| Index: src/snapshot/serialize.cc
|
| diff --git a/src/snapshot/serialize.cc b/src/snapshot/serialize.cc
|
| deleted file mode 100644
|
| index f7b5ae81c52a8e131d0ef46d9b7bbb9e94ac1903..0000000000000000000000000000000000000000
|
| --- a/src/snapshot/serialize.cc
|
| +++ /dev/null
|
| @@ -1,2874 +0,0 @@
|
| -// Copyright 2012 the V8 project authors. All rights reserved.
|
| -// Use of this source code is governed by a BSD-style license that can be
|
| -// found in the LICENSE file.
|
| -
|
| -#include "src/snapshot/serialize.h"
|
| -
|
| -#include "src/accessors.h"
|
| -#include "src/api.h"
|
| -#include "src/base/platform/platform.h"
|
| -#include "src/bootstrapper.h"
|
| -#include "src/code-stubs.h"
|
| -#include "src/deoptimizer.h"
|
| -#include "src/execution.h"
|
| -#include "src/global-handles.h"
|
| -#include "src/ic/ic.h"
|
| -#include "src/ic/stub-cache.h"
|
| -#include "src/objects.h"
|
| -#include "src/parsing/parser.h"
|
| -#include "src/profiler/cpu-profiler.h"
|
| -#include "src/runtime/runtime.h"
|
| -#include "src/snapshot/natives.h"
|
| -#include "src/snapshot/snapshot.h"
|
| -#include "src/snapshot/snapshot-source-sink.h"
|
| -#include "src/v8.h"
|
| -#include "src/v8threads.h"
|
| -#include "src/version.h"
|
| -
|
| -namespace v8 {
|
| -namespace internal {
|
| -
|
| -
|
| -// -----------------------------------------------------------------------------
|
| -// Coding of external references.
|
| -
|
| -
|
| -ExternalReferenceTable* ExternalReferenceTable::instance(Isolate* isolate) {
|
| - ExternalReferenceTable* external_reference_table =
|
| - isolate->external_reference_table();
|
| - if (external_reference_table == NULL) {
|
| - external_reference_table = new ExternalReferenceTable(isolate);
|
| - isolate->set_external_reference_table(external_reference_table);
|
| - }
|
| - return external_reference_table;
|
| -}
|
| -
|
| -
|
| -ExternalReferenceTable::ExternalReferenceTable(Isolate* isolate) {
|
| - // Miscellaneous
|
| - Add(ExternalReference::roots_array_start(isolate).address(),
|
| - "Heap::roots_array_start()");
|
| - Add(ExternalReference::address_of_stack_limit(isolate).address(),
|
| - "StackGuard::address_of_jslimit()");
|
| - Add(ExternalReference::address_of_real_stack_limit(isolate).address(),
|
| - "StackGuard::address_of_real_jslimit()");
|
| - Add(ExternalReference::new_space_start(isolate).address(),
|
| - "Heap::NewSpaceStart()");
|
| - Add(ExternalReference::new_space_allocation_limit_address(isolate).address(),
|
| - "Heap::NewSpaceAllocationLimitAddress()");
|
| - Add(ExternalReference::new_space_allocation_top_address(isolate).address(),
|
| - "Heap::NewSpaceAllocationTopAddress()");
|
| - Add(ExternalReference::mod_two_doubles_operation(isolate).address(),
|
| - "mod_two_doubles");
|
| - // Keyed lookup cache.
|
| - Add(ExternalReference::keyed_lookup_cache_keys(isolate).address(),
|
| - "KeyedLookupCache::keys()");
|
| - Add(ExternalReference::keyed_lookup_cache_field_offsets(isolate).address(),
|
| - "KeyedLookupCache::field_offsets()");
|
| - Add(ExternalReference::handle_scope_next_address(isolate).address(),
|
| - "HandleScope::next");
|
| - Add(ExternalReference::handle_scope_limit_address(isolate).address(),
|
| - "HandleScope::limit");
|
| - Add(ExternalReference::handle_scope_level_address(isolate).address(),
|
| - "HandleScope::level");
|
| - Add(ExternalReference::new_deoptimizer_function(isolate).address(),
|
| - "Deoptimizer::New()");
|
| - Add(ExternalReference::compute_output_frames_function(isolate).address(),
|
| - "Deoptimizer::ComputeOutputFrames()");
|
| - Add(ExternalReference::address_of_min_int().address(),
|
| - "LDoubleConstant::min_int");
|
| - Add(ExternalReference::address_of_one_half().address(),
|
| - "LDoubleConstant::one_half");
|
| - Add(ExternalReference::isolate_address(isolate).address(), "isolate");
|
| - Add(ExternalReference::interpreter_dispatch_table_address(isolate).address(),
|
| - "Interpreter::dispatch_table_address");
|
| - Add(ExternalReference::address_of_negative_infinity().address(),
|
| - "LDoubleConstant::negative_infinity");
|
| - Add(ExternalReference::power_double_double_function(isolate).address(),
|
| - "power_double_double_function");
|
| - Add(ExternalReference::power_double_int_function(isolate).address(),
|
| - "power_double_int_function");
|
| - Add(ExternalReference::math_log_double_function(isolate).address(),
|
| - "std::log");
|
| - Add(ExternalReference::store_buffer_top(isolate).address(),
|
| - "store_buffer_top");
|
| - Add(ExternalReference::address_of_the_hole_nan().address(), "the_hole_nan");
|
| - Add(ExternalReference::get_date_field_function(isolate).address(),
|
| - "JSDate::GetField");
|
| - Add(ExternalReference::date_cache_stamp(isolate).address(),
|
| - "date_cache_stamp");
|
| - Add(ExternalReference::address_of_pending_message_obj(isolate).address(),
|
| - "address_of_pending_message_obj");
|
| - Add(ExternalReference::get_make_code_young_function(isolate).address(),
|
| - "Code::MakeCodeYoung");
|
| - Add(ExternalReference::cpu_features().address(), "cpu_features");
|
| - Add(ExternalReference::old_space_allocation_top_address(isolate).address(),
|
| - "Heap::OldSpaceAllocationTopAddress");
|
| - Add(ExternalReference::old_space_allocation_limit_address(isolate).address(),
|
| - "Heap::OldSpaceAllocationLimitAddress");
|
| - Add(ExternalReference::allocation_sites_list_address(isolate).address(),
|
| - "Heap::allocation_sites_list_address()");
|
| - Add(ExternalReference::address_of_uint32_bias().address(), "uint32_bias");
|
| - Add(ExternalReference::get_mark_code_as_executed_function(isolate).address(),
|
| - "Code::MarkCodeAsExecuted");
|
| - Add(ExternalReference::is_profiling_address(isolate).address(),
|
| - "CpuProfiler::is_profiling");
|
| - Add(ExternalReference::scheduled_exception_address(isolate).address(),
|
| - "Isolate::scheduled_exception");
|
| - Add(ExternalReference::invoke_function_callback(isolate).address(),
|
| - "InvokeFunctionCallback");
|
| - Add(ExternalReference::invoke_accessor_getter_callback(isolate).address(),
|
| - "InvokeAccessorGetterCallback");
|
| - Add(ExternalReference::f32_trunc_wrapper_function(isolate).address(),
|
| - "f32_trunc_wrapper");
|
| - Add(ExternalReference::f32_floor_wrapper_function(isolate).address(),
|
| - "f32_floor_wrapper");
|
| - Add(ExternalReference::f32_ceil_wrapper_function(isolate).address(),
|
| - "f32_ceil_wrapper");
|
| - Add(ExternalReference::f32_nearest_int_wrapper_function(isolate).address(),
|
| - "f32_nearest_int_wrapper");
|
| - Add(ExternalReference::f64_trunc_wrapper_function(isolate).address(),
|
| - "f64_trunc_wrapper");
|
| - Add(ExternalReference::f64_floor_wrapper_function(isolate).address(),
|
| - "f64_floor_wrapper");
|
| - Add(ExternalReference::f64_ceil_wrapper_function(isolate).address(),
|
| - "f64_ceil_wrapper");
|
| - Add(ExternalReference::f64_nearest_int_wrapper_function(isolate).address(),
|
| - "f64_nearest_int_wrapper");
|
| - Add(ExternalReference::log_enter_external_function(isolate).address(),
|
| - "Logger::EnterExternal");
|
| - Add(ExternalReference::log_leave_external_function(isolate).address(),
|
| - "Logger::LeaveExternal");
|
| - Add(ExternalReference::address_of_minus_one_half().address(),
|
| - "double_constants.minus_one_half");
|
| - Add(ExternalReference::stress_deopt_count(isolate).address(),
|
| - "Isolate::stress_deopt_count_address()");
|
| - Add(ExternalReference::virtual_handler_register(isolate).address(),
|
| - "Isolate::virtual_handler_register()");
|
| - Add(ExternalReference::virtual_slot_register(isolate).address(),
|
| - "Isolate::virtual_slot_register()");
|
| - Add(ExternalReference::runtime_function_table_address(isolate).address(),
|
| - "Runtime::runtime_function_table_address()");
|
| -
|
| - // Debug addresses
|
| - Add(ExternalReference::debug_after_break_target_address(isolate).address(),
|
| - "Debug::after_break_target_address()");
|
| - Add(ExternalReference::debug_is_active_address(isolate).address(),
|
| - "Debug::is_active_address()");
|
| - Add(ExternalReference::debug_step_in_enabled_address(isolate).address(),
|
| - "Debug::step_in_enabled_address()");
|
| -
|
| -#ifndef V8_INTERPRETED_REGEXP
|
| - Add(ExternalReference::re_case_insensitive_compare_uc16(isolate).address(),
|
| - "NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()");
|
| - Add(ExternalReference::re_check_stack_guard_state(isolate).address(),
|
| - "RegExpMacroAssembler*::CheckStackGuardState()");
|
| - Add(ExternalReference::re_grow_stack(isolate).address(),
|
| - "NativeRegExpMacroAssembler::GrowStack()");
|
| - Add(ExternalReference::re_word_character_map().address(),
|
| - "NativeRegExpMacroAssembler::word_character_map");
|
| - Add(ExternalReference::address_of_regexp_stack_limit(isolate).address(),
|
| - "RegExpStack::limit_address()");
|
| - Add(ExternalReference::address_of_regexp_stack_memory_address(isolate)
|
| - .address(),
|
| - "RegExpStack::memory_address()");
|
| - Add(ExternalReference::address_of_regexp_stack_memory_size(isolate).address(),
|
| - "RegExpStack::memory_size()");
|
| - Add(ExternalReference::address_of_static_offsets_vector(isolate).address(),
|
| - "OffsetsVector::static_offsets_vector");
|
| -#endif // V8_INTERPRETED_REGEXP
|
| -
|
| - // The following populates all of the different type of external references
|
| - // into the ExternalReferenceTable.
|
| - //
|
| - // NOTE: This function was originally 100k of code. It has since been
|
| - // rewritten to be mostly table driven, as the callback macro style tends to
|
| - // very easily cause code bloat. Please be careful in the future when adding
|
| - // new references.
|
| -
|
| - struct RefTableEntry {
|
| - uint16_t id;
|
| - const char* name;
|
| - };
|
| -
|
| - static const RefTableEntry c_builtins[] = {
|
| -#define DEF_ENTRY_C(name, ignored) \
|
| - { Builtins::c_##name, "Builtins::" #name } \
|
| - ,
|
| - BUILTIN_LIST_C(DEF_ENTRY_C)
|
| -#undef DEF_ENTRY_C
|
| - };
|
| -
|
| - for (unsigned i = 0; i < arraysize(c_builtins); ++i) {
|
| - ExternalReference ref(static_cast<Builtins::CFunctionId>(c_builtins[i].id),
|
| - isolate);
|
| - Add(ref.address(), c_builtins[i].name);
|
| - }
|
| -
|
| - static const RefTableEntry builtins[] = {
|
| -#define DEF_ENTRY_C(name, ignored) \
|
| - { Builtins::k##name, "Builtins::" #name } \
|
| - ,
|
| -#define DEF_ENTRY_A(name, i1, i2, i3) \
|
| - { Builtins::k##name, "Builtins::" #name } \
|
| - ,
|
| - BUILTIN_LIST_C(DEF_ENTRY_C) BUILTIN_LIST_A(DEF_ENTRY_A)
|
| - BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A)
|
| -#undef DEF_ENTRY_C
|
| -#undef DEF_ENTRY_A
|
| - };
|
| -
|
| - for (unsigned i = 0; i < arraysize(builtins); ++i) {
|
| - ExternalReference ref(static_cast<Builtins::Name>(builtins[i].id), isolate);
|
| - Add(ref.address(), builtins[i].name);
|
| - }
|
| -
|
| - static const RefTableEntry runtime_functions[] = {
|
| -#define RUNTIME_ENTRY(name, i1, i2) \
|
| - { Runtime::k##name, "Runtime::" #name } \
|
| - ,
|
| - FOR_EACH_INTRINSIC(RUNTIME_ENTRY)
|
| -#undef RUNTIME_ENTRY
|
| - };
|
| -
|
| - for (unsigned i = 0; i < arraysize(runtime_functions); ++i) {
|
| - ExternalReference ref(
|
| - static_cast<Runtime::FunctionId>(runtime_functions[i].id), isolate);
|
| - Add(ref.address(), runtime_functions[i].name);
|
| - }
|
| -
|
| - // Stat counters
|
| - struct StatsRefTableEntry {
|
| - StatsCounter* (Counters::*counter)();
|
| - const char* name;
|
| - };
|
| -
|
| - static const StatsRefTableEntry stats_ref_table[] = {
|
| -#define COUNTER_ENTRY(name, caption) \
|
| - { &Counters::name, "Counters::" #name } \
|
| - ,
|
| - STATS_COUNTER_LIST_1(COUNTER_ENTRY) STATS_COUNTER_LIST_2(COUNTER_ENTRY)
|
| -#undef COUNTER_ENTRY
|
| - };
|
| -
|
| - Counters* counters = isolate->counters();
|
| - for (unsigned i = 0; i < arraysize(stats_ref_table); ++i) {
|
| - // To make sure the indices are not dependent on whether counters are
|
| - // enabled, use a dummy address as filler.
|
| - Address address = NotAvailable();
|
| - StatsCounter* counter = (counters->*(stats_ref_table[i].counter))();
|
| - if (counter->Enabled()) {
|
| - address = reinterpret_cast<Address>(counter->GetInternalPointer());
|
| - }
|
| - Add(address, stats_ref_table[i].name);
|
| - }
|
| -
|
| - // Top addresses
|
| - static const char* address_names[] = {
|
| -#define BUILD_NAME_LITERAL(Name, name) "Isolate::" #name "_address",
|
| - FOR_EACH_ISOLATE_ADDRESS_NAME(BUILD_NAME_LITERAL) NULL
|
| -#undef BUILD_NAME_LITERAL
|
| - };
|
| -
|
| - for (int i = 0; i < Isolate::kIsolateAddressCount; ++i) {
|
| - Add(isolate->get_address_from_id(static_cast<Isolate::AddressId>(i)),
|
| - address_names[i]);
|
| - }
|
| -
|
| - // Accessors
|
| - struct AccessorRefTable {
|
| - Address address;
|
| - const char* name;
|
| - };
|
| -
|
| - static const AccessorRefTable accessors[] = {
|
| -#define ACCESSOR_INFO_DECLARATION(name) \
|
| - { FUNCTION_ADDR(&Accessors::name##Getter), "Accessors::" #name "Getter" } \
|
| - ,
|
| - ACCESSOR_INFO_LIST(ACCESSOR_INFO_DECLARATION)
|
| -#undef ACCESSOR_INFO_DECLARATION
|
| -#define ACCESSOR_SETTER_DECLARATION(name) \
|
| - { FUNCTION_ADDR(&Accessors::name), "Accessors::" #name } \
|
| - ,
|
| - ACCESSOR_SETTER_LIST(ACCESSOR_SETTER_DECLARATION)
|
| -#undef ACCESSOR_INFO_DECLARATION
|
| - };
|
| -
|
| - for (unsigned i = 0; i < arraysize(accessors); ++i) {
|
| - Add(accessors[i].address, accessors[i].name);
|
| - }
|
| -
|
| - StubCache* stub_cache = isolate->stub_cache();
|
| -
|
| - // Stub cache tables
|
| - Add(stub_cache->key_reference(StubCache::kPrimary).address(),
|
| - "StubCache::primary_->key");
|
| - Add(stub_cache->value_reference(StubCache::kPrimary).address(),
|
| - "StubCache::primary_->value");
|
| - Add(stub_cache->map_reference(StubCache::kPrimary).address(),
|
| - "StubCache::primary_->map");
|
| - Add(stub_cache->key_reference(StubCache::kSecondary).address(),
|
| - "StubCache::secondary_->key");
|
| - Add(stub_cache->value_reference(StubCache::kSecondary).address(),
|
| - "StubCache::secondary_->value");
|
| - Add(stub_cache->map_reference(StubCache::kSecondary).address(),
|
| - "StubCache::secondary_->map");
|
| -
|
| - // Runtime entries
|
| - Add(ExternalReference::delete_handle_scope_extensions(isolate).address(),
|
| - "HandleScope::DeleteExtensions");
|
| - Add(ExternalReference::incremental_marking_record_write_function(isolate)
|
| - .address(),
|
| - "IncrementalMarking::RecordWrite");
|
| - Add(ExternalReference::incremental_marking_record_write_code_entry_function(
|
| - isolate)
|
| - .address(),
|
| - "IncrementalMarking::RecordWriteOfCodeEntryFromCode");
|
| - Add(ExternalReference::store_buffer_overflow_function(isolate).address(),
|
| - "StoreBuffer::StoreBufferOverflow");
|
| -
|
| - // Add a small set of deopt entry addresses to encoder without generating the
|
| - // deopt table code, which isn't possible at deserialization time.
