Index: src/s390/assembler-s390-inl.h |
diff --git a/src/ppc/assembler-ppc-inl.h b/src/s390/assembler-s390-inl.h |
similarity index 54% |
copy from src/ppc/assembler-ppc-inl.h |
copy to src/s390/assembler-s390-inl.h |
index 42e220809f5771b0f8a8ca9c68de83e46db386c0..14413d60a156c1873fe8d2504ee292c35d00ede8 100644 |
--- a/src/ppc/assembler-ppc-inl.h |
+++ b/src/s390/assembler-s390-inl.h |
@@ -34,28 +34,35 @@ |
// significantly by Google Inc. |
// Copyright 2014 the V8 project authors. All rights reserved. |
-#ifndef V8_PPC_ASSEMBLER_PPC_INL_H_ |
-#define V8_PPC_ASSEMBLER_PPC_INL_H_ |
+#ifndef V8_S390_ASSEMBLER_S390_INL_H_ |
+#define V8_S390_ASSEMBLER_S390_INL_H_ |
-#include "src/ppc/assembler-ppc.h" |
+#include "src/s390/assembler-s390.h" |
#include "src/assembler.h" |
#include "src/debug/debug.h" |
- |
namespace v8 { |
namespace internal { |
- |
bool CpuFeatures::SupportsCrankshaft() { return true; } |
- |
void RelocInfo::apply(intptr_t delta) { |
- // absolute code pointer inside code object moves with the code object. |
+ // Absolute code pointer inside code object moves with the code object. |
if (IsInternalReference(rmode_)) { |
// Jump table entry |
Address target = Memory::Address_at(pc_); |
Memory::Address_at(pc_) = target + delta; |
+ } else if (IsCodeTarget(rmode_)) { |
+ SixByteInstr instr = |
+ Instruction::InstructionBits(reinterpret_cast<const byte*>(pc_)); |
+ int32_t dis = static_cast<int32_t>(instr & 0xFFFFFFFF) * 2 // halfwords |
+ - static_cast<int32_t>(delta); |
+ instr >>= 32; // Clear the 4-byte displacement field. |
+ instr <<= 32; |
+ instr |= static_cast<uint32_t>(dis / 2); |
+ Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc_), |
+ instr); |
} else { |
// mov sequence |
DCHECK(IsInternalReferenceEncoded(rmode_)); |
@@ -65,7 +72,6 @@ void RelocInfo::apply(intptr_t delta) { |
} |
} |
- |
Address RelocInfo::target_internal_reference() { |
if (IsInternalReference(rmode_)) { |
// Jump table entry |
@@ -77,31 +83,20 @@ Address RelocInfo::target_internal_reference() { |
} |
} |
- |
Address RelocInfo::target_internal_reference_address() { |
DCHECK(IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)); |
return reinterpret_cast<Address>(pc_); |
} |
- |
Address RelocInfo::target_address() { |
DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)); |
return Assembler::target_address_at(pc_, host_); |
} |
- |
Address RelocInfo::target_address_address() { |
DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || |
rmode_ == EMBEDDED_OBJECT || rmode_ == EXTERNAL_REFERENCE); |
- if (FLAG_enable_embedded_constant_pool && |
- Assembler::IsConstantPoolLoadStart(pc_)) { |
- // We return the PC for embedded constant pool since this function is used |
- // by the serializer and expects the address to reside within the code |
- // object. |
- return reinterpret_cast<Address>(pc_); |
- } |
- |
// Read the address of the word containing the target_address in an |
// instruction stream. |
// The only architecture-independent user of this function is the serializer. |
@@ -114,24 +109,13 @@ Address RelocInfo::target_address_address() { |
return reinterpret_cast<Address>(pc_); |
} |
- |
Address RelocInfo::constant_pool_entry_address() { |
- if (FLAG_enable_embedded_constant_pool) { |
- Address constant_pool = host_->constant_pool(); |
- DCHECK(constant_pool); |
- ConstantPoolEntry::Access access; |
- if (Assembler::IsConstantPoolLoadStart(pc_, &access)) |
