| Index: src/s390/assembler-s390-inl.h
|
| diff --git a/src/ppc/assembler-ppc-inl.h b/src/s390/assembler-s390-inl.h
|
| similarity index 54%
|
| copy from src/ppc/assembler-ppc-inl.h
|
| copy to src/s390/assembler-s390-inl.h
|
| index 42e220809f5771b0f8a8ca9c68de83e46db386c0..14413d60a156c1873fe8d2504ee292c35d00ede8 100644
|
| --- a/src/ppc/assembler-ppc-inl.h
|
| +++ b/src/s390/assembler-s390-inl.h
|
| @@ -34,28 +34,35 @@
|
| // significantly by Google Inc.
|
| // Copyright 2014 the V8 project authors. All rights reserved.
|
|
|
| -#ifndef V8_PPC_ASSEMBLER_PPC_INL_H_
|
| -#define V8_PPC_ASSEMBLER_PPC_INL_H_
|
| +#ifndef V8_S390_ASSEMBLER_S390_INL_H_
|
| +#define V8_S390_ASSEMBLER_S390_INL_H_
|
|
|
| -#include "src/ppc/assembler-ppc.h"
|
| +#include "src/s390/assembler-s390.h"
|
|
|
| #include "src/assembler.h"
|
| #include "src/debug/debug.h"
|
|
|
| -
|
| namespace v8 {
|
| namespace internal {
|
|
|
| -
|
| bool CpuFeatures::SupportsCrankshaft() { return true; }
|
|
|
| -
|
| void RelocInfo::apply(intptr_t delta) {
|
| - // absolute code pointer inside code object moves with the code object.
|
| + // Absolute code pointer inside code object moves with the code object.
|
| if (IsInternalReference(rmode_)) {
|
| // Jump table entry
|
| Address target = Memory::Address_at(pc_);
|
| Memory::Address_at(pc_) = target + delta;
|
| + } else if (IsCodeTarget(rmode_)) {
|
| + SixByteInstr instr =
|
| + Instruction::InstructionBits(reinterpret_cast<const byte*>(pc_));
|
| + int32_t dis = static_cast<int32_t>(instr & 0xFFFFFFFF) * 2 // halfwords
|
| + - static_cast<int32_t>(delta);
|
| + instr >>= 32; // Clear the 4-byte displacement field.
|
| + instr <<= 32;
|
| + instr |= static_cast<uint32_t>(dis / 2);
|
| + Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc_),
|
| + instr);
|
| } else {
|
| // mov sequence
|
| DCHECK(IsInternalReferenceEncoded(rmode_));
|
| @@ -65,7 +72,6 @@ void RelocInfo::apply(intptr_t delta) {
|
| }
|
| }
|
|
|
| -
|
| Address RelocInfo::target_internal_reference() {
|
| if (IsInternalReference(rmode_)) {
|
| // Jump table entry
|
| @@ -77,31 +83,20 @@ Address RelocInfo::target_internal_reference() {
|
| }
|
| }
|
|
|
| -
|
| Address RelocInfo::target_internal_reference_address() {
|
| DCHECK(IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
|
| return reinterpret_cast<Address>(pc_);
|
| }
|
|
|
| -
|
| Address RelocInfo::target_address() {
|
| DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
|
| return Assembler::target_address_at(pc_, host_);
|
| }
|
|
|
| -
|
| Address RelocInfo::target_address_address() {
|
| DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) ||
|
| rmode_ == EMBEDDED_OBJECT || rmode_ == EXTERNAL_REFERENCE);
|
|
|
| - if (FLAG_enable_embedded_constant_pool &&
|
| - Assembler::IsConstantPoolLoadStart(pc_)) {
|
| - // We return the PC for embedded constant pool since this function is used
|
| - // by the serializer and expects the address to reside within the code
|
| - // object.
|
| - return reinterpret_cast<Address>(pc_);
|
| - }
|
| -
|
| // Read the address of the word containing the target_address in an
|
| // instruction stream.
|
| // The only architecture-independent user of this function is the serializer.
|
| @@ -114,24 +109,13 @@ Address RelocInfo::target_address_address() {
|
| return reinterpret_cast<Address>(pc_);
|
| }
|
|
|
| -
|
| Address RelocInfo::constant_pool_entry_address() {
|
| - if (FLAG_enable_embedded_constant_pool) {
|
| - Address constant_pool = host_->constant_pool();
|
| - DCHECK(constant_pool);
|
| - ConstantPoolEntry::Access access;
|
| - if (Assembler::IsConstantPoolLoadStart(pc_, &access))
|
| - return Assembler::target_constant_pool_address_at(
|
| - pc_, constant_pool, access, ConstantPoolEntry::INTPTR);
|
| - }
|
| UNREACHABLE();
|
| return NULL;
|
| }
|
|
|
| -
|
| int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; }
|
|
|
| -
|
| void RelocInfo::set_target_address(Address target,
|
| WriteBarrierMode write_barrier_mode,
|
| ICacheFlushMode icache_flush_mode) {
|
| @@ -146,53 +130,42 @@ void RelocInfo::set_target_address(Address target,
|
| }
|
| }
|
|
|
| -
|
| Address Assembler::target_address_from_return_address(Address pc) {
|
| -// Returns the address of the call target from the return address that will
|
| -// be returned to after a call.