|
| - HandleScope scope(isolate);
|
| - for (int entry = 0; entry < kDeoptTableSerializeEntryCount; ++entry) {
|
| - Address address = Deoptimizer::GetDeoptimizationEntry(
|
| - isolate,
|
| - entry,
|
| - Deoptimizer::LAZY,
|
| - Deoptimizer::CALCULATE_ENTRY_ADDRESS);
|
| - Add(address, "lazy_deopt");
|
| - }
|
| -}
|
| -
|
| -
|
| -ExternalReferenceEncoder::ExternalReferenceEncoder(Isolate* isolate) {
|
| - map_ = isolate->external_reference_map();
|
| - if (map_ != NULL) return;
|
| - map_ = new HashMap(HashMap::PointersMatch);
|
| - ExternalReferenceTable* table = ExternalReferenceTable::instance(isolate);
|
| - for (int i = 0; i < table->size(); ++i) {
|
| - Address addr = table->address(i);
|
| - if (addr == ExternalReferenceTable::NotAvailable()) continue;
|
| - // We expect no duplicate external references entries in the table.
|
| - DCHECK_NULL(map_->Lookup(addr, Hash(addr)));
|
| - map_->LookupOrInsert(addr, Hash(addr))->value = reinterpret_cast<void*>(i);
|
| - }
|
| - isolate->set_external_reference_map(map_);
|
| -}
|
| -
|
| -
|
| -uint32_t ExternalReferenceEncoder::Encode(Address address) const {
|
| - DCHECK_NOT_NULL(address);
|
| - HashMap::Entry* entry =
|
| - const_cast<HashMap*>(map_)->Lookup(address, Hash(address));
|
| - DCHECK_NOT_NULL(entry);
|
| - return static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry->value));
|
| -}
|
| -
|
| -
|
| -const char* ExternalReferenceEncoder::NameOfAddress(Isolate* isolate,
|
| - Address address) const {
|
| - HashMap::Entry* entry =
|
| - const_cast<HashMap*>(map_)->Lookup(address, Hash(address));
|
| - if (entry == NULL) return "<unknown>";
|
| - uint32_t i = static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry->value));
|
| - return ExternalReferenceTable::instance(isolate)->name(i);
|
| -}
|
| -
|
| -
|
| -class CodeAddressMap: public CodeEventLogger {
|
| - public:
|
| - explicit CodeAddressMap(Isolate* isolate)
|
| - : isolate_(isolate) {
|
| - isolate->logger()->addCodeEventListener(this);
|
| - }
|
| -
|
| - ~CodeAddressMap() override {
|
| - isolate_->logger()->removeCodeEventListener(this);
|
| - }
|
| -
|
| - void CodeMoveEvent(AbstractCode* from, Address to) override {
|
| - address_to_name_map_.Move(from->address(), to);
|
| - }
|
| -
|
| - void CodeDisableOptEvent(AbstractCode* code,
|
| - SharedFunctionInfo* shared) override {}
|
| -
|
| - const char* Lookup(Address address) {
|
| - return address_to_name_map_.Lookup(address);
|
| - }
|
| -
|
| - private:
|
| - class NameMap {
|
| - public:
|
| - NameMap() : impl_(HashMap::PointersMatch) {}
|
| -
|
| - ~NameMap() {
|
| - for (HashMap::Entry* p = impl_.Start(); p != NULL; p = impl_.Next(p)) {
|
| - DeleteArray(static_cast<const char*>(p->value));
|
| - }
|
| - }
|
| -
|
| - void Insert(Address code_address, const char* name, int name_size) {
|
| - HashMap::Entry* entry = FindOrCreateEntry(code_address);
|
| - if (entry->value == NULL) {
|
| - entry->value = CopyName(name, name_size);
|
| - }
|
| - }
|
| -
|
| - const char* Lookup(Address code_address) {
|
| - HashMap::Entry* entry = FindEntry(code_address);
|
| - return (entry != NULL) ? static_cast<const char*>(entry->value) : NULL;
|
| - }
|
| -
|
| - void Remove(Address code_address) {
|
| - HashMap::Entry* entry = FindEntry(code_address);
|
| - if (entry != NULL) {
|
| - DeleteArray(static_cast<char*>(entry->value));
|
| - RemoveEntry(entry);
|
| - }
|
| - }
|
| -
|
| - void Move(Address from, Address to) {
|
| - if (from == to) return;
|
| - HashMap::Entry* from_entry = FindEntry(from);
|
| - DCHECK(from_entry != NULL);
|
| - void* value = from_entry->value;
|
| - RemoveEntry(from_entry);
|
| - HashMap::Entry* to_entry = FindOrCreateEntry(to);
|
| - DCHECK(to_entry->value == NULL);
|
| - to_entry->value = value;
|
| - }
|
| -
|
| - private:
|
| - static char* CopyName(const char* name, int name_size) {
|
| - char* result = NewArray<char>(name_size + 1);
|
| - for (int i = 0; i < name_size; ++i) {
|
| - char c = name[i];
|
| - if (c == '\0') c = ' ';
|
| - result[i] = c;
|
| - }
|
| - result[name_size] = '\0';
|
| - return result;
|
| - }
|
| -
|
| - HashMap::Entry* FindOrCreateEntry(Address code_address) {
|
| - return impl_.LookupOrInsert(code_address,
|
| - ComputePointerHash(code_address));
|
| - }
|
| -
|
| - HashMap::Entry* FindEntry(Address code_address) {
|
| - return impl_.Lookup(code_address, ComputePointerHash(code_address));
|
| - }
|
| -
|
| - void RemoveEntry(HashMap::Entry* entry) {
|
| - impl_.Remove(entry->key, entry->hash);
|
| - }
|
| -
|
| - HashMap impl_;
|
| -
|
| - DISALLOW_COPY_AND_ASSIGN(NameMap);
|
| - };
|
| -
|
| - void LogRecordedBuffer(AbstractCode* code, SharedFunctionInfo*,
|
| - const char* name, int length) override {
|
| - address_to_name_map_.Insert(code->address(), name, length);
|
| - }
|
| -
|
| - NameMap address_to_name_map_;
|
| - Isolate* isolate_;
|
| -};
|
| -
|
| -
|
| -void Deserializer::DecodeReservation(
|
| - Vector<const SerializedData::Reservation> res) {
|
| - DCHECK_EQ(0, reservations_[NEW_SPACE].length());
|
| - STATIC_ASSERT(NEW_SPACE == 0);
|
| - int current_space = NEW_SPACE;
|
| - for (auto& r : res) {
|
| - reservations_[current_space].Add({r.chunk_size(), NULL, NULL});
|
| - if (r.is_last()) current_space++;
|
| - }
|
| - DCHECK_EQ(kNumberOfSpaces, current_space);
|
| - for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) current_chunk_[i] = 0;
|
| -}
|
| -
|
| -
|
| -void Deserializer::FlushICacheForNewIsolate() {
|
| - DCHECK(!deserializing_user_code_);
|
| - // The entire isolate is newly deserialized. Simply flush all code pages.
|
| - PageIterator it(isolate_->heap()->code_space());
|
| - while (it.has_next()) {
|
| - Page* p = it.next();
|
| - Assembler::FlushICache(isolate_, p->area_start(),
|
| - p->area_end() - p->area_start());
|
| - }
|
| -}
|
| -
|
| -
|
| -void Deserializer::FlushICacheForNewCodeObjects() {
|
| - DCHECK(deserializing_user_code_);
|
| - for (Code* code : new_code_objects_) {
|
| - Assembler::FlushICache(isolate_, code->instruction_start(),
|
| - code->instruction_size());
|
| - }
|
| -}
|
| -
|
| -
|
| -bool Deserializer::ReserveSpace() {
|
| -#ifdef DEBUG
|
| - for (int i = NEW_SPACE; i < kNumberOfSpaces; ++i) {
|
| - CHECK(reservations_[i].length() > 0);
|
| - }
|
| -#endif // DEBUG
|
| - if (!isolate_->heap()->ReserveSpace(reservations_)) return false;
|
| - for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
|
| - high_water_[i] = reservations_[i][0].start;
|
| - }
|
| - return true;
|
| -}
|
| -
|
| -
|
| -void Deserializer::Initialize(Isolate* isolate) {
|
| - DCHECK_NULL(isolate_);
|
| - DCHECK_NOT_NULL(isolate);
|
| - isolate_ = isolate;
|
| - DCHECK_NULL(external_reference_table_);
|
| - external_reference_table_ = ExternalReferenceTable::instance(isolate);
|
| - CHECK_EQ(magic_number_,
|
| - SerializedData::ComputeMagicNumber(external_reference_table_));
|
| -}
|
| -
|
| -
|
| -void Deserializer::Deserialize(Isolate* isolate) {
|
| - Initialize(isolate);
|
| - if (!ReserveSpace()) V8::FatalProcessOutOfMemory("deserializing context");
|
| - // No active threads.
|
| - DCHECK_NULL(isolate_->thread_manager()->FirstThreadStateInUse());
|
| - // No active handles.
|
| - DCHECK(isolate_->handle_scope_implementer()->blocks()->is_empty());
|
| -
|
| - {
|
| - DisallowHeapAllocation no_gc;
|
| - isolate_->heap()->IterateSmiRoots(this);
|
| - isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
|
| - isolate_->heap()->RepairFreeListsAfterDeserialization();
|
| - isolate_->heap()->IterateWeakRoots(this, VISIT_ALL);
|
| - DeserializeDeferredObjects();
|
| - FlushICacheForNewIsolate();
|
| - }
|
| -
|
| - isolate_->heap()->set_native_contexts_list(
|
| - isolate_->heap()->undefined_value());
|
| - // The allocation site list is build during root iteration, but if no sites
|
| - // were encountered then it needs to be initialized to undefined.
|
| - if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
|
| - isolate_->heap()->set_allocation_sites_list(
|
| - isolate_->heap()->undefined_value());
|
| - }
|
| -
|
| - // Update data pointers to the external strings containing natives sources.
|
| - Natives::UpdateSourceCache(isolate_->heap());
|
| - ExtraNatives::UpdateSourceCache(isolate_->heap());
|
| -
|
| - // Issue code events for newly deserialized code objects.
|
| - LOG_CODE_EVENT(isolate_, LogCodeObjects());
|
| - LOG_CODE_EVENT(isolate_, LogCompiledFunctions());
|
| -}
|
| -
|
| -
|
| -MaybeHandle<Object> Deserializer::DeserializePartial(
|
| - Isolate* isolate, Handle<JSGlobalProxy> global_proxy) {
|
| - Initialize(isolate);
|
| - if (!ReserveSpace()) {
|
| - V8::FatalProcessOutOfMemory("deserialize context");
|
| - return MaybeHandle<Object>();
|
| - }
|
| -
|
| - Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New(1);
|
| - attached_objects[kGlobalProxyReference] = global_proxy;
|
| - SetAttachedObjects(attached_objects);
|
| -
|
| - DisallowHeapAllocation no_gc;
|
| - // Keep track of the code space start and end pointers in case new
|
| - // code objects were unserialized
|
| - OldSpace* code_space = isolate_->heap()->code_space();
|
| - Address start_address = code_space->top();
|
| - Object* root;
|
| - VisitPointer(&root);
|
| - DeserializeDeferredObjects();
|
| -
|
| - // There's no code deserialized here. If this assert fires then that's
|
| - // changed and logging should be added to notify the profiler et al of the
|
| - // new code, which also has to be flushed from instruction cache.
|
| - CHECK_EQ(start_address, code_space->top());
|
| - return Handle<Object>(root, isolate);
|
| -}
|
| -
|
| -
|
| -MaybeHandle<SharedFunctionInfo> Deserializer::DeserializeCode(
|
| - Isolate* isolate) {
|
| - Initialize(isolate);
|
| - if (!ReserveSpace()) {
|
| - return Handle<SharedFunctionInfo>();
|
| - } else {
|
| - deserializing_user_code_ = true;
|
| - HandleScope scope(isolate);
|
| - Handle<SharedFunctionInfo> result;
|
| - {
|
| - DisallowHeapAllocation no_gc;
|
| - Object* root;
|
| - VisitPointer(&root);
|
| - DeserializeDeferredObjects();
|
| - FlushICacheForNewCodeObjects();
|
| - result = Handle<SharedFunctionInfo>(SharedFunctionInfo::cast(root));
|
| - }
|
| - CommitPostProcessedObjects(isolate);
|
| - return scope.CloseAndEscape(result);
|
| - }
|
| -}
|
| -
|
| -
|
| -Deserializer::~Deserializer() {
|
| - // TODO(svenpanne) Re-enable this assertion when v8 initialization is fixed.
|
| - // DCHECK(source_.AtEOF());
|
| - attached_objects_.Dispose();
|
| -}
|
| -
|
| -
|
| -// This is called on the roots. It is the driver of the deserialization
|
| -// process. It is also called on the body of each function.
|
| -void Deserializer::VisitPointers(Object** start, Object** end) {
|
| - // The space must be new space. Any other space would cause ReadChunk to try
|
| - // to update the remembered using NULL as the address.
|
| - ReadData(start, end, NEW_SPACE, NULL);
|
| -}
|
| -
|
| -void Deserializer::Synchronize(VisitorSynchronization::SyncTag tag) {
|
| - static const byte expected = kSynchronize;
|
| - CHECK_EQ(expected, source_.Get());
|
| -}
|
| -
|
| -void Deserializer::DeserializeDeferredObjects() {
|
| - for (int code = source_.Get(); code != kSynchronize; code = source_.Get()) {
|
| - switch (code) {
|
| - case kAlignmentPrefix:
|
| - case kAlignmentPrefix + 1:
|
| - case kAlignmentPrefix + 2:
|
| - SetAlignment(code);
|
| - break;
|
| - default: {
|
| - int space = code & kSpaceMask;
|
| - DCHECK(space <= kNumberOfSpaces);
|
| - DCHECK(code - space == kNewObject);
|
| - HeapObject* object = GetBackReferencedObject(space);
|
| - int size = source_.GetInt() << kPointerSizeLog2;
|
| - Address obj_address = object->address();
|
| - Object** start = reinterpret_cast<Object**>(obj_address + kPointerSize);
|
| - Object** end = reinterpret_cast<Object**>(obj_address + size);
|
| - bool filled = ReadData(start, end, space, obj_address);
|
| - CHECK(filled);
|
| - DCHECK(CanBeDeferred(object));
|
| - PostProcessNewObject(object, space);
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -// Used to insert a deserialized internalized string into the string table.
|
| -class StringTableInsertionKey : public HashTableKey {
|
| - public:
|
| - explicit StringTableInsertionKey(String* string)
|
| - : string_(string), hash_(HashForObject(string)) {
|
| - DCHECK(string->IsInternalizedString());
|
| - }
|
| -
|
| - bool IsMatch(Object* string) override {
|
| - // We know that all entries in a hash table had their hash keys created.
|
| - // Use that knowledge to have fast failure.
|
| - if (hash_ != HashForObject(string)) return false;
|
| - // We want to compare the content of two internalized strings here.
|
| - return string_->SlowEquals(String::cast(string));
|
| - }
|
| -
|
| - uint32_t Hash() override { return hash_; }
|
| -
|
| - uint32_t HashForObject(Object* key) override {
|
| - return String::cast(key)->Hash();
|
| - }
|
| -
|
| - MUST_USE_RESULT Handle<Object> AsHandle(Isolate* isolate) override {
|
| - return handle(string_, isolate);
|
| - }
|
| -
|
| - private:
|
| - String* string_;
|
| - uint32_t hash_;
|
| - DisallowHeapAllocation no_gc;
|
| -};
|
| -
|
| -
|
| -HeapObject* Deserializer::PostProcessNewObject(HeapObject* obj, int space) {
|
| - if (deserializing_user_code()) {
|
| - if (obj->IsString()) {
|
| - String* string = String::cast(obj);
|
| - // Uninitialize hash field as the hash seed may have changed.
