Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(147)

Unified Diff: src/snapshot/serialize.cc

Issue 1751863002: [serializer] split up src/snapshot/serialize.* (Closed) Base URL: https://chromium.googlesource.com/v8/v8.git@master
Patch Set: fix Created 4 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: src/snapshot/serialize.cc
diff --git a/src/snapshot/serialize.cc b/src/snapshot/serialize.cc
deleted file mode 100644
index f7b5ae81c52a8e131d0ef46d9b7bbb9e94ac1903..0000000000000000000000000000000000000000
--- a/src/snapshot/serialize.cc
+++ /dev/null
@@ -1,2874 +0,0 @@
-// Copyright 2012 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#include "src/snapshot/serialize.h"
-
-#include "src/accessors.h"
-#include "src/api.h"
-#include "src/base/platform/platform.h"
-#include "src/bootstrapper.h"
-#include "src/code-stubs.h"
-#include "src/deoptimizer.h"
-#include "src/execution.h"
-#include "src/global-handles.h"
-#include "src/ic/ic.h"
-#include "src/ic/stub-cache.h"
-#include "src/objects.h"
-#include "src/parsing/parser.h"
-#include "src/profiler/cpu-profiler.h"
-#include "src/runtime/runtime.h"
-#include "src/snapshot/natives.h"
-#include "src/snapshot/snapshot.h"
-#include "src/snapshot/snapshot-source-sink.h"
-#include "src/v8.h"
-#include "src/v8threads.h"
-#include "src/version.h"
-
-namespace v8 {
-namespace internal {
-
-
-// -----------------------------------------------------------------------------
-// Coding of external references.
-
-
-ExternalReferenceTable* ExternalReferenceTable::instance(Isolate* isolate) {
- ExternalReferenceTable* external_reference_table =
- isolate->external_reference_table();
- if (external_reference_table == NULL) {
- external_reference_table = new ExternalReferenceTable(isolate);
- isolate->set_external_reference_table(external_reference_table);
- }
- return external_reference_table;
-}
-
-
-ExternalReferenceTable::ExternalReferenceTable(Isolate* isolate) {
- // Miscellaneous
- Add(ExternalReference::roots_array_start(isolate).address(),
- "Heap::roots_array_start()");
- Add(ExternalReference::address_of_stack_limit(isolate).address(),
- "StackGuard::address_of_jslimit()");
- Add(ExternalReference::address_of_real_stack_limit(isolate).address(),
- "StackGuard::address_of_real_jslimit()");
- Add(ExternalReference::new_space_start(isolate).address(),
- "Heap::NewSpaceStart()");
- Add(ExternalReference::new_space_allocation_limit_address(isolate).address(),
- "Heap::NewSpaceAllocationLimitAddress()");
- Add(ExternalReference::new_space_allocation_top_address(isolate).address(),
- "Heap::NewSpaceAllocationTopAddress()");
- Add(ExternalReference::mod_two_doubles_operation(isolate).address(),
- "mod_two_doubles");
- // Keyed lookup cache.
- Add(ExternalReference::keyed_lookup_cache_keys(isolate).address(),
- "KeyedLookupCache::keys()");
- Add(ExternalReference::keyed_lookup_cache_field_offsets(isolate).address(),
- "KeyedLookupCache::field_offsets()");
- Add(ExternalReference::handle_scope_next_address(isolate).address(),
- "HandleScope::next");
- Add(ExternalReference::handle_scope_limit_address(isolate).address(),
- "HandleScope::limit");
- Add(ExternalReference::handle_scope_level_address(isolate).address(),
- "HandleScope::level");
- Add(ExternalReference::new_deoptimizer_function(isolate).address(),
- "Deoptimizer::New()");
- Add(ExternalReference::compute_output_frames_function(isolate).address(),
- "Deoptimizer::ComputeOutputFrames()");
- Add(ExternalReference::address_of_min_int().address(),
- "LDoubleConstant::min_int");
- Add(ExternalReference::address_of_one_half().address(),
- "LDoubleConstant::one_half");
- Add(ExternalReference::isolate_address(isolate).address(), "isolate");
- Add(ExternalReference::interpreter_dispatch_table_address(isolate).address(),
- "Interpreter::dispatch_table_address");
- Add(ExternalReference::address_of_negative_infinity().address(),
- "LDoubleConstant::negative_infinity");
- Add(ExternalReference::power_double_double_function(isolate).address(),
- "power_double_double_function");
- Add(ExternalReference::power_double_int_function(isolate).address(),
- "power_double_int_function");
- Add(ExternalReference::math_log_double_function(isolate).address(),
- "std::log");
- Add(ExternalReference::store_buffer_top(isolate).address(),
- "store_buffer_top");
- Add(ExternalReference::address_of_the_hole_nan().address(), "the_hole_nan");
- Add(ExternalReference::get_date_field_function(isolate).address(),
- "JSDate::GetField");
- Add(ExternalReference::date_cache_stamp(isolate).address(),
- "date_cache_stamp");
- Add(ExternalReference::address_of_pending_message_obj(isolate).address(),
- "address_of_pending_message_obj");
- Add(ExternalReference::get_make_code_young_function(isolate).address(),
- "Code::MakeCodeYoung");
- Add(ExternalReference::cpu_features().address(), "cpu_features");
- Add(ExternalReference::old_space_allocation_top_address(isolate).address(),
- "Heap::OldSpaceAllocationTopAddress");
- Add(ExternalReference::old_space_allocation_limit_address(isolate).address(),
- "Heap::OldSpaceAllocationLimitAddress");
- Add(ExternalReference::allocation_sites_list_address(isolate).address(),
- "Heap::allocation_sites_list_address()");
- Add(ExternalReference::address_of_uint32_bias().address(), "uint32_bias");
- Add(ExternalReference::get_mark_code_as_executed_function(isolate).address(),
- "Code::MarkCodeAsExecuted");
- Add(ExternalReference::is_profiling_address(isolate).address(),
- "CpuProfiler::is_profiling");
- Add(ExternalReference::scheduled_exception_address(isolate).address(),
- "Isolate::scheduled_exception");
- Add(ExternalReference::invoke_function_callback(isolate).address(),
- "InvokeFunctionCallback");
- Add(ExternalReference::invoke_accessor_getter_callback(isolate).address(),
- "InvokeAccessorGetterCallback");
- Add(ExternalReference::f32_trunc_wrapper_function(isolate).address(),
- "f32_trunc_wrapper");
- Add(ExternalReference::f32_floor_wrapper_function(isolate).address(),
- "f32_floor_wrapper");
- Add(ExternalReference::f32_ceil_wrapper_function(isolate).address(),
- "f32_ceil_wrapper");
- Add(ExternalReference::f32_nearest_int_wrapper_function(isolate).address(),
- "f32_nearest_int_wrapper");
- Add(ExternalReference::f64_trunc_wrapper_function(isolate).address(),
- "f64_trunc_wrapper");
- Add(ExternalReference::f64_floor_wrapper_function(isolate).address(),
- "f64_floor_wrapper");
- Add(ExternalReference::f64_ceil_wrapper_function(isolate).address(),
- "f64_ceil_wrapper");
- Add(ExternalReference::f64_nearest_int_wrapper_function(isolate).address(),
- "f64_nearest_int_wrapper");
- Add(ExternalReference::log_enter_external_function(isolate).address(),
- "Logger::EnterExternal");
- Add(ExternalReference::log_leave_external_function(isolate).address(),
- "Logger::LeaveExternal");
- Add(ExternalReference::address_of_minus_one_half().address(),
- "double_constants.minus_one_half");
- Add(ExternalReference::stress_deopt_count(isolate).address(),
- "Isolate::stress_deopt_count_address()");
- Add(ExternalReference::virtual_handler_register(isolate).address(),
- "Isolate::virtual_handler_register()");
- Add(ExternalReference::virtual_slot_register(isolate).address(),
- "Isolate::virtual_slot_register()");
- Add(ExternalReference::runtime_function_table_address(isolate).address(),
- "Runtime::runtime_function_table_address()");
-
- // Debug addresses
- Add(ExternalReference::debug_after_break_target_address(isolate).address(),
- "Debug::after_break_target_address()");
- Add(ExternalReference::debug_is_active_address(isolate).address(),
- "Debug::is_active_address()");
- Add(ExternalReference::debug_step_in_enabled_address(isolate).address(),
- "Debug::step_in_enabled_address()");
-
-#ifndef V8_INTERPRETED_REGEXP
- Add(ExternalReference::re_case_insensitive_compare_uc16(isolate).address(),
- "NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()");
- Add(ExternalReference::re_check_stack_guard_state(isolate).address(),
- "RegExpMacroAssembler*::CheckStackGuardState()");
- Add(ExternalReference::re_grow_stack(isolate).address(),
- "NativeRegExpMacroAssembler::GrowStack()");
- Add(ExternalReference::re_word_character_map().address(),
- "NativeRegExpMacroAssembler::word_character_map");
- Add(ExternalReference::address_of_regexp_stack_limit(isolate).address(),
- "RegExpStack::limit_address()");
- Add(ExternalReference::address_of_regexp_stack_memory_address(isolate)
- .address(),
- "RegExpStack::memory_address()");
- Add(ExternalReference::address_of_regexp_stack_memory_size(isolate).address(),
- "RegExpStack::memory_size()");
- Add(ExternalReference::address_of_static_offsets_vector(isolate).address(),
- "OffsetsVector::static_offsets_vector");
-#endif // V8_INTERPRETED_REGEXP
-
- // The following populates all of the different type of external references
- // into the ExternalReferenceTable.
- //
- // NOTE: This function was originally 100k of code. It has since been
- // rewritten to be mostly table driven, as the callback macro style tends to
- // very easily cause code bloat. Please be careful in the future when adding
- // new references.
-
- struct RefTableEntry {
- uint16_t id;
- const char* name;
- };
-
- static const RefTableEntry c_builtins[] = {
-#define DEF_ENTRY_C(name, ignored) \
- { Builtins::c_##name, "Builtins::" #name } \
- ,
- BUILTIN_LIST_C(DEF_ENTRY_C)
-#undef DEF_ENTRY_C
- };
-
- for (unsigned i = 0; i < arraysize(c_builtins); ++i) {
- ExternalReference ref(static_cast<Builtins::CFunctionId>(c_builtins[i].id),
- isolate);
- Add(ref.address(), c_builtins[i].name);
- }
-
- static const RefTableEntry builtins[] = {
-#define DEF_ENTRY_C(name, ignored) \
- { Builtins::k##name, "Builtins::" #name } \
- ,
-#define DEF_ENTRY_A(name, i1, i2, i3) \
- { Builtins::k##name, "Builtins::" #name } \
- ,
- BUILTIN_LIST_C(DEF_ENTRY_C) BUILTIN_LIST_A(DEF_ENTRY_A)
- BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A)
-#undef DEF_ENTRY_C
-#undef DEF_ENTRY_A
- };
-
- for (unsigned i = 0; i < arraysize(builtins); ++i) {
- ExternalReference ref(static_cast<Builtins::Name>(builtins[i].id), isolate);
- Add(ref.address(), builtins[i].name);
- }
-
- static const RefTableEntry runtime_functions[] = {
-#define RUNTIME_ENTRY(name, i1, i2) \
- { Runtime::k##name, "Runtime::" #name } \
- ,
- FOR_EACH_INTRINSIC(RUNTIME_ENTRY)
-#undef RUNTIME_ENTRY
- };
-
- for (unsigned i = 0; i < arraysize(runtime_functions); ++i) {
- ExternalReference ref(
- static_cast<Runtime::FunctionId>(runtime_functions[i].id), isolate);
- Add(ref.address(), runtime_functions[i].name);
- }
-
- // Stat counters
- struct StatsRefTableEntry {
- StatsCounter* (Counters::*counter)();
- const char* name;
- };
-
- static const StatsRefTableEntry stats_ref_table[] = {
-#define COUNTER_ENTRY(name, caption) \
- { &Counters::name, "Counters::" #name } \
- ,
- STATS_COUNTER_LIST_1(COUNTER_ENTRY) STATS_COUNTER_LIST_2(COUNTER_ENTRY)
-#undef COUNTER_ENTRY
- };
-
- Counters* counters = isolate->counters();
- for (unsigned i = 0; i < arraysize(stats_ref_table); ++i) {
- // To make sure the indices are not dependent on whether counters are
- // enabled, use a dummy address as filler.
- Address address = NotAvailable();
- StatsCounter* counter = (counters->*(stats_ref_table[i].counter))();
- if (counter->Enabled()) {
- address = reinterpret_cast<Address>(counter->GetInternalPointer());
- }
- Add(address, stats_ref_table[i].name);
- }
-
- // Top addresses
- static const char* address_names[] = {
-#define BUILD_NAME_LITERAL(Name, name) "Isolate::" #name "_address",
- FOR_EACH_ISOLATE_ADDRESS_NAME(BUILD_NAME_LITERAL) NULL
-#undef BUILD_NAME_LITERAL
- };
-
- for (int i = 0; i < Isolate::kIsolateAddressCount; ++i) {
- Add(isolate->get_address_from_id(static_cast<Isolate::AddressId>(i)),
- address_names[i]);
- }
-
- // Accessors
- struct AccessorRefTable {
- Address address;
- const char* name;
- };
-
- static const AccessorRefTable accessors[] = {
-#define ACCESSOR_INFO_DECLARATION(name) \
- { FUNCTION_ADDR(&Accessors::name##Getter), "Accessors::" #name "Getter" } \
- ,
- ACCESSOR_INFO_LIST(ACCESSOR_INFO_DECLARATION)
-#undef ACCESSOR_INFO_DECLARATION
-#define ACCESSOR_SETTER_DECLARATION(name) \
- { FUNCTION_ADDR(&Accessors::name), "Accessors::" #name } \
- ,
- ACCESSOR_SETTER_LIST(ACCESSOR_SETTER_DECLARATION)
-#undef ACCESSOR_INFO_DECLARATION
- };
-
- for (unsigned i = 0; i < arraysize(accessors); ++i) {
- Add(accessors[i].address, accessors[i].name);
- }
-
- StubCache* stub_cache = isolate->stub_cache();
-
- // Stub cache tables
- Add(stub_cache->key_reference(StubCache::kPrimary).address(),
- "StubCache::primary_->key");
- Add(stub_cache->value_reference(StubCache::kPrimary).address(),
- "StubCache::primary_->value");
- Add(stub_cache->map_reference(StubCache::kPrimary).address(),
- "StubCache::primary_->map");
- Add(stub_cache->key_reference(StubCache::kSecondary).address(),
- "StubCache::secondary_->key");
- Add(stub_cache->value_reference(StubCache::kSecondary).address(),
- "StubCache::secondary_->value");
- Add(stub_cache->map_reference(StubCache::kSecondary).address(),
- "StubCache::secondary_->map");
-
- // Runtime entries
- Add(ExternalReference::delete_handle_scope_extensions(isolate).address(),
- "HandleScope::DeleteExtensions");
- Add(ExternalReference::incremental_marking_record_write_function(isolate)
- .address(),
- "IncrementalMarking::RecordWrite");
- Add(ExternalReference::incremental_marking_record_write_code_entry_function(
- isolate)
- .address(),
- "IncrementalMarking::RecordWriteOfCodeEntryFromCode");
- Add(ExternalReference::store_buffer_overflow_function(isolate).address(),
- "StoreBuffer::StoreBufferOverflow");
-
- // Add a small set of deopt entry addresses to encoder without generating the
- // deopt table code, which isn't possible at deserialization time.