- return Assembler::target_constant_pool_address_at( |
- pc_, constant_pool, access, ConstantPoolEntry::INTPTR); |
- } |
UNREACHABLE(); |
return NULL; |
} |
- |
int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; } |
- |
void RelocInfo::set_target_address(Address target, |
WriteBarrierMode write_barrier_mode, |
ICacheFlushMode icache_flush_mode) { |
@@ -146,53 +130,42 @@ void RelocInfo::set_target_address(Address target, |
} |
} |
- |
Address Assembler::target_address_from_return_address(Address pc) { |
-// Returns the address of the call target from the return address that will |
-// be returned to after a call. |
-// Call sequence is : |
-// mov ip, @ call address |
-// mtlr ip |
-// blrl |
-// @ return address |
- int len; |
- ConstantPoolEntry::Access access; |
- if (FLAG_enable_embedded_constant_pool && |
- IsConstantPoolLoadEnd(pc - 3 * kInstrSize, &access)) { |
- len = (access == ConstantPoolEntry::OVERFLOWED) ? 2 : 1; |
- } else { |
- len = kMovInstructionsNoConstantPool; |
- } |
- return pc - (len + 2) * kInstrSize; |
+ // Returns the address of the call target from the return address that will |
+ // be returned to after a call. |
+ // Sequence is: |
+ // BRASL r14, RI |
+ return pc - kCallTargetAddressOffset; |
} |
- |
Address Assembler::return_address_from_call_start(Address pc) { |
- int len; |
- ConstantPoolEntry::Access access; |
- if (FLAG_enable_embedded_constant_pool && |
- IsConstantPoolLoadStart(pc, &access)) { |
- len = (access == ConstantPoolEntry::OVERFLOWED) ? 2 : 1; |
- } else { |
- len = kMovInstructionsNoConstantPool; |
- } |
- return pc + (len + 2) * kInstrSize; |
+ // Sequence is: |
+ // BRASL r14, RI |
+ return pc + kCallTargetAddressOffset; |
} |
+Handle<Object> Assembler::code_target_object_handle_at(Address pc) { |
+ SixByteInstr instr = |
+ Instruction::InstructionBits(reinterpret_cast<const byte*>(pc)); |
+ int index = instr & 0xFFFFFFFF; |
+ return code_targets_[index]; |
+} |
Object* RelocInfo::target_object() { |
DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); |
return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_)); |
} |
- |
Handle<Object> RelocInfo::target_object_handle(Assembler* origin) { |
DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); |
- return Handle<Object>( |
- reinterpret_cast<Object**>(Assembler::target_address_at(pc_, host_))); |
+ if (rmode_ == EMBEDDED_OBJECT) { |
+ return Handle<Object>( |
+ reinterpret_cast<Object**>(Assembler::target_address_at(pc_, host_))); |
+ } else { |
+ return origin->code_target_object_handle_at(pc_); |
+ } |
} |
- |
void RelocInfo::set_target_object(Object* target, |
WriteBarrierMode write_barrier_mode, |
ICacheFlushMode icache_flush_mode) { |
@@ -207,19 +180,16 @@ void RelocInfo::set_target_object(Object* target, |
} |
} |
- |
Address RelocInfo::target_external_reference() { |
DCHECK(rmode_ == EXTERNAL_REFERENCE); |
return Assembler::target_address_at(pc_, host_); |
} |
- |
Address RelocInfo::target_runtime_entry(Assembler* origin) { |
DCHECK(IsRuntimeEntry(rmode_)); |
return target_address(); |
} |
- |
void RelocInfo::set_target_runtime_entry(Address target, |
WriteBarrierMode write_barrier_mode, |
ICacheFlushMode icache_flush_mode) { |
@@ -228,20 +198,17 @@ void RelocInfo::set_target_runtime_entry(Address target, |
set_target_address(target, write_barrier_mode, icache_flush_mode); |
} |
- |