|
| - string->set_hash_field(String::kEmptyHashField);
|
| - if (string->IsInternalizedString()) {
|
| - // Canonicalize the internalized string. If it already exists in the
|
| - // string table, set it to forward to the existing one.
|
| - StringTableInsertionKey key(string);
|
| - String* canonical = StringTable::LookupKeyIfExists(isolate_, &key);
|
| - if (canonical == NULL) {
|
| - new_internalized_strings_.Add(handle(string));
|
| - return string;
|
| - } else {
|
| - string->SetForwardedInternalizedString(canonical);
|
| - return canonical;
|
| - }
|
| - }
|
| - } else if (obj->IsScript()) {
|
| - new_scripts_.Add(handle(Script::cast(obj)));
|
| - } else {
|
| - DCHECK(CanBeDeferred(obj));
|
| - }
|
| - }
|
| - if (obj->IsAllocationSite()) {
|
| - DCHECK(obj->IsAllocationSite());
|
| - // Allocation sites are present in the snapshot, and must be linked into
|
| - // a list at deserialization time.
|
| - AllocationSite* site = AllocationSite::cast(obj);
|
| - // TODO(mvstanton): consider treating the heap()->allocation_sites_list()
|
| - // as a (weak) root. If this root is relocated correctly, this becomes
|
| - // unnecessary.
|
| - if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
|
| - site->set_weak_next(isolate_->heap()->undefined_value());
|
| - } else {
|
| - site->set_weak_next(isolate_->heap()->allocation_sites_list());
|
| - }
|
| - isolate_->heap()->set_allocation_sites_list(site);
|
| - } else if (obj->IsCode()) {
|
| - // We flush all code pages after deserializing the startup snapshot. In that
|
| - // case, we only need to remember code objects in the large object space.
|
| - // When deserializing user code, remember each individual code object.
|
| - if (deserializing_user_code() || space == LO_SPACE) {
|
| - new_code_objects_.Add(Code::cast(obj));
|
| - }
|
| - }
|
| - // Check alignment.
|
| - DCHECK_EQ(0, Heap::GetFillToAlign(obj->address(), obj->RequiredAlignment()));
|
| - return obj;
|
| -}
|
| -
|
| -
|
| -void Deserializer::CommitPostProcessedObjects(Isolate* isolate) {
|
| - StringTable::EnsureCapacityForDeserialization(
|
| - isolate, new_internalized_strings_.length());
|
| - for (Handle<String> string : new_internalized_strings_) {
|
| - StringTableInsertionKey key(*string);
|
| - DCHECK_NULL(StringTable::LookupKeyIfExists(isolate, &key));
|
| - StringTable::LookupKey(isolate, &key);
|
| - }
|
| -
|
| - Heap* heap = isolate->heap();
|
| - Factory* factory = isolate->factory();
|
| - for (Handle<Script> script : new_scripts_) {
|
| - // Assign a new script id to avoid collision.
|
| - script->set_id(isolate_->heap()->NextScriptId());
|
| - // Add script to list.
|
| - Handle<Object> list = WeakFixedArray::Add(factory->script_list(), script);
|
| - heap->SetRootScriptList(*list);
|
| - }
|
| -}
|
| -
|
| -
|
| -HeapObject* Deserializer::GetBackReferencedObject(int space) {
|
| - HeapObject* obj;
|
| - BackReference back_reference(source_.GetInt());
|
| - if (space == LO_SPACE) {
|
| - CHECK(back_reference.chunk_index() == 0);
|
| - uint32_t index = back_reference.large_object_index();
|
| - obj = deserialized_large_objects_[index];
|
| - } else {
|
| - DCHECK(space < kNumberOfPreallocatedSpaces);
|
| - uint32_t chunk_index = back_reference.chunk_index();
|
| - DCHECK_LE(chunk_index, current_chunk_[space]);
|
| - uint32_t chunk_offset = back_reference.chunk_offset();
|
| - Address address = reservations_[space][chunk_index].start + chunk_offset;
|
| - if (next_alignment_ != kWordAligned) {
|
| - int padding = Heap::GetFillToAlign(address, next_alignment_);
|
| - next_alignment_ = kWordAligned;
|
| - DCHECK(padding == 0 || HeapObject::FromAddress(address)->IsFiller());
|
| - address += padding;
|
| - }
|
| - obj = HeapObject::FromAddress(address);
|
| - }
|
| - if (deserializing_user_code() && obj->IsInternalizedString()) {
|
| - obj = String::cast(obj)->GetForwardedInternalizedString();
|
| - }
|
| - hot_objects_.Add(obj);
|
| - return obj;
|
| -}
|
| -
|
| -
|
| -// This routine writes the new object into the pointer provided and then
|
| -// returns true if the new object was in young space and false otherwise.
|
| -// The reason for this strange interface is that otherwise the object is
|
| -// written very late, which means the FreeSpace map is not set up by the
|
| -// time we need to use it to mark the space at the end of a page free.
|
| -void Deserializer::ReadObject(int space_number, Object** write_back) {
|
| - Address address;
|
| - HeapObject* obj;
|
| - int size = source_.GetInt() << kObjectAlignmentBits;
|
| -
|
| - if (next_alignment_ != kWordAligned) {
|
| - int reserved = size + Heap::GetMaximumFillToAlign(next_alignment_);
|
| - address = Allocate(space_number, reserved);
|
| - obj = HeapObject::FromAddress(address);
|
| - // If one of the following assertions fails, then we are deserializing an
|
| - // aligned object when the filler maps have not been deserialized yet.
|
| - // We require filler maps as padding to align the object.
|
| - Heap* heap = isolate_->heap();
|
| - DCHECK(heap->free_space_map()->IsMap());
|
| - DCHECK(heap->one_pointer_filler_map()->IsMap());
|
| - DCHECK(heap->two_pointer_filler_map()->IsMap());
|
| - obj = heap->AlignWithFiller(obj, size, reserved, next_alignment_);
|
| - address = obj->address();
|
| - next_alignment_ = kWordAligned;
|
| - } else {
|
| - address = Allocate(space_number, size);
|
| - obj = HeapObject::FromAddress(address);
|
| - }
|
| -
|
| - isolate_->heap()->OnAllocationEvent(obj, size);
|
| - Object** current = reinterpret_cast<Object**>(address);
|
| - Object** limit = current + (size >> kPointerSizeLog2);
|
| - if (FLAG_log_snapshot_positions) {
|
| - LOG(isolate_, SnapshotPositionEvent(address, source_.position()));
|
| - }
|
| -
|
| - if (ReadData(current, limit, space_number, address)) {
|
| - // Only post process if object content has not been deferred.
|
| - obj = PostProcessNewObject(obj, space_number);
|
| - }
|
| -
|
| - Object* write_back_obj = obj;
|
| - UnalignedCopy(write_back, &write_back_obj);
|
| -#ifdef DEBUG
|
| - if (obj->IsCode()) {
|
| - DCHECK(space_number == CODE_SPACE || space_number == LO_SPACE);
|
| - } else {
|
| - DCHECK(space_number != CODE_SPACE);
|
| - }
|
| -#endif // DEBUG
|
| -}
|
| -
|
| -
|
| -// We know the space requirements before deserialization and can
|
| -// pre-allocate that reserved space. During deserialization, all we need
|
| -// to do is to bump up the pointer for each space in the reserved
|
| -// space. This is also used for fixing back references.
|
| -// We may have to split up the pre-allocation into several chunks
|
| -// because it would not fit onto a single page. We do not have to keep
|
| -// track of when to move to the next chunk. An opcode will signal this.
|
| -// Since multiple large objects cannot be folded into one large object
|
| -// space allocation, we have to do an actual allocation when deserializing
|
| -// each large object. Instead of tracking offset for back references, we
|
| -// reference large objects by index.
|
| -Address Deserializer::Allocate(int space_index, int size) {
|
| - if (space_index == LO_SPACE) {
|
| - AlwaysAllocateScope scope(isolate_);
|
| - LargeObjectSpace* lo_space = isolate_->heap()->lo_space();
|
| - Executability exec = static_cast<Executability>(source_.Get());
|
| - AllocationResult result = lo_space->AllocateRaw(size, exec);
|
| - HeapObject* obj = HeapObject::cast(result.ToObjectChecked());
|
| - deserialized_large_objects_.Add(obj);
|
| - return obj->address();
|
| - } else {
|
| - DCHECK(space_index < kNumberOfPreallocatedSpaces);
|
| - Address address = high_water_[space_index];
|
| - DCHECK_NOT_NULL(address);
|
| - high_water_[space_index] += size;
|
| -#ifdef DEBUG
|
| - // Assert that the current reserved chunk is still big enough.
|
| - const Heap::Reservation& reservation = reservations_[space_index];
|
| - int chunk_index = current_chunk_[space_index];
|
| - CHECK_LE(high_water_[space_index], reservation[chunk_index].end);
|
| -#endif
|
| - return address;
|
| - }
|
| -}
|
| -
|
| -
|
| -Object** Deserializer::CopyInNativesSource(Vector<const char> source_vector,
|
| - Object** current) {
|
| - DCHECK(!isolate_->heap()->deserialization_complete());
|
| - NativesExternalStringResource* resource = new NativesExternalStringResource(
|
| - source_vector.start(), source_vector.length());
|
| - Object* resource_obj = reinterpret_cast<Object*>(resource);
|
| - UnalignedCopy(current++, &resource_obj);
|
| - return current;
|
| -}
|
| -
|
| -
|
| -bool Deserializer::ReadData(Object** current, Object** limit, int source_space,
|
| - Address current_object_address) {
|
| - Isolate* const isolate = isolate_;
|
| - // Write barrier support costs around 1% in startup time. In fact there
|
| - // are no new space objects in current boot snapshots, so it's not needed,
|
| - // but that may change.
|
| - bool write_barrier_needed =
|
| - (current_object_address != NULL && source_space != NEW_SPACE &&
|
| - source_space != CODE_SPACE);
|
| - while (current < limit) {
|
| - byte data = source_.Get();
|
| - switch (data) {
|
| -#define CASE_STATEMENT(where, how, within, space_number) \
|
| - case where + how + within + space_number: \
|
| - STATIC_ASSERT((where & ~kWhereMask) == 0); \
|
| - STATIC_ASSERT((how & ~kHowToCodeMask) == 0); \
|
| - STATIC_ASSERT((within & ~kWhereToPointMask) == 0); \
|
| - STATIC_ASSERT((space_number & ~kSpaceMask) == 0);
|
| -
|
| -#define CASE_BODY(where, how, within, space_number_if_any) \
|
| - { \
|
| - bool emit_write_barrier = false; \
|
| - bool current_was_incremented = false; \
|
| - int space_number = space_number_if_any == kAnyOldSpace \
|
| - ? (data & kSpaceMask) \
|
| - : space_number_if_any; \
|
| - if (where == kNewObject && how == kPlain && within == kStartOfObject) { \
|
| - ReadObject(space_number, current); \
|
| - emit_write_barrier = (space_number == NEW_SPACE); \
|
| - } else { \
|
| - Object* new_object = NULL; /* May not be a real Object pointer. */ \
|
| - if (where == kNewObject) { \
|
| - ReadObject(space_number, &new_object); \
|
| - } else if (where == kBackref) { \
|
| - emit_write_barrier = (space_number == NEW_SPACE); \
|
| - new_object = GetBackReferencedObject(data & kSpaceMask); \
|
| - } else if (where == kBackrefWithSkip) { \
|
| - int skip = source_.GetInt(); \
|
| - current = reinterpret_cast<Object**>( \
|
| - reinterpret_cast<Address>(current) + skip); \
|
| - emit_write_barrier = (space_number == NEW_SPACE); \
|
| - new_object = GetBackReferencedObject(data & kSpaceMask); \
|
| - } else if (where == kRootArray) { \
|
| - int id = source_.GetInt(); \
|
| - Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(id); \
|
| - new_object = isolate->heap()->root(root_index); \
|
| - emit_write_barrier = isolate->heap()->InNewSpace(new_object); \
|
| - } else if (where == kPartialSnapshotCache) { \
|
| - int cache_index = source_.GetInt(); \
|
| - new_object = isolate->partial_snapshot_cache()->at(cache_index); \
|
| - emit_write_barrier = isolate->heap()->InNewSpace(new_object); \
|
| - } else if (where == kExternalReference) { \
|
| - int skip = source_.GetInt(); \
|
| - current = reinterpret_cast<Object**>( \
|
| - reinterpret_cast<Address>(current) + skip); \
|
| - int reference_id = source_.GetInt(); \
|
| - Address address = external_reference_table_->address(reference_id); \
|
| - new_object = reinterpret_cast<Object*>(address); \
|
| - } else if (where == kAttachedReference) { \
|
| - int index = source_.GetInt(); \
|
| - DCHECK(deserializing_user_code() || index == kGlobalProxyReference); \
|
| - new_object = *attached_objects_[index]; \
|
| - emit_write_barrier = isolate->heap()->InNewSpace(new_object); \
|
| - } else { \
|
| - DCHECK(where == kBuiltin); \
|
| - DCHECK(deserializing_user_code()); \
|
| - int builtin_id = source_.GetInt(); \
|
| - DCHECK_LE(0, builtin_id); \
|
| - DCHECK_LT(builtin_id, Builtins::builtin_count); \
|
| - Builtins::Name name = static_cast<Builtins::Name>(builtin_id); \
|
| - new_object = isolate->builtins()->builtin(name); \
|
| - emit_write_barrier = false; \
|
| - } \
|
| - if (within == kInnerPointer) { \
|
| - if (space_number != CODE_SPACE || new_object->IsCode()) { \
|
| - Code* new_code_object = reinterpret_cast<Code*>(new_object); \
|
| - new_object = \
|
| - reinterpret_cast<Object*>(new_code_object->instruction_start()); \
|
| - } else { \
|
| - DCHECK(space_number == CODE_SPACE); \
|
| - Cell* cell = Cell::cast(new_object); \
|
| - new_object = reinterpret_cast<Object*>(cell->ValueAddress()); \
|
| - } \
|
| - } \
|
| - if (how == kFromCode) { \
|
| - Address location_of_branch_data = reinterpret_cast<Address>(current); \
|
| - Assembler::deserialization_set_special_target_at( \
|
| - isolate, location_of_branch_data, \
|
| - Code::cast(HeapObject::FromAddress(current_object_address)), \
|
| - reinterpret_cast<Address>(new_object)); \
|
| - location_of_branch_data += Assembler::kSpecialTargetSize; \
|
| - current = reinterpret_cast<Object**>(location_of_branch_data); \
|
| - current_was_incremented = true; \
|
| - } else { \
|
| - UnalignedCopy(current, &new_object); \
|
| - } \
|
| - } \
|
| - if (emit_write_barrier && write_barrier_needed) { \
|
| - Address current_address = reinterpret_cast<Address>(current); \
|
| - SLOW_DCHECK(isolate->heap()->ContainsSlow(current_object_address)); \
|
| - isolate->heap()->RecordWrite( \
|
| - HeapObject::FromAddress(current_object_address), \
|
| - static_cast<int>(current_address - current_object_address), \
|
| - *reinterpret_cast<Object**>(current_address)); \
|
| - } \
|
| - if (!current_was_incremented) { \
|
| - current++; \
|
| - } \
|
| - break; \
|
| - }
|
| -
|
| -// This generates a case and a body for the new space (which has to do extra
|
| -// write barrier handling) and handles the other spaces with fall-through cases
|
| -// and one body.
|
| -#define ALL_SPACES(where, how, within) \
|
| - CASE_STATEMENT(where, how, within, NEW_SPACE) \
|
| - CASE_BODY(where, how, within, NEW_SPACE) \
|
| - CASE_STATEMENT(where, how, within, OLD_SPACE) \
|
| - CASE_STATEMENT(where, how, within, CODE_SPACE) \
|
| - CASE_STATEMENT(where, how, within, MAP_SPACE) \
|
| - CASE_STATEMENT(where, how, within, LO_SPACE) \
|
| - CASE_BODY(where, how, within, kAnyOldSpace)
|
| -
|
| -#define FOUR_CASES(byte_code) \
|
| - case byte_code: \
|
| - case byte_code + 1: \
|
| - case byte_code + 2: \
|
| - case byte_code + 3:
|
| -
|
| -#define SIXTEEN_CASES(byte_code) \
|
| - FOUR_CASES(byte_code) \
|
| - FOUR_CASES(byte_code + 4) \
|
| - FOUR_CASES(byte_code + 8) \
|
| - FOUR_CASES(byte_code + 12)
|
| -
|
| -#define SINGLE_CASE(where, how, within, space) \
|
| - CASE_STATEMENT(where, how, within, space) \
|
| - CASE_BODY(where, how, within, space)
|
| -
|
| - // Deserialize a new object and write a pointer to it to the current
|
| - // object.