- HandleScope scope(isolate);
- for (int entry = 0; entry < kDeoptTableSerializeEntryCount; ++entry) {
- Address address = Deoptimizer::GetDeoptimizationEntry(
- isolate,
- entry,
- Deoptimizer::LAZY,
- Deoptimizer::CALCULATE_ENTRY_ADDRESS);
- Add(address, "lazy_deopt");
- }
-}
-
-
-ExternalReferenceEncoder::ExternalReferenceEncoder(Isolate* isolate) {
- map_ = isolate->external_reference_map();
- if (map_ != NULL) return;
- map_ = new HashMap(HashMap::PointersMatch);
- ExternalReferenceTable* table = ExternalReferenceTable::instance(isolate);
- for (int i = 0; i < table->size(); ++i) {
- Address addr = table->address(i);
- if (addr == ExternalReferenceTable::NotAvailable()) continue;
- // We expect no duplicate external references entries in the table.
- DCHECK_NULL(map_->Lookup(addr, Hash(addr)));
- map_->LookupOrInsert(addr, Hash(addr))->value = reinterpret_cast<void*>(i);
- }
- isolate->set_external_reference_map(map_);
-}
-
-
-uint32_t ExternalReferenceEncoder::Encode(Address address) const {
- DCHECK_NOT_NULL(address);
- HashMap::Entry* entry =
- const_cast<HashMap*>(map_)->Lookup(address, Hash(address));
- DCHECK_NOT_NULL(entry);
- return static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry->value));
-}
-
-
-const char* ExternalReferenceEncoder::NameOfAddress(Isolate* isolate,
- Address address) const {
- HashMap::Entry* entry =
- const_cast<HashMap*>(map_)->Lookup(address, Hash(address));
- if (entry == NULL) return "<unknown>";
- uint32_t i = static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry->value));
- return ExternalReferenceTable::instance(isolate)->name(i);
-}
-
-
-class CodeAddressMap: public CodeEventLogger {
- public:
- explicit CodeAddressMap(Isolate* isolate)
- : isolate_(isolate) {
- isolate->logger()->addCodeEventListener(this);
- }
-
- ~CodeAddressMap() override {
- isolate_->logger()->removeCodeEventListener(this);
- }
-
- void CodeMoveEvent(AbstractCode* from, Address to) override {
- address_to_name_map_.Move(from->address(), to);
- }
-
- void CodeDisableOptEvent(AbstractCode* code,
- SharedFunctionInfo* shared) override {}
-
- const char* Lookup(Address address) {
- return address_to_name_map_.Lookup(address);
- }
-
- private:
- class NameMap {
- public:
- NameMap() : impl_(HashMap::PointersMatch) {}
-
- ~NameMap() {
- for (HashMap::Entry* p = impl_.Start(); p != NULL; p = impl_.Next(p)) {
- DeleteArray(static_cast<const char*>(p->value));
- }
- }
-
- void Insert(Address code_address, const char* name, int name_size) {
- HashMap::Entry* entry = FindOrCreateEntry(code_address);
- if (entry->value == NULL) {
- entry->value = CopyName(name, name_size);
- }
- }
-
- const char* Lookup(Address code_address) {
- HashMap::Entry* entry = FindEntry(code_address);
- return (entry != NULL) ? static_cast<const char*>(entry->value) : NULL;
- }
-
- void Remove(Address code_address) {
- HashMap::Entry* entry = FindEntry(code_address);
- if (entry != NULL) {
- DeleteArray(static_cast<char*>(entry->value));
- RemoveEntry(entry);
- }
- }
-
- void Move(Address from, Address to) {
- if (from == to) return;
- HashMap::Entry* from_entry = FindEntry(from);
- DCHECK(from_entry != NULL);
- void* value = from_entry->value;
- RemoveEntry(from_entry);
- HashMap::Entry* to_entry = FindOrCreateEntry(to);
- DCHECK(to_entry->value == NULL);
- to_entry->value = value;
- }
-
- private:
- static char* CopyName(const char* name, int name_size) {
- char* result = NewArray<char>(name_size + 1);
- for (int i = 0; i < name_size; ++i) {
- char c = name[i];
- if (c == '\0') c = ' ';
- result[i] = c;
- }
- result[name_size] = '\0';
- return result;
- }
-
- HashMap::Entry* FindOrCreateEntry(Address code_address) {
- return impl_.LookupOrInsert(code_address,
- ComputePointerHash(code_address));
- }
-
- HashMap::Entry* FindEntry(Address code_address) {
- return impl_.Lookup(code_address, ComputePointerHash(code_address));
- }
-
- void RemoveEntry(HashMap::Entry* entry) {
- impl_.Remove(entry->key, entry->hash);
- }
-
- HashMap impl_;
-
- DISALLOW_COPY_AND_ASSIGN(NameMap);
- };
-
- void LogRecordedBuffer(AbstractCode* code, SharedFunctionInfo*,
- const char* name, int length) override {
- address_to_name_map_.Insert(code->address(), name, length);
- }
-
- NameMap address_to_name_map_;
- Isolate* isolate_;
-};
-
-
-void Deserializer::DecodeReservation(
- Vector<const SerializedData::Reservation> res) {
- DCHECK_EQ(0, reservations_[NEW_SPACE].length());
- STATIC_ASSERT(NEW_SPACE == 0);
- int current_space = NEW_SPACE;
- for (auto& r : res) {
- reservations_[current_space].Add({r.chunk_size(), NULL, NULL});
- if (r.is_last()) current_space++;
- }
- DCHECK_EQ(kNumberOfSpaces, current_space);
- for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) current_chunk_[i] = 0;
-}
-
-
-void Deserializer::FlushICacheForNewIsolate() {
- DCHECK(!deserializing_user_code_);
- // The entire isolate is newly deserialized. Simply flush all code pages.
- PageIterator it(isolate_->heap()->code_space());
- while (it.has_next()) {
- Page* p = it.next();
- Assembler::FlushICache(isolate_, p->area_start(),
- p->area_end() - p->area_start());
- }
-}
-
-
-void Deserializer::FlushICacheForNewCodeObjects() {
- DCHECK(deserializing_user_code_);
- for (Code* code : new_code_objects_) {
- Assembler::FlushICache(isolate_, code->instruction_start(),
- code->instruction_size());
- }
-}
-
-
-bool Deserializer::ReserveSpace() {
-#ifdef DEBUG
- for (int i = NEW_SPACE; i < kNumberOfSpaces; ++i) {
- CHECK(reservations_[i].length() > 0);
- }
-#endif // DEBUG
- if (!isolate_->heap()->ReserveSpace(reservations_)) return false;
- for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
- high_water_[i] = reservations_[i][0].start;
- }
- return true;
-}
-
-
-void Deserializer::Initialize(Isolate* isolate) {
- DCHECK_NULL(isolate_);
- DCHECK_NOT_NULL(isolate);
- isolate_ = isolate;
- DCHECK_NULL(external_reference_table_);
- external_reference_table_ = ExternalReferenceTable::instance(isolate);
- CHECK_EQ(magic_number_,
- SerializedData::ComputeMagicNumber(external_reference_table_));
-}
-
-
-void Deserializer::Deserialize(Isolate* isolate) {
- Initialize(isolate);
- if (!ReserveSpace()) V8::FatalProcessOutOfMemory("deserializing context");
- // No active threads.
- DCHECK_NULL(isolate_->thread_manager()->FirstThreadStateInUse());
- // No active handles.
- DCHECK(isolate_->handle_scope_implementer()->blocks()->is_empty());
-
- {
- DisallowHeapAllocation no_gc;
- isolate_->heap()->IterateSmiRoots(this);
- isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
- isolate_->heap()->RepairFreeListsAfterDeserialization();
- isolate_->heap()->IterateWeakRoots(this, VISIT_ALL);
- DeserializeDeferredObjects();
- FlushICacheForNewIsolate();
- }
-
- isolate_->heap()->set_native_contexts_list(
- isolate_->heap()->undefined_value());
- // The allocation site list is build during root iteration, but if no sites
- // were encountered then it needs to be initialized to undefined.
- if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
- isolate_->heap()->set_allocation_sites_list(
- isolate_->heap()->undefined_value());
- }
-
- // Update data pointers to the external strings containing natives sources.
- Natives::UpdateSourceCache(isolate_->heap());
- ExtraNatives::UpdateSourceCache(isolate_->heap());
-
- // Issue code events for newly deserialized code objects.
- LOG_CODE_EVENT(isolate_, LogCodeObjects());
- LOG_CODE_EVENT(isolate_, LogCompiledFunctions());
-}
-
-
-MaybeHandle<Object> Deserializer::DeserializePartial(
- Isolate* isolate, Handle<JSGlobalProxy> global_proxy) {
- Initialize(isolate);
- if (!ReserveSpace()) {
- V8::FatalProcessOutOfMemory("deserialize context");
- return MaybeHandle<Object>();
- }
-
- Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New(1);
- attached_objects[kGlobalProxyReference] = global_proxy;
- SetAttachedObjects(attached_objects);
-
- DisallowHeapAllocation no_gc;
- // Keep track of the code space start and end pointers in case new
- // code objects were unserialized
- OldSpace* code_space = isolate_->heap()->code_space();
- Address start_address = code_space->top();
- Object* root;
- VisitPointer(&root);
- DeserializeDeferredObjects();
-
- // There's no code deserialized here. If this assert fires then that's
- // changed and logging should be added to notify the profiler et al of the
- // new code, which also has to be flushed from instruction cache.
- CHECK_EQ(start_address, code_space->top());
- return Handle<Object>(root, isolate);
-}
-
-
-MaybeHandle<SharedFunctionInfo> Deserializer::DeserializeCode(
- Isolate* isolate) {
- Initialize(isolate);
- if (!ReserveSpace()) {
- return Handle<SharedFunctionInfo>();
- } else {
- deserializing_user_code_ = true;
- HandleScope scope(isolate);
- Handle<SharedFunctionInfo> result;
- {
- DisallowHeapAllocation no_gc;
- Object* root;
- VisitPointer(&root);
- DeserializeDeferredObjects();
- FlushICacheForNewCodeObjects();
- result = Handle<SharedFunctionInfo>(SharedFunctionInfo::cast(root));
- }
- CommitPostProcessedObjects(isolate);
- return scope.CloseAndEscape(result);
- }
-}
-
-
-Deserializer::~Deserializer() {
- // TODO(svenpanne) Re-enable this assertion when v8 initialization is fixed.
- // DCHECK(source_.AtEOF());
- attached_objects_.Dispose();
-}
-
-
-// This is called on the roots. It is the driver of the deserialization
-// process. It is also called on the body of each function.
-void Deserializer::VisitPointers(Object** start, Object** end) {
- // The space must be new space. Any other space would cause ReadChunk to try
- // to update the remembered using NULL as the address.
- ReadData(start, end, NEW_SPACE, NULL);
-}
-
-void Deserializer::Synchronize(VisitorSynchronization::SyncTag tag) {
- static const byte expected = kSynchronize;
- CHECK_EQ(expected, source_.Get());
-}
-
-void Deserializer::DeserializeDeferredObjects() {
- for (int code = source_.Get(); code != kSynchronize; code = source_.Get()) {
- switch (code) {
- case kAlignmentPrefix:
- case kAlignmentPrefix + 1:
- case kAlignmentPrefix + 2:
- SetAlignment(code);
- break;
- default: {
- int space = code & kSpaceMask;
- DCHECK(space <= kNumberOfSpaces);
- DCHECK(code - space == kNewObject);
- HeapObject* object = GetBackReferencedObject(space);
- int size = source_.GetInt() << kPointerSizeLog2;
- Address obj_address = object->address();
- Object** start = reinterpret_cast<Object**>(obj_address + kPointerSize);
- Object** end = reinterpret_cast<Object**>(obj_address + size);
- bool filled = ReadData(start, end, space, obj_address);
- CHECK(filled);
- DCHECK(CanBeDeferred(object));
- PostProcessNewObject(object, space);
- }
- }
- }
-}
-
-
-// Used to insert a deserialized internalized string into the string table.
-class StringTableInsertionKey : public HashTableKey {
- public:
- explicit StringTableInsertionKey(String* string)
- : string_(string), hash_(HashForObject(string)) {
- DCHECK(string->IsInternalizedString());
- }
-
- bool IsMatch(Object* string) override {
- // We know that all entries in a hash table had their hash keys created.
- // Use that knowledge to have fast failure.
- if (hash_ != HashForObject(string)) return false;
- // We want to compare the content of two internalized strings here.
- return string_->SlowEquals(String::cast(string));
- }
-
- uint32_t Hash() override { return hash_; }
-
- uint32_t HashForObject(Object* key) override {
- return String::cast(key)->Hash();
- }
-
- MUST_USE_RESULT Handle<Object> AsHandle(Isolate* isolate) override {
- return handle(string_, isolate);
- }
-
- private:
- String* string_;
- uint32_t hash_;
- DisallowHeapAllocation no_gc;
-};
-
-
-HeapObject* Deserializer::PostProcessNewObject(HeapObject* obj, int space) {
- if (deserializing_user_code()) {
- if (obj->IsString()) {
- String* string = String::cast(obj);
- // Uninitialize hash field as the hash seed may have changed.
