Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(282)

Unified Diff: src/snapshot/deserializer.cc

Issue 1751863002: [serializer] split up src/snapshot/serialize.* (Closed) Base URL: https://chromium.googlesource.com/v8/v8.git@master
Patch Set: fix Created 4 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/snapshot/deserializer.h ('k') | src/snapshot/mksnapshot.cc » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/snapshot/deserializer.cc
diff --git a/src/snapshot/deserializer.cc b/src/snapshot/deserializer.cc
new file mode 100644
index 0000000000000000000000000000000000000000..6a5b57dfc415e5f99a122df95af7dfeb8e5a099d
--- /dev/null
+++ b/src/snapshot/deserializer.cc
@@ -0,0 +1,810 @@
+// Copyright 2016 the V8 project authors. All rights reserved.
Michael Achenbach 2016/03/01 20:02:03 This has no proper license header and blocks the c
+
+#include "src/snapshot/deserializer.h"
+
+#include "src/bootstrapper.h"
+#include "src/heap/heap.h"
+#include "src/isolate.h"
+#include "src/macro-assembler.h"
+#include "src/snapshot/natives.h"
+#include "src/v8.h"
+
+namespace v8 {
+namespace internal {
+
+void Deserializer::DecodeReservation(
+ Vector<const SerializedData::Reservation> res) {
+ DCHECK_EQ(0, reservations_[NEW_SPACE].length());
+ STATIC_ASSERT(NEW_SPACE == 0);
+ int current_space = NEW_SPACE;
+ for (auto& r : res) {
+ reservations_[current_space].Add({r.chunk_size(), NULL, NULL});
+ if (r.is_last()) current_space++;
+ }
+ DCHECK_EQ(kNumberOfSpaces, current_space);
+ for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) current_chunk_[i] = 0;
+}
+
+void Deserializer::FlushICacheForNewIsolate() {
+ DCHECK(!deserializing_user_code_);
+ // The entire isolate is newly deserialized. Simply flush all code pages.
+ PageIterator it(isolate_->heap()->code_space());
+ while (it.has_next()) {
+ Page* p = it.next();
+ Assembler::FlushICache(isolate_, p->area_start(),
+ p->area_end() - p->area_start());
+ }
+}
+
+void Deserializer::FlushICacheForNewCodeObjects() {
+ DCHECK(deserializing_user_code_);
+ for (Code* code : new_code_objects_) {
+ Assembler::FlushICache(isolate_, code->instruction_start(),
+ code->instruction_size());
+ }
+}
+
+bool Deserializer::ReserveSpace() {
+#ifdef DEBUG
+ for (int i = NEW_SPACE; i < kNumberOfSpaces; ++i) {
+ CHECK(reservations_[i].length() > 0);
+ }
+#endif // DEBUG
+ if (!isolate_->heap()->ReserveSpace(reservations_)) return false;
+ for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
+ high_water_[i] = reservations_[i][0].start;
+ }
+ return true;
+}
+
+void Deserializer::Initialize(Isolate* isolate) {
+ DCHECK_NULL(isolate_);
+ DCHECK_NOT_NULL(isolate);
+ isolate_ = isolate;
+ DCHECK_NULL(external_reference_table_);
+ external_reference_table_ = ExternalReferenceTable::instance(isolate);
+ CHECK_EQ(magic_number_,
+ SerializedData::ComputeMagicNumber(external_reference_table_));
+}
+
+void Deserializer::Deserialize(Isolate* isolate) {
+ Initialize(isolate);
+ if (!ReserveSpace()) V8::FatalProcessOutOfMemory("deserializing context");
+ // No active threads.
+ DCHECK_NULL(isolate_->thread_manager()->FirstThreadStateInUse());
+ // No active handles.
+ DCHECK(isolate_->handle_scope_implementer()->blocks()->is_empty());
+
+ {
+ DisallowHeapAllocation no_gc;
+ isolate_->heap()->IterateSmiRoots(this);
+ isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
+ isolate_->heap()->RepairFreeListsAfterDeserialization();
+ isolate_->heap()->IterateWeakRoots(this, VISIT_ALL);
+ DeserializeDeferredObjects();
+ FlushICacheForNewIsolate();
+ }
+
+ isolate_->heap()->set_native_contexts_list(
+ isolate_->heap()->undefined_value());
+ // The allocation site list is build during root iteration, but if no sites
+ // were encountered then it needs to be initialized to undefined.
+ if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
+ isolate_->heap()->set_allocation_sites_list(
+ isolate_->heap()->undefined_value());
+ }
+
+ // Update data pointers to the external strings containing natives sources.