|
| - ALL_SPACES(kNewObject, kPlain, kStartOfObject)
|
| - // Support for direct instruction pointers in functions. It's an inner
|
| - // pointer because it points at the entry point, not at the start of the
|
| - // code object.
|
| - SINGLE_CASE(kNewObject, kPlain, kInnerPointer, CODE_SPACE)
|
| - // Deserialize a new code object and write a pointer to its first
|
| - // instruction to the current code object.
|
| - ALL_SPACES(kNewObject, kFromCode, kInnerPointer)
|
| - // Find a recently deserialized object using its offset from the current
|
| - // allocation point and write a pointer to it to the current object.
|
| - ALL_SPACES(kBackref, kPlain, kStartOfObject)
|
| - ALL_SPACES(kBackrefWithSkip, kPlain, kStartOfObject)
|
| -#if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \
|
| - defined(V8_TARGET_ARCH_PPC) || V8_EMBEDDED_CONSTANT_POOL
|
| - // Deserialize a new object from pointer found in code and write
|
| - // a pointer to it to the current object. Required only for MIPS, PPC or
|
| - // ARM with embedded constant pool, and omitted on the other architectures
|
| - // because it is fully unrolled and would cause bloat.
|
| - ALL_SPACES(kNewObject, kFromCode, kStartOfObject)
|
| - // Find a recently deserialized code object using its offset from the
|
| - // current allocation point and write a pointer to it to the current
|
| - // object. Required only for MIPS, PPC or ARM with embedded constant pool.
|
| - ALL_SPACES(kBackref, kFromCode, kStartOfObject)
|
| - ALL_SPACES(kBackrefWithSkip, kFromCode, kStartOfObject)
|
| -#endif
|
| - // Find a recently deserialized code object using its offset from the
|
| - // current allocation point and write a pointer to its first instruction
|
| - // to the current code object or the instruction pointer in a function
|
| - // object.
|
| - ALL_SPACES(kBackref, kFromCode, kInnerPointer)
|
| - ALL_SPACES(kBackrefWithSkip, kFromCode, kInnerPointer)
|
| - ALL_SPACES(kBackref, kPlain, kInnerPointer)
|
| - ALL_SPACES(kBackrefWithSkip, kPlain, kInnerPointer)
|
| - // Find an object in the roots array and write a pointer to it to the
|
| - // current object.
|
| - SINGLE_CASE(kRootArray, kPlain, kStartOfObject, 0)
|
| -#if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \
|
| - defined(V8_TARGET_ARCH_PPC) || V8_EMBEDDED_CONSTANT_POOL
|
| - // Find an object in the roots array and write a pointer to it to in code.
|
| - SINGLE_CASE(kRootArray, kFromCode, kStartOfObject, 0)
|
| -#endif
|
| - // Find an object in the partial snapshots cache and write a pointer to it
|
| - // to the current object.
|
| - SINGLE_CASE(kPartialSnapshotCache, kPlain, kStartOfObject, 0)
|
| - // Find an code entry in the partial snapshots cache and
|
| - // write a pointer to it to the current object.
|
| - SINGLE_CASE(kPartialSnapshotCache, kPlain, kInnerPointer, 0)
|
| - // Find an external reference and write a pointer to it to the current
|
| - // object.
|
| - SINGLE_CASE(kExternalReference, kPlain, kStartOfObject, 0)
|
| - // Find an external reference and write a pointer to it in the current
|
| - // code object.
|
| - SINGLE_CASE(kExternalReference, kFromCode, kStartOfObject, 0)
|
| - // Find an object in the attached references and write a pointer to it to
|
| - // the current object.
|
| - SINGLE_CASE(kAttachedReference, kPlain, kStartOfObject, 0)
|
| - SINGLE_CASE(kAttachedReference, kPlain, kInnerPointer, 0)
|
| - SINGLE_CASE(kAttachedReference, kFromCode, kInnerPointer, 0)
|
| - // Find a builtin and write a pointer to it to the current object.
|
| - SINGLE_CASE(kBuiltin, kPlain, kStartOfObject, 0)
|
| - SINGLE_CASE(kBuiltin, kPlain, kInnerPointer, 0)
|
| - SINGLE_CASE(kBuiltin, kFromCode, kInnerPointer, 0)
|
| -
|
| -#undef CASE_STATEMENT
|
| -#undef CASE_BODY
|
| -#undef ALL_SPACES
|
| -
|
| - case kSkip: {
|
| - int size = source_.GetInt();
|
| - current = reinterpret_cast<Object**>(
|
| - reinterpret_cast<intptr_t>(current) + size);
|
| - break;
|
| - }
|
| -
|
| - case kInternalReferenceEncoded:
|
| - case kInternalReference: {
|
| - // Internal reference address is not encoded via skip, but by offset
|
| - // from code entry.
|
| - int pc_offset = source_.GetInt();
|
| - int target_offset = source_.GetInt();
|
| - Code* code =
|
| - Code::cast(HeapObject::FromAddress(current_object_address));
|
| - DCHECK(0 <= pc_offset && pc_offset <= code->instruction_size());
|
| - DCHECK(0 <= target_offset && target_offset <= code->instruction_size());
|
| - Address pc = code->entry() + pc_offset;
|
| - Address target = code->entry() + target_offset;
|
| - Assembler::deserialization_set_target_internal_reference_at(
|
| - isolate, pc, target, data == kInternalReference
|
| - ? RelocInfo::INTERNAL_REFERENCE
|
| - : RelocInfo::INTERNAL_REFERENCE_ENCODED);
|
| - break;
|
| - }
|
| -
|
| - case kNop:
|
| - break;
|
| -
|
| - case kNextChunk: {
|
| - int space = source_.Get();
|
| - DCHECK(space < kNumberOfPreallocatedSpaces);
|
| - int chunk_index = current_chunk_[space];
|
| - const Heap::Reservation& reservation = reservations_[space];
|
| - // Make sure the current chunk is indeed exhausted.
|
| - CHECK_EQ(reservation[chunk_index].end, high_water_[space]);
|
| - // Move to next reserved chunk.
|
| - chunk_index = ++current_chunk_[space];
|
| - CHECK_LT(chunk_index, reservation.length());
|
| - high_water_[space] = reservation[chunk_index].start;
|
| - break;
|
| - }
|
| -
|
| - case kDeferred: {
|
| - // Deferred can only occur right after the heap object header.
|
| - DCHECK(current == reinterpret_cast<Object**>(current_object_address +
|
| - kPointerSize));
|
| - HeapObject* obj = HeapObject::FromAddress(current_object_address);
|
| - // If the deferred object is a map, its instance type may be used
|
| - // during deserialization. Initialize it with a temporary value.
|
| - if (obj->IsMap()) Map::cast(obj)->set_instance_type(FILLER_TYPE);
|
| - current = limit;
|
| - return false;
|
| - }
|
| -
|
| - case kSynchronize:
|
| - // If we get here then that indicates that you have a mismatch between
|
| - // the number of GC roots when serializing and deserializing.
|
| - CHECK(false);
|
| - break;
|
| -
|
| - case kNativesStringResource:
|
| - current = CopyInNativesSource(Natives::GetScriptSource(source_.Get()),
|
| - current);
|
| - break;
|
| -
|
| - case kExtraNativesStringResource:
|
| - current = CopyInNativesSource(
|
| - ExtraNatives::GetScriptSource(source_.Get()), current);
|
| - break;
|
| -
|
| - // Deserialize raw data of variable length.
|
| - case kVariableRawData: {
|
| - int size_in_bytes = source_.GetInt();
|
| - byte* raw_data_out = reinterpret_cast<byte*>(current);
|
| - source_.CopyRaw(raw_data_out, size_in_bytes);
|
| - break;
|
| - }
|
| -
|
| - case kVariableRepeat: {
|
| - int repeats = source_.GetInt();
|
| - Object* object = current[-1];
|
| - DCHECK(!isolate->heap()->InNewSpace(object));
|
| - for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object);
|
| - break;
|
| - }
|
| -
|
| - case kAlignmentPrefix:
|
| - case kAlignmentPrefix + 1:
|
| - case kAlignmentPrefix + 2:
|
| - SetAlignment(data);
|
| - break;
|
| -
|
| - STATIC_ASSERT(kNumberOfRootArrayConstants == Heap::kOldSpaceRoots);
|
| - STATIC_ASSERT(kNumberOfRootArrayConstants == 32);
|
| - SIXTEEN_CASES(kRootArrayConstantsWithSkip)
|
| - SIXTEEN_CASES(kRootArrayConstantsWithSkip + 16) {
|
| - int skip = source_.GetInt();
|
| - current = reinterpret_cast<Object**>(
|
| - reinterpret_cast<intptr_t>(current) + skip);
|
| - // Fall through.
|
| - }
|
| -
|
| - SIXTEEN_CASES(kRootArrayConstants)
|
| - SIXTEEN_CASES(kRootArrayConstants + 16) {
|
| - int id = data & kRootArrayConstantsMask;
|
| - Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(id);
|
| - Object* object = isolate->heap()->root(root_index);
|
| - DCHECK(!isolate->heap()->InNewSpace(object));
|
| - UnalignedCopy(current++, &object);
|
| - break;
|
| - }
|
| -
|
| - STATIC_ASSERT(kNumberOfHotObjects == 8);
|
| - FOUR_CASES(kHotObjectWithSkip)
|
| - FOUR_CASES(kHotObjectWithSkip + 4) {
|
| - int skip = source_.GetInt();
|
| - current = reinterpret_cast<Object**>(
|
| - reinterpret_cast<Address>(current) + skip);
|
| - // Fall through.
|
| - }
|
| -
|
| - FOUR_CASES(kHotObject)
|
| - FOUR_CASES(kHotObject + 4) {
|
| - int index = data & kHotObjectMask;
|
| - Object* hot_object = hot_objects_.Get(index);
|
| - UnalignedCopy(current, &hot_object);
|
| - if (write_barrier_needed) {
|
| - Address current_address = reinterpret_cast<Address>(current);
|
| - SLOW_DCHECK(isolate->heap()->ContainsSlow(current_object_address));
|
| - isolate->heap()->RecordWrite(
|
| - HeapObject::FromAddress(current_object_address),
|
| - static_cast<int>(current_address - current_object_address),
|
| - hot_object);
|
| - }
|
| - current++;
|
| - break;
|
| - }
|
| -
|
| - // Deserialize raw data of fixed length from 1 to 32 words.
|
| - STATIC_ASSERT(kNumberOfFixedRawData == 32);
|
| - SIXTEEN_CASES(kFixedRawData)
|
| - SIXTEEN_CASES(kFixedRawData + 16) {
|
| - byte* raw_data_out = reinterpret_cast<byte*>(current);
|
| - int size_in_bytes = (data - kFixedRawDataStart) << kPointerSizeLog2;
|
| - source_.CopyRaw(raw_data_out, size_in_bytes);
|
| - current = reinterpret_cast<Object**>(raw_data_out + size_in_bytes);
|
| - break;
|
| - }
|
| -
|
| - STATIC_ASSERT(kNumberOfFixedRepeat == 16);
|
| - SIXTEEN_CASES(kFixedRepeat) {
|
| - int repeats = data - kFixedRepeatStart;
|
| - Object* object;
|
| - UnalignedCopy(&object, current - 1);
|
| - DCHECK(!isolate->heap()->InNewSpace(object));
|
| - for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object);
|
| - break;
|
| - }
|
| -
|
| -#undef SIXTEEN_CASES
|
| -#undef FOUR_CASES
|
| -#undef SINGLE_CASE
|
| -
|
| - default:
|
| - CHECK(false);
|
| - }
|
| - }
|
| - CHECK_EQ(limit, current);
|
| - return true;
|
| -}
|
| -
|
| -
|
| -Serializer::Serializer(Isolate* isolate, SnapshotByteSink* sink)
|
| - : isolate_(isolate),
|
| - sink_(sink),
|
| - external_reference_encoder_(isolate),
|
| - root_index_map_(isolate),
|
| - recursion_depth_(0),
|
| - code_address_map_(NULL),
|
| - large_objects_total_size_(0),
|
| - seen_large_objects_index_(0) {
|
| - // The serializer is meant to be used only to generate initial heap images
|
| - // from a context in which there is only one isolate.
|
| - for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
|
| - pending_chunk_[i] = 0;
|
| - max_chunk_size_[i] = static_cast<uint32_t>(
|
| - MemoryAllocator::PageAreaSize(static_cast<AllocationSpace>(i)));
|
| - }
|
| -
|
| -#ifdef OBJECT_PRINT
|
| - if (FLAG_serialization_statistics) {
|
| - instance_type_count_ = NewArray<int>(kInstanceTypes);
|
| - instance_type_size_ = NewArray<size_t>(kInstanceTypes);
|
| - for (int i = 0; i < kInstanceTypes; i++) {
|
| - instance_type_count_[i] = 0;
|
| - instance_type_size_[i] = 0;
|
| - }
|
| - } else {
|
| - instance_type_count_ = NULL;
|
| - instance_type_size_ = NULL;
|
| - }
|
| -#endif // OBJECT_PRINT
|
| -}
|
| -
|
| -
|
| -Serializer::~Serializer() {
|
| - if (code_address_map_ != NULL) delete code_address_map_;
|
| -#ifdef OBJECT_PRINT
|
| - if (instance_type_count_ != NULL) {
|
| - DeleteArray(instance_type_count_);
|
| - DeleteArray(instance_type_size_);
|
| - }
|
| -#endif // OBJECT_PRINT
|
| -}
|
| -
|
| -
|
| -#ifdef OBJECT_PRINT
|
| -void Serializer::CountInstanceType(Map* map, int size) {
|
| - int instance_type = map->instance_type();
|
| - instance_type_count_[instance_type]++;
|
| - instance_type_size_[instance_type] += size;
|
| -}
|
| -#endif // OBJECT_PRINT
|
| -
|
| -
|
| -void Serializer::OutputStatistics(const char* name) {
|
| - if (!FLAG_serialization_statistics) return;
|
| - PrintF("%s:\n", name);
|
| - PrintF(" Spaces (bytes):\n");
|
| - for (int space = 0; space < kNumberOfSpaces; space++) {
|
| - PrintF("%16s", AllocationSpaceName(static_cast<AllocationSpace>(space)));
|
| - }
|
| - PrintF("\n");
|
| - for (int space = 0; space < kNumberOfPreallocatedSpaces; space++) {
|
| - size_t s = pending_chunk_[space];
|
| - for (uint32_t chunk_size : completed_chunks_[space]) s += chunk_size;
|
| - PrintF("%16" V8_PTR_PREFIX "d", s);
|
| - }
|
| - PrintF("%16d\n", large_objects_total_size_);
|
| -#ifdef OBJECT_PRINT
|
| - PrintF(" Instance types (count and bytes):\n");
|
| -#define PRINT_INSTANCE_TYPE(Name) \
|
| - if (instance_type_count_[Name]) { \
|
| - PrintF("%10d %10" V8_PTR_PREFIX "d %s\n", instance_type_count_[Name], \
|
| - instance_type_size_[Name], #Name); \
|
| - }
|
| - INSTANCE_TYPE_LIST(PRINT_INSTANCE_TYPE)
|
| -#undef PRINT_INSTANCE_TYPE
|
| - PrintF("\n");
|
| -#endif // OBJECT_PRINT
|
| -}
|
| -
|
| -
|
| -class Serializer::ObjectSerializer : public ObjectVisitor {
|
| - public:
|
| - ObjectSerializer(Serializer* serializer, Object* o, SnapshotByteSink* sink,
|
| - HowToCode how_to_code, WhereToPoint where_to_point)
|
| - : serializer_(serializer),
|
| - object_(HeapObject::cast(o)),
|
| - sink_(sink),
|
| - reference_representation_(how_to_code + where_to_point),
|
| - bytes_processed_so_far_(0),
|
| - is_code_object_(o->IsCode()),
|
| - code_has_been_output_(false) {}
|
| - void Serialize();
|
| - void SerializeDeferred();
|
| - void VisitPointers(Object** start, Object** end) override;
|
| - void VisitEmbeddedPointer(RelocInfo* target) override;
|
| - void VisitExternalReference(Address* p) override;
|
| - void VisitExternalReference(RelocInfo* rinfo) override;
|
| - void VisitInternalReference(RelocInfo* rinfo) override;
|
| - void VisitCodeTarget(RelocInfo* target) override;
|
| - void VisitCodeEntry(Address entry_address) override;
|
| - void VisitCell(RelocInfo* rinfo) override;
|
| - void VisitRuntimeEntry(RelocInfo* reloc) override;
|
| - // Used for seralizing the external strings that hold the natives source.
|
| - void VisitExternalOneByteString(
|
| - v8::String::ExternalOneByteStringResource** resource) override;
|
| - // We can't serialize a heap with external two byte strings.