- string->set_hash_field(String::kEmptyHashField);
- if (string->IsInternalizedString()) {
- // Canonicalize the internalized string. If it already exists in the
- // string table, set it to forward to the existing one.
- StringTableInsertionKey key(string);
- String* canonical = StringTable::LookupKeyIfExists(isolate_, &key);
- if (canonical == NULL) {
- new_internalized_strings_.Add(handle(string));
- return string;
- } else {
- string->SetForwardedInternalizedString(canonical);
- return canonical;
- }
- }
- } else if (obj->IsScript()) {
- new_scripts_.Add(handle(Script::cast(obj)));
- } else {
- DCHECK(CanBeDeferred(obj));
- }
- }
- if (obj->IsAllocationSite()) {
- DCHECK(obj->IsAllocationSite());
- // Allocation sites are present in the snapshot, and must be linked into
- // a list at deserialization time.
- AllocationSite* site = AllocationSite::cast(obj);
- // TODO(mvstanton): consider treating the heap()->allocation_sites_list()
- // as a (weak) root. If this root is relocated correctly, this becomes
- // unnecessary.
- if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
- site->set_weak_next(isolate_->heap()->undefined_value());
- } else {
- site->set_weak_next(isolate_->heap()->allocation_sites_list());
- }
- isolate_->heap()->set_allocation_sites_list(site);
- } else if (obj->IsCode()) {
- // We flush all code pages after deserializing the startup snapshot. In that
- // case, we only need to remember code objects in the large object space.
- // When deserializing user code, remember each individual code object.
- if (deserializing_user_code() || space == LO_SPACE) {
- new_code_objects_.Add(Code::cast(obj));
- }
- }
- // Check alignment.
- DCHECK_EQ(0, Heap::GetFillToAlign(obj->address(), obj->RequiredAlignment()));
- return obj;
-}
-
-
-void Deserializer::CommitPostProcessedObjects(Isolate* isolate) {
- StringTable::EnsureCapacityForDeserialization(
- isolate, new_internalized_strings_.length());
- for (Handle<String> string : new_internalized_strings_) {
- StringTableInsertionKey key(*string);
- DCHECK_NULL(StringTable::LookupKeyIfExists(isolate, &key));
- StringTable::LookupKey(isolate, &key);
- }
-
- Heap* heap = isolate->heap();
- Factory* factory = isolate->factory();
- for (Handle<Script> script : new_scripts_) {
- // Assign a new script id to avoid collision.
- script->set_id(isolate_->heap()->NextScriptId());
- // Add script to list.
- Handle<Object> list = WeakFixedArray::Add(factory->script_list(), script);
- heap->SetRootScriptList(*list);
- }
-}
-
-
-HeapObject* Deserializer::GetBackReferencedObject(int space) {
- HeapObject* obj;
- BackReference back_reference(source_.GetInt());
- if (space == LO_SPACE) {
- CHECK(back_reference.chunk_index() == 0);
- uint32_t index = back_reference.large_object_index();
- obj = deserialized_large_objects_[index];
- } else {
- DCHECK(space < kNumberOfPreallocatedSpaces);
- uint32_t chunk_index = back_reference.chunk_index();
- DCHECK_LE(chunk_index, current_chunk_[space]);
- uint32_t chunk_offset = back_reference.chunk_offset();
- Address address = reservations_[space][chunk_index].start + chunk_offset;
- if (next_alignment_ != kWordAligned) {
- int padding = Heap::GetFillToAlign(address, next_alignment_);
- next_alignment_ = kWordAligned;
- DCHECK(padding == 0 || HeapObject::FromAddress(address)->IsFiller());
- address += padding;
- }
- obj = HeapObject::FromAddress(address);
- }
- if (deserializing_user_code() && obj->IsInternalizedString()) {
- obj = String::cast(obj)->GetForwardedInternalizedString();
- }
- hot_objects_.Add(obj);
- return obj;
-}
-
-
-// This routine writes the new object into the pointer provided and then
-// returns true if the new object was in young space and false otherwise.
-// The reason for this strange interface is that otherwise the object is
-// written very late, which means the FreeSpace map is not set up by the
-// time we need to use it to mark the space at the end of a page free.
-void Deserializer::ReadObject(int space_number, Object** write_back) {
- Address address;
- HeapObject* obj;
- int size = source_.GetInt() << kObjectAlignmentBits;
-
- if (next_alignment_ != kWordAligned) {
- int reserved = size + Heap::GetMaximumFillToAlign(next_alignment_);
- address = Allocate(space_number, reserved);
- obj = HeapObject::FromAddress(address);
- // If one of the following assertions fails, then we are deserializing an
- // aligned object when the filler maps have not been deserialized yet.
- // We require filler maps as padding to align the object.
- Heap* heap = isolate_->heap();
- DCHECK(heap->free_space_map()->IsMap());
- DCHECK(heap->one_pointer_filler_map()->IsMap());
- DCHECK(heap->two_pointer_filler_map()->IsMap());
- obj = heap->AlignWithFiller(obj, size, reserved, next_alignment_);
- address = obj->address();
- next_alignment_ = kWordAligned;
- } else {
- address = Allocate(space_number, size);
- obj = HeapObject::FromAddress(address);
- }
-
- isolate_->heap()->OnAllocationEvent(obj, size);
- Object** current = reinterpret_cast<Object**>(address);
- Object** limit = current + (size >> kPointerSizeLog2);
- if (FLAG_log_snapshot_positions) {
- LOG(isolate_, SnapshotPositionEvent(address, source_.position()));
- }
-
- if (ReadData(current, limit, space_number, address)) {
- // Only post process if object content has not been deferred.
- obj = PostProcessNewObject(obj, space_number);
- }
-
- Object* write_back_obj = obj;
- UnalignedCopy(write_back, &write_back_obj);
-#ifdef DEBUG
- if (obj->IsCode()) {
- DCHECK(space_number == CODE_SPACE || space_number == LO_SPACE);
- } else {
- DCHECK(space_number != CODE_SPACE);
- }
-#endif // DEBUG
-}
-
-
-// We know the space requirements before deserialization and can
-// pre-allocate that reserved space. During deserialization, all we need
-// to do is to bump up the pointer for each space in the reserved
-// space. This is also used for fixing back references.
-// We may have to split up the pre-allocation into several chunks
-// because it would not fit onto a single page. We do not have to keep
-// track of when to move to the next chunk. An opcode will signal this.
-// Since multiple large objects cannot be folded into one large object
-// space allocation, we have to do an actual allocation when deserializing
-// each large object. Instead of tracking offset for back references, we
-// reference large objects by index.
-Address Deserializer::Allocate(int space_index, int size) {
- if (space_index == LO_SPACE) {
- AlwaysAllocateScope scope(isolate_);
- LargeObjectSpace* lo_space = isolate_->heap()->lo_space();
- Executability exec = static_cast<Executability>(source_.Get());
- AllocationResult result = lo_space->AllocateRaw(size, exec);
- HeapObject* obj = HeapObject::cast(result.ToObjectChecked());
- deserialized_large_objects_.Add(obj);
- return obj->address();
- } else {
- DCHECK(space_index < kNumberOfPreallocatedSpaces);
- Address address = high_water_[space_index];
- DCHECK_NOT_NULL(address);
- high_water_[space_index] += size;
-#ifdef DEBUG
- // Assert that the current reserved chunk is still big enough.
- const Heap::Reservation& reservation = reservations_[space_index];
- int chunk_index = current_chunk_[space_index];
- CHECK_LE(high_water_[space_index], reservation[chunk_index].end);
-#endif
- return address;
- }
-}
-
-
-Object** Deserializer::CopyInNativesSource(Vector<const char> source_vector,
- Object** current) {
- DCHECK(!isolate_->heap()->deserialization_complete());
- NativesExternalStringResource* resource = new NativesExternalStringResource(
- source_vector.start(), source_vector.length());
- Object* resource_obj = reinterpret_cast<Object*>(resource);
- UnalignedCopy(current++, &resource_obj);
- return current;
-}
-
-
-bool Deserializer::ReadData(Object** current, Object** limit, int source_space,
- Address current_object_address) {
- Isolate* const isolate = isolate_;
- // Write barrier support costs around 1% in startup time. In fact there
- // are no new space objects in current boot snapshots, so it's not needed,
- // but that may change.
- bool write_barrier_needed =
- (current_object_address != NULL && source_space != NEW_SPACE &&
- source_space != CODE_SPACE);
- while (current < limit) {
- byte data = source_.Get();
- switch (data) {
-#define CASE_STATEMENT(where, how, within, space_number) \
- case where + how + within + space_number: \
- STATIC_ASSERT((where & ~kWhereMask) == 0); \
- STATIC_ASSERT((how & ~kHowToCodeMask) == 0); \
- STATIC_ASSERT((within & ~kWhereToPointMask) == 0); \
- STATIC_ASSERT((space_number & ~kSpaceMask) == 0);
-
-#define CASE_BODY(where, how, within, space_number_if_any) \
- { \
- bool emit_write_barrier = false; \
- bool current_was_incremented = false; \
- int space_number = space_number_if_any == kAnyOldSpace \
- ? (data & kSpaceMask) \
- : space_number_if_any; \
- if (where == kNewObject && how == kPlain && within == kStartOfObject) { \
- ReadObject(space_number, current); \
- emit_write_barrier = (space_number == NEW_SPACE); \
- } else { \
- Object* new_object = NULL; /* May not be a real Object pointer. */ \
- if (where == kNewObject) { \
- ReadObject(space_number, &new_object); \
- } else if (where == kBackref) { \
- emit_write_barrier = (space_number == NEW_SPACE); \
- new_object = GetBackReferencedObject(data & kSpaceMask); \
- } else if (where == kBackrefWithSkip) { \
- int skip = source_.GetInt(); \
- current = reinterpret_cast<Object**>( \
- reinterpret_cast<Address>(current) + skip); \
- emit_write_barrier = (space_number == NEW_SPACE); \
- new_object = GetBackReferencedObject(data & kSpaceMask); \
- } else if (where == kRootArray) { \
- int id = source_.GetInt(); \
- Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(id); \
- new_object = isolate->heap()->root(root_index); \
- emit_write_barrier = isolate->heap()->InNewSpace(new_object); \
- } else if (where == kPartialSnapshotCache) { \
- int cache_index = source_.GetInt(); \
- new_object = isolate->partial_snapshot_cache()->at(cache_index); \
- emit_write_barrier = isolate->heap()->InNewSpace(new_object); \
- } else if (where == kExternalReference) { \
- int skip = source_.GetInt(); \
- current = reinterpret_cast<Object**>( \
- reinterpret_cast<Address>(current) + skip); \
- int reference_id = source_.GetInt(); \
- Address address = external_reference_table_->address(reference_id); \
- new_object = reinterpret_cast<Object*>(address); \
- } else if (where == kAttachedReference) { \
- int index = source_.GetInt(); \
- DCHECK(deserializing_user_code() || index == kGlobalProxyReference); \
- new_object = *attached_objects_[index]; \
- emit_write_barrier = isolate->heap()->InNewSpace(new_object); \
- } else { \
- DCHECK(where == kBuiltin); \
- DCHECK(deserializing_user_code()); \
- int builtin_id = source_.GetInt(); \
- DCHECK_LE(0, builtin_id); \
- DCHECK_LT(builtin_id, Builtins::builtin_count); \
- Builtins::Name name = static_cast<Builtins::Name>(builtin_id); \
- new_object = isolate->builtins()->builtin(name); \
- emit_write_barrier = false; \
- } \
- if (within == kInnerPointer) { \
- if (space_number != CODE_SPACE || new_object->IsCode()) { \
- Code* new_code_object = reinterpret_cast<Code*>(new_object); \
- new_object = \
- reinterpret_cast<Object*>(new_code_object->instruction_start()); \
- } else { \
- DCHECK(space_number == CODE_SPACE); \
- Cell* cell = Cell::cast(new_object); \
- new_object = reinterpret_cast<Object*>(cell->ValueAddress()); \
- } \
- } \
- if (how == kFromCode) { \
- Address location_of_branch_data = reinterpret_cast<Address>(current); \
- Assembler::deserialization_set_special_target_at( \
- isolate, location_of_branch_data, \
- Code::cast(HeapObject::FromAddress(current_object_address)), \
- reinterpret_cast<Address>(new_object)); \
- location_of_branch_data += Assembler::kSpecialTargetSize; \
- current = reinterpret_cast<Object**>(location_of_branch_data); \
- current_was_incremented = true; \
- } else { \
- UnalignedCopy(current, &new_object); \
- } \
- } \
- if (emit_write_barrier && write_barrier_needed) { \
- Address current_address = reinterpret_cast<Address>(current); \
- SLOW_DCHECK(isolate->heap()->ContainsSlow(current_object_address)); \
- isolate->heap()->RecordWrite( \
- HeapObject::FromAddress(current_object_address), \
- static_cast<int>(current_address - current_object_address), \
- *reinterpret_cast<Object**>(current_address)); \
- } \
- if (!current_was_incremented) { \
- current++; \
- } \
- break; \
- }
-
-// This generates a case and a body for the new space (which has to do extra
-// write barrier handling) and handles the other spaces with fall-through cases
-// and one body.
-#define ALL_SPACES(where, how, within) \
- CASE_STATEMENT(where, how, within, NEW_SPACE) \
- CASE_BODY(where, how, within, NEW_SPACE) \
- CASE_STATEMENT(where, how, within, OLD_SPACE) \
- CASE_STATEMENT(where, how, within, CODE_SPACE) \
- CASE_STATEMENT(where, how, within, MAP_SPACE) \
- CASE_STATEMENT(where, how, within, LO_SPACE) \
- CASE_BODY(where, how, within, kAnyOldSpace)
-
-#define FOUR_CASES(byte_code) \
- case byte_code: \
- case byte_code + 1: \
- case byte_code + 2: \
- case byte_code + 3:
-
-#define SIXTEEN_CASES(byte_code) \
- FOUR_CASES(byte_code) \
- FOUR_CASES(byte_code + 4) \
- FOUR_CASES(byte_code + 8) \
- FOUR_CASES(byte_code + 12)
-
-#define SINGLE_CASE(where, how, within, space) \
- CASE_STATEMENT(where, how, within, space) \
- CASE_BODY(where, how, within, space)
-
- // Deserialize a new object and write a pointer to it to the current
- // object.