+ Natives::UpdateSourceCache(isolate_->heap());
+ ExtraNatives::UpdateSourceCache(isolate_->heap());
+
+ // Issue code events for newly deserialized code objects.
+ LOG_CODE_EVENT(isolate_, LogCodeObjects());
+ LOG_CODE_EVENT(isolate_, LogCompiledFunctions());
+}
+
+MaybeHandle<Object> Deserializer::DeserializePartial(
+ Isolate* isolate, Handle<JSGlobalProxy> global_proxy) {
+ Initialize(isolate);
+ if (!ReserveSpace()) {
+ V8::FatalProcessOutOfMemory("deserialize context");
+ return MaybeHandle<Object>();
+ }
+
+ Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New(1);
+ attached_objects[kGlobalProxyReference] = global_proxy;
+ SetAttachedObjects(attached_objects);
+
+ DisallowHeapAllocation no_gc;
+ // Keep track of the code space start and end pointers in case new
+ // code objects were unserialized
+ OldSpace* code_space = isolate_->heap()->code_space();
+ Address start_address = code_space->top();
+ Object* root;
+ VisitPointer(&root);
+ DeserializeDeferredObjects();
+
+ // There's no code deserialized here. If this assert fires then that's
+ // changed and logging should be added to notify the profiler et al of the
+ // new code, which also has to be flushed from instruction cache.
+ CHECK_EQ(start_address, code_space->top());
+ return Handle<Object>(root, isolate);
+}
+
+MaybeHandle<SharedFunctionInfo> Deserializer::DeserializeCode(
+ Isolate* isolate) {
+ Initialize(isolate);
+ if (!ReserveSpace()) {
+ return Handle<SharedFunctionInfo>();
+ } else {
+ deserializing_user_code_ = true;
+ HandleScope scope(isolate);
+ Handle<SharedFunctionInfo> result;
+ {
+ DisallowHeapAllocation no_gc;
+ Object* root;
+ VisitPointer(&root);
+ DeserializeDeferredObjects();
+ FlushICacheForNewCodeObjects();
+ result = Handle<SharedFunctionInfo>(SharedFunctionInfo::cast(root));
+ }
+ CommitPostProcessedObjects(isolate);
+ return scope.CloseAndEscape(result);
+ }
+}
+
+Deserializer::~Deserializer() {
+ // TODO(svenpanne) Re-enable this assertion when v8 initialization is fixed.
+ // DCHECK(source_.AtEOF());
+ attached_objects_.Dispose();
+}
+
+// This is called on the roots. It is the driver of the deserialization
+// process. It is also called on the body of each function.
+void Deserializer::VisitPointers(Object** start, Object** end) {
+ // The space must be new space. Any other space would cause ReadChunk to try
+ // to update the remembered using NULL as the address.
+ ReadData(start, end, NEW_SPACE, NULL);
+}
+
+void Deserializer::Synchronize(VisitorSynchronization::SyncTag tag) {
+ static const byte expected = kSynchronize;
+ CHECK_EQ(expected, source_.Get());
+}
+
+void Deserializer::DeserializeDeferredObjects() {
+ for (int code = source_.Get(); code != kSynchronize; code = source_.Get()) {
+ switch (code) {
+ case kAlignmentPrefix:
+ case kAlignmentPrefix + 1:
+ case kAlignmentPrefix + 2:
+ SetAlignment(code);
+ break;
+ default: {
+ int space = code & kSpaceMask;
+ DCHECK(space <= kNumberOfSpaces);
+ DCHECK(code - space == kNewObject);
+ HeapObject* object = GetBackReferencedObject(space);
+ int size = source_.GetInt() << kPointerSizeLog2;
+ Address obj_address = object->address();
+ Object** start = reinterpret_cast<Object**>(obj_address + kPointerSize);
+ Object** end = reinterpret_cast<Object**>(obj_address + size);
+ bool filled = ReadData(start, end, space, obj_address);
+ CHECK(filled);
+ DCHECK(CanBeDeferred(object));
+ PostProcessNewObject(object, space);
+ }
+ }
+ }
+}
+
+// Used to insert a deserialized internalized string into the string table.
+class StringTableInsertionKey : public HashTableKey {
+ public:
+ explicit StringTableInsertionKey(String* string)
+ : string_(string), hash_(HashForObject(string)) {
+ DCHECK(string->IsInternalizedString());
+ }
+
+ bool IsMatch(Object* string) override {
+ // We know that all entries in a hash table had their hash keys created.