|
| - void VisitExternalTwoByteString(
|
| - v8::String::ExternalStringResource** resource) override {
|
| - UNREACHABLE();
|
| - }
|
| -
|
| - private:
|
| - void SerializePrologue(AllocationSpace space, int size, Map* map);
|
| -
|
| - bool SerializeExternalNativeSourceString(
|
| - int builtin_count,
|
| - v8::String::ExternalOneByteStringResource** resource_pointer,
|
| - FixedArray* source_cache, int resource_index);
|
| -
|
| - enum ReturnSkip { kCanReturnSkipInsteadOfSkipping, kIgnoringReturn };
|
| - // This function outputs or skips the raw data between the last pointer and
|
| - // up to the current position. It optionally can just return the number of
|
| - // bytes to skip instead of performing a skip instruction, in case the skip
|
| - // can be merged into the next instruction.
|
| - int OutputRawData(Address up_to, ReturnSkip return_skip = kIgnoringReturn);
|
| - // External strings are serialized in a way to resemble sequential strings.
|
| - void SerializeExternalString();
|
| -
|
| - Address PrepareCode();
|
| -
|
| - Serializer* serializer_;
|
| - HeapObject* object_;
|
| - SnapshotByteSink* sink_;
|
| - int reference_representation_;
|
| - int bytes_processed_so_far_;
|
| - bool is_code_object_;
|
| - bool code_has_been_output_;
|
| -};
|
| -
|
| -
|
| -void Serializer::SerializeDeferredObjects() {
|
| - while (deferred_objects_.length() > 0) {
|
| - HeapObject* obj = deferred_objects_.RemoveLast();
|
| - ObjectSerializer obj_serializer(this, obj, sink_, kPlain, kStartOfObject);
|
| - obj_serializer.SerializeDeferred();
|
| - }
|
| - sink_->Put(kSynchronize, "Finished with deferred objects");
|
| -}
|
| -
|
| -
|
| -void StartupSerializer::SerializeStrongReferences() {
|
| - Isolate* isolate = this->isolate();
|
| - // No active threads.
|
| - CHECK_NULL(isolate->thread_manager()->FirstThreadStateInUse());
|
| - // No active or weak handles.
|
| - CHECK(isolate->handle_scope_implementer()->blocks()->is_empty());
|
| - CHECK_EQ(0, isolate->global_handles()->NumberOfWeakHandles());
|
| - CHECK_EQ(0, isolate->eternal_handles()->NumberOfHandles());
|
| - // We don't support serializing installed extensions.
|
| - CHECK(!isolate->has_installed_extensions());
|
| - isolate->heap()->IterateSmiRoots(this);
|
| - isolate->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
|
| -}
|
| -
|
| -
|
| -void StartupSerializer::VisitPointers(Object** start, Object** end) {
|
| - for (Object** current = start; current < end; current++) {
|
| - if (start == isolate()->heap()->roots_array_start()) {
|
| - root_index_wave_front_ =
|
| - Max(root_index_wave_front_, static_cast<intptr_t>(current - start));
|
| - }
|
| - if (ShouldBeSkipped(current)) {
|
| - sink_->Put(kSkip, "Skip");
|
| - sink_->PutInt(kPointerSize, "SkipOneWord");
|
| - } else if ((*current)->IsSmi()) {
|
| - sink_->Put(kOnePointerRawData, "Smi");
|
| - for (int i = 0; i < kPointerSize; i++) {
|
| - sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
|
| - }
|
| - } else {
|
| - SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0);
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void PartialSerializer::Serialize(Object** o) {
|
| - if ((*o)->IsContext()) {
|
| - Context* context = Context::cast(*o);
|
| - global_object_ = context->global_object();
|
| - back_reference_map()->AddGlobalProxy(context->global_proxy());
|
| - // The bootstrap snapshot has a code-stub context. When serializing the
|
| - // partial snapshot, it is chained into the weak context list on the isolate
|
| - // and it's next context pointer may point to the code-stub context. Clear
|
| - // it before serializing, it will get re-added to the context list
|
| - // explicitly when it's loaded.
|
| - if (context->IsNativeContext()) {
|
| - context->set(Context::NEXT_CONTEXT_LINK,
|
| - isolate_->heap()->undefined_value());
|
| - DCHECK(!context->global_object()->IsUndefined());
|
| - }
|
| - }
|
| - VisitPointer(o);
|
| - SerializeDeferredObjects();
|
| - Pad();
|
| -}
|
| -
|
| -
|
| -bool Serializer::ShouldBeSkipped(Object** current) {
|
| - Object** roots = isolate()->heap()->roots_array_start();
|
| - return current == &roots[Heap::kStoreBufferTopRootIndex]
|
| - || current == &roots[Heap::kStackLimitRootIndex]
|
| - || current == &roots[Heap::kRealStackLimitRootIndex];
|
| -}
|
| -
|
| -
|
| -void Serializer::VisitPointers(Object** start, Object** end) {
|
| - for (Object** current = start; current < end; current++) {
|
| - if ((*current)->IsSmi()) {
|
| - sink_->Put(kOnePointerRawData, "Smi");
|
| - for (int i = 0; i < kPointerSize; i++) {
|
| - sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
|
| - }
|
| - } else {
|
| - SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0);
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void Serializer::EncodeReservations(
|
| - List<SerializedData::Reservation>* out) const {
|
| - for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
|
| - for (int j = 0; j < completed_chunks_[i].length(); j++) {
|
| - out->Add(SerializedData::Reservation(completed_chunks_[i][j]));
|
| - }
|
| -
|
| - if (pending_chunk_[i] > 0 || completed_chunks_[i].length() == 0) {
|
| - out->Add(SerializedData::Reservation(pending_chunk_[i]));
|
| - }
|
| - out->last().mark_as_last();
|
| - }
|
| -
|
| - out->Add(SerializedData::Reservation(large_objects_total_size_));
|
| - out->last().mark_as_last();
|
| -}
|
| -
|
| -
|
| -// This ensures that the partial snapshot cache keeps things alive during GC and
|
| -// tracks their movement. When it is called during serialization of the startup
|
| -// snapshot nothing happens. When the partial (context) snapshot is created,
|
| -// this array is populated with the pointers that the partial snapshot will
|
| -// need. As that happens we emit serialized objects to the startup snapshot
|
| -// that correspond to the elements of this cache array. On deserialization we
|
| -// therefore need to visit the cache array. This fills it up with pointers to
|
| -// deserialized objects.
|
| -void SerializerDeserializer::Iterate(Isolate* isolate,
|
| - ObjectVisitor* visitor) {
|
| - if (isolate->serializer_enabled()) return;
|
| - List<Object*>* cache = isolate->partial_snapshot_cache();
|
| - for (int i = 0;; ++i) {
|
| - // Extend the array ready to get a value when deserializing.
|
| - if (cache->length() <= i) cache->Add(Smi::FromInt(0));
|
| - visitor->VisitPointer(&cache->at(i));
|
| - // Sentinel is the undefined object, which is a root so it will not normally
|
| - // be found in the cache.
|
| - if (cache->at(i)->IsUndefined()) break;
|
| - }
|
| -}
|
| -
|
| -
|
| -bool SerializerDeserializer::CanBeDeferred(HeapObject* o) {
|
| - return !o->IsString() && !o->IsScript();
|
| -}
|
| -
|
| -
|
| -int PartialSerializer::PartialSnapshotCacheIndex(HeapObject* heap_object) {
|
| - Isolate* isolate = this->isolate();
|
| - List<Object*>* cache = isolate->partial_snapshot_cache();
|
| - int new_index = cache->length();
|
| -
|
| - int index = partial_cache_index_map_.LookupOrInsert(heap_object, new_index);
|
| - if (index == PartialCacheIndexMap::kInvalidIndex) {
|
| - // We didn't find the object in the cache. So we add it to the cache and
|
| - // then visit the pointer so that it becomes part of the startup snapshot
|
| - // and we can refer to it from the partial snapshot.
|
| - cache->Add(heap_object);
|
| - startup_serializer_->VisitPointer(reinterpret_cast<Object**>(&heap_object));
|
| - // We don't recurse from the startup snapshot generator into the partial
|
| - // snapshot generator.
|
| - return new_index;
|
| - }
|
| - return index;
|
| -}
|
| -
|
| -
|
| -bool PartialSerializer::ShouldBeInThePartialSnapshotCache(HeapObject* o) {
|
| - // Scripts should be referred only through shared function infos. We can't
|
| - // allow them to be part of the partial snapshot because they contain a
|
| - // unique ID, and deserializing several partial snapshots containing script
|
| - // would cause dupes.
|
| - DCHECK(!o->IsScript());
|
| - return o->IsName() || o->IsSharedFunctionInfo() || o->IsHeapNumber() ||
|
| - o->IsCode() || o->IsScopeInfo() || o->IsAccessorInfo() ||
|
| - o->map() ==
|
| - startup_serializer_->isolate()->heap()->fixed_cow_array_map();
|
| -}
|
| -
|
| -
|
| -#ifdef DEBUG
|
| -bool Serializer::BackReferenceIsAlreadyAllocated(BackReference reference) {
|
| - DCHECK(reference.is_valid());
|
| - DCHECK(!reference.is_source());
|
| - DCHECK(!reference.is_global_proxy());
|
| - AllocationSpace space = reference.space();
|
| - int chunk_index = reference.chunk_index();
|
| - if (space == LO_SPACE) {
|
| - return chunk_index == 0 &&
|
| - reference.large_object_index() < seen_large_objects_index_;
|
| - } else if (chunk_index == completed_chunks_[space].length()) {
|
| - return reference.chunk_offset() < pending_chunk_[space];
|
| - } else {
|
| - return chunk_index < completed_chunks_[space].length() &&
|
| - reference.chunk_offset() < completed_chunks_[space][chunk_index];
|
| - }
|
| -}
|
| -#endif // DEBUG
|
| -
|
| -
|
| -bool Serializer::SerializeKnownObject(HeapObject* obj, HowToCode how_to_code,
|
| - WhereToPoint where_to_point, int skip) {
|
| - if (how_to_code == kPlain && where_to_point == kStartOfObject) {
|
| - // Encode a reference to a hot object by its index in the working set.
|
| - int index = hot_objects_.Find(obj);
|
| - if (index != HotObjectsList::kNotFound) {
|
| - DCHECK(index >= 0 && index < kNumberOfHotObjects);
|
| - if (FLAG_trace_serializer) {
|
| - PrintF(" Encoding hot object %d:", index);
|
| - obj->ShortPrint();
|
| - PrintF("\n");
|
| - }
|
| - if (skip != 0) {
|
| - sink_->Put(kHotObjectWithSkip + index, "HotObjectWithSkip");
|
| - sink_->PutInt(skip, "HotObjectSkipDistance");
|
| - } else {
|
| - sink_->Put(kHotObject + index, "HotObject");
|
| - }
|
| - return true;
|
| - }
|
| - }
|
| - BackReference back_reference = back_reference_map_.Lookup(obj);
|
| - if (back_reference.is_valid()) {
|
| - // Encode the location of an already deserialized object in order to write
|
| - // its location into a later object. We can encode the location as an
|
| - // offset fromthe start of the deserialized objects or as an offset
|
| - // backwards from thecurrent allocation pointer.
|
| - if (back_reference.is_source()) {
|
| - FlushSkip(skip);
|
| - if (FLAG_trace_serializer) PrintF(" Encoding source object\n");
|
| - DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject);
|
| - sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Source");
|
| - sink_->PutInt(kSourceObjectReference, "kSourceObjectReference");
|
| - } else if (back_reference.is_global_proxy()) {
|
| - FlushSkip(skip);
|
| - if (FLAG_trace_serializer) PrintF(" Encoding global proxy\n");
|
| - DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject);
|
| - sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Global Proxy");
|
| - sink_->PutInt(kGlobalProxyReference, "kGlobalProxyReference");
|
| - } else {
|
| - if (FLAG_trace_serializer) {
|
| - PrintF(" Encoding back reference to: ");
|
| - obj->ShortPrint();
|
| - PrintF("\n");
|
| - }
|
| -
|
| - PutAlignmentPrefix(obj);
|
| - AllocationSpace space = back_reference.space();
|
| - if (skip == 0) {
|
| - sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRef");
|
| - } else {
|
| - sink_->Put(kBackrefWithSkip + how_to_code + where_to_point + space,
|
| - "BackRefWithSkip");
|
| - sink_->PutInt(skip, "BackRefSkipDistance");
|
| - }
|
| - PutBackReference(obj, back_reference);
|
| - }
|
| - return true;
|
| - }
|
| - return false;
|
| -}
|
| -
|
| -StartupSerializer::StartupSerializer(Isolate* isolate, SnapshotByteSink* sink)
|
| - : Serializer(isolate, sink),
|
| - root_index_wave_front_(0),
|
| - serializing_builtins_(false) {
|
| - // Clear the cache of objects used by the partial snapshot. After the
|
| - // strong roots have been serialized we can create a partial snapshot
|
| - // which will repopulate the cache with objects needed by that partial
|
| - // snapshot.
|
| - isolate->partial_snapshot_cache()->Clear();
|
| - InitializeCodeAddressMap();
|
| -}
|
| -
|
| -
|
| -void StartupSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
|
| - WhereToPoint where_to_point, int skip) {
|
| - DCHECK(!obj->IsJSFunction());
|
| -
|
| - if (obj->IsCode()) {
|
| - Code* code = Code::cast(obj);
|
| - // If the function code is compiled (either as native code or bytecode),
|
| - // replace it with lazy-compile builtin. Only exception is when we are
|
| - // serializing the canonical interpreter-entry-trampoline builtin.
|
| - if (code->kind() == Code::FUNCTION ||
|
| - (!serializing_builtins_ && code->is_interpreter_entry_trampoline())) {
|
| - obj = isolate()->builtins()->builtin(Builtins::kCompileLazy);
|
| - }
|
| - } else if (obj->IsBytecodeArray()) {
|
| - obj = isolate()->heap()->undefined_value();
|
| - }
|
| -
|
| - int root_index = root_index_map_.Lookup(obj);
|
| - bool is_immortal_immovable_root = false;
|
| - // We can only encode roots as such if it has already been serialized.
|
| - // That applies to root indices below the wave front.
|
| - if (root_index != RootIndexMap::kInvalidRootIndex) {
|
| - if (root_index < root_index_wave_front_) {
|
| - PutRoot(root_index, obj, how_to_code, where_to_point, skip);
|
| - return;
|
| - } else {
|
| - is_immortal_immovable_root = Heap::RootIsImmortalImmovable(root_index);
|
| - }
|
| - }
|
| -
|
| - if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;
|
| -
|
| - FlushSkip(skip);
|
| -
|
| - // Object has not yet been serialized. Serialize it here.
|
| - ObjectSerializer object_serializer(this, obj, sink_, how_to_code,
|
| - where_to_point);
|
| - object_serializer.Serialize();
|
| -
|
| - if (is_immortal_immovable_root) {
|
| - // Make sure that the immortal immovable root has been included in the first
|
| - // chunk of its reserved space , so that it is deserialized onto the first
|
| - // page of its space and stays immortal immovable.
|
| - BackReference ref = back_reference_map_.Lookup(obj);
|
| - CHECK(ref.is_valid() && ref.chunk_index() == 0);
|
| - }
|
| -}
|
| -
|
| -
|
| -void StartupSerializer::SerializeWeakReferencesAndDeferred() {
|
| - // This phase comes right after the serialization (of the snapshot).
|
| - // After we have done the partial serialization the partial snapshot cache
|
| - // will contain some references needed to decode the partial snapshot. We
|
| - // add one entry with 'undefined' which is the sentinel that the deserializer
|
| - // uses to know it is done deserializing the array.
|
| - Object* undefined = isolate()->heap()->undefined_value();
|
| - VisitPointer(&undefined);
|
| - isolate()->heap()->IterateWeakRoots(this, VISIT_ALL);
|
| - SerializeDeferredObjects();
|
| - Pad();
|
| -}
|
| -
|
| -void StartupSerializer::Synchronize(VisitorSynchronization::SyncTag tag) {
|
| - // We expect the builtins tag after builtins have been serialized.