- ALL_SPACES(kNewObject, kPlain, kStartOfObject)
- // Support for direct instruction pointers in functions. It's an inner
- // pointer because it points at the entry point, not at the start of the
- // code object.
- SINGLE_CASE(kNewObject, kPlain, kInnerPointer, CODE_SPACE)
- // Deserialize a new code object and write a pointer to its first
- // instruction to the current code object.
- ALL_SPACES(kNewObject, kFromCode, kInnerPointer)
- // Find a recently deserialized object using its offset from the current
- // allocation point and write a pointer to it to the current object.
- ALL_SPACES(kBackref, kPlain, kStartOfObject)
- ALL_SPACES(kBackrefWithSkip, kPlain, kStartOfObject)
-#if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \
- defined(V8_TARGET_ARCH_PPC) || V8_EMBEDDED_CONSTANT_POOL
- // Deserialize a new object from pointer found in code and write
- // a pointer to it to the current object. Required only for MIPS, PPC or
- // ARM with embedded constant pool, and omitted on the other architectures
- // because it is fully unrolled and would cause bloat.
- ALL_SPACES(kNewObject, kFromCode, kStartOfObject)
- // Find a recently deserialized code object using its offset from the
- // current allocation point and write a pointer to it to the current
- // object. Required only for MIPS, PPC or ARM with embedded constant pool.
- ALL_SPACES(kBackref, kFromCode, kStartOfObject)
- ALL_SPACES(kBackrefWithSkip, kFromCode, kStartOfObject)
-#endif
- // Find a recently deserialized code object using its offset from the
- // current allocation point and write a pointer to its first instruction
- // to the current code object or the instruction pointer in a function
- // object.
- ALL_SPACES(kBackref, kFromCode, kInnerPointer)
- ALL_SPACES(kBackrefWithSkip, kFromCode, kInnerPointer)
- ALL_SPACES(kBackref, kPlain, kInnerPointer)
- ALL_SPACES(kBackrefWithSkip, kPlain, kInnerPointer)
- // Find an object in the roots array and write a pointer to it to the
- // current object.
- SINGLE_CASE(kRootArray, kPlain, kStartOfObject, 0)
-#if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \
- defined(V8_TARGET_ARCH_PPC) || V8_EMBEDDED_CONSTANT_POOL
- // Find an object in the roots array and write a pointer to it to in code.
- SINGLE_CASE(kRootArray, kFromCode, kStartOfObject, 0)
-#endif
- // Find an object in the partial snapshots cache and write a pointer to it
- // to the current object.
- SINGLE_CASE(kPartialSnapshotCache, kPlain, kStartOfObject, 0)
- // Find an code entry in the partial snapshots cache and
- // write a pointer to it to the current object.
- SINGLE_CASE(kPartialSnapshotCache, kPlain, kInnerPointer, 0)
- // Find an external reference and write a pointer to it to the current
- // object.
- SINGLE_CASE(kExternalReference, kPlain, kStartOfObject, 0)
- // Find an external reference and write a pointer to it in the current
- // code object.
- SINGLE_CASE(kExternalReference, kFromCode, kStartOfObject, 0)
- // Find an object in the attached references and write a pointer to it to
- // the current object.
- SINGLE_CASE(kAttachedReference, kPlain, kStartOfObject, 0)
- SINGLE_CASE(kAttachedReference, kPlain, kInnerPointer, 0)
- SINGLE_CASE(kAttachedReference, kFromCode, kInnerPointer, 0)
- // Find a builtin and write a pointer to it to the current object.
- SINGLE_CASE(kBuiltin, kPlain, kStartOfObject, 0)
- SINGLE_CASE(kBuiltin, kPlain, kInnerPointer, 0)
- SINGLE_CASE(kBuiltin, kFromCode, kInnerPointer, 0)
-
-#undef CASE_STATEMENT
-#undef CASE_BODY
-#undef ALL_SPACES
-
- case kSkip: {
- int size = source_.GetInt();
- current = reinterpret_cast<Object**>(
- reinterpret_cast<intptr_t>(current) + size);
- break;
- }
-
- case kInternalReferenceEncoded:
- case kInternalReference: {
- // Internal reference address is not encoded via skip, but by offset
- // from code entry.
- int pc_offset = source_.GetInt();
- int target_offset = source_.GetInt();
- Code* code =
- Code::cast(HeapObject::FromAddress(current_object_address));
- DCHECK(0 <= pc_offset && pc_offset <= code->instruction_size());
- DCHECK(0 <= target_offset && target_offset <= code->instruction_size());
- Address pc = code->entry() + pc_offset;
- Address target = code->entry() + target_offset;
- Assembler::deserialization_set_target_internal_reference_at(
- isolate, pc, target, data == kInternalReference
- ? RelocInfo::INTERNAL_REFERENCE
- : RelocInfo::INTERNAL_REFERENCE_ENCODED);
- break;
- }
-
- case kNop:
- break;
-
- case kNextChunk: {
- int space = source_.Get();
- DCHECK(space < kNumberOfPreallocatedSpaces);
- int chunk_index = current_chunk_[space];
- const Heap::Reservation& reservation = reservations_[space];
- // Make sure the current chunk is indeed exhausted.
- CHECK_EQ(reservation[chunk_index].end, high_water_[space]);
- // Move to next reserved chunk.
- chunk_index = ++current_chunk_[space];
- CHECK_LT(chunk_index, reservation.length());
- high_water_[space] = reservation[chunk_index].start;
- break;
- }
-
- case kDeferred: {
- // Deferred can only occur right after the heap object header.
- DCHECK(current == reinterpret_cast<Object**>(current_object_address +
- kPointerSize));
- HeapObject* obj = HeapObject::FromAddress(current_object_address);
- // If the deferred object is a map, its instance type may be used
- // during deserialization. Initialize it with a temporary value.
- if (obj->IsMap()) Map::cast(obj)->set_instance_type(FILLER_TYPE);
- current = limit;
- return false;
- }
-
- case kSynchronize:
- // If we get here then that indicates that you have a mismatch between
- // the number of GC roots when serializing and deserializing.
- CHECK(false);
- break;
-
- case kNativesStringResource:
- current = CopyInNativesSource(Natives::GetScriptSource(source_.Get()),
- current);
- break;
-
- case kExtraNativesStringResource:
- current = CopyInNativesSource(
- ExtraNatives::GetScriptSource(source_.Get()), current);
- break;
-
- // Deserialize raw data of variable length.
- case kVariableRawData: {
- int size_in_bytes = source_.GetInt();
- byte* raw_data_out = reinterpret_cast<byte*>(current);
- source_.CopyRaw(raw_data_out, size_in_bytes);
- break;
- }
-
- case kVariableRepeat: {
- int repeats = source_.GetInt();
- Object* object = current[-1];
- DCHECK(!isolate->heap()->InNewSpace(object));
- for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object);
- break;
- }
-
- case kAlignmentPrefix:
- case kAlignmentPrefix + 1:
- case kAlignmentPrefix + 2:
- SetAlignment(data);
- break;
-
- STATIC_ASSERT(kNumberOfRootArrayConstants == Heap::kOldSpaceRoots);
- STATIC_ASSERT(kNumberOfRootArrayConstants == 32);
- SIXTEEN_CASES(kRootArrayConstantsWithSkip)
- SIXTEEN_CASES(kRootArrayConstantsWithSkip + 16) {
- int skip = source_.GetInt();
- current = reinterpret_cast<Object**>(
- reinterpret_cast<intptr_t>(current) + skip);
- // Fall through.
- }
-
- SIXTEEN_CASES(kRootArrayConstants)
- SIXTEEN_CASES(kRootArrayConstants + 16) {
- int id = data & kRootArrayConstantsMask;
- Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(id);
- Object* object = isolate->heap()->root(root_index);
- DCHECK(!isolate->heap()->InNewSpace(object));
- UnalignedCopy(current++, &object);
- break;
- }
-
- STATIC_ASSERT(kNumberOfHotObjects == 8);
- FOUR_CASES(kHotObjectWithSkip)
- FOUR_CASES(kHotObjectWithSkip + 4) {
- int skip = source_.GetInt();
- current = reinterpret_cast<Object**>(
- reinterpret_cast<Address>(current) + skip);
- // Fall through.
- }
-
- FOUR_CASES(kHotObject)
- FOUR_CASES(kHotObject + 4) {
- int index = data & kHotObjectMask;
- Object* hot_object = hot_objects_.Get(index);
- UnalignedCopy(current, &hot_object);
- if (write_barrier_needed) {
- Address current_address = reinterpret_cast<Address>(current);
- SLOW_DCHECK(isolate->heap()->ContainsSlow(current_object_address));
- isolate->heap()->RecordWrite(
- HeapObject::FromAddress(current_object_address),
- static_cast<int>(current_address - current_object_address),
- hot_object);
- }
- current++;
- break;
- }
-
- // Deserialize raw data of fixed length from 1 to 32 words.
- STATIC_ASSERT(kNumberOfFixedRawData == 32);
- SIXTEEN_CASES(kFixedRawData)
- SIXTEEN_CASES(kFixedRawData + 16) {
- byte* raw_data_out = reinterpret_cast<byte*>(current);
- int size_in_bytes = (data - kFixedRawDataStart) << kPointerSizeLog2;
- source_.CopyRaw(raw_data_out, size_in_bytes);
- current = reinterpret_cast<Object**>(raw_data_out + size_in_bytes);
- break;
- }
-
- STATIC_ASSERT(kNumberOfFixedRepeat == 16);
- SIXTEEN_CASES(kFixedRepeat) {
- int repeats = data - kFixedRepeatStart;
- Object* object;
- UnalignedCopy(&object, current - 1);
- DCHECK(!isolate->heap()->InNewSpace(object));
- for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object);
- break;
- }
-
-#undef SIXTEEN_CASES
-#undef FOUR_CASES
-#undef SINGLE_CASE
-
- default:
- CHECK(false);
- }
- }
- CHECK_EQ(limit, current);
- return true;
-}
-
-
-Serializer::Serializer(Isolate* isolate, SnapshotByteSink* sink)
- : isolate_(isolate),
- sink_(sink),
- external_reference_encoder_(isolate),
- root_index_map_(isolate),
- recursion_depth_(0),
- code_address_map_(NULL),
- large_objects_total_size_(0),
- seen_large_objects_index_(0) {
- // The serializer is meant to be used only to generate initial heap images
- // from a context in which there is only one isolate.
- for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
- pending_chunk_[i] = 0;
- max_chunk_size_[i] = static_cast<uint32_t>(
- MemoryAllocator::PageAreaSize(static_cast<AllocationSpace>(i)));
- }
-
-#ifdef OBJECT_PRINT
- if (FLAG_serialization_statistics) {
- instance_type_count_ = NewArray<int>(kInstanceTypes);
- instance_type_size_ = NewArray<size_t>(kInstanceTypes);
- for (int i = 0; i < kInstanceTypes; i++) {
- instance_type_count_[i] = 0;
- instance_type_size_[i] = 0;
- }
- } else {
- instance_type_count_ = NULL;
- instance_type_size_ = NULL;
- }
-#endif // OBJECT_PRINT
-}
-
-
-Serializer::~Serializer() {
- if (code_address_map_ != NULL) delete code_address_map_;
-#ifdef OBJECT_PRINT
- if (instance_type_count_ != NULL) {
- DeleteArray(instance_type_count_);
- DeleteArray(instance_type_size_);
- }
-#endif // OBJECT_PRINT
-}
-
-
-#ifdef OBJECT_PRINT
-void Serializer::CountInstanceType(Map* map, int size) {
- int instance_type = map->instance_type();
- instance_type_count_[instance_type]++;
- instance_type_size_[instance_type] += size;
-}
-#endif // OBJECT_PRINT
-
-
-void Serializer::OutputStatistics(const char* name) {
- if (!FLAG_serialization_statistics) return;
- PrintF("%s:\n", name);
- PrintF(" Spaces (bytes):\n");
- for (int space = 0; space < kNumberOfSpaces; space++) {
- PrintF("%16s", AllocationSpaceName(static_cast<AllocationSpace>(space)));
- }
- PrintF("\n");
- for (int space = 0; space < kNumberOfPreallocatedSpaces; space++) {
- size_t s = pending_chunk_[space];
- for (uint32_t chunk_size : completed_chunks_[space]) s += chunk_size;
- PrintF("%16" V8_PTR_PREFIX "d", s);
- }
- PrintF("%16d\n", large_objects_total_size_);
-#ifdef OBJECT_PRINT
- PrintF(" Instance types (count and bytes):\n");
-#define PRINT_INSTANCE_TYPE(Name) \
- if (instance_type_count_[Name]) { \
- PrintF("%10d %10" V8_PTR_PREFIX "d %s\n", instance_type_count_[Name], \
- instance_type_size_[Name], #Name); \
- }
- INSTANCE_TYPE_LIST(PRINT_INSTANCE_TYPE)
-#undef PRINT_INSTANCE_TYPE
- PrintF("\n");
-#endif // OBJECT_PRINT
-}
-
-
-class Serializer::ObjectSerializer : public ObjectVisitor {
- public:
- ObjectSerializer(Serializer* serializer, Object* o, SnapshotByteSink* sink,
- HowToCode how_to_code, WhereToPoint where_to_point)
- : serializer_(serializer),
- object_(HeapObject::cast(o)),
- sink_(sink),
- reference_representation_(how_to_code + where_to_point),
- bytes_processed_so_far_(0),
- is_code_object_(o->IsCode()),
- code_has_been_output_(false) {}
- void Serialize();
- void SerializeDeferred();
- void VisitPointers(Object** start, Object** end) override;
- void VisitEmbeddedPointer(RelocInfo* target) override;
- void VisitExternalReference(Address* p) override;
- void VisitExternalReference(RelocInfo* rinfo) override;
- void VisitInternalReference(RelocInfo* rinfo) override;
- void VisitCodeTarget(RelocInfo* target) override;
- void VisitCodeEntry(Address entry_address) override;
- void VisitCell(RelocInfo* rinfo) override;
- void VisitRuntimeEntry(RelocInfo* reloc) override;
- // Used for seralizing the external strings that hold the natives source.