+ // Use that knowledge to have fast failure.
+ if (hash_ != HashForObject(string)) return false;
+ // We want to compare the content of two internalized strings here.
+ return string_->SlowEquals(String::cast(string));
+ }
+
+ uint32_t Hash() override { return hash_; }
+
+ uint32_t HashForObject(Object* key) override {
+ return String::cast(key)->Hash();
+ }
+
+ MUST_USE_RESULT Handle<Object> AsHandle(Isolate* isolate) override {
+ return handle(string_, isolate);
+ }
+
+ private:
+ String* string_;
+ uint32_t hash_;
+ DisallowHeapAllocation no_gc;
+};
+
+HeapObject* Deserializer::PostProcessNewObject(HeapObject* obj, int space) {
+ if (deserializing_user_code()) {
+ if (obj->IsString()) {
+ String* string = String::cast(obj);
+ // Uninitialize hash field as the hash seed may have changed.
+ string->set_hash_field(String::kEmptyHashField);
+ if (string->IsInternalizedString()) {
+ // Canonicalize the internalized string. If it already exists in the
+ // string table, set it to forward to the existing one.
+ StringTableInsertionKey key(string);
+ String* canonical = StringTable::LookupKeyIfExists(isolate_, &key);
+ if (canonical == NULL) {
+ new_internalized_strings_.Add(handle(string));
+ return string;
+ } else {
+ string->SetForwardedInternalizedString(canonical);
+ return canonical;
+ }
+ }
+ } else if (obj->IsScript()) {
+ new_scripts_.Add(handle(Script::cast(obj)));
+ } else {
+ DCHECK(CanBeDeferred(obj));
+ }
+ }
+ if (obj->IsAllocationSite()) {
+ DCHECK(obj->IsAllocationSite());
+ // Allocation sites are present in the snapshot, and must be linked into
+ // a list at deserialization time.
+ AllocationSite* site = AllocationSite::cast(obj);
+ // TODO(mvstanton): consider treating the heap()->allocation_sites_list()
+ // as a (weak) root. If this root is relocated correctly, this becomes
+ // unnecessary.
+ if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
+ site->set_weak_next(isolate_->heap()->undefined_value());
+ } else {
+ site->set_weak_next(isolate_->heap()->allocation_sites_list());
+ }
+ isolate_->heap()->set_allocation_sites_list(site);
+ } else if (obj->IsCode()) {
+ // We flush all code pages after deserializing the startup snapshot. In that
+ // case, we only need to remember code objects in the large object space.
+ // When deserializing user code, remember each individual code object.
+ if (deserializing_user_code() || space == LO_SPACE) {
+ new_code_objects_.Add(Code::cast(obj));
+ }
+ }
+ // Check alignment.
+ DCHECK_EQ(0, Heap::GetFillToAlign(obj->address(), obj->RequiredAlignment()));
+ return obj;
+}
+
+void Deserializer::CommitPostProcessedObjects(Isolate* isolate) {
+ StringTable::EnsureCapacityForDeserialization(
+ isolate, new_internalized_strings_.length());
+ for (Handle<String> string : new_internalized_strings_) {
+ StringTableInsertionKey key(*string);
+ DCHECK_NULL(StringTable::LookupKeyIfExists(isolate, &key));
+ StringTable::LookupKey(isolate, &key);
+ }
+
+ Heap* heap = isolate->heap();
+ Factory* factory = isolate->factory();
+ for (Handle<Script> script : new_scripts_) {
+ // Assign a new script id to avoid collision.
+ script->set_id(isolate_->heap()->NextScriptId());
+ // Add script to list.
+ Handle<Object> list = WeakFixedArray::Add(factory->script_list(), script);
+ heap->SetRootScriptList(*list);
+ }
+}
+
+HeapObject* Deserializer::GetBackReferencedObject(int space) {
+ HeapObject* obj;
+ BackReference back_reference(source_.GetInt());
+ if (space == LO_SPACE) {
+ CHECK(back_reference.chunk_index() == 0);
+ uint32_t index = back_reference.large_object_index();
+ obj = deserialized_large_objects_[index];
+ } else {
+ DCHECK(space < kNumberOfPreallocatedSpaces);
+ uint32_t chunk_index = back_reference.chunk_index();
+ DCHECK_LE(chunk_index, current_chunk_[space]);
+ uint32_t chunk_offset = back_reference.chunk_offset();
+ Address address = reservations_[space][chunk_index].start + chunk_offset;
+ if (next_alignment_ != kWordAligned) {
+ int padding = Heap::GetFillToAlign(address, next_alignment_);
+ next_alignment_ = kWordAligned;
+ DCHECK(padding == 0 || HeapObject::FromAddress(address)->IsFiller());
+ address += padding;
+ }
+ obj = HeapObject::FromAddress(address);
+ }
+ if (deserializing_user_code() && obj->IsInternalizedString()) {
+ obj = String::cast(obj)->GetForwardedInternalizedString();
+ }
+ hot_objects_.Add(obj);
+ return obj;
+}
+
+// This routine writes the new object into the pointer provided and then
+// returns true if the new object was in young space and false otherwise.
