| OLD | NEW |
| 1 // Copyright (c) 1994-2006 Sun Microsystems Inc. | 1 // Copyright (c) 1994-2006 Sun Microsystems Inc. |
| 2 // All Rights Reserved. | 2 // All Rights Reserved. |
| 3 // | 3 // |
| 4 // Redistribution and use in source and binary forms, with or without | 4 // Redistribution and use in source and binary forms, with or without |
| 5 // modification, are permitted provided that the following conditions | 5 // modification, are permitted provided that the following conditions |
| 6 // are met: | 6 // are met: |
| 7 // | 7 // |
| 8 // - Redistributions of source code must retain the above copyright notice, | 8 // - Redistributions of source code must retain the above copyright notice, |
| 9 // this list of conditions and the following disclaimer. | 9 // this list of conditions and the following disclaimer. |
| 10 // | 10 // |
| (...skipping 16 matching lines...) Expand all Loading... |
| 27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| 29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| 31 // OF THE POSSIBILITY OF SUCH DAMAGE. | 31 // OF THE POSSIBILITY OF SUCH DAMAGE. |
| 32 | 32 |
| 33 // The original source code covered by the above license above has been modified | 33 // The original source code covered by the above license above has been modified |
| 34 // significantly by Google Inc. | 34 // significantly by Google Inc. |
| 35 // Copyright 2014 the V8 project authors. All rights reserved. | 35 // Copyright 2014 the V8 project authors. All rights reserved. |
| 36 | 36 |
| 37 #ifndef V8_PPC_ASSEMBLER_PPC_INL_H_ | 37 #ifndef V8_S390_ASSEMBLER_S390_INL_H_ |
| 38 #define V8_PPC_ASSEMBLER_PPC_INL_H_ | 38 #define V8_S390_ASSEMBLER_S390_INL_H_ |
| 39 | 39 |
| 40 #include "src/ppc/assembler-ppc.h" | 40 #include "src/s390/assembler-s390.h" |
| 41 | 41 |
| 42 #include "src/assembler.h" | 42 #include "src/assembler.h" |
| 43 #include "src/debug/debug.h" | 43 #include "src/debug/debug.h" |
| 44 | 44 |
| 45 | |
| 46 namespace v8 { | 45 namespace v8 { |
| 47 namespace internal { | 46 namespace internal { |
| 48 | 47 |
| 49 | |
| 50 bool CpuFeatures::SupportsCrankshaft() { return true; } | 48 bool CpuFeatures::SupportsCrankshaft() { return true; } |
| 51 | 49 |
| 52 | |
| 53 void RelocInfo::apply(intptr_t delta) { | 50 void RelocInfo::apply(intptr_t delta) { |
| 54 // absolute code pointer inside code object moves with the code object. | 51 // Absolute code pointer inside code object moves with the code object. |
| 55 if (IsInternalReference(rmode_)) { | 52 if (IsInternalReference(rmode_)) { |
| 56 // Jump table entry | 53 // Jump table entry |
| 57 Address target = Memory::Address_at(pc_); | 54 Address target = Memory::Address_at(pc_); |
| 58 Memory::Address_at(pc_) = target + delta; | 55 Memory::Address_at(pc_) = target + delta; |
| 56 } else if (IsCodeTarget(rmode_)) { |
| 57 SixByteInstr instr = |
| 58 Instruction::InstructionBits(reinterpret_cast<const byte*>(pc_)); |
| 59 int32_t dis = static_cast<int32_t>(instr & 0xFFFFFFFF) * 2 // halfwords |
| 60 - static_cast<int32_t>(delta); |
| 61 instr >>= 32; // Clear the 4-byte displacement field. |
| 62 instr <<= 32; |
| 63 instr |= static_cast<uint32_t>(dis / 2); |
| 64 Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc_), |
| 65 instr); |
| 59 } else { | 66 } else { |
| 60 // mov sequence | 67 // mov sequence |
| 61 DCHECK(IsInternalReferenceEncoded(rmode_)); | 68 DCHECK(IsInternalReferenceEncoded(rmode_)); |
| 62 Address target = Assembler::target_address_at(pc_, host_); | 69 Address target = Assembler::target_address_at(pc_, host_); |
| 63 Assembler::set_target_address_at(isolate_, pc_, host_, target + delta, | 70 Assembler::set_target_address_at(isolate_, pc_, host_, target + delta, |
| 64 SKIP_ICACHE_FLUSH); | 71 SKIP_ICACHE_FLUSH); |
| 65 } | 72 } |
| 66 } | 73 } |
| 67 | 74 |
| 68 | |
| 69 Address RelocInfo::target_internal_reference() { | 75 Address RelocInfo::target_internal_reference() { |
| 70 if (IsInternalReference(rmode_)) { | 76 if (IsInternalReference(rmode_)) { |
| 71 // Jump table entry | 77 // Jump table entry |
| 72 return Memory::Address_at(pc_); | 78 return Memory::Address_at(pc_); |
| 73 } else { | 79 } else { |