- void VisitExternalOneByteString(
- v8::String::ExternalOneByteStringResource** resource) override;
- // We can't serialize a heap with external two byte strings.
- void VisitExternalTwoByteString(
- v8::String::ExternalStringResource** resource) override {
- UNREACHABLE();
- }
-
- private:
- void SerializePrologue(AllocationSpace space, int size, Map* map);
-
- bool SerializeExternalNativeSourceString(
- int builtin_count,
- v8::String::ExternalOneByteStringResource** resource_pointer,
- FixedArray* source_cache, int resource_index);
-
- enum ReturnSkip { kCanReturnSkipInsteadOfSkipping, kIgnoringReturn };
- // This function outputs or skips the raw data between the last pointer and
- // up to the current position. It optionally can just return the number of
- // bytes to skip instead of performing a skip instruction, in case the skip
- // can be merged into the next instruction.
- int OutputRawData(Address up_to, ReturnSkip return_skip = kIgnoringReturn);
- // External strings are serialized in a way to resemble sequential strings.
- void SerializeExternalString();
-
- Address PrepareCode();
-
- Serializer* serializer_;
- HeapObject* object_;
- SnapshotByteSink* sink_;
- int reference_representation_;
- int bytes_processed_so_far_;
- bool is_code_object_;
- bool code_has_been_output_;
-};
-
-
-void Serializer::SerializeDeferredObjects() {
- while (deferred_objects_.length() > 0) {
- HeapObject* obj = deferred_objects_.RemoveLast();
- ObjectSerializer obj_serializer(this, obj, sink_, kPlain, kStartOfObject);
- obj_serializer.SerializeDeferred();
- }
- sink_->Put(kSynchronize, "Finished with deferred objects");
-}
-
-
-void StartupSerializer::SerializeStrongReferences() {
- Isolate* isolate = this->isolate();
- // No active threads.
- CHECK_NULL(isolate->thread_manager()->FirstThreadStateInUse());
- // No active or weak handles.
- CHECK(isolate->handle_scope_implementer()->blocks()->is_empty());
- CHECK_EQ(0, isolate->global_handles()->NumberOfWeakHandles());
- CHECK_EQ(0, isolate->eternal_handles()->NumberOfHandles());
- // We don't support serializing installed extensions.
- CHECK(!isolate->has_installed_extensions());
- isolate->heap()->IterateSmiRoots(this);
- isolate->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
-}
-
-
-void StartupSerializer::VisitPointers(Object** start, Object** end) {
- for (Object** current = start; current < end; current++) {
- if (start == isolate()->heap()->roots_array_start()) {
- root_index_wave_front_ =
- Max(root_index_wave_front_, static_cast<intptr_t>(current - start));
- }
- if (ShouldBeSkipped(current)) {
- sink_->Put(kSkip, "Skip");
- sink_->PutInt(kPointerSize, "SkipOneWord");
- } else if ((*current)->IsSmi()) {
- sink_->Put(kOnePointerRawData, "Smi");
- for (int i = 0; i < kPointerSize; i++) {
- sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
- }
- } else {
- SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0);
- }
- }
-}
-
-
-void PartialSerializer::Serialize(Object** o) {
- if ((*o)->IsContext()) {
- Context* context = Context::cast(*o);
- global_object_ = context->global_object();
- back_reference_map()->AddGlobalProxy(context->global_proxy());
- // The bootstrap snapshot has a code-stub context. When serializing the
- // partial snapshot, it is chained into the weak context list on the isolate
- // and it's next context pointer may point to the code-stub context. Clear
- // it before serializing, it will get re-added to the context list
- // explicitly when it's loaded.
- if (context->IsNativeContext()) {
- context->set(Context::NEXT_CONTEXT_LINK,
- isolate_->heap()->undefined_value());
- DCHECK(!context->global_object()->IsUndefined());
- }
- }
- VisitPointer(o);
- SerializeDeferredObjects();
- Pad();
-}
-
-
-bool Serializer::ShouldBeSkipped(Object** current) {
- Object** roots = isolate()->heap()->roots_array_start();
- return current == &roots[Heap::kStoreBufferTopRootIndex]
- || current == &roots[Heap::kStackLimitRootIndex]
- || current == &roots[Heap::kRealStackLimitRootIndex];
-}
-
-
-void Serializer::VisitPointers(Object** start, Object** end) {
- for (Object** current = start; current < end; current++) {
- if ((*current)->IsSmi()) {
- sink_->Put(kOnePointerRawData, "Smi");
- for (int i = 0; i < kPointerSize; i++) {
- sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
- }
- } else {
- SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0);
- }
- }
-}
-
-
-void Serializer::EncodeReservations(
- List<SerializedData::Reservation>* out) const {
- for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
- for (int j = 0; j < completed_chunks_[i].length(); j++) {
- out->Add(SerializedData::Reservation(completed_chunks_[i][j]));
- }
-
- if (pending_chunk_[i] > 0 || completed_chunks_[i].length() == 0) {
- out->Add(SerializedData::Reservation(pending_chunk_[i]));
- }
- out->last().mark_as_last();
- }
-
- out->Add(SerializedData::Reservation(large_objects_total_size_));
- out->last().mark_as_last();
-}
-
-
-// This ensures that the partial snapshot cache keeps things alive during GC and
-// tracks their movement. When it is called during serialization of the startup
-// snapshot nothing happens. When the partial (context) snapshot is created,
-// this array is populated with the pointers that the partial snapshot will
-// need. As that happens we emit serialized objects to the startup snapshot
-// that correspond to the elements of this cache array. On deserialization we
-// therefore need to visit the cache array. This fills it up with pointers to
-// deserialized objects.
-void SerializerDeserializer::Iterate(Isolate* isolate,
- ObjectVisitor* visitor) {
- if (isolate->serializer_enabled()) return;
- List<Object*>* cache = isolate->partial_snapshot_cache();
- for (int i = 0;; ++i) {
- // Extend the array ready to get a value when deserializing.
- if (cache->length() <= i) cache->Add(Smi::FromInt(0));
- visitor->VisitPointer(&cache->at(i));
- // Sentinel is the undefined object, which is a root so it will not normally
- // be found in the cache.
- if (cache->at(i)->IsUndefined()) break;
- }
-}
-
-
-bool SerializerDeserializer::CanBeDeferred(HeapObject* o) {
- return !o->IsString() && !o->IsScript();
-}
-
-
-int PartialSerializer::PartialSnapshotCacheIndex(HeapObject* heap_object) {
- Isolate* isolate = this->isolate();
- List<Object*>* cache = isolate->partial_snapshot_cache();
- int new_index = cache->length();
-
- int index = partial_cache_index_map_.LookupOrInsert(heap_object, new_index);
- if (index == PartialCacheIndexMap::kInvalidIndex) {
- // We didn't find the object in the cache. So we add it to the cache and
- // then visit the pointer so that it becomes part of the startup snapshot
- // and we can refer to it from the partial snapshot.
- cache->Add(heap_object);
- startup_serializer_->VisitPointer(reinterpret_cast<Object**>(&heap_object));
- // We don't recurse from the startup snapshot generator into the partial
- // snapshot generator.
- return new_index;
- }
- return index;
-}
-
-
-bool PartialSerializer::ShouldBeInThePartialSnapshotCache(HeapObject* o) {
- // Scripts should be referred only through shared function infos. We can't
- // allow them to be part of the partial snapshot because they contain a
- // unique ID, and deserializing several partial snapshots containing script
- // would cause dupes.
- DCHECK(!o->IsScript());
- return o->IsName() || o->IsSharedFunctionInfo() || o->IsHeapNumber() ||
- o->IsCode() || o->IsScopeInfo() || o->IsAccessorInfo() ||
- o->map() ==
- startup_serializer_->isolate()->heap()->fixed_cow_array_map();
-}
-
-
-#ifdef DEBUG
-bool Serializer::BackReferenceIsAlreadyAllocated(BackReference reference) {
- DCHECK(reference.is_valid());
- DCHECK(!reference.is_source());
- DCHECK(!reference.is_global_proxy());
- AllocationSpace space = reference.space();
- int chunk_index = reference.chunk_index();
- if (space == LO_SPACE) {
- return chunk_index == 0 &&
- reference.large_object_index() < seen_large_objects_index_;
- } else if (chunk_index == completed_chunks_[space].length()) {
- return reference.chunk_offset() < pending_chunk_[space];
- } else {
- return chunk_index < completed_chunks_[space].length() &&
- reference.chunk_offset() < completed_chunks_[space][chunk_index];
- }
-}
-#endif // DEBUG
-
-
-bool Serializer::SerializeKnownObject(HeapObject* obj, HowToCode how_to_code,
- WhereToPoint where_to_point, int skip) {
- if (how_to_code == kPlain && where_to_point == kStartOfObject) {
- // Encode a reference to a hot object by its index in the working set.
- int index = hot_objects_.Find(obj);
- if (index != HotObjectsList::kNotFound) {
- DCHECK(index >= 0 && index < kNumberOfHotObjects);
- if (FLAG_trace_serializer) {
- PrintF(" Encoding hot object %d:", index);
- obj->ShortPrint();
- PrintF("\n");
- }
- if (skip != 0) {
- sink_->Put(kHotObjectWithSkip + index, "HotObjectWithSkip");
- sink_->PutInt(skip, "HotObjectSkipDistance");
- } else {
- sink_->Put(kHotObject + index, "HotObject");
- }
- return true;
- }
- }
- BackReference back_reference = back_reference_map_.Lookup(obj);
- if (back_reference.is_valid()) {
- // Encode the location of an already deserialized object in order to write
- // its location into a later object. We can encode the location as an
- // offset fromthe start of the deserialized objects or as an offset
- // backwards from thecurrent allocation pointer.
- if (back_reference.is_source()) {
- FlushSkip(skip);
- if (FLAG_trace_serializer) PrintF(" Encoding source object\n");
- DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject);
- sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Source");
- sink_->PutInt(kSourceObjectReference, "kSourceObjectReference");
- } else if (back_reference.is_global_proxy()) {
- FlushSkip(skip);
- if (FLAG_trace_serializer) PrintF(" Encoding global proxy\n");
- DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject);
- sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Global Proxy");
- sink_->PutInt(kGlobalProxyReference, "kGlobalProxyReference");
- } else {
- if (FLAG_trace_serializer) {
- PrintF(" Encoding back reference to: ");
- obj->ShortPrint();
- PrintF("\n");
- }
-
- PutAlignmentPrefix(obj);
- AllocationSpace space = back_reference.space();
- if (skip == 0) {
- sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRef");
- } else {
- sink_->Put(kBackrefWithSkip + how_to_code + where_to_point + space,
- "BackRefWithSkip");
- sink_->PutInt(skip, "BackRefSkipDistance");
- }
- PutBackReference(obj, back_reference);
- }
- return true;
- }
- return false;
-}
-
-StartupSerializer::StartupSerializer(Isolate* isolate, SnapshotByteSink* sink)
- : Serializer(isolate, sink),
- root_index_wave_front_(0),
- serializing_builtins_(false) {
- // Clear the cache of objects used by the partial snapshot. After the
- // strong roots have been serialized we can create a partial snapshot
- // which will repopulate the cache with objects needed by that partial
- // snapshot.
- isolate->partial_snapshot_cache()->Clear();
- InitializeCodeAddressMap();
-}
-
-
-void StartupSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
- WhereToPoint where_to_point, int skip) {
- DCHECK(!obj->IsJSFunction());
-
- if (obj->IsCode()) {
- Code* code = Code::cast(obj);
- // If the function code is compiled (either as native code or bytecode),
- // replace it with lazy-compile builtin. Only exception is when we are
- // serializing the canonical interpreter-entry-trampoline builtin.
- if (code->kind() == Code::FUNCTION ||
- (!serializing_builtins_ && code->is_interpreter_entry_trampoline())) {
- obj = isolate()->builtins()->builtin(Builtins::kCompileLazy);
- }
- } else if (obj->IsBytecodeArray()) {
- obj = isolate()->heap()->undefined_value();
- }
-
- int root_index = root_index_map_.Lookup(obj);
- bool is_immortal_immovable_root = false;
- // We can only encode roots as such if it has already been serialized.
- // That applies to root indices below the wave front.
- if (root_index != RootIndexMap::kInvalidRootIndex) {
- if (root_index < root_index_wave_front_) {
- PutRoot(root_index, obj, how_to_code, where_to_point, skip);
- return;
- } else {
- is_immortal_immovable_root = Heap::RootIsImmortalImmovable(root_index);
- }
- }
-
- if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;
-
- FlushSkip(skip);
-
- // Object has not yet been serialized. Serialize it here.
- ObjectSerializer object_serializer(this, obj, sink_, how_to_code,
- where_to_point);
- object_serializer.Serialize();
-
- if (is_immortal_immovable_root) {
- // Make sure that the immortal immovable root has been included in the first
- // chunk of its reserved space , so that it is deserialized onto the first
- // page of its space and stays immortal immovable.
- BackReference ref = back_reference_map_.Lookup(obj);
- CHECK(ref.is_valid() && ref.chunk_index() == 0);
- }
-}
-
-
-void StartupSerializer::SerializeWeakReferencesAndDeferred() {
- // This phase comes right after the serialization (of the snapshot).
- // After we have done the partial serialization the partial snapshot cache
- // will contain some references needed to decode the partial snapshot. We
- // add one entry with 'undefined' which is the sentinel that the deserializer
- // uses to know it is done deserializing the array.
- Object* undefined = isolate()->heap()->undefined_value();
- VisitPointer(&undefined);
- isolate()->heap()->IterateWeakRoots(this, VISIT_ALL);
- SerializeDeferredObjects();
- Pad();
-}
-
-void StartupSerializer::Synchronize(VisitorSynchronization::SyncTag tag) {
- // We expect the builtins tag after builtins have been serialized.