+// The reason for this strange interface is that otherwise the object is
+// written very late, which means the FreeSpace map is not set up by the
+// time we need to use it to mark the space at the end of a page free.
+void Deserializer::ReadObject(int space_number, Object** write_back) {
+ Address address;
+ HeapObject* obj;
+ int size = source_.GetInt() << kObjectAlignmentBits;
+
+ if (next_alignment_ != kWordAligned) {
+ int reserved = size + Heap::GetMaximumFillToAlign(next_alignment_);
+ address = Allocate(space_number, reserved);
+ obj = HeapObject::FromAddress(address);
+ // If one of the following assertions fails, then we are deserializing an
+ // aligned object when the filler maps have not been deserialized yet.
+ // We require filler maps as padding to align the object.
+ Heap* heap = isolate_->heap();
+ DCHECK(heap->free_space_map()->IsMap());
+ DCHECK(heap->one_pointer_filler_map()->IsMap());
+ DCHECK(heap->two_pointer_filler_map()->IsMap());
+ obj = heap->AlignWithFiller(obj, size, reserved, next_alignment_);
+ address = obj->address();
+ next_alignment_ = kWordAligned;
+ } else {
+ address = Allocate(space_number, size);
+ obj = HeapObject::FromAddress(address);
+ }
+
+ isolate_->heap()->OnAllocationEvent(obj, size);
+ Object** current = reinterpret_cast<Object**>(address);
+ Object** limit = current + (size >> kPointerSizeLog2);
+ if (FLAG_log_snapshot_positions) {
+ LOG(isolate_, SnapshotPositionEvent(address, source_.position()));
+ }
+
+ if (ReadData(current, limit, space_number, address)) {
+ // Only post process if object content has not been deferred.
+ obj = PostProcessNewObject(obj, space_number);
+ }
+
+ Object* write_back_obj = obj;
+ UnalignedCopy(write_back, &write_back_obj);
+#ifdef DEBUG
+ if (obj->IsCode()) {
+ DCHECK(space_number == CODE_SPACE || space_number == LO_SPACE);
+ } else {
+ DCHECK(space_number != CODE_SPACE);
+ }
+#endif // DEBUG
+}
+
+// We know the space requirements before deserialization and can
+// pre-allocate that reserved space. During deserialization, all we need
+// to do is to bump up the pointer for each space in the reserved
+// space. This is also used for fixing back references.
+// We may have to split up the pre-allocation into several chunks
+// because it would not fit onto a single page. We do not have to keep
+// track of when to move to the next chunk. An opcode will signal this.
+// Since multiple large objects cannot be folded into one large object
+// space allocation, we have to do an actual allocation when deserializing
+// each large object. Instead of tracking offset for back references, we
+// reference large objects by index.
+Address Deserializer::Allocate(int space_index, int size) {
+ if (space_index == LO_SPACE) {
+ AlwaysAllocateScope scope(isolate_);
+ LargeObjectSpace* lo_space = isolate_->heap()->lo_space();
+ Executability exec = static_cast<Executability>(source_.Get());
+ AllocationResult result = lo_space->AllocateRaw(size, exec);
+ HeapObject* obj = HeapObject::cast(result.ToObjectChecked());
+ deserialized_large_objects_.Add(obj);
+ return obj->address();
+ } else {
+ DCHECK(space_index < kNumberOfPreallocatedSpaces);
+ Address address = high_water_[space_index];
+ DCHECK_NOT_NULL(address);
+ high_water_[space_index] += size;
+#ifdef DEBUG
+ // Assert that the current reserved chunk is still big enough.