Handle<Cell> RelocInfo::target_cell_handle() { |
DCHECK(rmode_ == RelocInfo::CELL); |
Address address = Memory::Address_at(pc_); |
return Handle<Cell>(reinterpret_cast<Cell**>(address)); |
} |
- |
Cell* RelocInfo::target_cell() { |
DCHECK(rmode_ == RelocInfo::CELL); |
return Cell::FromValueAddress(Memory::Address_at(pc_)); |
} |
- |
void RelocInfo::set_target_cell(Cell* cell, WriteBarrierMode write_barrier_mode, |
ICacheFlushMode icache_flush_mode) { |
DCHECK(rmode_ == RelocInfo::CELL); |
@@ -253,37 +220,40 @@ void RelocInfo::set_target_cell(Cell* cell, WriteBarrierMode write_barrier_mode, |
} |
} |
- |
-static const int kNoCodeAgeInstructions = |
- FLAG_enable_embedded_constant_pool ? 7 : 6; |
-static const int kCodeAgingInstructions = |
- Assembler::kMovInstructionsNoConstantPool + 3; |
-static const int kNoCodeAgeSequenceInstructions = |
- ((kNoCodeAgeInstructions >= kCodeAgingInstructions) |
- ? kNoCodeAgeInstructions |
- : kCodeAgingInstructions); |
-static const int kNoCodeAgeSequenceNops = |
- (kNoCodeAgeSequenceInstructions - kNoCodeAgeInstructions); |
-static const int kCodeAgingSequenceNops = |
- (kNoCodeAgeSequenceInstructions - kCodeAgingInstructions); |
-static const int kCodeAgingTargetDelta = 1 * Assembler::kInstrSize; |
-static const int kNoCodeAgeSequenceLength = |
- (kNoCodeAgeSequenceInstructions * Assembler::kInstrSize); |
- |
+#if V8_TARGET_ARCH_S390X |
+// NOP(2byte) + PUSH + MOV + BASR = |
+// NOP + LAY + STG + IIHF + IILF + BASR |
+static const int kCodeAgingSequenceLength = 28; |
+static const int kCodeAgingTargetDelta = 14; // Jump past NOP + PUSH to IIHF |
+ // LAY + 4 * STG + LA |
+static const int kNoCodeAgeSequenceLength = 34; |
+#else |
+#if (V8_HOST_ARCH_S390) |
+// NOP + NILH + LAY + ST + IILF + BASR |
+static const int kCodeAgingSequenceLength = 24; |
+static const int kCodeAgingTargetDelta = 16; // Jump past NOP to IILF |
+// NILH + LAY + 4 * ST + LA |
+static const int kNoCodeAgeSequenceLength = 30; |
+#else |
+// NOP + LAY + ST + IILF + BASR |
+static const int kCodeAgingSequenceLength = 20; |
+static const int kCodeAgingTargetDelta = 12; // Jump past NOP to IILF |
+// LAY + 4 * ST + LA |
+static const int kNoCodeAgeSequenceLength = 26; |
+#endif |
+#endif |
Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) { |
- UNREACHABLE(); // This should never be reached on PPC. |
+ UNREACHABLE(); // This should never be reached on S390. |
return Handle<Object>(); |
} |
- |
Code* RelocInfo::code_age_stub() { |
DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE); |
return Code::GetCodeFromTargetAddress( |
Assembler::target_address_at(pc_ + kCodeAgingTargetDelta, host_)); |
} |
- |
void RelocInfo::set_code_age_stub(Code* stub, |
ICacheFlushMode icache_flush_mode) { |
DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE); |
@@ -292,13 +262,11 @@ void RelocInfo::set_code_age_stub(Code* stub, |
icache_flush_mode); |
} |
- |
Address RelocInfo::debug_call_address() { |
DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()); |
return Assembler::target_address_at(pc_, host_); |
} |
- |
void RelocInfo::set_debug_call_address(Address target) { |
DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()); |
Assembler::set_target_address_at(isolate_, pc_, host_, target); |
@@ -309,7 +277,6 @@ void RelocInfo::set_debug_call_address(Address target) { |
} |
} |
- |
void RelocInfo::WipeOut() { |
DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) || |
IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) || |
@@ -327,7 +294,6 @@ void RelocInfo::WipeOut() { |
} |
} |
- |
void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) { |
RelocInfo::Mode mode = rmode(); |
if (mode == RelocInfo::EMBEDDED_OBJECT) { |
@@ -338,8 +304,7 @@ void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) { |
visitor->VisitCell(this); |
} else if (mode == RelocInfo::EXTERNAL_REFERENCE) { |
visitor->VisitExternalReference(this); |
- } else if (mode == RelocInfo::INTERNAL_REFERENCE || |
- mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) { |
+ } else if (mode == RelocInfo::INTERNAL_REFERENCE) { |
visitor->VisitInternalReference(this); |
} else if (RelocInfo::IsCodeAgeSequence(mode)) { |
visitor->VisitCodeAgeSequence(this); |
@@ -351,7 +316,6 @@ void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) { |
} |
} |
- |
template <typename StaticVisitor> |
void RelocInfo::Visit(Heap* heap) { |
RelocInfo::Mode mode = rmode(); |
@@ -363,8 +327,7 @@ void RelocInfo::Visit(Heap* heap) { |
StaticVisitor::VisitCell(heap, this); |
} else if (mode == RelocInfo::EXTERNAL_REFERENCE) { |
StaticVisitor::VisitExternalReference(this); |
- } else if (mode == RelocInfo::INTERNAL_REFERENCE || |
- mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) { |
+ } else if (mode == RelocInfo::INTERNAL_REFERENCE) { |
StaticVisitor::VisitInternalReference(this); |
} else if (RelocInfo::IsCodeAgeSequence(mode)) { |
StaticVisitor::VisitCodeAgeSequence(heap, this); |
@@ -376,6 +339,7 @@ void RelocInfo::Visit(Heap* heap) { |
} |
} |
+// Operand constructors |
Operand::Operand(intptr_t immediate, RelocInfo::Mode rmode) { |
rm_ = no_reg; |
imm_ = immediate; |
@@ -396,7 +360,7 @@ Operand::Operand(Smi* value) { |
Operand::Operand(Register rm) { |
rm_ = rm; |
- rmode_ = kRelocInfo_NONEPTR; // PPC -why doesn't ARM do this? |
+ rmode_ = kRelocInfo_NONEPTR; // S390 -why doesn't ARM do this? |
} |
void Assembler::CheckBuffer() { |
@@ -405,202 +369,117 @@ void Assembler::CheckBuffer() { |
} |
} |
-void Assembler::TrackBranch() { |
- DCHECK(!trampoline_emitted_); |
- int count = tracked_branch_count_++; |
- if (count == 0) { |
- // We leave space (kMaxBlockTrampolineSectionSize) |
- // for BlockTrampolinePoolScope buffer. |
- next_trampoline_check_ = |
- pc_offset() + kMaxCondBranchReach - kMaxBlockTrampolineSectionSize; |
+int32_t Assembler::emit_code_target(Handle<Code> target, RelocInfo::Mode rmode, |
+ TypeFeedbackId ast_id) { |
+ DCHECK(RelocInfo::IsCodeTarget(rmode)); |
+ if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) { |
+ SetRecordedAstId(ast_id); |
+ RecordRelocInfo(RelocInfo::CODE_TARGET_WITH_ID); |
} else { |
- next_trampoline_check_ -= kTrampolineSlotsSize; |
+ RecordRelocInfo(rmode); |
} |
-} |
-void Assembler::UntrackBranch() { |
- DCHECK(!trampoline_emitted_); |
- DCHECK(tracked_branch_count_ > 0); |
- int count = --tracked_branch_count_; |
- if (count == 0) { |
- // Reset |
- next_trampoline_check_ = kMaxInt; |
+ int current = code_targets_.length(); |
+ if (current > 0 && code_targets_.last().is_identical_to(target)) { |
+ // Optimization if we keep jumping to the same code target. |
+ current--; |
} else { |
- next_trampoline_check_ += kTrampolineSlotsSize; |
- } |
-} |
- |
-void Assembler::CheckTrampolinePoolQuick() { |
- if (pc_offset() >= next_trampoline_check_) { |
- CheckTrampolinePool(); |