|
| -// Call sequence is :
|
| -// mov ip, @ call address
|
| -// mtlr ip
|
| -// blrl
|
| -// @ return address
|
| - int len;
|
| - ConstantPoolEntry::Access access;
|
| - if (FLAG_enable_embedded_constant_pool &&
|
| - IsConstantPoolLoadEnd(pc - 3 * kInstrSize, &access)) {
|
| - len = (access == ConstantPoolEntry::OVERFLOWED) ? 2 : 1;
|
| - } else {
|
| - len = kMovInstructionsNoConstantPool;
|
| - }
|
| - return pc - (len + 2) * kInstrSize;
|
| + // Returns the address of the call target from the return address that will
|
| + // be returned to after a call.
|
| + // Sequence is:
|
| + // BRASL r14, RI
|
| + return pc - kCallTargetAddressOffset;
|
| }
|
|
|
| -
|
| Address Assembler::return_address_from_call_start(Address pc) {
|
| - int len;
|
| - ConstantPoolEntry::Access access;
|
| - if (FLAG_enable_embedded_constant_pool &&
|
| - IsConstantPoolLoadStart(pc, &access)) {
|
| - len = (access == ConstantPoolEntry::OVERFLOWED) ? 2 : 1;
|
| - } else {
|
| - len = kMovInstructionsNoConstantPool;
|
| - }
|
| - return pc + (len + 2) * kInstrSize;
|
| + // Sequence is:
|
| + // BRASL r14, RI
|
| + return pc + kCallTargetAddressOffset;
|
| }
|
|
|
| +Handle<Object> Assembler::code_target_object_handle_at(Address pc) {
|
| + SixByteInstr instr =
|
| + Instruction::InstructionBits(reinterpret_cast<const byte*>(pc));
|
| + int index = instr & 0xFFFFFFFF;
|
| + return code_targets_[index];
|
| +}
|
|
|
| Object* RelocInfo::target_object() {
|
| DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
|
| return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
|
| }
|
|
|
| -
|
| Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
|
| DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
|
| - return Handle<Object>(
|
| - reinterpret_cast<Object**>(Assembler::target_address_at(pc_, host_)));
|
| + if (rmode_ == EMBEDDED_OBJECT) {
|
| + return Handle<Object>(
|
| + reinterpret_cast<Object**>(Assembler::target_address_at(pc_, host_)));
|
| + } else {
|
| + return origin->code_target_object_handle_at(pc_);
|
| + }
|
| }
|
|
|
| -
|
| void RelocInfo::set_target_object(Object* target,
|
| WriteBarrierMode write_barrier_mode,
|
| ICacheFlushMode icache_flush_mode) {
|
| @@ -207,19 +180,16 @@ void RelocInfo::set_target_object(Object* target,
|
| }
|
| }
|
|
|
| -
|
| Address RelocInfo::target_external_reference() {
|
| DCHECK(rmode_ == EXTERNAL_REFERENCE);
|
| return Assembler::target_address_at(pc_, host_);
|
| }
|
|
|
| -
|
| Address RelocInfo::target_runtime_entry(Assembler* origin) {
|
| DCHECK(IsRuntimeEntry(rmode_));
|
| return target_address();
|
| }
|
|
|
| -
|
| void RelocInfo::set_target_runtime_entry(Address target,
|
| WriteBarrierMode write_barrier_mode,
|
| ICacheFlushMode icache_flush_mode) {
|
| @@ -228,20 +198,17 @@ void RelocInfo::set_target_runtime_entry(Address target,
|
| set_target_address(target, write_barrier_mode, icache_flush_mode);
|
| }
|
|
|
| -
|
| Handle<Cell> RelocInfo::target_cell_handle() {
|
| DCHECK(rmode_ == RelocInfo::CELL);
|
| Address address = Memory::Address_at(pc_);
|
| return Handle<Cell>(reinterpret_cast<Cell**>(address));
|
| }
|
|
|
| -
|
| Cell* RelocInfo::target_cell() {
|
| DCHECK(rmode_ == RelocInfo::CELL);
|
| return Cell::FromValueAddress(Memory::Address_at(pc_));
|
| }
|
|
|
| -
|
| void RelocInfo::set_target_cell(Cell* cell, WriteBarrierMode write_barrier_mode,
|
| ICacheFlushMode icache_flush_mode) {
|
| DCHECK(rmode_ == RelocInfo::CELL);
|
| @@ -253,37 +220,40 @@ void RelocInfo::set_target_cell(Cell* cell, WriteBarrierMode write_barrier_mode,
|
| }
|
| }
|
|
|