|
| - DCHECK(!serializing_builtins_ || tag == VisitorSynchronization::kBuiltins);
|
| - serializing_builtins_ = (tag == VisitorSynchronization::kHandleScope);
|
| - sink_->Put(kSynchronize, "Synchronize");
|
| -}
|
| -
|
| -void Serializer::PutRoot(int root_index,
|
| - HeapObject* object,
|
| - SerializerDeserializer::HowToCode how_to_code,
|
| - SerializerDeserializer::WhereToPoint where_to_point,
|
| - int skip) {
|
| - if (FLAG_trace_serializer) {
|
| - PrintF(" Encoding root %d:", root_index);
|
| - object->ShortPrint();
|
| - PrintF("\n");
|
| - }
|
| -
|
| - if (how_to_code == kPlain && where_to_point == kStartOfObject &&
|
| - root_index < kNumberOfRootArrayConstants &&
|
| - !isolate()->heap()->InNewSpace(object)) {
|
| - if (skip == 0) {
|
| - sink_->Put(kRootArrayConstants + root_index, "RootConstant");
|
| - } else {
|
| - sink_->Put(kRootArrayConstantsWithSkip + root_index, "RootConstant");
|
| - sink_->PutInt(skip, "SkipInPutRoot");
|
| - }
|
| - } else {
|
| - FlushSkip(skip);
|
| - sink_->Put(kRootArray + how_to_code + where_to_point, "RootSerialization");
|
| - sink_->PutInt(root_index, "root_index");
|
| - }
|
| -}
|
| -
|
| -
|
| -void Serializer::PutBackReference(HeapObject* object, BackReference reference) {
|
| - DCHECK(BackReferenceIsAlreadyAllocated(reference));
|
| - sink_->PutInt(reference.reference(), "BackRefValue");
|
| - hot_objects_.Add(object);
|
| -}
|
| -
|
| -
|
| -int Serializer::PutAlignmentPrefix(HeapObject* object) {
|
| - AllocationAlignment alignment = object->RequiredAlignment();
|
| - if (alignment != kWordAligned) {
|
| - DCHECK(1 <= alignment && alignment <= 3);
|
| - byte prefix = (kAlignmentPrefix - 1) + alignment;
|
| - sink_->Put(prefix, "Alignment");
|
| - return Heap::GetMaximumFillToAlign(alignment);
|
| - }
|
| - return 0;
|
| -}
|
| -
|
| -
|
| -void PartialSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
|
| - WhereToPoint where_to_point, int skip) {
|
| - if (obj->IsMap()) {
|
| - // The code-caches link to context-specific code objects, which
|
| - // the startup and context serializes cannot currently handle.
|
| - DCHECK(Map::cast(obj)->code_cache() == obj->GetHeap()->empty_fixed_array());
|
| - }
|
| -
|
| - // Replace typed arrays by undefined.
|
| - if (obj->IsJSTypedArray()) obj = isolate_->heap()->undefined_value();
|
| -
|
| - int root_index = root_index_map_.Lookup(obj);
|
| - if (root_index != RootIndexMap::kInvalidRootIndex) {
|
| - PutRoot(root_index, obj, how_to_code, where_to_point, skip);
|
| - return;
|
| - }
|
| -
|
| - if (ShouldBeInThePartialSnapshotCache(obj)) {
|
| - FlushSkip(skip);
|
| -
|
| - int cache_index = PartialSnapshotCacheIndex(obj);
|
| - sink_->Put(kPartialSnapshotCache + how_to_code + where_to_point,
|
| - "PartialSnapshotCache");
|
| - sink_->PutInt(cache_index, "partial_snapshot_cache_index");
|
| - return;
|
| - }
|
| -
|
| - // Pointers from the partial snapshot to the objects in the startup snapshot
|
| - // should go through the root array or through the partial snapshot cache.
|
| - // If this is not the case you may have to add something to the root array.
|
| - DCHECK(!startup_serializer_->back_reference_map()->Lookup(obj).is_valid());
|
| - // All the internalized strings that the partial snapshot needs should be
|
| - // either in the root table or in the partial snapshot cache.
|
| - DCHECK(!obj->IsInternalizedString());
|
| -
|
| - if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;
|
| -
|
| - FlushSkip(skip);
|
| -
|
| - // Clear literal boilerplates.
|
| - if (obj->IsJSFunction()) {
|
| - FixedArray* literals = JSFunction::cast(obj)->literals();
|
| - for (int i = 0; i < literals->length(); i++) literals->set_undefined(i);
|
| - }
|
| -
|
| - // Object has not yet been serialized. Serialize it here.
|
| - ObjectSerializer serializer(this, obj, sink_, how_to_code, where_to_point);
|
| - serializer.Serialize();
|
| -}
|
| -
|
| -
|
| -void Serializer::ObjectSerializer::SerializePrologue(AllocationSpace space,
|
| - int size, Map* map) {
|
| - if (serializer_->code_address_map_) {
|
| - const char* code_name =
|
| - serializer_->code_address_map_->Lookup(object_->address());
|
| - LOG(serializer_->isolate_,
|
| - CodeNameEvent(object_->address(), sink_->Position(), code_name));
|
| - LOG(serializer_->isolate_,
|
| - SnapshotPositionEvent(object_->address(), sink_->Position()));
|
| - }
|
| -
|
| - BackReference back_reference;
|
| - if (space == LO_SPACE) {
|
| - sink_->Put(kNewObject + reference_representation_ + space,
|
| - "NewLargeObject");
|
| - sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords");
|
| - if (object_->IsCode()) {
|
| - sink_->Put(EXECUTABLE, "executable large object");
|
| - } else {
|
| - sink_->Put(NOT_EXECUTABLE, "not executable large object");
|
| - }
|
| - back_reference = serializer_->AllocateLargeObject(size);
|
| - } else {
|
| - int fill = serializer_->PutAlignmentPrefix(object_);
|
| - back_reference = serializer_->Allocate(space, size + fill);
|
| - sink_->Put(kNewObject + reference_representation_ + space, "NewObject");
|
| - sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords");
|
| - }
|
| -
|
| -#ifdef OBJECT_PRINT
|
| - if (FLAG_serialization_statistics) {
|
| - serializer_->CountInstanceType(map, size);
|
| - }
|
| -#endif // OBJECT_PRINT
|
| -
|
| - // Mark this object as already serialized.
|
| - serializer_->back_reference_map()->Add(object_, back_reference);
|
| -
|
| - // Serialize the map (first word of the object).
|
| - serializer_->SerializeObject(map, kPlain, kStartOfObject, 0);
|
| -}
|
| -
|
| -
|
| -void Serializer::ObjectSerializer::SerializeExternalString() {
|
| - // Instead of serializing this as an external string, we serialize
|
| - // an imaginary sequential string with the same content.
|
| - Isolate* isolate = serializer_->isolate();
|
| - DCHECK(object_->IsExternalString());
|
| - DCHECK(object_->map() != isolate->heap()->native_source_string_map());
|
| - ExternalString* string = ExternalString::cast(object_);
|
| - int length = string->length();
|
| - Map* map;
|
| - int content_size;
|
| - int allocation_size;
|
| - const byte* resource;
|
| - // Find the map and size for the imaginary sequential string.
|
| - bool internalized = object_->IsInternalizedString();
|
| - if (object_->IsExternalOneByteString()) {
|
| - map = internalized ? isolate->heap()->one_byte_internalized_string_map()
|
| - : isolate->heap()->one_byte_string_map();
|
| - allocation_size = SeqOneByteString::SizeFor(length);
|
| - content_size = length * kCharSize;
|
| - resource = reinterpret_cast<const byte*>(
|
| - ExternalOneByteString::cast(string)->resource()->data());
|
| - } else {
|
| - map = internalized ? isolate->heap()->internalized_string_map()
|
| - : isolate->heap()->string_map();
|
| - allocation_size = SeqTwoByteString::SizeFor(length);
|
| - content_size = length * kShortSize;
|
| - resource = reinterpret_cast<const byte*>(
|
| - ExternalTwoByteString::cast(string)->resource()->data());
|
| - }
|
| -
|
| - AllocationSpace space = (allocation_size > Page::kMaxRegularHeapObjectSize)
|
| - ? LO_SPACE
|
| - : OLD_SPACE;
|
| - SerializePrologue(space, allocation_size, map);
|
| -
|
| - // Output the rest of the imaginary string.
|
| - int bytes_to_output = allocation_size - HeapObject::kHeaderSize;
|
| -
|
| - // Output raw data header. Do not bother with common raw length cases here.
|
| - sink_->Put(kVariableRawData, "RawDataForString");
|
| - sink_->PutInt(bytes_to_output, "length");
|
| -
|
| - // Serialize string header (except for map).
|
| - Address string_start = string->address();
|
| - for (int i = HeapObject::kHeaderSize; i < SeqString::kHeaderSize; i++) {
|
| - sink_->PutSection(string_start[i], "StringHeader");
|
| - }
|
| -
|
| - // Serialize string content.
|
| - sink_->PutRaw(resource, content_size, "StringContent");
|
| -
|
| - // Since the allocation size is rounded up to object alignment, there
|
| - // maybe left-over bytes that need to be padded.
|
| - int padding_size = allocation_size - SeqString::kHeaderSize - content_size;
|
| - DCHECK(0 <= padding_size && padding_size < kObjectAlignment);
|
| - for (int i = 0; i < padding_size; i++) sink_->PutSection(0, "StringPadding");
|
| -
|
| - sink_->Put(kSkip, "SkipAfterString");
|
| - sink_->PutInt(bytes_to_output, "SkipDistance");
|
| -}
|
| -
|
| -// Clear and later restore the next link in the weak cell or allocation site.
|
| -// TODO(all): replace this with proper iteration of weak slots in serializer.
|
| -class UnlinkWeakNextScope {
|
| - public:
|
| - explicit UnlinkWeakNextScope(HeapObject* object) : object_(nullptr) {
|
| - if (object->IsWeakCell()) {
|
| - object_ = object;
|
| - next_ = WeakCell::cast(object)->next();
|
| - WeakCell::cast(object)->clear_next(object->GetHeap()->the_hole_value());
|
| - } else if (object->IsAllocationSite()) {
|
| - object_ = object;
|
| - next_ = AllocationSite::cast(object)->weak_next();
|
| - AllocationSite::cast(object)
|
| - ->set_weak_next(object->GetHeap()->undefined_value());
|
| - }
|
| - }
|
| -
|
| - ~UnlinkWeakNextScope() {
|
| - if (object_ != nullptr) {
|
| - if (object_->IsWeakCell()) {
|
| - WeakCell::cast(object_)->set_next(next_, UPDATE_WEAK_WRITE_BARRIER);
|
| - } else {
|
| - AllocationSite::cast(object_)
|
| - ->set_weak_next(next_, UPDATE_WEAK_WRITE_BARRIER);
|
| - }
|
| - }
|
| - }
|
| -
|
| - private:
|
| - HeapObject* object_;
|
| - Object* next_;
|
| - DisallowHeapAllocation no_gc_;
|
| -};
|
| -
|
| -
|
| -void Serializer::ObjectSerializer::Serialize() {
|
| - if (FLAG_trace_serializer) {
|
| - PrintF(" Encoding heap object: ");
|
| - object_->ShortPrint();
|
| - PrintF("\n");
|
| - }
|
| -
|
| - // We cannot serialize typed array objects correctly.
|
| - DCHECK(!object_->IsJSTypedArray());
|
| -
|
| - // We don't expect fillers.
|
| - DCHECK(!object_->IsFiller());
|
| -
|
| - if (object_->IsScript()) {
|
| - // Clear cached line ends.
|
| - Object* undefined = serializer_->isolate()->heap()->undefined_value();
|
| - Script::cast(object_)->set_line_ends(undefined);
|
| - }
|
| -
|
| - if (object_->IsExternalString()) {
|
| - Heap* heap = serializer_->isolate()->heap();
|
| - if (object_->map() != heap->native_source_string_map()) {
|
| - // Usually we cannot recreate resources for external strings. To work
|
| - // around this, external strings are serialized to look like ordinary
|
| - // sequential strings.
|
| - // The exception are native source code strings, since we can recreate
|
| - // their resources. In that case we fall through and leave it to
|
| - // VisitExternalOneByteString further down.
|
| - SerializeExternalString();
|
| - return;
|
| - }
|
| - }
|
| -
|
| - int size = object_->Size();
|
| - Map* map = object_->map();
|
| - AllocationSpace space =
|
| - MemoryChunk::FromAddress(object_->address())->owner()->identity();
|
| - SerializePrologue(space, size, map);
|
| -
|
| - // Serialize the rest of the object.
|
| - CHECK_EQ(0, bytes_processed_so_far_);
|
| - bytes_processed_so_far_ = kPointerSize;
|
| -
|
| - RecursionScope recursion(serializer_);
|
| - // Objects that are immediately post processed during deserialization
|
| - // cannot be deferred, since post processing requires the object content.
|
| - if (recursion.ExceedsMaximum() && CanBeDeferred(object_)) {
|
| - serializer_->QueueDeferredObject(object_);
|
| - sink_->Put(kDeferred, "Deferring object content");
|
| - return;
|
| - }
|
| -
|
| - UnlinkWeakNextScope unlink_weak_next(object_);
|
| -
|
| - object_->IterateBody(map->instance_type(), size, this);
|
| - OutputRawData(object_->address() + size);
|
| -}
|
| -
|
| -
|
| -void Serializer::ObjectSerializer::SerializeDeferred() {
|
| - if (FLAG_trace_serializer) {
|
| - PrintF(" Encoding deferred heap object: ");
|
| - object_->ShortPrint();
|
| - PrintF("\n");
|
| - }
|
| -
|
| - int size = object_->Size();
|
| - Map* map = object_->map();
|
| - BackReference reference = serializer_->back_reference_map()->Lookup(object_);
|
| -
|
| - // Serialize the rest of the object.
|
| - CHECK_EQ(0, bytes_processed_so_far_);
|
| - bytes_processed_so_far_ = kPointerSize;
|
| -
|
| - serializer_->PutAlignmentPrefix(object_);
|
| - sink_->Put(kNewObject + reference.space(), "deferred object");
|
| - serializer_->PutBackReference(object_, reference);
|
| - sink_->PutInt(size >> kPointerSizeLog2, "deferred object size");
|
| -
|
| - UnlinkWeakNextScope unlink_weak_next(object_);
|
| -
|
| - object_->IterateBody(map->instance_type(), size, this);
|
| - OutputRawData(object_->address() + size);
|
| -}
|
| -
|
| -
|
| -void Serializer::ObjectSerializer::VisitPointers(Object** start,
|
| - Object** end) {
|
| - Object** current = start;
|
| - while (current < end) {
|
| - while (current < end && (*current)->IsSmi()) current++;
|
| - if (current < end) OutputRawData(reinterpret_cast<Address>(current));
|
| -
|
| - while (current < end && !(*current)->IsSmi()) {
|
| - HeapObject* current_contents = HeapObject::cast(*current);
|
| - int root_index = serializer_->root_index_map()->Lookup(current_contents);
|
| - // Repeats are not subject to the write barrier so we can only use
|
| - // immortal immovable root members. They are never in new space.
|
| - if (current != start && root_index != RootIndexMap::kInvalidRootIndex &&
|
| - Heap::RootIsImmortalImmovable(root_index) &&
|
| - current_contents == current[-1]) {
|
| - DCHECK(!serializer_->isolate()->heap()->InNewSpace(current_contents));
|
| - int repeat_count = 1;
|
| - while (¤t[repeat_count] < end - 1 &&
|
| - current[repeat_count] == current_contents) {
|
| - repeat_count++;
|
| - }
|
| - current += repeat_count;
|
| - bytes_processed_so_far_ += repeat_count * kPointerSize;
|
| - if (repeat_count > kNumberOfFixedRepeat) {
|
| - sink_->Put(kVariableRepeat, "VariableRepeat");
|
| - sink_->PutInt(repeat_count, "repeat count");
|
| - } else {
|
| - sink_->Put(kFixedRepeatStart + repeat_count, "FixedRepeat");
|
| - }
|
| - } else {
|
| - serializer_->SerializeObject(
|
| - current_contents, kPlain, kStartOfObject, 0);
|
| - bytes_processed_so_far_ += kPointerSize;
|
| - current++;
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void Serializer::ObjectSerializer::VisitEmbeddedPointer(RelocInfo* rinfo) {
|
| - int skip = OutputRawData(rinfo->target_address_address(),
|
| - kCanReturnSkipInsteadOfSkipping);
|
| - HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
|
| - Object* object = rinfo->target_object();
|
| - serializer_->SerializeObject(HeapObject::cast(object), how_to_code,
|
| - kStartOfObject, skip);
|
| - bytes_processed_so_far_ += rinfo->target_address_size();
|
| -}
|
| -
|
| -
|
| -void Serializer::ObjectSerializer::VisitExternalReference(Address* p) {
|
| - int skip = OutputRawData(reinterpret_cast<Address>(p),
|
| - kCanReturnSkipInsteadOfSkipping);
|
| - sink_->Put(kExternalReference + kPlain + kStartOfObject, "ExternalRef");
|
| - sink_->PutInt(skip, "SkipB4ExternalRef");
|
| - Address target = *p;
|
| - sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
|
| - bytes_processed_so_far_ += kPointerSize;
|
| -}
|
| -
|
| -
|
| -void Serializer::ObjectSerializer::VisitExternalReference(RelocInfo* rinfo) {
|
| - int skip = OutputRawData(rinfo->target_address_address(),
|
| - kCanReturnSkipInsteadOfSkipping);
|
| - HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
|
| - sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
|
| - sink_->PutInt(skip, "SkipB4ExternalRef");
|
| - Address target = rinfo->target_external_reference();
|
| - sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
|
| - bytes_processed_so_far_ += rinfo->target_address_size();
|
| -}
|
| -
|
| -
|
| -void Serializer::ObjectSerializer::VisitInternalReference(RelocInfo* rinfo) {
|
| - // We can only reference to internal references of code that has been output.