| 74 // mov sequence | 80 // mov sequence |
| 75 DCHECK(IsInternalReferenceEncoded(rmode_)); | 81 DCHECK(IsInternalReferenceEncoded(rmode_)); |
| 76 return Assembler::target_address_at(pc_, host_); | 82 return Assembler::target_address_at(pc_, host_); |
| 77 } | 83 } |
| 78 } | 84 } |
| 79 | 85 |
| 80 | |
| 81 Address RelocInfo::target_internal_reference_address() { | 86 Address RelocInfo::target_internal_reference_address() { |
| 82 DCHECK(IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)); | 87 DCHECK(IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)); |
| 83 return reinterpret_cast<Address>(pc_); | 88 return reinterpret_cast<Address>(pc_); |
| 84 } | 89 } |
| 85 | 90 |
| 86 | |
| 87 Address RelocInfo::target_address() { | 91 Address RelocInfo::target_address() { |
| 88 DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)); | 92 DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)); |
| 89 return Assembler::target_address_at(pc_, host_); | 93 return Assembler::target_address_at(pc_, host_); |
| 90 } | 94 } |
| 91 | 95 |
| 92 | |
| 93 Address RelocInfo::target_address_address() { | 96 Address RelocInfo::target_address_address() { |
| 94 DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || | 97 DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || |
| 95 rmode_ == EMBEDDED_OBJECT || rmode_ == EXTERNAL_REFERENCE); | 98 rmode_ == EMBEDDED_OBJECT || rmode_ == EXTERNAL_REFERENCE); |
| 96 | 99 |
| 97 if (FLAG_enable_embedded_constant_pool && | |
| 98 Assembler::IsConstantPoolLoadStart(pc_)) { | |
| 99 // We return the PC for embedded constant pool since this function is used | |
| 100 // by the serializer and expects the address to reside within the code | |
| 101 // object. | |
| 102 return reinterpret_cast<Address>(pc_); | |
| 103 } | |
| 104 | |
| 105 // Read the address of the word containing the target_address in an | 100 // Read the address of the word containing the target_address in an |
| 106 // instruction stream. | 101 // instruction stream. |
| 107 // The only architecture-independent user of this function is the serializer. | 102 // The only architecture-independent user of this function is the serializer. |
| 108 // The serializer uses it to find out how many raw bytes of instruction to | 103 // The serializer uses it to find out how many raw bytes of instruction to |
| 109 // output before the next target. | 104 // output before the next target. |
| 110 // For an instruction like LIS/ORI where the target bits are mixed into the | 105 // For an instruction like LIS/ORI where the target bits are mixed into the |
| 111 // instruction bits, the size of the target will be zero, indicating that the | 106 // instruction bits, the size of the target will be zero, indicating that the |
| 112 // serializer should not step forward in memory after a target is resolved | 107 // serializer should not step forward in memory after a target is resolved |
| 113 // and written. | 108 // and written. |
| 114 return reinterpret_cast<Address>(pc_); | 109 return reinterpret_cast<Address>(pc_); |
| 115 } | 110 } |
| 116 | 111 |
| 117 | |
| 118 Address RelocInfo::constant_pool_entry_address() { | 112 Address RelocInfo::constant_pool_entry_address() { |
| 119 if (FLAG_enable_embedded_constant_pool) { | |
| 120 Address constant_pool = host_->constant_pool(); | |
| 121 DCHECK(constant_pool); | |
| 122 ConstantPoolEntry::Access access; | |
| 123 if (Assembler::IsConstantPoolLoadStart(pc_, &access)) | |
| 124 return Assembler::target_constant_pool_address_at( | |
| 125 pc_, constant_pool, access, ConstantPoolEntry::INTPTR); | |
| 126 } | |
| 127 UNREACHABLE(); | 113 UNREACHABLE(); |
| 128 return NULL; | 114 return NULL; |
| 129 } | 115 } |
| 130 | 116 |
| 131 | |
| 132 int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; } | 117 int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; } |
| 133 | 118 |
| 134 | |
| 135 void RelocInfo::set_target_address(Address target, | 119 void RelocInfo::set_target_address(Address target, |
| 136 WriteBarrierMode write_barrier_mode, | 120 WriteBarrierMode write_barrier_mode, |
| 137 ICacheFlushMode icache_flush_mode) { | 121 ICacheFlushMode icache_flush_mode) { |