| -
|
| -static const int kNoCodeAgeInstructions =
|
| - FLAG_enable_embedded_constant_pool ? 7 : 6;
|
| -static const int kCodeAgingInstructions =
|
| - Assembler::kMovInstructionsNoConstantPool + 3;
|
| -static const int kNoCodeAgeSequenceInstructions =
|
| - ((kNoCodeAgeInstructions >= kCodeAgingInstructions)
|
| - ? kNoCodeAgeInstructions
|
| - : kCodeAgingInstructions);
|
| -static const int kNoCodeAgeSequenceNops =
|
| - (kNoCodeAgeSequenceInstructions - kNoCodeAgeInstructions);
|
| -static const int kCodeAgingSequenceNops =
|
| - (kNoCodeAgeSequenceInstructions - kCodeAgingInstructions);
|
| -static const int kCodeAgingTargetDelta = 1 * Assembler::kInstrSize;
|
| -static const int kNoCodeAgeSequenceLength =
|
| - (kNoCodeAgeSequenceInstructions * Assembler::kInstrSize);
|
| -
|
| +#if V8_TARGET_ARCH_S390X
|
| +// NOP(2byte) + PUSH + MOV + BASR =
|
| +// NOP + LAY + STG + IIHF + IILF + BASR
|
| +static const int kCodeAgingSequenceLength = 28;
|
| +static const int kCodeAgingTargetDelta = 14; // Jump past NOP + PUSH to IIHF
|
| + // LAY + 4 * STG + LA
|
| +static const int kNoCodeAgeSequenceLength = 34;
|
| +#else
|
| +#if (V8_HOST_ARCH_S390)
|
| +// NOP + NILH + LAY + ST + IILF + BASR
|
| +static const int kCodeAgingSequenceLength = 24;
|
| +static const int kCodeAgingTargetDelta = 16; // Jump past NOP to IILF
|
| +// NILH + LAY + 4 * ST + LA
|
| +static const int kNoCodeAgeSequenceLength = 30;
|
| +#else
|
| +// NOP + LAY + ST + IILF + BASR
|
| +static const int kCodeAgingSequenceLength = 20;
|
| +static const int kCodeAgingTargetDelta = 12; // Jump past NOP to IILF
|
| +// LAY + 4 * ST + LA
|
| +static const int kNoCodeAgeSequenceLength = 26;
|
| +#endif
|
| +#endif
|
|
|
| Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
|
| - UNREACHABLE(); // This should never be reached on PPC.
|
| + UNREACHABLE(); // This should never be reached on S390.
|
| return Handle<Object>();
|
| }
|
|
|
| -
|
| Code* RelocInfo::code_age_stub() {
|
| DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
|
| return Code::GetCodeFromTargetAddress(
|
| Assembler::target_address_at(pc_ + kCodeAgingTargetDelta, host_));
|
| }
|
|
|
| -
|
| void RelocInfo::set_code_age_stub(Code* stub,
|
| ICacheFlushMode icache_flush_mode) {
|
| DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
|
| @@ -292,13 +262,11 @@ void RelocInfo::set_code_age_stub(Code* stub,
|
| icache_flush_mode);
|
| }
|
|
|
| -
|
| Address RelocInfo::debug_call_address() {
|
| DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
|
| return Assembler::target_address_at(pc_, host_);
|
| }
|
|
|
| -
|
| void RelocInfo::set_debug_call_address(Address target) {
|
| DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
|
| Assembler::set_target_address_at(isolate_, pc_, host_, target);
|
| @@ -309,7 +277,6 @@ void RelocInfo::set_debug_call_address(Address target) {
|
| }
|
| }
|
|
|
| -
|
| void RelocInfo::WipeOut() {
|
| DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
|
| IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
|
| @@ -327,7 +294,6 @@ void RelocInfo::WipeOut() {
|
| }
|
| }
|
|
|
| -
|
| void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
|
| RelocInfo::Mode mode = rmode();
|
| if (mode == RelocInfo::EMBEDDED_OBJECT) {
|
| @@ -338,8 +304,7 @@ void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
|
| visitor->VisitCell(this);
|
| } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
|
| visitor->VisitExternalReference(this);
|
| - } else if (mode == RelocInfo::INTERNAL_REFERENCE ||
|
| - mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