|
| - DCHECK(is_code_object_ && code_has_been_output_);
|
| - // We do not use skip from last patched pc to find the pc to patch, since
|
| - // target_address_address may not return addresses in ascending order when
|
| - // used for internal references. External references may be stored at the
|
| - // end of the code in the constant pool, whereas internal references are
|
| - // inline. That would cause the skip to be negative. Instead, we store the
|
| - // offset from code entry.
|
| - Address entry = Code::cast(object_)->entry();
|
| - intptr_t pc_offset = rinfo->target_internal_reference_address() - entry;
|
| - intptr_t target_offset = rinfo->target_internal_reference() - entry;
|
| - DCHECK(0 <= pc_offset &&
|
| - pc_offset <= Code::cast(object_)->instruction_size());
|
| - DCHECK(0 <= target_offset &&
|
| - target_offset <= Code::cast(object_)->instruction_size());
|
| - sink_->Put(rinfo->rmode() == RelocInfo::INTERNAL_REFERENCE
|
| - ? kInternalReference
|
| - : kInternalReferenceEncoded,
|
| - "InternalRef");
|
| - sink_->PutInt(static_cast<uintptr_t>(pc_offset), "internal ref address");
|
| - sink_->PutInt(static_cast<uintptr_t>(target_offset), "internal ref value");
|
| -}
|
| -
|
| -
|
| -void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) {
|
| - int skip = OutputRawData(rinfo->target_address_address(),
|
| - kCanReturnSkipInsteadOfSkipping);
|
| - HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
|
| - sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
|
| - sink_->PutInt(skip, "SkipB4ExternalRef");
|
| - Address target = rinfo->target_address();
|
| - sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
|
| - bytes_processed_so_far_ += rinfo->target_address_size();
|
| -}
|
| -
|
| -
|
| -void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) {
|
| - int skip = OutputRawData(rinfo->target_address_address(),
|
| - kCanReturnSkipInsteadOfSkipping);
|
| - Code* object = Code::GetCodeFromTargetAddress(rinfo->target_address());
|
| - serializer_->SerializeObject(object, kFromCode, kInnerPointer, skip);
|
| - bytes_processed_so_far_ += rinfo->target_address_size();
|
| -}
|
| -
|
| -
|
| -void Serializer::ObjectSerializer::VisitCodeEntry(Address entry_address) {
|
| - int skip = OutputRawData(entry_address, kCanReturnSkipInsteadOfSkipping);
|
| - Code* object = Code::cast(Code::GetObjectFromEntryAddress(entry_address));
|
| - serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
|
| - bytes_processed_so_far_ += kPointerSize;
|
| -}
|
| -
|
| -
|
| -void Serializer::ObjectSerializer::VisitCell(RelocInfo* rinfo) {
|
| - int skip = OutputRawData(rinfo->pc(), kCanReturnSkipInsteadOfSkipping);
|
| - Cell* object = Cell::cast(rinfo->target_cell());
|
| - serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
|
| - bytes_processed_so_far_ += kPointerSize;
|
| -}
|
| -
|
| -
|
| -bool Serializer::ObjectSerializer::SerializeExternalNativeSourceString(
|
| - int builtin_count,
|
| - v8::String::ExternalOneByteStringResource** resource_pointer,
|
| - FixedArray* source_cache, int resource_index) {
|
| - for (int i = 0; i < builtin_count; i++) {
|
| - Object* source = source_cache->get(i);
|
| - if (!source->IsUndefined()) {
|
| - ExternalOneByteString* string = ExternalOneByteString::cast(source);
|
| - typedef v8::String::ExternalOneByteStringResource Resource;
|
| - const Resource* resource = string->resource();
|
| - if (resource == *resource_pointer) {
|
| - sink_->Put(resource_index, "NativesStringResource");
|
| - sink_->PutSection(i, "NativesStringResourceEnd");
|
| - bytes_processed_so_far_ += sizeof(resource);
|
| - return true;
|
| - }
|
| - }
|
| - }
|
| - return false;
|
| -}
|
| -
|
| -
|
| -void Serializer::ObjectSerializer::VisitExternalOneByteString(
|
| - v8::String::ExternalOneByteStringResource** resource_pointer) {
|
| - Address references_start = reinterpret_cast<Address>(resource_pointer);
|
| - OutputRawData(references_start);
|
| - if (SerializeExternalNativeSourceString(
|
| - Natives::GetBuiltinsCount(), resource_pointer,
|
| - Natives::GetSourceCache(serializer_->isolate()->heap()),
|
| - kNativesStringResource)) {
|
| - return;
|
| - }
|
| - if (SerializeExternalNativeSourceString(
|
| - ExtraNatives::GetBuiltinsCount(), resource_pointer,
|
| - ExtraNatives::GetSourceCache(serializer_->isolate()->heap()),
|
| - kExtraNativesStringResource)) {
|
| - return;
|
| - }
|
| - // One of the strings in the natives cache should match the resource. We
|
| - // don't expect any other kinds of external strings here.
|
| - UNREACHABLE();
|
| -}
|
| -
|
| -
|
| -Address Serializer::ObjectSerializer::PrepareCode() {
|
| - // To make snapshots reproducible, we make a copy of the code object
|
| - // and wipe all pointers in the copy, which we then serialize.
|
| - Code* original = Code::cast(object_);
|
| - Code* code = serializer_->CopyCode(original);
|
| - // Code age headers are not serializable.
|
| - code->MakeYoung(serializer_->isolate());
|
| - int mode_mask = RelocInfo::kCodeTargetMask |
|
| - RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
|
| - RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) |
|
| - RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY) |
|
| - RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
|
| - RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED);
|
| - for (RelocIterator it(code, mode_mask); !it.done(); it.next()) {
|
| - RelocInfo* rinfo = it.rinfo();
|
| - rinfo->WipeOut();
|
| - }
|
| - // We need to wipe out the header fields *after* wiping out the
|
| - // relocations, because some of these fields are needed for the latter.
|
| - code->WipeOutHeader();
|
| - return code->address();
|
| -}
|
| -
|
| -
|
| -int Serializer::ObjectSerializer::OutputRawData(
|
| - Address up_to, Serializer::ObjectSerializer::ReturnSkip return_skip) {
|
| - Address object_start = object_->address();
|
| - int base = bytes_processed_so_far_;
|
| - int up_to_offset = static_cast<int>(up_to - object_start);
|
| - int to_skip = up_to_offset - bytes_processed_so_far_;
|
| - int bytes_to_output = to_skip;
|
| - bytes_processed_so_far_ += to_skip;
|
| - // This assert will fail if the reloc info gives us the target_address_address
|
| - // locations in a non-ascending order. Luckily that doesn't happen.
|
| - DCHECK(to_skip >= 0);
|
| - bool outputting_code = false;
|
| - if (to_skip != 0 && is_code_object_ && !code_has_been_output_) {
|
| - // Output the code all at once and fix later.
|
| - bytes_to_output = object_->Size() + to_skip - bytes_processed_so_far_;
|
| - outputting_code = true;
|
| - code_has_been_output_ = true;
|
| - }
|
| - if (bytes_to_output != 0 && (!is_code_object_ || outputting_code)) {
|
| - if (!outputting_code && bytes_to_output == to_skip &&
|
| - IsAligned(bytes_to_output, kPointerAlignment) &&
|
| - bytes_to_output <= kNumberOfFixedRawData * kPointerSize) {
|
| - int size_in_words = bytes_to_output >> kPointerSizeLog2;
|
| - sink_->PutSection(kFixedRawDataStart + size_in_words, "FixedRawData");
|
| - to_skip = 0; // This instruction includes skip.
|
| - } else {
|
| - // We always end up here if we are outputting the code of a code object.
|
| - sink_->Put(kVariableRawData, "VariableRawData");
|
| - sink_->PutInt(bytes_to_output, "length");
|
| - }
|
| -
|
| - if (is_code_object_) object_start = PrepareCode();
|
| -
|
| - const char* description = is_code_object_ ? "Code" : "Byte";
|
| - sink_->PutRaw(object_start + base, bytes_to_output, description);
|
| - }
|
| - if (to_skip != 0 && return_skip == kIgnoringReturn) {
|
| - sink_->Put(kSkip, "Skip");
|
| - sink_->PutInt(to_skip, "SkipDistance");
|
| - to_skip = 0;
|
| - }
|
| - return to_skip;
|
| -}
|
| -
|
| -
|
| -BackReference Serializer::AllocateLargeObject(int size) {
|
| - // Large objects are allocated one-by-one when deserializing. We do not
|
| - // have to keep track of multiple chunks.
|
| - large_objects_total_size_ += size;
|
| - return BackReference::LargeObjectReference(seen_large_objects_index_++);
|
| -}
|
| -
|
| -
|
| -BackReference Serializer::Allocate(AllocationSpace space, int size) {
|
| - DCHECK(space >= 0 && space < kNumberOfPreallocatedSpaces);
|
| - DCHECK(size > 0 && size <= static_cast<int>(max_chunk_size(space)));
|
| - uint32_t new_chunk_size = pending_chunk_[space] + size;
|
| - if (new_chunk_size > max_chunk_size(space)) {
|
| - // The new chunk size would not fit onto a single page. Complete the
|
| - // current chunk and start a new one.
|
| - sink_->Put(kNextChunk, "NextChunk");
|
| - sink_->Put(space, "NextChunkSpace");
|
| - completed_chunks_[space].Add(pending_chunk_[space]);
|
| - DCHECK_LE(completed_chunks_[space].length(), BackReference::kMaxChunkIndex);
|
| - pending_chunk_[space] = 0;
|
| - new_chunk_size = size;
|
| - }
|
| - uint32_t offset = pending_chunk_[space];
|
| - pending_chunk_[space] = new_chunk_size;
|
| - return BackReference::Reference(space, completed_chunks_[space].length(),
|
| - offset);
|
| -}
|
| -
|
| -
|
| -void Serializer::Pad() {
|
| - // The non-branching GetInt will read up to 3 bytes too far, so we need
|
| - // to pad the snapshot to make sure we don't read over the end.
|
| - for (unsigned i = 0; i < sizeof(int32_t) - 1; i++) {
|
| - sink_->Put(kNop, "Padding");
|
| - }
|
| - // Pad up to pointer size for checksum.
|
| - while (!IsAligned(sink_->Position(), kPointerAlignment)) {
|
| - sink_->Put(kNop, "Padding");
|
| - }
|
| -}
|
| -
|
| -
|
| -void Serializer::InitializeCodeAddressMap() {
|
| - isolate_->InitializeLoggingAndCounters();
|
| - code_address_map_ = new CodeAddressMap(isolate_);
|
| -}
|
| -
|
| -
|
| -Code* Serializer::CopyCode(Code* code) {
|
| - code_buffer_.Rewind(0); // Clear buffer without deleting backing store.
|
| - int size = code->CodeSize();
|
| - code_buffer_.AddAll(Vector<byte>(code->address(), size));
|
| - return Code::cast(HeapObject::FromAddress(&code_buffer_.first()));
|
| -}
|
| -
|
| -
|
| -ScriptData* CodeSerializer::Serialize(Isolate* isolate,
|
| - Handle<SharedFunctionInfo> info,
|
| - Handle<String> source) {
|
| - base::ElapsedTimer timer;
|
| - if (FLAG_profile_deserialization) timer.Start();
|
| - if (FLAG_trace_serializer) {
|
| - PrintF("[Serializing from");
|
| - Object* script = info->script();
|
| - if (script->IsScript()) Script::cast(script)->name()->ShortPrint();
|
| - PrintF("]\n");
|
| - }
|
| -
|
| - // Serialize code object.
|
| - SnapshotByteSink sink(info->code()->CodeSize() * 2);
|
| - CodeSerializer cs(isolate, &sink, *source);
|
| - DisallowHeapAllocation no_gc;
|
| - Object** location = Handle<Object>::cast(info).location();
|
| - cs.VisitPointer(location);
|
| - cs.SerializeDeferredObjects();
|
| - cs.Pad();
|
| -
|
| - SerializedCodeData data(sink.data(), cs);
|
| - ScriptData* script_data = data.GetScriptData();
|
| -
|
| - if (FLAG_profile_deserialization) {
|
| - double ms = timer.Elapsed().InMillisecondsF();
|
| - int length = script_data->length();
|
| - PrintF("[Serializing to %d bytes took %0.3f ms]\n", length, ms);
|
| - }
|
| -
|
| - return script_data;
|
| -}
|
| -
|
| -
|
| -void CodeSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
|
| - WhereToPoint where_to_point, int skip) {
|
| - int root_index = root_index_map_.Lookup(obj);
|
| - if (root_index != RootIndexMap::kInvalidRootIndex) {
|
| - PutRoot(root_index, obj, how_to_code, where_to_point, skip);
|
| - return;
|
| - }
|
| -
|
| - if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;
|
| -
|
| - FlushSkip(skip);
|
| -
|
| - if (obj->IsCode()) {
|
| - Code* code_object = Code::cast(obj);
|
| - switch (code_object->kind()) {
|
| - case Code::OPTIMIZED_FUNCTION: // No optimized code compiled yet.
|
| - case Code::HANDLER: // No handlers patched in yet.
|
| - case Code::REGEXP: // No regexp literals initialized yet.
|
| - case Code::NUMBER_OF_KINDS: // Pseudo enum value.
|
| - CHECK(false);
|
| - case Code::BUILTIN:
|
| - SerializeBuiltin(code_object->builtin_index(), how_to_code,
|
| - where_to_point);
|
| - return;
|
| - case Code::STUB:
|
| - SerializeCodeStub(code_object->stub_key(), how_to_code, where_to_point);
|
| - return;
|
| -#define IC_KIND_CASE(KIND) case Code::KIND:
|
| - IC_KIND_LIST(IC_KIND_CASE)
|
| -#undef IC_KIND_CASE
|
| - SerializeIC(code_object, how_to_code, where_to_point);
|
| - return;
|
| - case Code::FUNCTION:
|
| - DCHECK(code_object->has_reloc_info_for_serialization());
|
| - SerializeGeneric(code_object, how_to_code, where_to_point);
|
| - return;
|
| - case Code::WASM_FUNCTION:
|
| - UNREACHABLE();
|
| - }
|
| - UNREACHABLE();
|
| - }
|
| -
|
| - // Past this point we should not see any (context-specific) maps anymore.
|
| - CHECK(!obj->IsMap());
|
| - // There should be no references to the global object embedded.
|
| - CHECK(!obj->IsJSGlobalProxy() && !obj->IsJSGlobalObject());
|
| - // There should be no hash table embedded. They would require rehashing.
|
| - CHECK(!obj->IsHashTable());
|
| - // We expect no instantiated function objects or contexts.
|
| - CHECK(!obj->IsJSFunction() && !obj->IsContext());
|
| -
|
| - SerializeGeneric(obj, how_to_code, where_to_point);
|
| -}
|
| -
|
| -
|
| -void CodeSerializer::SerializeGeneric(HeapObject* heap_object,
|
| - HowToCode how_to_code,
|
| - WhereToPoint where_to_point) {
|
| - // Object has not yet been serialized. Serialize it here.
|
| - ObjectSerializer serializer(this, heap_object, sink_, how_to_code,
|
| - where_to_point);
|
| - serializer.Serialize();
|
| -}
|
| -
|
| -
|
| -void CodeSerializer::SerializeBuiltin(int builtin_index, HowToCode how_to_code,
|
| - WhereToPoint where_to_point) {
|
| - DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) ||
|
| - (how_to_code == kPlain && where_to_point == kInnerPointer) ||
|
| - (how_to_code == kFromCode && where_to_point == kInnerPointer));
|
| - DCHECK_LT(builtin_index, Builtins::builtin_count);
|
| - DCHECK_LE(0, builtin_index);
|
| -
|
| - if (FLAG_trace_serializer) {
|
| - PrintF(" Encoding builtin: %s\n",
|
| - isolate()->builtins()->name(builtin_index));
|
| - }
|
| -
|
| - sink_->Put(kBuiltin + how_to_code + where_to_point, "Builtin");
|
| - sink_->PutInt(builtin_index, "builtin_index");
|
| -}
|
| -
|
| -
|
| -void CodeSerializer::SerializeCodeStub(uint32_t stub_key, HowToCode how_to_code,
|
| - WhereToPoint where_to_point) {
|
| - DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) ||
|
| - (how_to_code == kPlain && where_to_point == kInnerPointer) ||
|
| - (how_to_code == kFromCode && where_to_point == kInnerPointer));
|
| - DCHECK(CodeStub::MajorKeyFromKey(stub_key) != CodeStub::NoCache);
|
| - DCHECK(!CodeStub::GetCode(isolate(), stub_key).is_null());
|
| -
|
| - int index = AddCodeStubKey(stub_key) + kCodeStubsBaseIndex;
|
| -
|
| - if (FLAG_trace_serializer) {
|
| - PrintF(" Encoding code stub %s as %d\n",
|
| - CodeStub::MajorName(CodeStub::MajorKeyFromKey(stub_key)), index);
|
| - }
|
| -
|
| - sink_->Put(kAttachedReference + how_to_code + where_to_point, "CodeStub");
|
| - sink_->PutInt(index, "CodeStub key");
|
| -}
|
| -
|
| -
|
| -void CodeSerializer::SerializeIC(Code* ic, HowToCode how_to_code,
|
| - WhereToPoint where_to_point) {
|
| - // The IC may be implemented as a stub.