| 138 DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)); | 122 DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)); |
| 139 Assembler::set_target_address_at(isolate_, pc_, host_, target, | 123 Assembler::set_target_address_at(isolate_, pc_, host_, target, |
| 140 icache_flush_mode); | 124 icache_flush_mode); |
| 141 if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL && | 125 if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL && |
| 142 IsCodeTarget(rmode_)) { | 126 IsCodeTarget(rmode_)) { |
| 143 Object* target_code = Code::GetCodeFromTargetAddress(target); | 127 Object* target_code = Code::GetCodeFromTargetAddress(target); |
| 144 host()->GetHeap()->incremental_marking()->RecordWriteIntoCode( | 128 host()->GetHeap()->incremental_marking()->RecordWriteIntoCode( |
| 145 host(), this, HeapObject::cast(target_code)); | 129 host(), this, HeapObject::cast(target_code)); |
| 146 } | 130 } |
| 147 } | 131 } |
| 148 | 132 |
| 149 | |
| 150 Address Assembler::target_address_from_return_address(Address pc) { | 133 Address Assembler::target_address_from_return_address(Address pc) { |
| 151 // Returns the address of the call target from the return address that will | 134 // Returns the address of the call target from the return address that will |
| 152 // be returned to after a call. | 135 // be returned to after a call. |
| 153 // Call sequence is : | 136 // Sequence is: |
| 154 // mov ip, @ call address | 137 // BRASL r14, RI |
| 155 // mtlr ip | 138 return pc - kCallTargetAddressOffset; |
| 156 // blrl | |
| 157 // @ return address | |
| 158 int len; | |
| 159 ConstantPoolEntry::Access access; | |
| 160 if (FLAG_enable_embedded_constant_pool && | |
| 161 IsConstantPoolLoadEnd(pc - 3 * kInstrSize, &access)) { | |
| 162 len = (access == ConstantPoolEntry::OVERFLOWED) ? 2 : 1; | |
| 163 } else { | |
| 164 len = kMovInstructionsNoConstantPool; | |
| 165 } | |
| 166 return pc - (len + 2) * kInstrSize; | |
| 167 } | 139 } |
| 168 | 140 |
| 169 | |
| 170 Address Assembler::return_address_from_call_start(Address pc) { | 141 Address Assembler::return_address_from_call_start(Address pc) { |
| 171 int len; | 142 // Sequence is: |
| 172 ConstantPoolEntry::Access access; | 143 // BRASL r14, RI |
| 173 if (FLAG_enable_embedded_constant_pool && | 144 return pc + kCallTargetAddressOffset; |
| 174 IsConstantPoolLoadStart(pc, &access)) { | |
| 175 len = (access == ConstantPoolEntry::OVERFLOWED) ? 2 : 1; | |
| 176 } else { | |
| 177 len = kMovInstructionsNoConstantPool; | |
| 178 } | |
| 179 return pc + (len + 2) * kInstrSize; | |
| 180 } | 145 } |
| 181 | 146 |
| 147 Handle<Object> Assembler::code_target_object_handle_at(Address pc) { |
| 148 SixByteInstr instr = |
| 149 Instruction::InstructionBits(reinterpret_cast<const byte*>(pc)); |
| 150 int index = instr & 0xFFFFFFFF; |
| 151 return code_targets_[index]; |
| 152 } |
| 182 | 153 |
| 183 Object* RelocInfo::target_object() { | 154 Object* RelocInfo::target_object() { |
| 184 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); | 155 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); |
| 185 return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_)); | 156 return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_)); |
| 186 } | 157 } |
| 187 | 158 |
| 188 | |
| 189 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) { | 159 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) { |
| 190 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); | 160 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); |
| 191 return Handle<Object>( | 161 if (rmode_ == EMBEDDED_OBJECT) { |
| 192 reinterpret_cast<Object**>(Assembler::target_address_at(pc_, host_))); | 162 return Handle<Object>( |
| 163 reinterpret_cast<Object**>(Assembler::target_address_at(pc_, host_))); |
| 164 } else { |
| 165 return origin->code_target_object_handle_at(pc_); |
| 166 } |
| 193 } | 167 } |
| 194 | 168 |
| 195 | |
| 196 void RelocInfo::set_target_object(Object* target, | 169 void RelocInfo::set_target_object(Object* target, |
| 197 WriteBarrierMode write_barrier_mode, | 170 WriteBarrierMode write_barrier_mode, |