- DCHECK(!serializing_builtins_ || tag == VisitorSynchronization::kBuiltins);
- serializing_builtins_ = (tag == VisitorSynchronization::kHandleScope);
- sink_->Put(kSynchronize, "Synchronize");
-}
-
-void Serializer::PutRoot(int root_index,
- HeapObject* object,
- SerializerDeserializer::HowToCode how_to_code,
- SerializerDeserializer::WhereToPoint where_to_point,
- int skip) {
- if (FLAG_trace_serializer) {
- PrintF(" Encoding root %d:", root_index);
- object->ShortPrint();
- PrintF("\n");
- }
-
- if (how_to_code == kPlain && where_to_point == kStartOfObject &&
- root_index < kNumberOfRootArrayConstants &&
- !isolate()->heap()->InNewSpace(object)) {
- if (skip == 0) {
- sink_->Put(kRootArrayConstants + root_index, "RootConstant");
- } else {
- sink_->Put(kRootArrayConstantsWithSkip + root_index, "RootConstant");
- sink_->PutInt(skip, "SkipInPutRoot");
- }
- } else {
- FlushSkip(skip);
- sink_->Put(kRootArray + how_to_code + where_to_point, "RootSerialization");
- sink_->PutInt(root_index, "root_index");
- }
-}
-
-
-void Serializer::PutBackReference(HeapObject* object, BackReference reference) {
- DCHECK(BackReferenceIsAlreadyAllocated(reference));
- sink_->PutInt(reference.reference(), "BackRefValue");
- hot_objects_.Add(object);
-}
-
-
-int Serializer::PutAlignmentPrefix(HeapObject* object) {
- AllocationAlignment alignment = object->RequiredAlignment();
- if (alignment != kWordAligned) {
- DCHECK(1 <= alignment && alignment <= 3);
- byte prefix = (kAlignmentPrefix - 1) + alignment;
- sink_->Put(prefix, "Alignment");
- return Heap::GetMaximumFillToAlign(alignment);
- }
- return 0;
-}
-
-
-void PartialSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
- WhereToPoint where_to_point, int skip) {
- if (obj->IsMap()) {
- // The code-caches link to context-specific code objects, which
- // the startup and context serializes cannot currently handle.
- DCHECK(Map::cast(obj)->code_cache() == obj->GetHeap()->empty_fixed_array());
- }
-
- // Replace typed arrays by undefined.
- if (obj->IsJSTypedArray()) obj = isolate_->heap()->undefined_value();
-
- int root_index = root_index_map_.Lookup(obj);
- if (root_index != RootIndexMap::kInvalidRootIndex) {
- PutRoot(root_index, obj, how_to_code, where_to_point, skip);
- return;
- }
-
- if (ShouldBeInThePartialSnapshotCache(obj)) {
- FlushSkip(skip);
-
- int cache_index = PartialSnapshotCacheIndex(obj);
- sink_->Put(kPartialSnapshotCache + how_to_code + where_to_point,
- "PartialSnapshotCache");
- sink_->PutInt(cache_index, "partial_snapshot_cache_index");
- return;
- }
-
- // Pointers from the partial snapshot to the objects in the startup snapshot
- // should go through the root array or through the partial snapshot cache.
- // If this is not the case you may have to add something to the root array.
- DCHECK(!startup_serializer_->back_reference_map()->Lookup(obj).is_valid());
- // All the internalized strings that the partial snapshot needs should be
- // either in the root table or in the partial snapshot cache.
- DCHECK(!obj->IsInternalizedString());
-
- if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;
-
- FlushSkip(skip);
-
- // Clear literal boilerplates.
- if (obj->IsJSFunction()) {
- FixedArray* literals = JSFunction::cast(obj)->literals();
- for (int i = 0; i < literals->length(); i++) literals->set_undefined(i);
- }
-
- // Object has not yet been serialized. Serialize it here.
- ObjectSerializer serializer(this, obj, sink_, how_to_code, where_to_point);
- serializer.Serialize();
-}
-
-
-void Serializer::ObjectSerializer::SerializePrologue(AllocationSpace space,
- int size, Map* map) {
- if (serializer_->code_address_map_) {
- const char* code_name =
- serializer_->code_address_map_->Lookup(object_->address());
- LOG(serializer_->isolate_,
- CodeNameEvent(object_->address(), sink_->Position(), code_name));
- LOG(serializer_->isolate_,
- SnapshotPositionEvent(object_->address(), sink_->Position()));
- }
-
- BackReference back_reference;
- if (space == LO_SPACE) {
- sink_->Put(kNewObject + reference_representation_ + space,
- "NewLargeObject");
- sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords");
- if (object_->IsCode()) {
- sink_->Put(EXECUTABLE, "executable large object");
- } else {
- sink_->Put(NOT_EXECUTABLE, "not executable large object");
- }
- back_reference = serializer_->AllocateLargeObject(size);
- } else {
- int fill = serializer_->PutAlignmentPrefix(object_);
- back_reference = serializer_->Allocate(space, size + fill);
- sink_->Put(kNewObject + reference_representation_ + space, "NewObject");
- sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords");
- }
-
-#ifdef OBJECT_PRINT
- if (FLAG_serialization_statistics) {
- serializer_->CountInstanceType(map, size);
- }
-#endif // OBJECT_PRINT
-
- // Mark this object as already serialized.
- serializer_->back_reference_map()->Add(object_, back_reference);
-
- // Serialize the map (first word of the object).
- serializer_->SerializeObject(map, kPlain, kStartOfObject, 0);
-}
-
-
-void Serializer::ObjectSerializer::SerializeExternalString() {
- // Instead of serializing this as an external string, we serialize
- // an imaginary sequential string with the same content.
- Isolate* isolate = serializer_->isolate();
- DCHECK(object_->IsExternalString());
- DCHECK(object_->map() != isolate->heap()->native_source_string_map());
- ExternalString* string = ExternalString::cast(object_);
- int length = string->length();
- Map* map;
- int content_size;
- int allocation_size;
- const byte* resource;
- // Find the map and size for the imaginary sequential string.
- bool internalized = object_->IsInternalizedString();
- if (object_->IsExternalOneByteString()) {
- map = internalized ? isolate->heap()->one_byte_internalized_string_map()
- : isolate->heap()->one_byte_string_map();
- allocation_size = SeqOneByteString::SizeFor(length);
- content_size = length * kCharSize;
- resource = reinterpret_cast<const byte*>(
- ExternalOneByteString::cast(string)->resource()->data());
- } else {
- map = internalized ? isolate->heap()->internalized_string_map()
- : isolate->heap()->string_map();
- allocation_size = SeqTwoByteString::SizeFor(length);
- content_size = length * kShortSize;
- resource = reinterpret_cast<const byte*>(
- ExternalTwoByteString::cast(string)->resource()->data());
- }
-
- AllocationSpace space = (allocation_size > Page::kMaxRegularHeapObjectSize)
- ? LO_SPACE
- : OLD_SPACE;
- SerializePrologue(space, allocation_size, map);
-
- // Output the rest of the imaginary string.
- int bytes_to_output = allocation_size - HeapObject::kHeaderSize;
-
- // Output raw data header. Do not bother with common raw length cases here.
- sink_->Put(kVariableRawData, "RawDataForString");
- sink_->PutInt(bytes_to_output, "length");
-
- // Serialize string header (except for map).
- Address string_start = string->address();
- for (int i = HeapObject::kHeaderSize; i < SeqString::kHeaderSize; i++) {
- sink_->PutSection(string_start[i], "StringHeader");
- }
-
- // Serialize string content.
- sink_->PutRaw(resource, content_size, "StringContent");
-
- // Since the allocation size is rounded up to object alignment, there
- // maybe left-over bytes that need to be padded.
- int padding_size = allocation_size - SeqString::kHeaderSize - content_size;
- DCHECK(0 <= padding_size && padding_size < kObjectAlignment);
- for (int i = 0; i < padding_size; i++) sink_->PutSection(0, "StringPadding");
-
- sink_->Put(kSkip, "SkipAfterString");
- sink_->PutInt(bytes_to_output, "SkipDistance");
-}
-
-// Clear and later restore the next link in the weak cell or allocation site.
-// TODO(all): replace this with proper iteration of weak slots in serializer.
-class UnlinkWeakNextScope {
- public:
- explicit UnlinkWeakNextScope(HeapObject* object) : object_(nullptr) {
- if (object->IsWeakCell()) {
- object_ = object;
- next_ = WeakCell::cast(object)->next();
- WeakCell::cast(object)->clear_next(object->GetHeap()->the_hole_value());
- } else if (object->IsAllocationSite()) {
- object_ = object;
- next_ = AllocationSite::cast(object)->weak_next();
- AllocationSite::cast(object)
- ->set_weak_next(object->GetHeap()->undefined_value());
- }
- }
-
- ~UnlinkWeakNextScope() {
- if (object_ != nullptr) {
- if (object_->IsWeakCell()) {
- WeakCell::cast(object_)->set_next(next_, UPDATE_WEAK_WRITE_BARRIER);
- } else {
- AllocationSite::cast(object_)
- ->set_weak_next(next_, UPDATE_WEAK_WRITE_BARRIER);
- }
- }
- }
-
- private:
- HeapObject* object_;
- Object* next_;
- DisallowHeapAllocation no_gc_;
-};
-
-
-void Serializer::ObjectSerializer::Serialize() {
- if (FLAG_trace_serializer) {
- PrintF(" Encoding heap object: ");
- object_->ShortPrint();
- PrintF("\n");
- }
-
- // We cannot serialize typed array objects correctly.
- DCHECK(!object_->IsJSTypedArray());
-
- // We don't expect fillers.
- DCHECK(!object_->IsFiller());
-
- if (object_->IsScript()) {
- // Clear cached line ends.
- Object* undefined = serializer_->isolate()->heap()->undefined_value();
- Script::cast(object_)->set_line_ends(undefined);
- }
-
- if (object_->IsExternalString()) {
- Heap* heap = serializer_->isolate()->heap();
- if (object_->map() != heap->native_source_string_map()) {
- // Usually we cannot recreate resources for external strings. To work
- // around this, external strings are serialized to look like ordinary
- // sequential strings.
- // The exception are native source code strings, since we can recreate
- // their resources. In that case we fall through and leave it to
- // VisitExternalOneByteString further down.
- SerializeExternalString();
- return;
- }
- }
-
- int size = object_->Size();
- Map* map = object_->map();
- AllocationSpace space =
- MemoryChunk::FromAddress(object_->address())->owner()->identity();
- SerializePrologue(space, size, map);
-
- // Serialize the rest of the object.
- CHECK_EQ(0, bytes_processed_so_far_);
- bytes_processed_so_far_ = kPointerSize;
-
- RecursionScope recursion(serializer_);
- // Objects that are immediately post processed during deserialization
- // cannot be deferred, since post processing requires the object content.
- if (recursion.ExceedsMaximum() && CanBeDeferred(object_)) {
- serializer_->QueueDeferredObject(object_);
- sink_->Put(kDeferred, "Deferring object content");
- return;
- }
-
- UnlinkWeakNextScope unlink_weak_next(object_);
-
- object_->IterateBody(map->instance_type(), size, this);
- OutputRawData(object_->address() + size);
-}
-
-
-void Serializer::ObjectSerializer::SerializeDeferred() {
- if (FLAG_trace_serializer) {
- PrintF(" Encoding deferred heap object: ");
- object_->ShortPrint();
- PrintF("\n");
- }
-
- int size = object_->Size();
- Map* map = object_->map();
- BackReference reference = serializer_->back_reference_map()->Lookup(object_);
-
- // Serialize the rest of the object.
- CHECK_EQ(0, bytes_processed_so_far_);
- bytes_processed_so_far_ = kPointerSize;
-
- serializer_->PutAlignmentPrefix(object_);
- sink_->Put(kNewObject + reference.space(), "deferred object");
- serializer_->PutBackReference(object_, reference);
- sink_->PutInt(size >> kPointerSizeLog2, "deferred object size");
-
- UnlinkWeakNextScope unlink_weak_next(object_);
-
- object_->IterateBody(map->instance_type(), size, this);
- OutputRawData(object_->address() + size);
-}
-
-
-void Serializer::ObjectSerializer::VisitPointers(Object** start,
- Object** end) {
- Object** current = start;
- while (current < end) {
- while (current < end && (*current)->IsSmi()) current++;
- if (current < end) OutputRawData(reinterpret_cast<Address>(current));
-
- while (current < end && !(*current)->IsSmi()) {
- HeapObject* current_contents = HeapObject::cast(*current);
- int root_index = serializer_->root_index_map()->Lookup(current_contents);
- // Repeats are not subject to the write barrier so we can only use
- // immortal immovable root members. They are never in new space.
- if (current != start && root_index != RootIndexMap::kInvalidRootIndex &&
- Heap::RootIsImmortalImmovable(root_index) &&
- current_contents == current[-1]) {
- DCHECK(!serializer_->isolate()->heap()->InNewSpace(current_contents));
- int repeat_count = 1;
- while (&current[repeat_count] < end - 1 &&
- current[repeat_count] == current_contents) {
- repeat_count++;
- }
- current += repeat_count;
- bytes_processed_so_far_ += repeat_count * kPointerSize;
- if (repeat_count > kNumberOfFixedRepeat) {
- sink_->Put(kVariableRepeat, "VariableRepeat");
- sink_->PutInt(repeat_count, "repeat count");
- } else {
- sink_->Put(kFixedRepeatStart + repeat_count, "FixedRepeat");
- }
- } else {
- serializer_->SerializeObject(
- current_contents, kPlain, kStartOfObject, 0);
- bytes_processed_so_far_ += kPointerSize;
- current++;
- }
- }
- }
-}
-
-
-void Serializer::ObjectSerializer::VisitEmbeddedPointer(RelocInfo* rinfo) {
- int skip = OutputRawData(rinfo->target_address_address(),
- kCanReturnSkipInsteadOfSkipping);
- HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
- Object* object = rinfo->target_object();
- serializer_->SerializeObject(HeapObject::cast(object), how_to_code,
- kStartOfObject, skip);
- bytes_processed_so_far_ += rinfo->target_address_size();
-}
-
-
-void Serializer::ObjectSerializer::VisitExternalReference(Address* p) {
- int skip = OutputRawData(reinterpret_cast<Address>(p),
- kCanReturnSkipInsteadOfSkipping);
- sink_->Put(kExternalReference + kPlain + kStartOfObject, "ExternalRef");
- sink_->PutInt(skip, "SkipB4ExternalRef");
- Address target = *p;
- sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
- bytes_processed_so_far_ += kPointerSize;
-}
-
-
-void Serializer::ObjectSerializer::VisitExternalReference(RelocInfo* rinfo) {
- int skip = OutputRawData(rinfo->target_address_address(),
- kCanReturnSkipInsteadOfSkipping);
- HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
- sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
- sink_->PutInt(skip, "SkipB4ExternalRef");
- Address target = rinfo->target_external_reference();
- sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
- bytes_processed_so_far_ += rinfo->target_address_size();
-}
-
-
-void Serializer::ObjectSerializer::VisitInternalReference(RelocInfo* rinfo) {
- // We can only reference to internal references of code that has been output.