+ code_targets_.Add(target); |
} |
+ return current; |
} |
-void Assembler::emit(Instr x) { |
+// Helper to emit the binary encoding of a 2 byte instruction |
+void Assembler::emit2bytes(uint16_t x) { |
CheckBuffer(); |
- *reinterpret_cast<Instr*>(pc_) = x; |
- pc_ += kInstrSize; |
- CheckTrampolinePoolQuick(); |
+#if V8_TARGET_LITTLE_ENDIAN |
+ // We need to emit instructions in big endian format as disassembler / |
+ // simulator require the first byte of the instruction in order to decode |
+ // the instruction length. Swap the bytes. |
+ x = ((x & 0x00FF) << 8) | ((x & 0xFF00) >> 8); |
+#endif |
+ *reinterpret_cast<uint16_t*>(pc_) = x; |
+ pc_ += 2; |
} |
-bool Operand::is_reg() const { return rm_.is_valid(); } |
- |
- |
-// Fetch the 32bit value from the FIXED_SEQUENCE lis/ori |
-Address Assembler::target_address_at(Address pc, Address constant_pool) { |
- if (FLAG_enable_embedded_constant_pool && constant_pool) { |
- ConstantPoolEntry::Access access; |
- if (IsConstantPoolLoadStart(pc, &access)) |
- return Memory::Address_at(target_constant_pool_address_at( |
- pc, constant_pool, access, ConstantPoolEntry::INTPTR)); |
- } |
- |
- Instr instr1 = instr_at(pc); |
- Instr instr2 = instr_at(pc + kInstrSize); |
- // Interpret 2 instructions generated by lis/ori |
- if (IsLis(instr1) && IsOri(instr2)) { |
-#if V8_TARGET_ARCH_PPC64 |
- Instr instr4 = instr_at(pc + (3 * kInstrSize)); |
- Instr instr5 = instr_at(pc + (4 * kInstrSize)); |
- // Assemble the 64 bit value. |
- uint64_t hi = (static_cast<uint32_t>((instr1 & kImm16Mask) << 16) | |
- static_cast<uint32_t>(instr2 & kImm16Mask)); |
- uint64_t lo = (static_cast<uint32_t>((instr4 & kImm16Mask) << 16) | |
- static_cast<uint32_t>(instr5 & kImm16Mask)); |
- return reinterpret_cast<Address>((hi << 32) | lo); |
-#else |
- // Assemble the 32 bit value. |
- return reinterpret_cast<Address>(((instr1 & kImm16Mask) << 16) | |
- (instr2 & kImm16Mask)); |
+// Helper to emit the binary encoding of a 4 byte instruction |
+void Assembler::emit4bytes(uint32_t x) { |
+ CheckBuffer(); |
+#if V8_TARGET_LITTLE_ENDIAN |
+ // We need to emit instructions in big endian format as disassembler / |
+ // simulator require the first byte of the instruction in order to decode |
+ // the instruction length. Swap the bytes. |
+ x = ((x & 0x000000FF) << 24) | ((x & 0x0000FF00) << 8) | |
+ ((x & 0x00FF0000) >> 8) | ((x & 0xFF000000) >> 24); |
#endif |
- } |
- |
- UNREACHABLE(); |
- return NULL; |
+ *reinterpret_cast<uint32_t*>(pc_) = x; |
+ pc_ += 4; |
} |
- |
-#if V8_TARGET_ARCH_PPC64 |
-const int kLoadIntptrOpcode = LD; |
+// Helper to emit the binary encoding of a 6 byte instruction |
+void Assembler::emit6bytes(uint64_t x) { |
+ CheckBuffer(); |
+#if V8_TARGET_LITTLE_ENDIAN |
+ // We need to emit instructions in big endian format as disassembler / |
+ // simulator require the first byte of the instruction in order to decode |
+ // the instruction length. Swap the bytes. |
+ x = (static_cast<uint64_t>(x & 0xFF) << 40) | |
+ (static_cast<uint64_t>((x >> 8) & 0xFF) << 32) | |
+ (static_cast<uint64_t>((x >> 16) & 0xFF) << 24) | |
+ (static_cast<uint64_t>((x >> 24) & 0xFF) << 16) | |
+ (static_cast<uint64_t>((x >> 32) & 0xFF) << 8) | |
+ (static_cast<uint64_t>((x >> 40) & 0xFF)); |
+ x |= (*reinterpret_cast<uint64_t*>(pc_) >> 48) << 48; |
#else |
-const int kLoadIntptrOpcode = LWZ; |
-#endif |
- |