|
| + } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
|
| visitor->VisitInternalReference(this);
|
| } else if (RelocInfo::IsCodeAgeSequence(mode)) {
|
| visitor->VisitCodeAgeSequence(this);
|
| @@ -351,7 +316,6 @@ void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
|
| }
|
| }
|
|
|
| -
|
| template <typename StaticVisitor>
|
| void RelocInfo::Visit(Heap* heap) {
|
| RelocInfo::Mode mode = rmode();
|
| @@ -363,8 +327,7 @@ void RelocInfo::Visit(Heap* heap) {
|
| StaticVisitor::VisitCell(heap, this);
|
| } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
|
| StaticVisitor::VisitExternalReference(this);
|
| - } else if (mode == RelocInfo::INTERNAL_REFERENCE ||
|
| - mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
|
| + } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
|
| StaticVisitor::VisitInternalReference(this);
|
| } else if (RelocInfo::IsCodeAgeSequence(mode)) {
|
| StaticVisitor::VisitCodeAgeSequence(heap, this);
|
| @@ -376,6 +339,7 @@ void RelocInfo::Visit(Heap* heap) {
|
| }
|
| }
|
|
|
| +// Operand constructors
|
| Operand::Operand(intptr_t immediate, RelocInfo::Mode rmode) {
|
| rm_ = no_reg;
|
| imm_ = immediate;
|
| @@ -396,7 +360,7 @@ Operand::Operand(Smi* value) {
|
|
|
| Operand::Operand(Register rm) {
|
| rm_ = rm;
|
| - rmode_ = kRelocInfo_NONEPTR; // PPC -why doesn't ARM do this?
|
| + rmode_ = kRelocInfo_NONEPTR; // S390 -why doesn't ARM do this?
|
| }
|
|
|
| void Assembler::CheckBuffer() {
|
| @@ -405,202 +369,117 @@ void Assembler::CheckBuffer() {
|
| }
|
| }
|
|
|
| -void Assembler::TrackBranch() {
|
| - DCHECK(!trampoline_emitted_);
|
| - int count = tracked_branch_count_++;
|
| - if (count == 0) {
|
| - // We leave space (kMaxBlockTrampolineSectionSize)
|
| - // for BlockTrampolinePoolScope buffer.
|
| - next_trampoline_check_ =
|
| - pc_offset() + kMaxCondBranchReach - kMaxBlockTrampolineSectionSize;
|
| +int32_t Assembler::emit_code_target(Handle<Code> target, RelocInfo::Mode rmode,
|
| + TypeFeedbackId ast_id) {
|
| + DCHECK(RelocInfo::IsCodeTarget(rmode));
|
| + if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) {
|
| + SetRecordedAstId(ast_id);
|
| + RecordRelocInfo(RelocInfo::CODE_TARGET_WITH_ID);
|
| } else {
|
| - next_trampoline_check_ -= kTrampolineSlotsSize;
|
| + RecordRelocInfo(rmode);
|
| }
|
| -}
|
|
|
| -void Assembler::UntrackBranch() {
|
| - DCHECK(!trampoline_emitted_);
|
| - DCHECK(tracked_branch_count_ > 0);
|
| - int count = --tracked_branch_count_;
|
| - if (count == 0) {
|
| - // Reset
|
| - next_trampoline_check_ = kMaxInt;
|
| + int current = code_targets_.length();
|
| + if (current > 0 && code_targets_.last().is_identical_to(target)) {
|
| + // Optimization if we keep jumping to the same code target.
|
| + current--;
|
| } else {
|
| - next_trampoline_check_ += kTrampolineSlotsSize;
|
| - }
|
| -}
|
| -
|
| -void Assembler::CheckTrampolinePoolQuick() {
|
| - if (pc_offset() >= next_trampoline_check_) {
|
| - CheckTrampolinePool();
|
| + code_targets_.Add(target);
|
| }
|
| + return current;
|
| }
|
|
|
| -void Assembler::emit(Instr x) {
|
| +// Helper to emit the binary encoding of a 2 byte instruction
|
| +void Assembler::emit2bytes(uint16_t x) {
|
| CheckBuffer();
|
| - *reinterpret_cast<Instr*>(pc_) = x;
|
| - pc_ += kInstrSize;
|
| - CheckTrampolinePoolQuick();
|
| +#if V8_TARGET_LITTLE_ENDIAN
|
| + // We need to emit instructions in big endian format as disassembler /
|
| + // simulator require the first byte of the instruction in order to decode
|
| + // the instruction length. Swap the bytes.