+ const Heap::Reservation& reservation = reservations_[space_index];
+ int chunk_index = current_chunk_[space_index];
+ CHECK_LE(high_water_[space_index], reservation[chunk_index].end);
+#endif
+ return address;
+ }
+}
+
+Object** Deserializer::CopyInNativesSource(Vector<const char> source_vector,
+ Object** current) {
+ DCHECK(!isolate_->heap()->deserialization_complete());
+ NativesExternalStringResource* resource = new NativesExternalStringResource(
+ source_vector.start(), source_vector.length());
+ Object* resource_obj = reinterpret_cast<Object*>(resource);
+ UnalignedCopy(current++, &resource_obj);
+ return current;
+}
+
+bool Deserializer::ReadData(Object** current, Object** limit, int source_space,
+ Address current_object_address) {
+ Isolate* const isolate = isolate_;
+ // Write barrier support costs around 1% in startup time. In fact there
+ // are no new space objects in current boot snapshots, so it's not needed,
+ // but that may change.
+ bool write_barrier_needed =
+ (current_object_address != NULL && source_space != NEW_SPACE &&
+ source_space != CODE_SPACE);
+ while (current < limit) {
+ byte data = source_.Get();
+ switch (data) {
+#define CASE_STATEMENT(where, how, within, space_number) \
+ case where + how + within + space_number: \
+ STATIC_ASSERT((where & ~kWhereMask) == 0); \
+ STATIC_ASSERT((how & ~kHowToCodeMask) == 0); \
+ STATIC_ASSERT((within & ~kWhereToPointMask) == 0); \
+ STATIC_ASSERT((space_number & ~kSpaceMask) == 0);
+
+#define CASE_BODY(where, how, within, space_number_if_any) \
+ { \
+ bool emit_write_barrier = false; \
+ bool current_was_incremented = false; \
+ int space_number = space_number_if_any == kAnyOldSpace \
+ ? (data & kSpaceMask) \
+ : space_number_if_any; \
+ if (where == kNewObject && how == kPlain && within == kStartOfObject) { \
+ ReadObject(space_number, current); \
+ emit_write_barrier = (space_number == NEW_SPACE); \
+ } else { \
+ Object* new_object = NULL; /* May not be a real Object pointer. */ \
+ if (where == kNewObject) { \
+ ReadObject(space_number, &new_object); \
+ } else if (where == kBackref) { \
+ emit_write_barrier = (space_number == NEW_SPACE); \
+ new_object = GetBackReferencedObject(data & kSpaceMask); \
+ } else if (where == kBackrefWithSkip) { \
+ int skip = source_.GetInt(); \
+ current = reinterpret_cast<Object**>( \
+ reinterpret_cast<Address>(current) + skip); \
+ emit_write_barrier = (space_number == NEW_SPACE); \
+ new_object = GetBackReferencedObject(data & kSpaceMask); \
+ } else if (where == kRootArray) { \
+ int id = source_.GetInt(); \
+ Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(id); \
+ new_object = isolate->heap()->root(root_index); \
+ emit_write_barrier = isolate->heap()->InNewSpace(new_object); \
+ } else if (where == kPartialSnapshotCache) { \
+ int cache_index = source_.GetInt(); \
+ new_object = isolate->partial_snapshot_cache()->at(cache_index); \
+ emit_write_barrier = isolate->heap()->InNewSpace(new_object); \
+ } else if (where == kExternalReference) { \
+ int skip = source_.GetInt(); \
+ current = reinterpret_cast<Object**>( \
+ reinterpret_cast<Address>(current) + skip); \
+ int reference_id = source_.GetInt(); \
+ Address address = external_reference_table_->address(reference_id); \
+ new_object = reinterpret_cast<Object*>(address); \
+ } else if (where == kAttachedReference) { \
+ int index = source_.GetInt(); \
+ DCHECK(deserializing_user_code() || index == kGlobalProxyReference); \
+ new_object = *attached_objects_[index]; \
+ emit_write_barrier = isolate->heap()->InNewSpace(new_object); \
+ } else { \
+ DCHECK(where == kBuiltin); \
+ DCHECK(deserializing_user_code()); \
+ int builtin_id = source_.GetInt(); \
+ DCHECK_LE(0, builtin_id); \
+ DCHECK_LT(builtin_id, Builtins::builtin_count); \
+ Builtins::Name name = static_cast<Builtins::Name>(builtin_id); \
+ new_object = isolate->builtins()->builtin(name); \
+ emit_write_barrier = false; \
+ } \
+ if (within == kInnerPointer) { \
+ if (space_number != CODE_SPACE || new_object->IsCode()) { \
+ Code* new_code_object = reinterpret_cast<Code*>(new_object); \