-// Constant pool load sequence detection: |
-// 1) REGULAR access: |
-// load <dst>, kConstantPoolRegister + <offset> |
-// |
-// 2) OVERFLOWED access: |
-// addis <scratch>, kConstantPoolRegister, <offset_high> |
-// load <dst>, <scratch> + <offset_low> |
-bool Assembler::IsConstantPoolLoadStart(Address pc, |
- ConstantPoolEntry::Access* access) { |
- Instr instr = instr_at(pc); |
- int opcode = instr & kOpcodeMask; |
- if (!GetRA(instr).is(kConstantPoolRegister)) return false; |
- bool overflowed = (opcode == ADDIS); |
-#ifdef DEBUG |
- if (overflowed) { |
- opcode = instr_at(pc + kInstrSize) & kOpcodeMask; |
- } |
- DCHECK(opcode == kLoadIntptrOpcode || opcode == LFD); |
+ // We need to pad two bytes of zeros in order to get the 6-bytes |
+ // stored from low address. |
+ x = x << 16; |
+ x |= *reinterpret_cast<uint64_t*>(pc_) & 0xFFFF; |
#endif |
- if (access) { |
- *access = (overflowed ? ConstantPoolEntry::OVERFLOWED |
- : ConstantPoolEntry::REGULAR); |
- } |
- return true; |
+ // It is safe to store 8-bytes, as CheckBuffer() guarantees we have kGap |
+ // space left over. |
+ *reinterpret_cast<uint64_t*>(pc_) = x; |
+ pc_ += 6; |
} |
+bool Operand::is_reg() const { return rm_.is_valid(); } |
-bool Assembler::IsConstantPoolLoadEnd(Address pc, |
- ConstantPoolEntry::Access* access) { |
- Instr instr = instr_at(pc); |
- int opcode = instr & kOpcodeMask; |
- bool overflowed = false; |
- if (!(opcode == kLoadIntptrOpcode || opcode == LFD)) return false; |
- if (!GetRA(instr).is(kConstantPoolRegister)) { |
- instr = instr_at(pc - kInstrSize); |
- opcode = instr & kOpcodeMask; |
- if ((opcode != ADDIS) || !GetRA(instr).is(kConstantPoolRegister)) { |
- return false; |
- } |
- overflowed = true; |
- } |
- if (access) { |
- *access = (overflowed ? ConstantPoolEntry::OVERFLOWED |
- : ConstantPoolEntry::REGULAR); |
+// Fetch the 32bit value from the FIXED_SEQUENCE IIHF / IILF |
+Address Assembler::target_address_at(Address pc, Address constant_pool) { |
+ // S390 Instruction! |
+ // We want to check for instructions generated by Asm::mov() |
+ Opcode op1 = Instruction::S390OpcodeValue(reinterpret_cast<const byte*>(pc)); |
+ SixByteInstr instr_1 = |
+ Instruction::InstructionBits(reinterpret_cast<const byte*>(pc)); |
+ |
+ if (BRASL == op1 || BRCL == op1) { |
+ int32_t dis = static_cast<int32_t>(instr_1 & 0xFFFFFFFF) * 2; |
+ return reinterpret_cast<Address>(reinterpret_cast<uint64_t>(pc) + dis); |
} |
- return true; |
-} |
- |
-int Assembler::GetConstantPoolOffset(Address pc, |
- ConstantPoolEntry::Access access, |
- ConstantPoolEntry::Type type) { |
- bool overflowed = (access == ConstantPoolEntry::OVERFLOWED); |
-#ifdef DEBUG |
- ConstantPoolEntry::Access access_check = |
- static_cast<ConstantPoolEntry::Access>(-1); |
- DCHECK(IsConstantPoolLoadStart(pc, &access_check)); |
- DCHECK(access_check == access); |
-#endif |
- int offset; |
- if (overflowed) { |
- offset = (instr_at(pc) & kImm16Mask) << 16; |
- offset += SIGN_EXT_IMM16(instr_at(pc + kInstrSize) & kImm16Mask); |
- DCHECK(!is_int16(offset)); |
- } else { |
- offset = SIGN_EXT_IMM16((instr_at(pc) & kImm16Mask)); |
+#if V8_TARGET_ARCH_S390X |
+ int instr1_length = |
+ Instruction::InstructionLength(reinterpret_cast<const byte*>(pc)); |
+ Opcode op2 = Instruction::S390OpcodeValue( |
+ reinterpret_cast<const byte*>(pc + instr1_length)); |
+ SixByteInstr instr_2 = Instruction::InstructionBits( |