|
| + x = ((x & 0x00FF) << 8) | ((x & 0xFF00) >> 8);
|
| +#endif
|
| + *reinterpret_cast<uint16_t*>(pc_) = x;
|
| + pc_ += 2;
|
| }
|
|
|
| -bool Operand::is_reg() const { return rm_.is_valid(); }
|
| -
|
| -
|
| -// Fetch the 32bit value from the FIXED_SEQUENCE lis/ori
|
| -Address Assembler::target_address_at(Address pc, Address constant_pool) {
|
| - if (FLAG_enable_embedded_constant_pool && constant_pool) {
|
| - ConstantPoolEntry::Access access;
|
| - if (IsConstantPoolLoadStart(pc, &access))
|
| - return Memory::Address_at(target_constant_pool_address_at(
|
| - pc, constant_pool, access, ConstantPoolEntry::INTPTR));
|
| - }
|
| -
|
| - Instr instr1 = instr_at(pc);
|
| - Instr instr2 = instr_at(pc + kInstrSize);
|
| - // Interpret 2 instructions generated by lis/ori
|
| - if (IsLis(instr1) && IsOri(instr2)) {
|
| -#if V8_TARGET_ARCH_PPC64
|
| - Instr instr4 = instr_at(pc + (3 * kInstrSize));
|
| - Instr instr5 = instr_at(pc + (4 * kInstrSize));
|
| - // Assemble the 64 bit value.
|
| - uint64_t hi = (static_cast<uint32_t>((instr1 & kImm16Mask) << 16) |
|
| - static_cast<uint32_t>(instr2 & kImm16Mask));
|
| - uint64_t lo = (static_cast<uint32_t>((instr4 & kImm16Mask) << 16) |
|
| - static_cast<uint32_t>(instr5 & kImm16Mask));
|
| - return reinterpret_cast<Address>((hi << 32) | lo);
|
| -#else
|
| - // Assemble the 32 bit value.
|
| - return reinterpret_cast<Address>(((instr1 & kImm16Mask) << 16) |
|
| - (instr2 & kImm16Mask));
|
| +// Helper to emit the binary encoding of a 4 byte instruction
|
| +void Assembler::emit4bytes(uint32_t x) {
|
| + CheckBuffer();
|
| +#if V8_TARGET_LITTLE_ENDIAN
|
| + // We need to emit instructions in big endian format as disassembler /
|
| + // simulator require the first byte of the instruction in order to decode
|
| + // the instruction length. Swap the bytes.
|
| + x = ((x & 0x000000FF) << 24) | ((x & 0x0000FF00) << 8) |
|
| + ((x & 0x00FF0000) >> 8) | ((x & 0xFF000000) >> 24);
|
| #endif
|
| - }
|
| -
|
| - UNREACHABLE();
|
| - return NULL;
|
| + *reinterpret_cast<uint32_t*>(pc_) = x;
|
| + pc_ += 4;
|
| }
|
|
|
| -
|
| -#if V8_TARGET_ARCH_PPC64
|
| -const int kLoadIntptrOpcode = LD;
|
| +// Helper to emit the binary encoding of a 6 byte instruction
|
| +void Assembler::emit6bytes(uint64_t x) {
|
| + CheckBuffer();
|
| +#if V8_TARGET_LITTLE_ENDIAN
|
| + // We need to emit instructions in big endian format as disassembler /
|
| + // simulator require the first byte of the instruction in order to decode
|
| + // the instruction length. Swap the bytes.
|
| + x = (static_cast<uint64_t>(x & 0xFF) << 40) |
|
| + (static_cast<uint64_t>((x >> 8) & 0xFF) << 32) |
|
| + (static_cast<uint64_t>((x >> 16) & 0xFF) << 24) |
|
| + (static_cast<uint64_t>((x >> 24) & 0xFF) << 16) |
|
| + (static_cast<uint64_t>((x >> 32) & 0xFF) << 8) |
|
| + (static_cast<uint64_t>((x >> 40) & 0xFF));
|
| + x |= (*reinterpret_cast<uint64_t*>(pc_) >> 48) << 48;
|
| #else
|
| -const int kLoadIntptrOpcode = LWZ;
|
| -#endif
|
| -
|
| -// Constant pool load sequence detection:
|
| -// 1) REGULAR access:
|
| -// load <dst>, kConstantPoolRegister + <offset>
|
| -//
|
| -// 2) OVERFLOWED access:
|
| -// addis <scratch>, kConstantPoolRegister, <offset_high>
|
| -// load <dst>, <scratch> + <offset_low>
|
| -bool Assembler::IsConstantPoolLoadStart(Address pc,
|
| - ConstantPoolEntry::Access* access) {
|
| - Instr instr = instr_at(pc);
|
| - int opcode = instr & kOpcodeMask;
|
| - if (!GetRA(instr).is(kConstantPoolRegister)) return false;
|
| - bool overflowed = (opcode == ADDIS);
|
| -#ifdef DEBUG
|
| - if (overflowed) {
|
| - opcode = instr_at(pc + kInstrSize) & kOpcodeMask;
|
| - }
|
| - DCHECK(opcode == kLoadIntptrOpcode || opcode == LFD);
|
| + // We need to pad two bytes of zeros in order to get the 6-bytes
|
| + // stored from low address.