- DCHECK(is_code_object_ && code_has_been_output_);
- // We do not use skip from last patched pc to find the pc to patch, since
- // target_address_address may not return addresses in ascending order when
- // used for internal references. External references may be stored at the
- // end of the code in the constant pool, whereas internal references are
- // inline. That would cause the skip to be negative. Instead, we store the
- // offset from code entry.
- Address entry = Code::cast(object_)->entry();
- intptr_t pc_offset = rinfo->target_internal_reference_address() - entry;
- intptr_t target_offset = rinfo->target_internal_reference() - entry;
- DCHECK(0 <= pc_offset &&
- pc_offset <= Code::cast(object_)->instruction_size());
- DCHECK(0 <= target_offset &&
- target_offset <= Code::cast(object_)->instruction_size());
- sink_->Put(rinfo->rmode() == RelocInfo::INTERNAL_REFERENCE
- ? kInternalReference
- : kInternalReferenceEncoded,
- "InternalRef");
- sink_->PutInt(static_cast<uintptr_t>(pc_offset), "internal ref address");
- sink_->PutInt(static_cast<uintptr_t>(target_offset), "internal ref value");
-}
-
-
-void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) {
- int skip = OutputRawData(rinfo->target_address_address(),
- kCanReturnSkipInsteadOfSkipping);
- HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
- sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
- sink_->PutInt(skip, "SkipB4ExternalRef");
- Address target = rinfo->target_address();
- sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
- bytes_processed_so_far_ += rinfo->target_address_size();
-}
-
-
-void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) {
- int skip = OutputRawData(rinfo->target_address_address(),
- kCanReturnSkipInsteadOfSkipping);
- Code* object = Code::GetCodeFromTargetAddress(rinfo->target_address());
- serializer_->SerializeObject(object, kFromCode, kInnerPointer, skip);
- bytes_processed_so_far_ += rinfo->target_address_size();
-}
-
-
-void Serializer::ObjectSerializer::VisitCodeEntry(Address entry_address) {
- int skip = OutputRawData(entry_address, kCanReturnSkipInsteadOfSkipping);
- Code* object = Code::cast(Code::GetObjectFromEntryAddress(entry_address));
- serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
- bytes_processed_so_far_ += kPointerSize;
-}
-
-
-void Serializer::ObjectSerializer::VisitCell(RelocInfo* rinfo) {
- int skip = OutputRawData(rinfo->pc(), kCanReturnSkipInsteadOfSkipping);
- Cell* object = Cell::cast(rinfo->target_cell());
- serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
- bytes_processed_so_far_ += kPointerSize;
-}
-
-
-bool Serializer::ObjectSerializer::SerializeExternalNativeSourceString(
- int builtin_count,
- v8::String::ExternalOneByteStringResource** resource_pointer,
- FixedArray* source_cache, int resource_index) {
- for (int i = 0; i < builtin_count; i++) {
- Object* source = source_cache->get(i);
- if (!source->IsUndefined()) {
- ExternalOneByteString* string = ExternalOneByteString::cast(source);
- typedef v8::String::ExternalOneByteStringResource Resource;
- const Resource* resource = string->resource();
- if (resource == *resource_pointer) {
- sink_->Put(resource_index, "NativesStringResource");
- sink_->PutSection(i, "NativesStringResourceEnd");
- bytes_processed_so_far_ += sizeof(resource);
- return true;
- }
- }
- }
- return false;
-}
-
-
-void Serializer::ObjectSerializer::VisitExternalOneByteString(
- v8::String::ExternalOneByteStringResource** resource_pointer) {
- Address references_start = reinterpret_cast<Address>(resource_pointer);
- OutputRawData(references_start);
- if (SerializeExternalNativeSourceString(
- Natives::GetBuiltinsCount(), resource_pointer,
- Natives::GetSourceCache(serializer_->isolate()->heap()),
- kNativesStringResource)) {
- return;
- }
- if (SerializeExternalNativeSourceString(
- ExtraNatives::GetBuiltinsCount(), resource_pointer,
- ExtraNatives::GetSourceCache(serializer_->isolate()->heap()),
- kExtraNativesStringResource)) {
- return;
- }
- // One of the strings in the natives cache should match the resource. We
- // don't expect any other kinds of external strings here.
- UNREACHABLE();
-}
-
-
-Address Serializer::ObjectSerializer::PrepareCode() {
- // To make snapshots reproducible, we make a copy of the code object
- // and wipe all pointers in the copy, which we then serialize.
- Code* original = Code::cast(object_);
- Code* code = serializer_->CopyCode(original);
- // Code age headers are not serializable.
- code->MakeYoung(serializer_->isolate());
- int mode_mask = RelocInfo::kCodeTargetMask |
- RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
- RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) |
- RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY) |
- RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
- RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED);
- for (RelocIterator it(code, mode_mask); !it.done(); it.next()) {
- RelocInfo* rinfo = it.rinfo();
- rinfo->WipeOut();
- }
- // We need to wipe out the header fields *after* wiping out the
- // relocations, because some of these fields are needed for the latter.
- code->WipeOutHeader();
- return code->address();
-}
-
-
-int Serializer::ObjectSerializer::OutputRawData(
- Address up_to, Serializer::ObjectSerializer::ReturnSkip return_skip) {
- Address object_start = object_->address();
- int base = bytes_processed_so_far_;
- int up_to_offset = static_cast<int>(up_to - object_start);
- int to_skip = up_to_offset - bytes_processed_so_far_;
- int bytes_to_output = to_skip;
- bytes_processed_so_far_ += to_skip;
- // This assert will fail if the reloc info gives us the target_address_address
- // locations in a non-ascending order. Luckily that doesn't happen.
- DCHECK(to_skip >= 0);
- bool outputting_code = false;
- if (to_skip != 0 && is_code_object_ && !code_has_been_output_) {
- // Output the code all at once and fix later.
- bytes_to_output = object_->Size() + to_skip - bytes_processed_so_far_;
- outputting_code = true;
- code_has_been_output_ = true;
- }
- if (bytes_to_output != 0 && (!is_code_object_ || outputting_code)) {
- if (!outputting_code && bytes_to_output == to_skip &&
- IsAligned(bytes_to_output, kPointerAlignment) &&
- bytes_to_output <= kNumberOfFixedRawData * kPointerSize) {
- int size_in_words = bytes_to_output >> kPointerSizeLog2;
- sink_->PutSection(kFixedRawDataStart + size_in_words, "FixedRawData");
- to_skip = 0; // This instruction includes skip.
- } else {
- // We always end up here if we are outputting the code of a code object.
- sink_->Put(kVariableRawData, "VariableRawData");
- sink_->PutInt(bytes_to_output, "length");
- }
-
- if (is_code_object_) object_start = PrepareCode();
-
- const char* description = is_code_object_ ? "Code" : "Byte";
- sink_->PutRaw(object_start + base, bytes_to_output, description);
- }
- if (to_skip != 0 && return_skip == kIgnoringReturn) {
- sink_->Put(kSkip, "Skip");
- sink_->PutInt(to_skip, "SkipDistance");
- to_skip = 0;
- }
- return to_skip;
-}
-
-
-BackReference Serializer::AllocateLargeObject(int size) {
- // Large objects are allocated one-by-one when deserializing. We do not
- // have to keep track of multiple chunks.
- large_objects_total_size_ += size;
- return BackReference::LargeObjectReference(seen_large_objects_index_++);
-}
-
-
-BackReference Serializer::Allocate(AllocationSpace space, int size) {
- DCHECK(space >= 0 && space < kNumberOfPreallocatedSpaces);
- DCHECK(size > 0 && size <= static_cast<int>(max_chunk_size(space)));
- uint32_t new_chunk_size = pending_chunk_[space] + size;
- if (new_chunk_size > max_chunk_size(space)) {
- // The new chunk size would not fit onto a single page. Complete the
- // current chunk and start a new one.
- sink_->Put(kNextChunk, "NextChunk");
- sink_->Put(space, "NextChunkSpace");
- completed_chunks_[space].Add(pending_chunk_[space]);
- DCHECK_LE(completed_chunks_[space].length(), BackReference::kMaxChunkIndex);
- pending_chunk_[space] = 0;
- new_chunk_size = size;
- }
- uint32_t offset = pending_chunk_[space];
- pending_chunk_[space] = new_chunk_size;
- return BackReference::Reference(space, completed_chunks_[space].length(),
- offset);
-}
-
-
-void Serializer::Pad() {
- // The non-branching GetInt will read up to 3 bytes too far, so we need
- // to pad the snapshot to make sure we don't read over the end.
- for (unsigned i = 0; i < sizeof(int32_t) - 1; i++) {
- sink_->Put(kNop, "Padding");
- }
- // Pad up to pointer size for checksum.
- while (!IsAligned(sink_->Position(), kPointerAlignment)) {
- sink_->Put(kNop, "Padding");
- }
-}
-
-
-void Serializer::InitializeCodeAddressMap() {
- isolate_->InitializeLoggingAndCounters();
- code_address_map_ = new CodeAddressMap(isolate_);
-}
-
-
-Code* Serializer::CopyCode(Code* code) {
- code_buffer_.Rewind(0); // Clear buffer without deleting backing store.
- int size = code->CodeSize();
- code_buffer_.AddAll(Vector<byte>(code->address(), size));
- return Code::cast(HeapObject::FromAddress(&code_buffer_.first()));
-}
-
-
-ScriptData* CodeSerializer::Serialize(Isolate* isolate,
- Handle<SharedFunctionInfo> info,
- Handle<String> source) {
- base::ElapsedTimer timer;
- if (FLAG_profile_deserialization) timer.Start();
- if (FLAG_trace_serializer) {
- PrintF("[Serializing from");
- Object* script = info->script();
- if (script->IsScript()) Script::cast(script)->name()->ShortPrint();
- PrintF("]\n");
- }
-
- // Serialize code object.
- SnapshotByteSink sink(info->code()->CodeSize() * 2);
- CodeSerializer cs(isolate, &sink, *source);
- DisallowHeapAllocation no_gc;
- Object** location = Handle<Object>::cast(info).location();
- cs.VisitPointer(location);
- cs.SerializeDeferredObjects();
- cs.Pad();
-
- SerializedCodeData data(sink.data(), cs);
- ScriptData* script_data = data.GetScriptData();
-
- if (FLAG_profile_deserialization) {
- double ms = timer.Elapsed().InMillisecondsF();
- int length = script_data->length();
- PrintF("[Serializing to %d bytes took %0.3f ms]\n", length, ms);
- }
-
- return script_data;
-}
-
-
-void CodeSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
- WhereToPoint where_to_point, int skip) {
- int root_index = root_index_map_.Lookup(obj);
- if (root_index != RootIndexMap::kInvalidRootIndex) {
- PutRoot(root_index, obj, how_to_code, where_to_point, skip);
- return;
- }
-
- if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;
-
- FlushSkip(skip);
-
- if (obj->IsCode()) {
- Code* code_object = Code::cast(obj);
- switch (code_object->kind()) {
- case Code::OPTIMIZED_FUNCTION: // No optimized code compiled yet.
- case Code::HANDLER: // No handlers patched in yet.
- case Code::REGEXP: // No regexp literals initialized yet.
- case Code::NUMBER_OF_KINDS: // Pseudo enum value.
- CHECK(false);
- case Code::BUILTIN:
- SerializeBuiltin(code_object->builtin_index(), how_to_code,
- where_to_point);
- return;
- case Code::STUB:
- SerializeCodeStub(code_object->stub_key(), how_to_code, where_to_point);
- return;
-#define IC_KIND_CASE(KIND) case Code::KIND:
- IC_KIND_LIST(IC_KIND_CASE)
-#undef IC_KIND_CASE
- SerializeIC(code_object, how_to_code, where_to_point);
- return;
- case Code::FUNCTION:
- DCHECK(code_object->has_reloc_info_for_serialization());
- SerializeGeneric(code_object, how_to_code, where_to_point);
- return;
- case Code::WASM_FUNCTION:
- UNREACHABLE();
- }
- UNREACHABLE();
- }
-
- // Past this point we should not see any (context-specific) maps anymore.
- CHECK(!obj->IsMap());
- // There should be no references to the global object embedded.
- CHECK(!obj->IsJSGlobalProxy() && !obj->IsJSGlobalObject());
- // There should be no hash table embedded. They would require rehashing.
- CHECK(!obj->IsHashTable());
- // We expect no instantiated function objects or contexts.
- CHECK(!obj->IsJSFunction() && !obj->IsContext());
-
- SerializeGeneric(obj, how_to_code, where_to_point);
-}
-
-
-void CodeSerializer::SerializeGeneric(HeapObject* heap_object,
- HowToCode how_to_code,
- WhereToPoint where_to_point) {
- // Object has not yet been serialized. Serialize it here.
- ObjectSerializer serializer(this, heap_object, sink_, how_to_code,
- where_to_point);
- serializer.Serialize();
-}
-
-
-void CodeSerializer::SerializeBuiltin(int builtin_index, HowToCode how_to_code,
- WhereToPoint where_to_point) {
- DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) ||
- (how_to_code == kPlain && where_to_point == kInnerPointer) ||
- (how_to_code == kFromCode && where_to_point == kInnerPointer));
- DCHECK_LT(builtin_index, Builtins::builtin_count);
- DCHECK_LE(0, builtin_index);
-
- if (FLAG_trace_serializer) {
- PrintF(" Encoding builtin: %s\n",
- isolate()->builtins()->name(builtin_index));
- }
-
- sink_->Put(kBuiltin + how_to_code + where_to_point, "Builtin");
- sink_->PutInt(builtin_index, "builtin_index");
-}
-
-
-void CodeSerializer::SerializeCodeStub(uint32_t stub_key, HowToCode how_to_code,
- WhereToPoint where_to_point) {
- DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) ||
- (how_to_code == kPlain && where_to_point == kInnerPointer) ||
- (how_to_code == kFromCode && where_to_point == kInnerPointer));
- DCHECK(CodeStub::MajorKeyFromKey(stub_key) != CodeStub::NoCache);
- DCHECK(!CodeStub::GetCode(isolate(), stub_key).is_null());
-
- int index = AddCodeStubKey(stub_key) + kCodeStubsBaseIndex;
-
- if (FLAG_trace_serializer) {
- PrintF(" Encoding code stub %s as %d\n",
- CodeStub::MajorName(CodeStub::MajorKeyFromKey(stub_key)), index);
- }
-
- sink_->Put(kAttachedReference + how_to_code + where_to_point, "CodeStub");
- sink_->PutInt(index, "CodeStub key");
-}
-
-
-void CodeSerializer::SerializeIC(Code* ic, HowToCode how_to_code,
- WhereToPoint where_to_point) {
- // The IC may be implemented as a stub.