+ reinterpret_cast<const byte*>(pc + instr1_length)); |
+ // IIHF for hi_32, IILF for lo_32 |
+ if (IIHF == op1 && IILF == op2) { |
+ return reinterpret_cast<Address>(((instr_1 & 0xFFFFFFFF) << 32) | |
+ ((instr_2 & 0xFFFFFFFF))); |
} |
- return offset; |
-} |
- |
- |
-void Assembler::PatchConstantPoolAccessInstruction( |
- int pc_offset, int offset, ConstantPoolEntry::Access access, |
- ConstantPoolEntry::Type type) { |
- Address pc = buffer_ + pc_offset; |
- bool overflowed = (access == ConstantPoolEntry::OVERFLOWED); |
- CHECK(overflowed != is_int16(offset)); |
-#ifdef DEBUG |
- ConstantPoolEntry::Access access_check = |
- static_cast<ConstantPoolEntry::Access>(-1); |
- DCHECK(IsConstantPoolLoadStart(pc, &access_check)); |
- DCHECK(access_check == access); |
-#endif |
- if (overflowed) { |
- int hi_word = static_cast<int>(offset >> 16); |
- int lo_word = static_cast<int>(offset & 0xffff); |
- if (lo_word & 0x8000) hi_word++; |
- |
- Instr instr1 = instr_at(pc); |
- Instr instr2 = instr_at(pc + kInstrSize); |
- instr1 &= ~kImm16Mask; |
- instr1 |= (hi_word & kImm16Mask); |
- instr2 &= ~kImm16Mask; |
- instr2 |= (lo_word & kImm16Mask); |
- instr_at_put(pc, instr1); |
- instr_at_put(pc + kInstrSize, instr2); |
- } else { |
- Instr instr = instr_at(pc); |
- instr &= ~kImm16Mask; |
- instr |= (offset & kImm16Mask); |
- instr_at_put(pc, instr); |
+#else |
+ // IILF loads 32-bits |
+ if (IILF == op1 || CFI == op1) { |
+ return reinterpret_cast<Address>((instr_1 & 0xFFFFFFFF)); |
} |
-} |
- |
+#endif |
-Address Assembler::target_constant_pool_address_at( |
- Address pc, Address constant_pool, ConstantPoolEntry::Access access, |
- ConstantPoolEntry::Type type) { |
- Address addr = constant_pool; |
- DCHECK(addr); |
- addr += GetConstantPoolOffset(pc, access, type); |
- return addr; |
+ UNIMPLEMENTED(); |
+ return (Address)0; |
} |
- |
// This sets the branch destination (which gets loaded at the call address). |
// This is for calls and branches within generated code. The serializer |
// has already deserialized the mov instructions etc. |
@@ -610,7 +489,6 @@ void Assembler::deserialization_set_special_target_at( |
set_target_address_at(isolate, instruction_payload, code, target); |
} |
- |
void Assembler::deserialization_set_target_internal_reference_at( |
Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) { |
if (RelocInfo::IsInternalReferenceEncoded(mode)) { |
@@ -621,75 +499,77 @@ void Assembler::deserialization_set_target_internal_reference_at( |
} |
} |
- |
-// This code assumes the FIXED_SEQUENCE of lis/ori |
+// This code assumes the FIXED_SEQUENCE of IIHF/IILF |
void Assembler::set_target_address_at(Isolate* isolate, Address pc, |
Address constant_pool, Address target, |
ICacheFlushMode icache_flush_mode) { |
- if (FLAG_enable_embedded_constant_pool && constant_pool) { |
- ConstantPoolEntry::Access access; |
- if (IsConstantPoolLoadStart(pc, &access)) { |
- Memory::Address_at(target_constant_pool_address_at( |
- pc, constant_pool, access, ConstantPoolEntry::INTPTR)) = target; |
- return; |
- } |
- } |
- |
- Instr instr1 = instr_at(pc); |
- Instr instr2 = instr_at(pc + kInstrSize); |
- // Interpret 2 instructions generated by lis/ori |
- if (IsLis(instr1) && IsOri(instr2)) { |
-#if V8_TARGET_ARCH_PPC64 |
- Instr instr4 = instr_at(pc + (3 * kInstrSize)); |
- Instr instr5 = instr_at(pc + (4 * kInstrSize)); |