+ new_object = \
+ reinterpret_cast<Object*>(new_code_object->instruction_start()); \
+ } else { \
+ DCHECK(space_number == CODE_SPACE); \
+ Cell* cell = Cell::cast(new_object); \
+ new_object = reinterpret_cast<Object*>(cell->ValueAddress()); \
+ } \
+ } \
+ if (how == kFromCode) { \
+ Address location_of_branch_data = reinterpret_cast<Address>(current); \
+ Assembler::deserialization_set_special_target_at( \
+ isolate, location_of_branch_data, \
+ Code::cast(HeapObject::FromAddress(current_object_address)), \
+ reinterpret_cast<Address>(new_object)); \
+ location_of_branch_data += Assembler::kSpecialTargetSize; \
+ current = reinterpret_cast<Object**>(location_of_branch_data); \
+ current_was_incremented = true; \
+ } else { \
+ UnalignedCopy(current, &new_object); \
+ } \
+ } \
+ if (emit_write_barrier && write_barrier_needed) { \
+ Address current_address = reinterpret_cast<Address>(current); \
+ SLOW_DCHECK(isolate->heap()->ContainsSlow(current_object_address)); \
+ isolate->heap()->RecordWrite( \
+ HeapObject::FromAddress(current_object_address), \
+ static_cast<int>(current_address - current_object_address), \
+ *reinterpret_cast<Object**>(current_address)); \
+ } \
+ if (!current_was_incremented) { \
+ current++; \
+ } \
+ break; \
+ }
+
+// This generates a case and a body for the new space (which has to do extra
+// write barrier handling) and handles the other spaces with fall-through cases
+// and one body.
+#define ALL_SPACES(where, how, within) \
+ CASE_STATEMENT(where, how, within, NEW_SPACE) \
+ CASE_BODY(where, how, within, NEW_SPACE) \
+ CASE_STATEMENT(where, how, within, OLD_SPACE) \
+ CASE_STATEMENT(where, how, within, CODE_SPACE) \
+ CASE_STATEMENT(where, how, within, MAP_SPACE) \
+ CASE_STATEMENT(where, how, within, LO_SPACE) \
+ CASE_BODY(where, how, within, kAnyOldSpace)
+
+#define FOUR_CASES(byte_code) \
+ case byte_code: \
+ case byte_code + 1: \
+ case byte_code + 2: \
+ case byte_code + 3:
+
+#define SIXTEEN_CASES(byte_code) \
+ FOUR_CASES(byte_code) \
+ FOUR_CASES(byte_code + 4) \
+ FOUR_CASES(byte_code + 8) \
+ FOUR_CASES(byte_code + 12)
+
+#define SINGLE_CASE(where, how, within, space) \
+ CASE_STATEMENT(where, how, within, space) \
+ CASE_BODY(where, how, within, space)
+
+ // Deserialize a new object and write a pointer to it to the current
+ // object.
+ ALL_SPACES(kNewObject, kPlain, kStartOfObject)
+ // Support for direct instruction pointers in functions. It's an inner
+ // pointer because it points at the entry point, not at the start of the
+ // code object.
+ SINGLE_CASE(kNewObject, kPlain, kInnerPointer, CODE_SPACE)
+ // Deserialize a new code object and write a pointer to its first
+ // instruction to the current code object.
+ ALL_SPACES(kNewObject, kFromCode, kInnerPointer)
+ // Find a recently deserialized object using its offset from the current
+ // allocation point and write a pointer to it to the current object.
+ ALL_SPACES(kBackref, kPlain, kStartOfObject)
+ ALL_SPACES(kBackrefWithSkip, kPlain, kStartOfObject)
+#if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \
+ defined(V8_TARGET_ARCH_PPC) || V8_EMBEDDED_CONSTANT_POOL
+ // Deserialize a new object from pointer found in code and write
+ // a pointer to it to the current object. Required only for MIPS, PPC or
+ // ARM with embedded constant pool, and omitted on the other architectures
+ // because it is fully unrolled and would cause bloat.
+ ALL_SPACES(kNewObject, kFromCode, kStartOfObject)
+ // Find a recently deserialized code object using its offset from the
+ // current allocation point and write a pointer to it to the current
+ // object. Required only for MIPS, PPC or ARM with embedded constant pool.
+ ALL_SPACES(kBackref, kFromCode, kStartOfObject)
+ ALL_SPACES(kBackrefWithSkip, kFromCode, kStartOfObject)
+#endif
+ // Find a recently deserialized code object using its offset from the
+ // current allocation point and write a pointer to its first instruction
+ // to the current code object or the instruction pointer in a function
+ // object.