| 198 ICacheFlushMode icache_flush_mode) { | 171 ICacheFlushMode icache_flush_mode) { |
| 199 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); | 172 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); |
| 200 Assembler::set_target_address_at(isolate_, pc_, host_, | 173 Assembler::set_target_address_at(isolate_, pc_, host_, |
| 201 reinterpret_cast<Address>(target), | 174 reinterpret_cast<Address>(target), |
| 202 icache_flush_mode); | 175 icache_flush_mode); |
| 203 if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL && | 176 if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL && |
| 204 target->IsHeapObject()) { | 177 target->IsHeapObject()) { |
| 205 host()->GetHeap()->incremental_marking()->RecordWriteIntoCode( | 178 host()->GetHeap()->incremental_marking()->RecordWriteIntoCode( |
| 206 host(), this, HeapObject::cast(target)); | 179 host(), this, HeapObject::cast(target)); |
| 207 } | 180 } |
| 208 } | 181 } |
| 209 | 182 |
| 210 | |
| 211 Address RelocInfo::target_external_reference() { | 183 Address RelocInfo::target_external_reference() { |
| 212 DCHECK(rmode_ == EXTERNAL_REFERENCE); | 184 DCHECK(rmode_ == EXTERNAL_REFERENCE); |
| 213 return Assembler::target_address_at(pc_, host_); | 185 return Assembler::target_address_at(pc_, host_); |
| 214 } | 186 } |
| 215 | 187 |
| 216 | |
| 217 Address RelocInfo::target_runtime_entry(Assembler* origin) { | 188 Address RelocInfo::target_runtime_entry(Assembler* origin) { |
| 218 DCHECK(IsRuntimeEntry(rmode_)); | 189 DCHECK(IsRuntimeEntry(rmode_)); |
| 219 return target_address(); | 190 return target_address(); |
| 220 } | 191 } |
| 221 | 192 |
| 222 | |
| 223 void RelocInfo::set_target_runtime_entry(Address target, | 193 void RelocInfo::set_target_runtime_entry(Address target, |
| 224 WriteBarrierMode write_barrier_mode, | 194 WriteBarrierMode write_barrier_mode, |
| 225 ICacheFlushMode icache_flush_mode) { | 195 ICacheFlushMode icache_flush_mode) { |
| 226 DCHECK(IsRuntimeEntry(rmode_)); | 196 DCHECK(IsRuntimeEntry(rmode_)); |
| 227 if (target_address() != target) | 197 if (target_address() != target) |
| 228 set_target_address(target, write_barrier_mode, icache_flush_mode); | 198 set_target_address(target, write_barrier_mode, icache_flush_mode); |
| 229 } | 199 } |
| 230 | 200 |
| 231 | |
| 232 Handle<Cell> RelocInfo::target_cell_handle() { | 201 Handle<Cell> RelocInfo::target_cell_handle() { |
| 233 DCHECK(rmode_ == RelocInfo::CELL); | 202 DCHECK(rmode_ == RelocInfo::CELL); |
| 234 Address address = Memory::Address_at(pc_); | 203 Address address = Memory::Address_at(pc_); |
| 235 return Handle<Cell>(reinterpret_cast<Cell**>(address)); | 204 return Handle<Cell>(reinterpret_cast<Cell**>(address)); |
| 236 } | 205 } |
| 237 | 206 |
| 238 | |
| 239 Cell* RelocInfo::target_cell() { | 207 Cell* RelocInfo::target_cell() { |
| 240 DCHECK(rmode_ == RelocInfo::CELL); | 208 DCHECK(rmode_ == RelocInfo::CELL); |
| 241 return Cell::FromValueAddress(Memory::Address_at(pc_)); | 209 return Cell::FromValueAddress(Memory::Address_at(pc_)); |
| 242 } | 210 } |
| 243 | 211 |
| 244 | |
| 245 void RelocInfo::set_target_cell(Cell* cell, WriteBarrierMode write_barrier_mode, | 212 void RelocInfo::set_target_cell(Cell* cell, WriteBarrierMode write_barrier_mode, |
| 246 ICacheFlushMode icache_flush_mode) { | 213 ICacheFlushMode icache_flush_mode) { |
| 247 DCHECK(rmode_ == RelocInfo::CELL); | 214 DCHECK(rmode_ == RelocInfo::CELL); |
| 248 Address address = cell->address() + Cell::kValueOffset; | 215 Address address = cell->address() + Cell::kValueOffset; |
| 249 Memory::Address_at(pc_) = address; | 216 Memory::Address_at(pc_) = address; |
| 250 if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) { | 217 if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) { |
| 251 host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(host(), this, | 218 host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(host(), this, |
| 252 cell); | 219 cell); |
| 253 } | 220 } |
| 254 } | 221 } |
| 255 | 222 |
| 256 | 223 #if V8_TARGET_ARCH_S390X |
| 257 static const int kNoCodeAgeInstructions = | 224 // NOP(2byte) + PUSH + MOV + BASR = |
| 258 FLAG_enable_embedded_constant_pool ? 7 : 6; | 225 // NOP + LAY + STG + IIHF + IILF + BASR |