- // Needs to be fixed up when mov changes to handle 64-bit values. |
- uint32_t* p = reinterpret_cast<uint32_t*>(pc); |
- uintptr_t itarget = reinterpret_cast<uintptr_t>(target); |
- |
- instr5 &= ~kImm16Mask; |
- instr5 |= itarget & kImm16Mask; |
- itarget = itarget >> 16; |
- |
- instr4 &= ~kImm16Mask; |
- instr4 |= itarget & kImm16Mask; |
- itarget = itarget >> 16; |
- |
- instr2 &= ~kImm16Mask; |
- instr2 |= itarget & kImm16Mask; |
- itarget = itarget >> 16; |
- |
- instr1 &= ~kImm16Mask; |
- instr1 |= itarget & kImm16Mask; |
- itarget = itarget >> 16; |
- |
- *p = instr1; |
- *(p + 1) = instr2; |
- *(p + 3) = instr4; |
- *(p + 4) = instr5; |
+ // Check for instructions generated by Asm::mov() |
+ Opcode op1 = Instruction::S390OpcodeValue(reinterpret_cast<const byte*>(pc)); |
+ SixByteInstr instr_1 = |
+ Instruction::InstructionBits(reinterpret_cast<const byte*>(pc)); |
+ bool patched = false; |
+ |
+ if (BRASL == op1 || BRCL == op1) { |
+ instr_1 >>= 32; // Zero out the lower 32-bits |
+ instr_1 <<= 32; |
+ int32_t halfwords = (target - pc) / 2; // number of halfwords |
+ instr_1 |= static_cast<uint32_t>(halfwords); |
+ Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc), |
+ instr_1); |
if (icache_flush_mode != SKIP_ICACHE_FLUSH) { |
- Assembler::FlushICache(isolate, p, 5 * kInstrSize); |
+ Assembler::FlushICache(isolate, pc, 6); |
+ } |
+ patched = true; |
+ } else { |
+#if V8_TARGET_ARCH_S390X |
+ int instr1_length = |
+ Instruction::InstructionLength(reinterpret_cast<const byte*>(pc)); |
+ Opcode op2 = Instruction::S390OpcodeValue( |
+ reinterpret_cast<const byte*>(pc + instr1_length)); |
+ SixByteInstr instr_2 = Instruction::InstructionBits( |
+ reinterpret_cast<const byte*>(pc + instr1_length)); |
+ // IIHF for hi_32, IILF for lo_32 |
+ if (IIHF == op1 && IILF == op2) { |
+ // IIHF |
+ instr_1 >>= 32; // Zero out the lower 32-bits |
+ instr_1 <<= 32; |
+ instr_1 |= reinterpret_cast<uint64_t>(target) >> 32; |
+ |
+ Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc), |
+ instr_1); |
+ |
+ // IILF |
+ instr_2 >>= 32; |
+ instr_2 <<= 32; |
+ instr_2 |= reinterpret_cast<uint64_t>(target) & 0xFFFFFFFF; |
+ |
+ Instruction::SetInstructionBits<SixByteInstr>( |
+ reinterpret_cast<byte*>(pc + instr1_length), instr_2); |
+ if (icache_flush_mode != SKIP_ICACHE_FLUSH) { |
+ Assembler::FlushICache(isolate, pc, 12); |
+ } |
+ patched = true; |
} |
#else |
- uint32_t* p = reinterpret_cast<uint32_t*>(pc); |
- uint32_t itarget = reinterpret_cast<uint32_t>(target); |
- int lo_word = itarget & kImm16Mask; |
- int hi_word = itarget >> 16; |
- instr1 &= ~kImm16Mask; |
- instr1 |= hi_word; |
- instr2 &= ~kImm16Mask; |
- instr2 |= lo_word; |
- |
- *p = instr1; |
- *(p + 1) = instr2; |
- if (icache_flush_mode != SKIP_ICACHE_FLUSH) { |
- Assembler::FlushICache(isolate, p, 2 * kInstrSize); |
+ // IILF loads 32-bits |
+ if (IILF == op1 || CFI == op1) { |
+ instr_1 >>= 32; // Zero out the lower 32-bits |
+ instr_1 <<= 32; |
+ instr_1 |= reinterpret_cast<uint32_t>(target); |
+ |
+ Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc), |
+ instr_1); |
+ if (icache_flush_mode != SKIP_ICACHE_FLUSH) { |
+ Assembler::FlushICache(isolate, pc, 6); |
+ } |
+ patched = true; |
} |
#endif |
- return; |
} |
- UNREACHABLE(); |
+ if (!patched) UNREACHABLE(); |
} |
+ |
} // namespace internal |
} // namespace v8 |
-#endif // V8_PPC_ASSEMBLER_PPC_INL_H_ |
+#endif // V8_S390_ASSEMBLER_S390_INL_H_ |