+ ALL_SPACES(kBackref, kFromCode, kInnerPointer)
+ ALL_SPACES(kBackrefWithSkip, kFromCode, kInnerPointer)
+ ALL_SPACES(kBackref, kPlain, kInnerPointer)
+ ALL_SPACES(kBackrefWithSkip, kPlain, kInnerPointer)
+ // Find an object in the roots array and write a pointer to it to the
+ // current object.
+ SINGLE_CASE(kRootArray, kPlain, kStartOfObject, 0)
+#if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \
+ defined(V8_TARGET_ARCH_PPC) || V8_EMBEDDED_CONSTANT_POOL
+ // Find an object in the roots array and write a pointer to it to in code.
+ SINGLE_CASE(kRootArray, kFromCode, kStartOfObject, 0)
+#endif
+ // Find an object in the partial snapshots cache and write a pointer to it
+ // to the current object.
+ SINGLE_CASE(kPartialSnapshotCache, kPlain, kStartOfObject, 0)
+ // Find an code entry in the partial snapshots cache and
+ // write a pointer to it to the current object.
+ SINGLE_CASE(kPartialSnapshotCache, kPlain, kInnerPointer, 0)
+ // Find an external reference and write a pointer to it to the current
+ // object.
+ SINGLE_CASE(kExternalReference, kPlain, kStartOfObject, 0)
+ // Find an external reference and write a pointer to it in the current
+ // code object.
+ SINGLE_CASE(kExternalReference, kFromCode, kStartOfObject, 0)
+ // Find an object in the attached references and write a pointer to it to
+ // the current object.
+ SINGLE_CASE(kAttachedReference, kPlain, kStartOfObject, 0)
+ SINGLE_CASE(kAttachedReference, kPlain, kInnerPointer, 0)
+ SINGLE_CASE(kAttachedReference, kFromCode, kInnerPointer, 0)
+ // Find a builtin and write a pointer to it to the current object.
+ SINGLE_CASE(kBuiltin, kPlain, kStartOfObject, 0)
+ SINGLE_CASE(kBuiltin, kPlain, kInnerPointer, 0)
+ SINGLE_CASE(kBuiltin, kFromCode, kInnerPointer, 0)
+
+#undef CASE_STATEMENT
+#undef CASE_BODY
+#undef ALL_SPACES
+
+ case kSkip: {
+ int size = source_.GetInt();
+ current = reinterpret_cast<Object**>(
+ reinterpret_cast<intptr_t>(current) + size);
+ break;
+ }
+
+ case kInternalReferenceEncoded:
+ case kInternalReference: {
+ // Internal reference address is not encoded via skip, but by offset
+ // from code entry.
+ int pc_offset = source_.GetInt();
+ int target_offset = source_.GetInt();
+ Code* code =
+ Code::cast(HeapObject::FromAddress(current_object_address));
+ DCHECK(0 <= pc_offset && pc_offset <= code->instruction_size());
+ DCHECK(0 <= target_offset && target_offset <= code->instruction_size());
+ Address pc = code->entry() + pc_offset;
+ Address target = code->entry() + target_offset;
+ Assembler::deserialization_set_target_internal_reference_at(
+ isolate, pc, target, data == kInternalReference
+ ? RelocInfo::INTERNAL_REFERENCE
+ : RelocInfo::INTERNAL_REFERENCE_ENCODED);
+ break;
+ }
+
+ case kNop:
+ break;
+
+ case kNextChunk: {
+ int space = source_.Get();
+ DCHECK(space < kNumberOfPreallocatedSpaces);
+ int chunk_index = current_chunk_[space];
+ const Heap::Reservation& reservation = reservations_[space];
+ // Make sure the current chunk is indeed exhausted.
+ CHECK_EQ(reservation[chunk_index].end, high_water_[space]);
+ // Move to next reserved chunk.
+ chunk_index = ++current_chunk_[space];
+ CHECK_LT(chunk_index, reservation.length());
+ high_water_[space] = reservation[chunk_index].start;
+ break;
+ }
+
+ case kDeferred: {
+ // Deferred can only occur right after the heap object header.
+ DCHECK(current == reinterpret_cast<Object**>(current_object_address +
+ kPointerSize));
+ HeapObject* obj = HeapObject::FromAddress(current_object_address);
+ // If the deferred object is a map, its instance type may be used
+ // during deserialization. Initialize it with a temporary value.
+ if (obj->IsMap()) Map::cast(obj)->set_instance_type(FILLER_TYPE);
+ current = limit;
+ return false;
+ }
+
+ case kSynchronize:
+ // If we get here then that indicates that you have a mismatch between
+ // the number of GC roots when serializing and deserializing.