- uint32_t stub_key = ic->stub_key();
- if (stub_key != CodeStub::NoCacheKey()) {
- if (FLAG_trace_serializer) {
- PrintF(" %s is a code stub\n", Code::Kind2String(ic->kind()));
- }
- SerializeCodeStub(stub_key, how_to_code, where_to_point);
- return;
- }
- // The IC may be implemented as builtin. Only real builtins have an
- // actual builtin_index value attached (otherwise it's just garbage).
- // Compare to make sure we are really dealing with a builtin.
- int builtin_index = ic->builtin_index();
- if (builtin_index < Builtins::builtin_count) {
- Builtins::Name name = static_cast<Builtins::Name>(builtin_index);
- Code* builtin = isolate()->builtins()->builtin(name);
- if (builtin == ic) {
- if (FLAG_trace_serializer) {
- PrintF(" %s is a builtin\n", Code::Kind2String(ic->kind()));
- }
- DCHECK(ic->kind() == Code::KEYED_LOAD_IC ||
- ic->kind() == Code::KEYED_STORE_IC);
- SerializeBuiltin(builtin_index, how_to_code, where_to_point);
- return;
- }
- }
- // The IC may also just be a piece of code kept in the non_monomorphic_cache.
- // In that case, just serialize as a normal code object.
- if (FLAG_trace_serializer) {
- PrintF(" %s has no special handling\n", Code::Kind2String(ic->kind()));
- }
- DCHECK(ic->kind() == Code::LOAD_IC || ic->kind() == Code::STORE_IC);
- SerializeGeneric(ic, how_to_code, where_to_point);
-}
-
-
-int CodeSerializer::AddCodeStubKey(uint32_t stub_key) {
- // TODO(yangguo) Maybe we need a hash table for a faster lookup than O(n^2).
- int index = 0;
- while (index < stub_keys_.length()) {
- if (stub_keys_[index] == stub_key) return index;
- index++;
- }
- stub_keys_.Add(stub_key);
- return index;
-}
-
-
-MaybeHandle<SharedFunctionInfo> CodeSerializer::Deserialize(
- Isolate* isolate, ScriptData* cached_data, Handle<String> source) {
- base::ElapsedTimer timer;
- if (FLAG_profile_deserialization) timer.Start();
-
- HandleScope scope(isolate);
-
- base::SmartPointer<SerializedCodeData> scd(
- SerializedCodeData::FromCachedData(isolate, cached_data, *source));
- if (scd.is_empty()) {
- if (FLAG_profile_deserialization) PrintF("[Cached code failed check]\n");
- DCHECK(cached_data->rejected());
- return MaybeHandle<SharedFunctionInfo>();
- }
-
- // Prepare and register list of attached objects.
- Vector<const uint32_t> code_stub_keys = scd->CodeStubKeys();
- Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New(
- code_stub_keys.length() + kCodeStubsBaseIndex);
- attached_objects[kSourceObjectIndex] = source;
- for (int i = 0; i < code_stub_keys.length(); i++) {
- attached_objects[i + kCodeStubsBaseIndex] =
- CodeStub::GetCode(isolate, code_stub_keys[i]).ToHandleChecked();
- }
-
- Deserializer deserializer(scd.get());
- deserializer.SetAttachedObjects(attached_objects);
-
- // Deserialize.
- Handle<SharedFunctionInfo> result;
- if (!deserializer.DeserializeCode(isolate).ToHandle(&result)) {
- // Deserializing may fail if the reservations cannot be fulfilled.
- if (FLAG_profile_deserialization) PrintF("[Deserializing failed]\n");
- return MaybeHandle<SharedFunctionInfo>();
- }
-
- if (FLAG_profile_deserialization) {
- double ms = timer.Elapsed().InMillisecondsF();
- int length = cached_data->length();
- PrintF("[Deserializing from %d bytes took %0.3f ms]\n", length, ms);
- }
- result->set_deserialized(true);
-
- if (isolate->logger()->is_logging_code_events() ||
- isolate->cpu_profiler()->is_profiling()) {
- String* name = isolate->heap()->empty_string();
- if (result->script()->IsScript()) {
- Script* script = Script::cast(result->script());
- if (script->name()->IsString()) name = String::cast(script->name());
- }
- isolate->logger()->CodeCreateEvent(
- Logger::SCRIPT_TAG, result->abstract_code(), *result, NULL, name);
- }
- return scope.CloseAndEscape(result);
-}
-
-
-void SerializedData::AllocateData(int size) {
- DCHECK(!owns_data_);
- data_ = NewArray<byte>(size);
- size_ = size;
- owns_data_ = true;
- DCHECK(IsAligned(reinterpret_cast<intptr_t>(data_), kPointerAlignment));
-}
-
-
-SnapshotData::SnapshotData(const Serializer& ser) {
- DisallowHeapAllocation no_gc;
- List<Reservation> reservations;
- ser.EncodeReservations(&reservations);
- const List<byte>& payload = ser.sink()->data();
-
- // Calculate sizes.
- int reservation_size = reservations.length() * kInt32Size;
- int size = kHeaderSize + reservation_size + payload.length();
-
- // Allocate backing store and create result data.
- AllocateData(size);
-
- // Set header values.
- SetMagicNumber(ser.isolate());
- SetHeaderValue(kCheckSumOffset, Version::Hash());
- SetHeaderValue(kNumReservationsOffset, reservations.length());
- SetHeaderValue(kPayloadLengthOffset, payload.length());
-
- // Copy reservation chunk sizes.
- CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()),
- reservation_size);
-
- // Copy serialized data.
- CopyBytes(data_ + kHeaderSize + reservation_size, payload.begin(),
- static_cast<size_t>(payload.length()));
-}
-
-
-bool SnapshotData::IsSane() {
- return GetHeaderValue(kCheckSumOffset) == Version::Hash();
-}
-
-
-Vector<const SerializedData::Reservation> SnapshotData::Reservations() const {
- return Vector<const Reservation>(
- reinterpret_cast<const Reservation*>(data_ + kHeaderSize),
- GetHeaderValue(kNumReservationsOffset));
-}
-
-
-Vector<const byte> SnapshotData::Payload() const {
- int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size;
- const byte* payload = data_ + kHeaderSize + reservations_size;
- int length = GetHeaderValue(kPayloadLengthOffset);
- DCHECK_EQ(data_ + size_, payload + length);
- return Vector<const byte>(payload, length);
-}
-
-
-class Checksum {
- public:
- explicit Checksum(Vector<const byte> payload) {
-#ifdef MEMORY_SANITIZER
- // Computing the checksum includes padding bytes for objects like strings.
- // Mark every object as initialized in the code serializer.
- MSAN_MEMORY_IS_INITIALIZED(payload.start(), payload.length());
-#endif // MEMORY_SANITIZER
- // Fletcher's checksum. Modified to reduce 64-bit sums to 32-bit.
- uintptr_t a = 1;
- uintptr_t b = 0;
- const uintptr_t* cur = reinterpret_cast<const uintptr_t*>(payload.start());
- DCHECK(IsAligned(payload.length(), kIntptrSize));
- const uintptr_t* end = cur + payload.length() / kIntptrSize;
- while (cur < end) {
- // Unsigned overflow expected and intended.
- a += *cur++;
- b += a;
- }
-#if V8_HOST_ARCH_64_BIT
- a ^= a >> 32;
- b ^= b >> 32;
-#endif // V8_HOST_ARCH_64_BIT
- a_ = static_cast<uint32_t>(a);
- b_ = static_cast<uint32_t>(b);
- }
-
- bool Check(uint32_t a, uint32_t b) const { return a == a_ && b == b_; }
-
- uint32_t a() const { return a_; }
- uint32_t b() const { return b_; }
-
- private:
- uint32_t a_;
- uint32_t b_;
-
- DISALLOW_COPY_AND_ASSIGN(Checksum);
-};
-
-
-SerializedCodeData::SerializedCodeData(const List<byte>& payload,
- const CodeSerializer& cs) {
- DisallowHeapAllocation no_gc;
- const List<uint32_t>* stub_keys = cs.stub_keys();
-
- List<Reservation> reservations;
- cs.EncodeReservations(&reservations);
-
- // Calculate sizes.
- int reservation_size = reservations.length() * kInt32Size;
- int num_stub_keys = stub_keys->length();
- int stub_keys_size = stub_keys->length() * kInt32Size;
- int payload_offset = kHeaderSize + reservation_size + stub_keys_size;
- int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset);
- int size = padded_payload_offset + payload.length();
-
- // Allocate backing store and create result data.
- AllocateData(size);
-
- // Set header values.
- SetMagicNumber(cs.isolate());
- SetHeaderValue(kVersionHashOffset, Version::Hash());
- SetHeaderValue(kSourceHashOffset, SourceHash(cs.source()));
- SetHeaderValue(kCpuFeaturesOffset,
- static_cast<uint32_t>(CpuFeatures::SupportedFeatures()));
- SetHeaderValue(kFlagHashOffset, FlagList::Hash());
- SetHeaderValue(kNumReservationsOffset, reservations.length());
- SetHeaderValue(kNumCodeStubKeysOffset, num_stub_keys);
- SetHeaderValue(kPayloadLengthOffset, payload.length());
-
- Checksum checksum(payload.ToConstVector());
- SetHeaderValue(kChecksum1Offset, checksum.a());
- SetHeaderValue(kChecksum2Offset, checksum.b());
-
- // Copy reservation chunk sizes.
- CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()),
- reservation_size);
-
- // Copy code stub keys.
- CopyBytes(data_ + kHeaderSize + reservation_size,
- reinterpret_cast<byte*>(stub_keys->begin()), stub_keys_size);
-
- memset(data_ + payload_offset, 0, padded_payload_offset - payload_offset);
-
- // Copy serialized data.
- CopyBytes(data_ + padded_payload_offset, payload.begin(),
- static_cast<size_t>(payload.length()));
-}
-
-
-SerializedCodeData::SanityCheckResult SerializedCodeData::SanityCheck(
- Isolate* isolate, String* source) const {
- uint32_t magic_number = GetMagicNumber();
- if (magic_number != ComputeMagicNumber(isolate)) return MAGIC_NUMBER_MISMATCH;
- uint32_t version_hash = GetHeaderValue(kVersionHashOffset);
- uint32_t source_hash = GetHeaderValue(kSourceHashOffset);
- uint32_t cpu_features = GetHeaderValue(kCpuFeaturesOffset);
- uint32_t flags_hash = GetHeaderValue(kFlagHashOffset);
- uint32_t c1 = GetHeaderValue(kChecksum1Offset);
- uint32_t c2 = GetHeaderValue(kChecksum2Offset);
- if (version_hash != Version::Hash()) return VERSION_MISMATCH;
- if (source_hash != SourceHash(source)) return SOURCE_MISMATCH;
- if (cpu_features != static_cast<uint32_t>(CpuFeatures::SupportedFeatures())) {
- return CPU_FEATURES_MISMATCH;
- }
- if (flags_hash != FlagList::Hash()) return FLAGS_MISMATCH;
- if (!Checksum(Payload()).Check(c1, c2)) return CHECKSUM_MISMATCH;
- return CHECK_SUCCESS;
-}
-
-
-uint32_t SerializedCodeData::SourceHash(String* source) const {
- return source->length();
-}
-
-
-// Return ScriptData object and relinquish ownership over it to the caller.
-ScriptData* SerializedCodeData::GetScriptData() {
- DCHECK(owns_data_);
- ScriptData* result = new ScriptData(data_, size_);
- result->AcquireDataOwnership();
- owns_data_ = false;
- data_ = NULL;
- return result;
-}
-
-
-Vector<const SerializedData::Reservation> SerializedCodeData::Reservations()
- const {
- return Vector<const Reservation>(
- reinterpret_cast<const Reservation*>(data_ + kHeaderSize),
- GetHeaderValue(kNumReservationsOffset));
-}
-
-
-Vector<const byte> SerializedCodeData::Payload() const {
- int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size;
- int code_stubs_size = GetHeaderValue(kNumCodeStubKeysOffset) * kInt32Size;
- int payload_offset = kHeaderSize + reservations_size + code_stubs_size;
- int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset);
- const byte* payload = data_ + padded_payload_offset;
- DCHECK(IsAligned(reinterpret_cast<intptr_t>(payload), kPointerAlignment));
- int length = GetHeaderValue(kPayloadLengthOffset);
- DCHECK_EQ(data_ + size_, payload + length);
- return Vector<const byte>(payload, length);
-}
-
-
-Vector<const uint32_t> SerializedCodeData::CodeStubKeys() const {
- int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size;
- const byte* start = data_ + kHeaderSize + reservations_size;
- return Vector<const uint32_t>(reinterpret_cast<const uint32_t*>(start),
- GetHeaderValue(kNumCodeStubKeysOffset));
-}
-
-
-SerializedCodeData::SerializedCodeData(ScriptData* data)
- : SerializedData(const_cast<byte*>(data->data()), data->length()) {}
-
-
-SerializedCodeData* SerializedCodeData::FromCachedData(Isolate* isolate,
- ScriptData* cached_data,
- String* source) {
- DisallowHeapAllocation no_gc;
- SerializedCodeData* scd = new SerializedCodeData(cached_data);
- SanityCheckResult r = scd->SanityCheck(isolate, source);
- if (r == CHECK_SUCCESS) return scd;
- cached_data->Reject();
- source->GetIsolate()->counters()->code_cache_reject_reason()->AddSample(r);
- delete scd;
- return NULL;
-}
-} // namespace internal
-} // namespace v8

Powered by Google App Engine
This is Rietveld 408576698