| 259 static const int kCodeAgingInstructions = | 226 static const int kCodeAgingSequenceLength = 28; |
| 260 Assembler::kMovInstructionsNoConstantPool + 3; | 227 static const int kCodeAgingTargetDelta = 14; // Jump past NOP + PUSH to IIHF |
| 261 static const int kNoCodeAgeSequenceInstructions = | 228 // LAY + 4 * STG + LA |
| 262 ((kNoCodeAgeInstructions >= kCodeAgingInstructions) | 229 static const int kNoCodeAgeSequenceLength = 34; |
| 263 ? kNoCodeAgeInstructions | 230 #else |
| 264 : kCodeAgingInstructions); | 231 #if (V8_HOST_ARCH_S390) |
| 265 static const int kNoCodeAgeSequenceNops = | 232 // NOP + NILH + LAY + ST + IILF + BASR |
| 266 (kNoCodeAgeSequenceInstructions - kNoCodeAgeInstructions); | 233 static const int kCodeAgingSequenceLength = 24; |
| 267 static const int kCodeAgingSequenceNops = | 234 static const int kCodeAgingTargetDelta = 16; // Jump past NOP to IILF |
| 268 (kNoCodeAgeSequenceInstructions - kCodeAgingInstructions); | 235 // NILH + LAY + 4 * ST + LA |
| 269 static const int kCodeAgingTargetDelta = 1 * Assembler::kInstrSize; | 236 static const int kNoCodeAgeSequenceLength = 30; |
| 270 static const int kNoCodeAgeSequenceLength = | 237 #else |
| 271 (kNoCodeAgeSequenceInstructions * Assembler::kInstrSize); | 238 // NOP + LAY + ST + IILF + BASR |
| 272 | 239 static const int kCodeAgingSequenceLength = 20; |
| 240 static const int kCodeAgingTargetDelta = 12; // Jump past NOP to IILF |
| 241 // LAY + 4 * ST + LA |
| 242 static const int kNoCodeAgeSequenceLength = 26; |
| 243 #endif |
| 244 #endif |
| 273 | 245 |
| 274 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) { | 246 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) { |
| 275 UNREACHABLE(); // This should never be reached on PPC. | 247 UNREACHABLE(); // This should never be reached on S390. |
| 276 return Handle<Object>(); | 248 return Handle<Object>(); |
| 277 } | 249 } |
| 278 | 250 |
| 279 | |
| 280 Code* RelocInfo::code_age_stub() { | 251 Code* RelocInfo::code_age_stub() { |
| 281 DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE); | 252 DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE); |
| 282 return Code::GetCodeFromTargetAddress( | 253 return Code::GetCodeFromTargetAddress( |
| 283 Assembler::target_address_at(pc_ + kCodeAgingTargetDelta, host_)); | 254 Assembler::target_address_at(pc_ + kCodeAgingTargetDelta, host_)); |
| 284 } | 255 } |
| 285 | 256 |
| 286 | |
| 287 void RelocInfo::set_code_age_stub(Code* stub, | 257 void RelocInfo::set_code_age_stub(Code* stub, |
| 288 ICacheFlushMode icache_flush_mode) { | 258 ICacheFlushMode icache_flush_mode) { |
| 289 DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE); | 259 DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE); |
| 290 Assembler::set_target_address_at(isolate_, pc_ + kCodeAgingTargetDelta, host_, | 260 Assembler::set_target_address_at(isolate_, pc_ + kCodeAgingTargetDelta, host_, |
| 291 stub->instruction_start(), | 261 stub->instruction_start(), |
| 292 icache_flush_mode); | 262 icache_flush_mode); |
| 293 } | 263 } |
| 294 | 264 |
| 295 | |
| 296 Address RelocInfo::debug_call_address() { | 265 Address RelocInfo::debug_call_address() { |
| 297 DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()); | 266 DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()); |
| 298 return Assembler::target_address_at(pc_, host_); | 267 return Assembler::target_address_at(pc_, host_); |
| 299 } | 268 } |
| 300 | 269 |
| 301 | |
| 302 void RelocInfo::set_debug_call_address(Address target) { | 270 void RelocInfo::set_debug_call_address(Address target) { |
| 303 DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()); | 271 DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()); |
| 304 Assembler::set_target_address_at(isolate_, pc_, host_, target); | 272 Assembler::set_target_address_at(isolate_, pc_, host_, target); |
| 305 if (host() != NULL) { | 273 if (host() != NULL) { |
| 306 Object* target_code = Code::GetCodeFromTargetAddress(target); | 274 Object* target_code = Code::GetCodeFromTargetAddress(target); |
| 307 host()->GetHeap()->incremental_marking()->RecordWriteIntoCode( | 275 host()->GetHeap()->incremental_marking()->RecordWriteIntoCode( |