|
| + x = x << 16;
|
| + x |= *reinterpret_cast<uint64_t*>(pc_) & 0xFFFF;
|
| #endif
|
| - if (access) {
|
| - *access = (overflowed ? ConstantPoolEntry::OVERFLOWED
|
| - : ConstantPoolEntry::REGULAR);
|
| - }
|
| - return true;
|
| + // It is safe to store 8-bytes, as CheckBuffer() guarantees we have kGap
|
| + // space left over.
|
| + *reinterpret_cast<uint64_t*>(pc_) = x;
|
| + pc_ += 6;
|
| }
|
|
|
| +bool Operand::is_reg() const { return rm_.is_valid(); }
|
|
|
| -bool Assembler::IsConstantPoolLoadEnd(Address pc,
|
| - ConstantPoolEntry::Access* access) {
|
| - Instr instr = instr_at(pc);
|
| - int opcode = instr & kOpcodeMask;
|
| - bool overflowed = false;
|
| - if (!(opcode == kLoadIntptrOpcode || opcode == LFD)) return false;
|
| - if (!GetRA(instr).is(kConstantPoolRegister)) {
|
| - instr = instr_at(pc - kInstrSize);
|
| - opcode = instr & kOpcodeMask;
|
| - if ((opcode != ADDIS) || !GetRA(instr).is(kConstantPoolRegister)) {
|
| - return false;
|
| - }
|
| - overflowed = true;
|
| - }
|
| - if (access) {
|
| - *access = (overflowed ? ConstantPoolEntry::OVERFLOWED
|
| - : ConstantPoolEntry::REGULAR);
|
| +// Fetch the 32bit value from the FIXED_SEQUENCE IIHF / IILF
|
| +Address Assembler::target_address_at(Address pc, Address constant_pool) {
|
| + // S390 Instruction!
|
| + // We want to check for instructions generated by Asm::mov()
|
| + Opcode op1 = Instruction::S390OpcodeValue(reinterpret_cast<const byte*>(pc));
|
| + SixByteInstr instr_1 =
|
| + Instruction::InstructionBits(reinterpret_cast<const byte*>(pc));
|
| +
|
| + if (BRASL == op1 || BRCL == op1) {
|
| + int32_t dis = static_cast<int32_t>(instr_1 & 0xFFFFFFFF) * 2;
|
| + return reinterpret_cast<Address>(reinterpret_cast<uint64_t>(pc) + dis);
|
| }
|
| - return true;
|
| -}
|
|
|
| -
|
| -int Assembler::GetConstantPoolOffset(Address pc,
|
| - ConstantPoolEntry::Access access,
|
| - ConstantPoolEntry::Type type) {
|
| - bool overflowed = (access == ConstantPoolEntry::OVERFLOWED);
|
| -#ifdef DEBUG
|
| - ConstantPoolEntry::Access access_check =
|
| - static_cast<ConstantPoolEntry::Access>(-1);
|
| - DCHECK(IsConstantPoolLoadStart(pc, &access_check));
|
| - DCHECK(access_check == access);
|
| -#endif
|
| - int offset;
|
| - if (overflowed) {
|
| - offset = (instr_at(pc) & kImm16Mask) << 16;
|
| - offset += SIGN_EXT_IMM16(instr_at(pc + kInstrSize) & kImm16Mask);
|
| - DCHECK(!is_int16(offset));
|
| - } else {
|
| - offset = SIGN_EXT_IMM16((instr_at(pc) & kImm16Mask));
|
| +#if V8_TARGET_ARCH_S390X
|
| + int instr1_length =
|
| + Instruction::InstructionLength(reinterpret_cast<const byte*>(pc));
|
| + Opcode op2 = Instruction::S390OpcodeValue(
|
| + reinterpret_cast<const byte*>(pc + instr1_length));
|
| + SixByteInstr instr_2 = Instruction::InstructionBits(
|
| + reinterpret_cast<const byte*>(pc + instr1_length));
|
| + // IIHF for hi_32, IILF for lo_32
|
| + if (IIHF == op1 && IILF == op2) {
|
| + return reinterpret_cast<Address>(((instr_1 & 0xFFFFFFFF) << 32) |
|
| + ((instr_2 & 0xFFFFFFFF)));
|
| }
|
| - return offset;
|
| -}
|
| -
|
| -
|
| -void Assembler::PatchConstantPoolAccessInstruction(
|
| - int pc_offset, int offset, ConstantPoolEntry::Access access,
|
| - ConstantPoolEntry::Type type) {