+ CHECK(false);
+ break;
+
+ case kNativesStringResource:
+ current = CopyInNativesSource(Natives::GetScriptSource(source_.Get()),
+ current);
+ break;
+
+ case kExtraNativesStringResource:
+ current = CopyInNativesSource(
+ ExtraNatives::GetScriptSource(source_.Get()), current);
+ break;
+
+ // Deserialize raw data of variable length.
+ case kVariableRawData: {
+ int size_in_bytes = source_.GetInt();
+ byte* raw_data_out = reinterpret_cast<byte*>(current);
+ source_.CopyRaw(raw_data_out, size_in_bytes);
+ break;
+ }
+
+ case kVariableRepeat: {
+ int repeats = source_.GetInt();
+ Object* object = current[-1];
+ DCHECK(!isolate->heap()->InNewSpace(object));
+ for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object);
+ break;
+ }
+
+ case kAlignmentPrefix:
+ case kAlignmentPrefix + 1:
+ case kAlignmentPrefix + 2:
+ SetAlignment(data);
+ break;
+
+ STATIC_ASSERT(kNumberOfRootArrayConstants == Heap::kOldSpaceRoots);
+ STATIC_ASSERT(kNumberOfRootArrayConstants == 32);
+ SIXTEEN_CASES(kRootArrayConstantsWithSkip)
+ SIXTEEN_CASES(kRootArrayConstantsWithSkip + 16) {
+ int skip = source_.GetInt();
+ current = reinterpret_cast<Object**>(
+ reinterpret_cast<intptr_t>(current) + skip);
+ // Fall through.
+ }
+
+ SIXTEEN_CASES(kRootArrayConstants)
+ SIXTEEN_CASES(kRootArrayConstants + 16) {
+ int id = data & kRootArrayConstantsMask;
+ Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(id);
+ Object* object = isolate->heap()->root(root_index);
+ DCHECK(!isolate->heap()->InNewSpace(object));
+ UnalignedCopy(current++, &object);
+ break;
+ }
+
+ STATIC_ASSERT(kNumberOfHotObjects == 8);
+ FOUR_CASES(kHotObjectWithSkip)
+ FOUR_CASES(kHotObjectWithSkip + 4) {
+ int skip = source_.GetInt();
+ current = reinterpret_cast<Object**>(
+ reinterpret_cast<Address>(current) + skip);
+ // Fall through.
+ }
+
+ FOUR_CASES(kHotObject)
+ FOUR_CASES(kHotObject + 4) {
+ int index = data & kHotObjectMask;
+ Object* hot_object = hot_objects_.Get(index);
+ UnalignedCopy(current, &hot_object);
+ if (write_barrier_needed) {
+ Address current_address = reinterpret_cast<Address>(current);
+ SLOW_DCHECK(isolate->heap()->ContainsSlow(current_object_address));
+ isolate->heap()->RecordWrite(
+ HeapObject::FromAddress(current_object_address),
+ static_cast<int>(current_address - current_object_address),
+ hot_object);
+ }
+ current++;
+ break;
+ }
+
+ // Deserialize raw data of fixed length from 1 to 32 words.
+ STATIC_ASSERT(kNumberOfFixedRawData == 32);
+ SIXTEEN_CASES(kFixedRawData)
+ SIXTEEN_CASES(kFixedRawData + 16) {
+ byte* raw_data_out = reinterpret_cast<byte*>(current);
+ int size_in_bytes = (data - kFixedRawDataStart) << kPointerSizeLog2;
+ source_.CopyRaw(raw_data_out, size_in_bytes);
+ current = reinterpret_cast<Object**>(raw_data_out + size_in_bytes);
+ break;
+ }
+
+ STATIC_ASSERT(kNumberOfFixedRepeat == 16);
+ SIXTEEN_CASES(kFixedRepeat) {
+ int repeats = data - kFixedRepeatStart;
+ Object* object;
+ UnalignedCopy(&object, current - 1);
+ DCHECK(!isolate->heap()->InNewSpace(object));
+ for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object);
+ break;
+ }
+
+#undef SIXTEEN_CASES
+#undef FOUR_CASES
+#undef SINGLE_CASE
+
+ default:
+ CHECK(false);
+ }
+ }
+ CHECK_EQ(limit, current);
+ return true;
+}
+} // namespace internal
+} // namespace v8
« no previous file with comments | « src/snapshot/deserializer.h ('k') | src/snapshot/mksnapshot.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698