| 308 host(), this, HeapObject::cast(target_code)); | 276 host(), this, HeapObject::cast(target_code)); |
| 309 } | 277 } |
| 310 } | 278 } |
| 311 | 279 |
| 312 | |
| 313 void RelocInfo::WipeOut() { | 280 void RelocInfo::WipeOut() { |
| 314 DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) || | 281 DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) || |
| 315 IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) || | 282 IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) || |
| 316 IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)); | 283 IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)); |
| 317 if (IsInternalReference(rmode_)) { | 284 if (IsInternalReference(rmode_)) { |
| 318 // Jump table entry | 285 // Jump table entry |
| 319 Memory::Address_at(pc_) = NULL; | 286 Memory::Address_at(pc_) = NULL; |
| 320 } else if (IsInternalReferenceEncoded(rmode_)) { | 287 } else if (IsInternalReferenceEncoded(rmode_)) { |
| 321 // mov sequence | 288 // mov sequence |
| 322 // Currently used only by deserializer, no need to flush. | 289 // Currently used only by deserializer, no need to flush. |
| 323 Assembler::set_target_address_at(isolate_, pc_, host_, NULL, | 290 Assembler::set_target_address_at(isolate_, pc_, host_, NULL, |
| 324 SKIP_ICACHE_FLUSH); | 291 SKIP_ICACHE_FLUSH); |
| 325 } else { | 292 } else { |
| 326 Assembler::set_target_address_at(isolate_, pc_, host_, NULL); | 293 Assembler::set_target_address_at(isolate_, pc_, host_, NULL); |
| 327 } | 294 } |
| 328 } | 295 } |
| 329 | 296 |
| 330 | |
| 331 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) { | 297 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) { |
| 332 RelocInfo::Mode mode = rmode(); | 298 RelocInfo::Mode mode = rmode(); |
| 333 if (mode == RelocInfo::EMBEDDED_OBJECT) { | 299 if (mode == RelocInfo::EMBEDDED_OBJECT) { |
| 334 visitor->VisitEmbeddedPointer(this); | 300 visitor->VisitEmbeddedPointer(this); |
| 335 } else if (RelocInfo::IsCodeTarget(mode)) { | 301 } else if (RelocInfo::IsCodeTarget(mode)) { |
| 336 visitor->VisitCodeTarget(this); | 302 visitor->VisitCodeTarget(this); |
| 337 } else if (mode == RelocInfo::CELL) { | 303 } else if (mode == RelocInfo::CELL) { |
| 338 visitor->VisitCell(this); | 304 visitor->VisitCell(this); |
| 339 } else if (mode == RelocInfo::EXTERNAL_REFERENCE) { | 305 } else if (mode == RelocInfo::EXTERNAL_REFERENCE) { |
| 340 visitor->VisitExternalReference(this); | 306 visitor->VisitExternalReference(this); |
| 341 } else if (mode == RelocInfo::INTERNAL_REFERENCE || | 307 } else if (mode == RelocInfo::INTERNAL_REFERENCE) { |
| 342 mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) { | |
| 343 visitor->VisitInternalReference(this); | 308 visitor->VisitInternalReference(this); |
| 344 } else if (RelocInfo::IsCodeAgeSequence(mode)) { | 309 } else if (RelocInfo::IsCodeAgeSequence(mode)) { |
| 345 visitor->VisitCodeAgeSequence(this); | 310 visitor->VisitCodeAgeSequence(this); |
| 346 } else if (RelocInfo::IsDebugBreakSlot(mode) && | 311 } else if (RelocInfo::IsDebugBreakSlot(mode) && |
| 347 IsPatchedDebugBreakSlotSequence()) { | 312 IsPatchedDebugBreakSlotSequence()) { |
| 348 visitor->VisitDebugTarget(this); | 313 visitor->VisitDebugTarget(this); |
| 349 } else if (IsRuntimeEntry(mode)) { | 314 } else if (IsRuntimeEntry(mode)) { |
| 350 visitor->VisitRuntimeEntry(this); | 315 visitor->VisitRuntimeEntry(this); |
| 351 } | 316 } |
| 352 } | 317 } |
| 353 | 318 |
| 354 | |
| 355 template <typename StaticVisitor> | 319 template <typename StaticVisitor> |
| 356 void RelocInfo::Visit(Heap* heap) { | 320 void RelocInfo::Visit(Heap* heap) { |
| 357 RelocInfo::Mode mode = rmode(); | 321 RelocInfo::Mode mode = rmode(); |
| 358 if (mode == RelocInfo::EMBEDDED_OBJECT) { | 322 if (mode == RelocInfo::EMBEDDED_OBJECT) { |
| 359 StaticVisitor::VisitEmbeddedPointer(heap, this); | 323 StaticVisitor::VisitEmbeddedPointer(heap, this); |
| 360 } else if (RelocInfo::IsCodeTarget(mode)) { | 324 } else if (RelocInfo::IsCodeTarget(mode)) { |
| 361 StaticVisitor::VisitCodeTarget(heap, this); | 325 StaticVisitor::VisitCodeTarget(heap, this); |