|
| - Address pc = buffer_ + pc_offset;
|
| - bool overflowed = (access == ConstantPoolEntry::OVERFLOWED);
|
| - CHECK(overflowed != is_int16(offset));
|
| -#ifdef DEBUG
|
| - ConstantPoolEntry::Access access_check =
|
| - static_cast<ConstantPoolEntry::Access>(-1);
|
| - DCHECK(IsConstantPoolLoadStart(pc, &access_check));
|
| - DCHECK(access_check == access);
|
| -#endif
|
| - if (overflowed) {
|
| - int hi_word = static_cast<int>(offset >> 16);
|
| - int lo_word = static_cast<int>(offset & 0xffff);
|
| - if (lo_word & 0x8000) hi_word++;
|
| -
|
| - Instr instr1 = instr_at(pc);
|
| - Instr instr2 = instr_at(pc + kInstrSize);
|
| - instr1 &= ~kImm16Mask;
|
| - instr1 |= (hi_word & kImm16Mask);
|
| - instr2 &= ~kImm16Mask;
|
| - instr2 |= (lo_word & kImm16Mask);
|
| - instr_at_put(pc, instr1);
|
| - instr_at_put(pc + kInstrSize, instr2);
|
| - } else {
|
| - Instr instr = instr_at(pc);
|
| - instr &= ~kImm16Mask;
|
| - instr |= (offset & kImm16Mask);
|
| - instr_at_put(pc, instr);
|
| +#else
|
| + // IILF loads 32-bits
|
| + if (IILF == op1 || CFI == op1) {
|
| + return reinterpret_cast<Address>((instr_1 & 0xFFFFFFFF));
|
| }
|
| -}
|
| -
|
| +#endif
|
|
|
| -Address Assembler::target_constant_pool_address_at(
|
| - Address pc, Address constant_pool, ConstantPoolEntry::Access access,
|
| - ConstantPoolEntry::Type type) {
|
| - Address addr = constant_pool;
|
| - DCHECK(addr);
|
| - addr += GetConstantPoolOffset(pc, access, type);
|
| - return addr;
|
| + UNIMPLEMENTED();
|
| + return (Address)0;
|
| }
|
|
|
| -
|
| // This sets the branch destination (which gets loaded at the call address).
|
| // This is for calls and branches within generated code. The serializer
|
| // has already deserialized the mov instructions etc.
|
| @@ -610,7 +489,6 @@ void Assembler::deserialization_set_special_target_at(
|
| set_target_address_at(isolate, instruction_payload, code, target);
|
| }
|
|
|
| -
|
| void Assembler::deserialization_set_target_internal_reference_at(
|
| Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
|
| if (RelocInfo::IsInternalReferenceEncoded(mode)) {
|
| @@ -621,75 +499,77 @@ void Assembler::deserialization_set_target_internal_reference_at(
|
| }
|
| }
|
|
|
| -
|
| -// This code assumes the FIXED_SEQUENCE of lis/ori
|
| +// This code assumes the FIXED_SEQUENCE of IIHF/IILF
|
| void Assembler::set_target_address_at(Isolate* isolate, Address pc,
|
| Address constant_pool, Address target,
|
| ICacheFlushMode icache_flush_mode) {
|
| - if (FLAG_enable_embedded_constant_pool && constant_pool) {
|
| - ConstantPoolEntry::Access access;
|
| - if (IsConstantPoolLoadStart(pc, &access)) {
|
| - Memory::Address_at(target_constant_pool_address_at(
|
| - pc, constant_pool, access, ConstantPoolEntry::INTPTR)) = target;
|
| - return;
|
| - }
|
| - }
|
| -
|
| - Instr instr1 = instr_at(pc);
|
| - Instr instr2 = instr_at(pc + kInstrSize);
|
| - // Interpret 2 instructions generated by lis/ori
|
| - if (IsLis(instr1) && IsOri(instr2)) {
|
| -#if V8_TARGET_ARCH_PPC64
|
| - Instr instr4 = instr_at(pc + (3 * kInstrSize));
|
| - Instr instr5 = instr_at(pc + (4 * kInstrSize));
|
| - // Needs to be fixed up when mov changes to handle 64-bit values.