|
| - uint32_t stub_key = ic->stub_key();
|
| - if (stub_key != CodeStub::NoCacheKey()) {
|
| - if (FLAG_trace_serializer) {
|
| - PrintF(" %s is a code stub\n", Code::Kind2String(ic->kind()));
|
| - }
|
| - SerializeCodeStub(stub_key, how_to_code, where_to_point);
|
| - return;
|
| - }
|
| - // The IC may be implemented as builtin. Only real builtins have an
|
| - // actual builtin_index value attached (otherwise it's just garbage).
|
| - // Compare to make sure we are really dealing with a builtin.
|
| - int builtin_index = ic->builtin_index();
|
| - if (builtin_index < Builtins::builtin_count) {
|
| - Builtins::Name name = static_cast<Builtins::Name>(builtin_index);
|
| - Code* builtin = isolate()->builtins()->builtin(name);
|
| - if (builtin == ic) {
|
| - if (FLAG_trace_serializer) {
|
| - PrintF(" %s is a builtin\n", Code::Kind2String(ic->kind()));
|
| - }
|
| - DCHECK(ic->kind() == Code::KEYED_LOAD_IC ||
|
| - ic->kind() == Code::KEYED_STORE_IC);
|
| - SerializeBuiltin(builtin_index, how_to_code, where_to_point);
|
| - return;
|
| - }
|
| - }
|
| - // The IC may also just be a piece of code kept in the non_monomorphic_cache.
|
| - // In that case, just serialize as a normal code object.
|
| - if (FLAG_trace_serializer) {
|
| - PrintF(" %s has no special handling\n", Code::Kind2String(ic->kind()));
|
| - }
|
| - DCHECK(ic->kind() == Code::LOAD_IC || ic->kind() == Code::STORE_IC);
|
| - SerializeGeneric(ic, how_to_code, where_to_point);
|
| -}
|
| -
|
| -
|
| -int CodeSerializer::AddCodeStubKey(uint32_t stub_key) {
|
| - // TODO(yangguo) Maybe we need a hash table for a faster lookup than O(n^2).
|
| - int index = 0;
|
| - while (index < stub_keys_.length()) {
|
| - if (stub_keys_[index] == stub_key) return index;
|
| - index++;
|
| - }
|
| - stub_keys_.Add(stub_key);
|
| - return index;
|
| -}
|
| -
|
| -
|
| -MaybeHandle<SharedFunctionInfo> CodeSerializer::Deserialize(
|
| - Isolate* isolate, ScriptData* cached_data, Handle<String> source) {
|
| - base::ElapsedTimer timer;
|
| - if (FLAG_profile_deserialization) timer.Start();
|
| -
|
| - HandleScope scope(isolate);
|
| -
|
| - base::SmartPointer<SerializedCodeData> scd(
|
| - SerializedCodeData::FromCachedData(isolate, cached_data, *source));
|
| - if (scd.is_empty()) {
|
| - if (FLAG_profile_deserialization) PrintF("[Cached code failed check]\n");
|
| - DCHECK(cached_data->rejected());
|
| - return MaybeHandle<SharedFunctionInfo>();
|
| - }
|
| -
|
| - // Prepare and register list of attached objects.
|
| - Vector<const uint32_t> code_stub_keys = scd->CodeStubKeys();
|
| - Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New(
|
| - code_stub_keys.length() + kCodeStubsBaseIndex);
|
| - attached_objects[kSourceObjectIndex] = source;
|
| - for (int i = 0; i < code_stub_keys.length(); i++) {
|
| - attached_objects[i + kCodeStubsBaseIndex] =
|
| - CodeStub::GetCode(isolate, code_stub_keys[i]).ToHandleChecked();
|
| - }
|
| -
|
| - Deserializer deserializer(scd.get());
|
| - deserializer.SetAttachedObjects(attached_objects);
|
| -
|
| - // Deserialize.
|
| - Handle<SharedFunctionInfo> result;
|
| - if (!deserializer.DeserializeCode(isolate).ToHandle(&result)) {
|
| - // Deserializing may fail if the reservations cannot be fulfilled.
|
| - if (FLAG_profile_deserialization) PrintF("[Deserializing failed]\n");
|
| - return MaybeHandle<SharedFunctionInfo>();
|
| - }
|
| -
|
| - if (FLAG_profile_deserialization) {
|
| - double ms = timer.Elapsed().InMillisecondsF();
|
| - int length = cached_data->length();
|
| - PrintF("[Deserializing from %d bytes took %0.3f ms]\n", length, ms);
|
| - }
|
| - result->set_deserialized(true);
|
| -
|
| - if (isolate->logger()->is_logging_code_events() ||
|
| - isolate->cpu_profiler()->is_profiling()) {
|
| - String* name = isolate->heap()->empty_string();
|
| - if (result->script()->IsScript()) {
|
| - Script* script = Script::cast(result->script());
|
| - if (script->name()->IsString()) name = String::cast(script->name());
|
| - }
|
| - isolate->logger()->CodeCreateEvent(
|
| - Logger::SCRIPT_TAG, result->abstract_code(), *result, NULL, name);
|
| - }
|
| - return scope.CloseAndEscape(result);
|
| -}
|
| -
|
| -
|
| -void SerializedData::AllocateData(int size) {
|
| - DCHECK(!owns_data_);
|
| - data_ = NewArray<byte>(size);
|
| - size_ = size;
|
| - owns_data_ = true;
|
| - DCHECK(IsAligned(reinterpret_cast<intptr_t>(data_), kPointerAlignment));
|
| -}
|
| -
|
| -
|
| -SnapshotData::SnapshotData(const Serializer& ser) {
|
| - DisallowHeapAllocation no_gc;
|
| - List<Reservation> reservations;
|
| - ser.EncodeReservations(&reservations);
|
| - const List<byte>& payload = ser.sink()->data();
|
| -
|
| - // Calculate sizes.
|
| - int reservation_size = reservations.length() * kInt32Size;
|
| - int size = kHeaderSize + reservation_size + payload.length();
|
| -
|
| - // Allocate backing store and create result data.
|
| - AllocateData(size);
|
| -
|
| - // Set header values.
|
| - SetMagicNumber(ser.isolate());
|
| - SetHeaderValue(kCheckSumOffset, Version::Hash());
|
| - SetHeaderValue(kNumReservationsOffset, reservations.length());
|
| - SetHeaderValue(kPayloadLengthOffset, payload.length());
|
| -
|
| - // Copy reservation chunk sizes.
|
| - CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()),
|
| - reservation_size);
|
| -
|
| - // Copy serialized data.
|
| - CopyBytes(data_ + kHeaderSize + reservation_size, payload.begin(),
|
| - static_cast<size_t>(payload.length()));
|
| -}
|
| -
|
| -
|
| -bool SnapshotData::IsSane() {
|
| - return GetHeaderValue(kCheckSumOffset) == Version::Hash();
|
| -}
|
| -
|
| -
|
| -Vector<const SerializedData::Reservation> SnapshotData::Reservations() const {
|
| - return Vector<const Reservation>(
|
| - reinterpret_cast<const Reservation*>(data_ + kHeaderSize),
|
| - GetHeaderValue(kNumReservationsOffset));
|
| -}
|
| -
|
| -
|
| -Vector<const byte> SnapshotData::Payload() const {
|
| - int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size;
|
| - const byte* payload = data_ + kHeaderSize + reservations_size;
|
| - int length = GetHeaderValue(kPayloadLengthOffset);
|
| - DCHECK_EQ(data_ + size_, payload + length);
|
| - return Vector<const byte>(payload, length);
|
| -}
|
| -
|
| -
|
| -class Checksum {
|
| - public:
|
| - explicit Checksum(Vector<const byte> payload) {
|
| -#ifdef MEMORY_SANITIZER
|
| - // Computing the checksum includes padding bytes for objects like strings.
|
| - // Mark every object as initialized in the code serializer.
|
| - MSAN_MEMORY_IS_INITIALIZED(payload.start(), payload.length());
|
| -#endif // MEMORY_SANITIZER
|
| - // Fletcher's checksum. Modified to reduce 64-bit sums to 32-bit.
|
| - uintptr_t a = 1;
|
| - uintptr_t b = 0;
|
| - const uintptr_t* cur = reinterpret_cast<const uintptr_t*>(payload.start());
|
| - DCHECK(IsAligned(payload.length(), kIntptrSize));
|
| - const uintptr_t* end = cur + payload.length() / kIntptrSize;
|
| - while (cur < end) {
|
| - // Unsigned overflow expected and intended.
|
| - a += *cur++;
|
| - b += a;
|
| - }
|
| -#if V8_HOST_ARCH_64_BIT
|
| - a ^= a >> 32;
|
| - b ^= b >> 32;
|
| -#endif // V8_HOST_ARCH_64_BIT
|
| - a_ = static_cast<uint32_t>(a);
|
| - b_ = static_cast<uint32_t>(b);
|
| - }
|
| -
|
| - bool Check(uint32_t a, uint32_t b) const { return a == a_ && b == b_; }
|
| -
|
| - uint32_t a() const { return a_; }
|
| - uint32_t b() const { return b_; }
|
| -
|
| - private:
|
| - uint32_t a_;
|
| - uint32_t b_;
|
| -
|
| - DISALLOW_COPY_AND_ASSIGN(Checksum);
|
| -};
|
| -
|
| -
|
| -SerializedCodeData::SerializedCodeData(const List<byte>& payload,
|
| - const CodeSerializer& cs) {
|
| - DisallowHeapAllocation no_gc;
|
| - const List<uint32_t>* stub_keys = cs.stub_keys();
|
| -
|
| - List<Reservation> reservations;
|
| - cs.EncodeReservations(&reservations);
|
| -
|
| - // Calculate sizes.
|
| - int reservation_size = reservations.length() * kInt32Size;
|
| - int num_stub_keys = stub_keys->length();
|
| - int stub_keys_size = stub_keys->length() * kInt32Size;
|
| - int payload_offset = kHeaderSize + reservation_size + stub_keys_size;
|
| - int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset);
|
| - int size = padded_payload_offset + payload.length();
|
| -
|
| - // Allocate backing store and create result data.
|
| - AllocateData(size);
|
| -
|
| - // Set header values.
|
| - SetMagicNumber(cs.isolate());
|
| - SetHeaderValue(kVersionHashOffset, Version::Hash());
|
| - SetHeaderValue(kSourceHashOffset, SourceHash(cs.source()));
|
| - SetHeaderValue(kCpuFeaturesOffset,
|
| - static_cast<uint32_t>(CpuFeatures::SupportedFeatures()));
|
| - SetHeaderValue(kFlagHashOffset, FlagList::Hash());
|
| - SetHeaderValue(kNumReservationsOffset, reservations.length());
|
| - SetHeaderValue(kNumCodeStubKeysOffset, num_stub_keys);
|
| - SetHeaderValue(kPayloadLengthOffset, payload.length());
|
| -
|
| - Checksum checksum(payload.ToConstVector());
|
| - SetHeaderValue(kChecksum1Offset, checksum.a());
|
| - SetHeaderValue(kChecksum2Offset, checksum.b());
|
| -
|
| - // Copy reservation chunk sizes.
|
| - CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()),
|
| - reservation_size);
|
| -
|
| - // Copy code stub keys.
|
| - CopyBytes(data_ + kHeaderSize + reservation_size,
|
| - reinterpret_cast<byte*>(stub_keys->begin()), stub_keys_size);
|
| -
|
| - memset(data_ + payload_offset, 0, padded_payload_offset - payload_offset);
|
| -
|
| - // Copy serialized data.
|
| - CopyBytes(data_ + padded_payload_offset, payload.begin(),
|
| - static_cast<size_t>(payload.length()));
|
| -}
|
| -
|
| -
|
| -SerializedCodeData::SanityCheckResult SerializedCodeData::SanityCheck(
|
| - Isolate* isolate, String* source) const {
|
| - uint32_t magic_number = GetMagicNumber();
|
| - if (magic_number != ComputeMagicNumber(isolate)) return MAGIC_NUMBER_MISMATCH;
|
| - uint32_t version_hash = GetHeaderValue(kVersionHashOffset);
|
| - uint32_t source_hash = GetHeaderValue(kSourceHashOffset);
|
| - uint32_t cpu_features = GetHeaderValue(kCpuFeaturesOffset);
|
| - uint32_t flags_hash = GetHeaderValue(kFlagHashOffset);
|
| - uint32_t c1 = GetHeaderValue(kChecksum1Offset);
|
| - uint32_t c2 = GetHeaderValue(kChecksum2Offset);
|
| - if (version_hash != Version::Hash()) return VERSION_MISMATCH;
|
| - if (source_hash != SourceHash(source)) return SOURCE_MISMATCH;
|
| - if (cpu_features != static_cast<uint32_t>(CpuFeatures::SupportedFeatures())) {
|
| - return CPU_FEATURES_MISMATCH;
|
| - }
|
| - if (flags_hash != FlagList::Hash()) return FLAGS_MISMATCH;
|
| - if (!Checksum(Payload()).Check(c1, c2)) return CHECKSUM_MISMATCH;
|
| - return CHECK_SUCCESS;
|
| -}
|
| -
|
| -
|
| -uint32_t SerializedCodeData::SourceHash(String* source) const {
|
| - return source->length();
|
| -}
|
| -
|
| -
|
| -// Return ScriptData object and relinquish ownership over it to the caller.
|
| -ScriptData* SerializedCodeData::GetScriptData() {
|
| - DCHECK(owns_data_);
|
| - ScriptData* result = new ScriptData(data_, size_);
|
| - result->AcquireDataOwnership();
|
| - owns_data_ = false;
|
| - data_ = NULL;
|
| - return result;
|
| -}
|
| -
|
| -
|
| -Vector<const SerializedData::Reservation> SerializedCodeData::Reservations()
|
| - const {
|
| - return Vector<const Reservation>(
|
| - reinterpret_cast<const Reservation*>(data_ + kHeaderSize),
|
| - GetHeaderValue(kNumReservationsOffset));
|
| -}
|
| -
|
| -
|
| -Vector<const byte> SerializedCodeData::Payload() const {
|
| - int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size;
|
| - int code_stubs_size = GetHeaderValue(kNumCodeStubKeysOffset) * kInt32Size;
|
| - int payload_offset = kHeaderSize + reservations_size + code_stubs_size;
|
| - int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset);
|
| - const byte* payload = data_ + padded_payload_offset;
|
| - DCHECK(IsAligned(reinterpret_cast<intptr_t>(payload), kPointerAlignment));
|
| - int length = GetHeaderValue(kPayloadLengthOffset);
|
| - DCHECK_EQ(data_ + size_, payload + length);
|
| - return Vector<const byte>(payload, length);
|
| -}
|
| -
|
| -
|
| -Vector<const uint32_t> SerializedCodeData::CodeStubKeys() const {
|
| - int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size;
|
| - const byte* start = data_ + kHeaderSize + reservations_size;
|
| - return Vector<const uint32_t>(reinterpret_cast<const uint32_t*>(start),
|
| - GetHeaderValue(kNumCodeStubKeysOffset));
|
| -}
|
| -
|
| -
|
| -SerializedCodeData::SerializedCodeData(ScriptData* data)
|
| - : SerializedData(const_cast<byte*>(data->data()), data->length()) {}
|
| -
|
| -
|
| -SerializedCodeData* SerializedCodeData::FromCachedData(Isolate* isolate,
|
| - ScriptData* cached_data,
|
| - String* source) {
|
| - DisallowHeapAllocation no_gc;
|
| - SerializedCodeData* scd = new SerializedCodeData(cached_data);
|
| - SanityCheckResult r = scd->SanityCheck(isolate, source);
|
| - if (r == CHECK_SUCCESS) return scd;
|
| - cached_data->Reject();
|
| - source->GetIsolate()->counters()->code_cache_reject_reason()->AddSample(r);
|
| - delete scd;
|
| - return NULL;
|
| -}
|
| -} // namespace internal
|
| -} // namespace v8
|
|
|