| 362 } else if (mode == RelocInfo::CELL) { | 326 } else if (mode == RelocInfo::CELL) { |
| 363 StaticVisitor::VisitCell(heap, this); | 327 StaticVisitor::VisitCell(heap, this); |
| 364 } else if (mode == RelocInfo::EXTERNAL_REFERENCE) { | 328 } else if (mode == RelocInfo::EXTERNAL_REFERENCE) { |
| 365 StaticVisitor::VisitExternalReference(this); | 329 StaticVisitor::VisitExternalReference(this); |
| 366 } else if (mode == RelocInfo::INTERNAL_REFERENCE || | 330 } else if (mode == RelocInfo::INTERNAL_REFERENCE) { |
| 367 mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) { | |
| 368 StaticVisitor::VisitInternalReference(this); | 331 StaticVisitor::VisitInternalReference(this); |
| 369 } else if (RelocInfo::IsCodeAgeSequence(mode)) { | 332 } else if (RelocInfo::IsCodeAgeSequence(mode)) { |
| 370 StaticVisitor::VisitCodeAgeSequence(heap, this); | 333 StaticVisitor::VisitCodeAgeSequence(heap, this); |
| 371 } else if (RelocInfo::IsDebugBreakSlot(mode) && | 334 } else if (RelocInfo::IsDebugBreakSlot(mode) && |
| 372 IsPatchedDebugBreakSlotSequence()) { | 335 IsPatchedDebugBreakSlotSequence()) { |
| 373 StaticVisitor::VisitDebugTarget(heap, this); | 336 StaticVisitor::VisitDebugTarget(heap, this); |
| 374 } else if (IsRuntimeEntry(mode)) { | 337 } else if (IsRuntimeEntry(mode)) { |
| 375 StaticVisitor::VisitRuntimeEntry(this); | 338 StaticVisitor::VisitRuntimeEntry(this); |
| 376 } | 339 } |
| 377 } | 340 } |
| 378 | 341 |
| 342 // Operand constructors |
| 379 Operand::Operand(intptr_t immediate, RelocInfo::Mode rmode) { | 343 Operand::Operand(intptr_t immediate, RelocInfo::Mode rmode) { |
| 380 rm_ = no_reg; | 344 rm_ = no_reg; |
| 381 imm_ = immediate; | 345 imm_ = immediate; |
| 382 rmode_ = rmode; | 346 rmode_ = rmode; |
| 383 } | 347 } |
| 384 | 348 |
| 385 Operand::Operand(const ExternalReference& f) { | 349 Operand::Operand(const ExternalReference& f) { |
| 386 rm_ = no_reg; | 350 rm_ = no_reg; |
| 387 imm_ = reinterpret_cast<intptr_t>(f.address()); | 351 imm_ = reinterpret_cast<intptr_t>(f.address()); |
| 388 rmode_ = RelocInfo::EXTERNAL_REFERENCE; | 352 rmode_ = RelocInfo::EXTERNAL_REFERENCE; |
| 389 } | 353 } |
| 390 | 354 |
| 391 Operand::Operand(Smi* value) { | 355 Operand::Operand(Smi* value) { |
| 392 rm_ = no_reg; | 356 rm_ = no_reg; |
| 393 imm_ = reinterpret_cast<intptr_t>(value); | 357 imm_ = reinterpret_cast<intptr_t>(value); |
| 394 rmode_ = kRelocInfo_NONEPTR; | 358 rmode_ = kRelocInfo_NONEPTR; |
| 395 } | 359 } |
| 396 | 360 |
| 397 Operand::Operand(Register rm) { | 361 Operand::Operand(Register rm) { |
| 398 rm_ = rm; | 362 rm_ = rm; |
| 399 rmode_ = kRelocInfo_NONEPTR; // PPC -why doesn't ARM do this? | 363 rmode_ = kRelocInfo_NONEPTR; // S390 -why doesn't ARM do this? |
| 400 } | 364 } |
| 401 | 365 |
| 402 void Assembler::CheckBuffer() { | 366 void Assembler::CheckBuffer() { |
| 403 if (buffer_space() <= kGap) { | 367 if (buffer_space() <= kGap) { |
| 404 GrowBuffer(); | 368 GrowBuffer(); |
| 405 } | 369 } |
| 406 } | 370 } |
| 407 | 371 |
| 408 void Assembler::TrackBranch() { | 372 int32_t Assembler::emit_code_target(Handle<Code> target, RelocInfo::Mode rmode, |
| 409 DCHECK(!trampoline_emitted_); | 373 TypeFeedbackId ast_id) { |
| 410 int count = tracked_branch_count_++; | 374 DCHECK(RelocInfo::IsCodeTarget(rmode)); |
| 411 if (count == 0) { | 375 if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) { |
| 412 // We leave space (kMaxBlockTrampolineSectionSize) | 376 SetRecordedAstId(ast_id); |
| 413 // for BlockTrampolinePoolScope buffer. | 377 RecordRelocInfo(RelocInfo::CODE_TARGET_WITH_ID); |
| 414 next_trampoline_check_ = | |
| 415 pc_offset() + kMaxCondBranchReach - kMaxBlockTrampolineSectionSize; | |
| 416 } else { | 378 } else { |
| 417 next_trampoline_check_ -= kTrampolineSlotsSize; | 379 RecordRelocInfo(rmode); |
| 418 } | 380 } |
| 381 |
| 382 int current = code_targets_.length(); |
| 383 if (current > 0 && code_targets_.last().is_identical_to(target)) { |
| 384 // Optimization if we keep jumping to the same code target. |
| 385 current--; |
| 386 } else { |
| 387 code_targets_.Add(target); |
| 388 } |
| 389 return current; |
| 419 } | 390 } |
| 420 | 391 |
