|
| + Address references_start = reinterpret_cast<Address>(resource_pointer);
|
| + OutputRawData(references_start);
|
| + if (SerializeExternalNativeSourceString(
|
| + Natives::GetBuiltinsCount(), resource_pointer,
|
| + Natives::GetSourceCache(serializer_->isolate()->heap()),
|
| + kNativesStringResource)) {
|
| + return;
|
| + }
|
| + if (SerializeExternalNativeSourceString(
|
| + ExtraNatives::GetBuiltinsCount(), resource_pointer,
|
| + ExtraNatives::GetSourceCache(serializer_->isolate()->heap()),
|
| + kExtraNativesStringResource)) {
|
| + return;
|
| + }
|
| + // One of the strings in the natives cache should match the resource. We
|
| + // don't expect any other kinds of external strings here.
|
| + UNREACHABLE();
|
| +}
|
| +
|
| +Address Serializer::ObjectSerializer::PrepareCode() {
|
| + // To make snapshots reproducible, we make a copy of the code object
|
| + // and wipe all pointers in the copy, which we then serialize.
|
| + Code* original = Code::cast(object_);
|
| + Code* code = serializer_->CopyCode(original);
|
| + // Code age headers are not serializable.
|
| + code->MakeYoung(serializer_->isolate());
|
| + int mode_mask = RelocInfo::kCodeTargetMask |
|
| + RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
|
| + RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) |
|
| + RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY) |
|
| + RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
|
| + RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED);
|
| + for (RelocIterator it(code, mode_mask); !it.done(); it.next()) {
|
| + RelocInfo* rinfo = it.rinfo();
|
| + rinfo->WipeOut();
|
| + }
|
| + // We need to wipe out the header fields *after* wiping out the
|
| + // relocations, because some of these fields are needed for the latter.
|
| + code->WipeOutHeader();
|
| + return code->address();
|
| +}
|
| +
|
| +int Serializer::ObjectSerializer::OutputRawData(
|
| + Address up_to, Serializer::ObjectSerializer::ReturnSkip return_skip) {
|
| + Address object_start = object_->address();
|
| + int base = bytes_processed_so_far_;
|
| + int up_to_offset = static_cast<int>(up_to - object_start);
|
| + int to_skip = up_to_offset - bytes_processed_so_far_;
|
| + int bytes_to_output = to_skip;
|
| + bytes_processed_so_far_ += to_skip;
|
| + // This assert will fail if the reloc info gives us the target_address_address
|
| + // locations in a non-ascending order. Luckily that doesn't happen.
|
| + DCHECK(to_skip >= 0);
|
| + bool outputting_code = false;
|
| + bool is_code_object = object_->IsCode();
|
| + if (to_skip != 0 && is_code_object && !code_has_been_output_) {
|
| + // Output the code all at once and fix later.
|
| + bytes_to_output = object_->Size() + to_skip - bytes_processed_so_far_;
|
| + outputting_code = true;
|
| + code_has_been_output_ = true;
|
| + }
|
| + if (bytes_to_output != 0 && (!is_code_object || outputting_code)) {
|
| + if (!outputting_code && bytes_to_output == to_skip &&
|
| + IsAligned(bytes_to_output, kPointerAlignment) &&
|
| + bytes_to_output <= kNumberOfFixedRawData * kPointerSize) {
|
| + int size_in_words = bytes_to_output >> kPointerSizeLog2;
|
| + sink_->PutSection(kFixedRawDataStart + size_in_words, "FixedRawData");
|
| + to_skip = 0; // This instruction includes skip.
|
| + } else {
|
| + // We always end up here if we are outputting the code of a code object.
|
| + sink_->Put(kVariableRawData, "VariableRawData");
|
| + sink_->PutInt(bytes_to_output, "length");
|
| + }
|
| +
|
| + if (is_code_object) object_start = PrepareCode();
|
| +
|
| + const char* description = is_code_object ? "Code" : "Byte";
|
| + sink_->PutRaw(object_start + base, bytes_to_output, description);
|
| + }
|
| + if (to_skip != 0 && return_skip == kIgnoringReturn) {
|
| + sink_->Put(kSkip, "Skip");
|
| + sink_->PutInt(to_skip, "SkipDistance");
|
| + to_skip = 0;
|
| + }
|
| + return to_skip;
|
| +}
|
| +
|
| +} // namespace internal
|
| +} // namespace v8
|
|
|