|
| - uint32_t* p = reinterpret_cast<uint32_t*>(pc);
|
| - uintptr_t itarget = reinterpret_cast<uintptr_t>(target);
|
| -
|
| - instr5 &= ~kImm16Mask;
|
| - instr5 |= itarget & kImm16Mask;
|
| - itarget = itarget >> 16;
|
| -
|
| - instr4 &= ~kImm16Mask;
|
| - instr4 |= itarget & kImm16Mask;
|
| - itarget = itarget >> 16;
|
| -
|
| - instr2 &= ~kImm16Mask;
|
| - instr2 |= itarget & kImm16Mask;
|
| - itarget = itarget >> 16;
|
| -
|
| - instr1 &= ~kImm16Mask;
|
| - instr1 |= itarget & kImm16Mask;
|
| - itarget = itarget >> 16;
|
| -
|
| - *p = instr1;
|
| - *(p + 1) = instr2;
|
| - *(p + 3) = instr4;
|
| - *(p + 4) = instr5;
|
| + // Check for instructions generated by Asm::mov()
|
| + Opcode op1 = Instruction::S390OpcodeValue(reinterpret_cast<const byte*>(pc));
|
| + SixByteInstr instr_1 =
|
| + Instruction::InstructionBits(reinterpret_cast<const byte*>(pc));
|
| + bool patched = false;
|
| +
|
| + if (BRASL == op1 || BRCL == op1) {
|
| + instr_1 >>= 32; // Zero out the lower 32-bits
|
| + instr_1 <<= 32;
|
| + int32_t halfwords = (target - pc) / 2; // number of halfwords
|
| + instr_1 |= static_cast<uint32_t>(halfwords);
|
| + Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc),
|
| + instr_1);
|
| if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
|
| - Assembler::FlushICache(isolate, p, 5 * kInstrSize);
|
| + Assembler::FlushICache(isolate, pc, 6);
|
| + }
|
| + patched = true;
|
| + } else {
|
| +#if V8_TARGET_ARCH_S390X
|
| + int instr1_length =
|
| + Instruction::InstructionLength(reinterpret_cast<const byte*>(pc));
|
| + Opcode op2 = Instruction::S390OpcodeValue(
|
| + reinterpret_cast<const byte*>(pc + instr1_length));
|
| + SixByteInstr instr_2 = Instruction::InstructionBits(
|
| + reinterpret_cast<const byte*>(pc + instr1_length));
|
| + // IIHF for hi_32, IILF for lo_32
|
| + if (IIHF == op1 && IILF == op2) {
|
| + // IIHF
|
| + instr_1 >>= 32; // Zero out the lower 32-bits
|
| + instr_1 <<= 32;
|
| + instr_1 |= reinterpret_cast<uint64_t>(target) >> 32;
|
| +
|
| + Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc),
|
| + instr_1);
|
| +
|
| + // IILF
|
| + instr_2 >>= 32;
|
| + instr_2 <<= 32;
|
| + instr_2 |= reinterpret_cast<uint64_t>(target) & 0xFFFFFFFF;
|
| +
|
| + Instruction::SetInstructionBits<SixByteInstr>(
|
| + reinterpret_cast<byte*>(pc + instr1_length), instr_2);
|
| + if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
|
| + Assembler::FlushICache(isolate, pc, 12);
|
| + }
|
| + patched = true;
|
| }
|
| #else
|
| - uint32_t* p = reinterpret_cast<uint32_t*>(pc);
|
| - uint32_t itarget = reinterpret_cast<uint32_t>(target);
|
| - int lo_word = itarget & kImm16Mask;
|
| - int hi_word = itarget >> 16;
|
| - instr1 &= ~kImm16Mask;
|
| - instr1 |= hi_word;
|
| - instr2 &= ~kImm16Mask;
|
| - instr2 |= lo_word;
|
| -
|
| - *p = instr1;
|
| - *(p + 1) = instr2;
|
| - if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
|
| - Assembler::FlushICache(isolate, p, 2 * kInstrSize);
|
| + // IILF loads 32-bits
|
| + if (IILF == op1 || CFI == op1) {
|
| + instr_1 >>= 32; // Zero out the lower 32-bits
|
| + instr_1 <<= 32;
|
| + instr_1 |= reinterpret_cast<uint32_t>(target);
|
| +
|
| + Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc),
|
| + instr_1);
|
| + if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
|
| + Assembler::FlushICache(isolate, pc, 6);
|
| + }
|
| + patched = true;
|
| }
|
| #endif
|
| - return;
|
| }
|
| - UNREACHABLE();
|
| + if (!patched) UNREACHABLE();
|
| }
|
| +
|
| } // namespace internal
|
| } // namespace v8
|
|
|
| -#endif // V8_PPC_ASSEMBLER_PPC_INL_H_
|
| +#endif // V8_S390_ASSEMBLER_S390_INL_H_
|
|
|