| 421 void Assembler::UntrackBranch() { | 392 // Helper to emit the binary encoding of a 2 byte instruction |
| 422 DCHECK(!trampoline_emitted_); | 393 void Assembler::emit2bytes(uint16_t x) { |
| 423 DCHECK(tracked_branch_count_ > 0); | 394 CheckBuffer(); |
| 424 int count = --tracked_branch_count_; | 395 #if V8_TARGET_LITTLE_ENDIAN |
| 425 if (count == 0) { | 396 // We need to emit instructions in big endian format as disassembler / |
| 426 // Reset | 397 // simulator require the first byte of the instruction in order to decode |
| 427 next_trampoline_check_ = kMaxInt; | 398 // the instruction length. Swap the bytes. |
| 428 } else { | 399 x = ((x & 0x00FF) << 8) | ((x & 0xFF00) >> 8); |
| 429 next_trampoline_check_ += kTrampolineSlotsSize; | 400 #endif |
| 430 } | 401 *reinterpret_cast<uint16_t*>(pc_) = x; |
| 402 pc_ += 2; |
| 431 } | 403 } |
| 432 | 404 |
| 433 void Assembler::CheckTrampolinePoolQuick() { | 405 // Helper to emit the binary encoding of a 4 byte instruction |
| 434 if (pc_offset() >= next_trampoline_check_) { | 406 void Assembler::emit4bytes(uint32_t x) { |
| 435 CheckTrampolinePool(); | 407 CheckBuffer(); |
| 436 } | 408 #if V8_TARGET_LITTLE_ENDIAN |
| 409 // We need to emit instructions in big endian format as disassembler / |
| 410 // simulator require the first byte of the instruction in order to decode |
| 411 // the instruction length. Swap the bytes. |
| 412 x = ((x & 0x000000FF) << 24) | ((x & 0x0000FF00) << 8) | |
| 413 ((x & 0x00FF0000) >> 8) | ((x & 0xFF000000) >> 24); |
| 414 #endif |
| 415 *reinterpret_cast<uint32_t*>(pc_) = x; |
| 416 pc_ += 4; |
| 437 } | 417 } |
| 438 | 418 |
| 439 void Assembler::emit(Instr x) { | 419 // Helper to emit the binary encoding of a 6 byte instruction |
| 420 void Assembler::emit6bytes(uint64_t x) { |
| 440 CheckBuffer(); | 421 CheckBuffer(); |
| 441 *reinterpret_cast<Instr*>(pc_) = x; | 422 #if V8_TARGET_LITTLE_ENDIAN |
| 442 pc_ += kInstrSize; | 423 // We need to emit instructions in big endian format as disassembler / |
| 443 CheckTrampolinePoolQuick(); | 424 // simulator require the first byte of the instruction in order to decode |
| 425 // the instruction length. Swap the bytes. |
| 426 x = (static_cast<uint64_t>(x & 0xFF) << 40) | |
| 427 (static_cast<uint64_t>((x >> 8) & 0xFF) << 32) | |
| 428 (static_cast<uint64_t>((x >> 16) & 0xFF) << 24) | |
| 429 (static_cast<uint64_t>((x >> 24) & 0xFF) << 16) | |
| 430 (static_cast<uint64_t>((x >> 32) & 0xFF) << 8) | |
| 431 (static_cast<uint64_t>((x >> 40) & 0xFF)); |
| 432 x |= (*reinterpret_cast<uint64_t*>(pc_) >> 48) << 48; |
| 433 #else |
| 434 // We need to pad two bytes of zeros in order to get the 6-bytes |
| 435 // stored from low address. |
| 436 x = x << 16; |
| 437 x |= *reinterpret_cast<uint64_t*>(pc_) & 0xFFFF; |
| 438 #endif |
| 439 // It is safe to store 8-bytes, as CheckBuffer() guarantees we have kGap |
| 440 // space left over. |
| 441 *reinterpret_cast<uint64_t*>(pc_) = x; |
| 442 pc_ += 6; |
| 444 } | 443 } |
| 445 | 444 |
| 446 bool Operand::is_reg() const { return rm_.is_valid(); } | 445 bool Operand::is_reg() const { return rm_.is_valid(); } |
| 447 | 446 |
| 447 // Fetch the 32bit value from the FIXED_SEQUENCE IIHF / IILF |
| 448 Address Assembler::target_address_at(Address pc, Address constant_pool) { |
| 449 // S390 Instruction! |
| 450 // We want to check for instructions generated by Asm::mov() |
| 451 Opcode op1 = Instruction::S390OpcodeValue(reinterpret_cast<const byte*>(pc)); |
| 452 SixByteInstr instr_1 = |
| 453 Instruction::InstructionBits(reinterpret_cast<const byte*>(pc)); |
| 448 | 454 |
| 449 // Fetch the 32bit value from the FIXED_SEQUENCE lis/ori | 455 if (BRASL == op1 || BRCL == op1) { |
| 450 Address Assembler::target_address_at(Address pc, Address constant_pool) { | 456 int32_t dis = static_cast<int32_t>(instr_1 & 0xFFFFFFFF) * 2; |
| 451 if (FLAG_enable_embedded_constant_pool && constant_pool) { | 457 return reinterpret_cast<Address>(reinterpret_cast<uint64_t>(pc) + dis); |
| 452 ConstantPoolEntry::Access access; | |
| 453 if (IsConstantPoolLoadStart(pc, &access)) | |
| 454 return Memory::Address_at(target_constant_pool_address_at( | |
| 455 pc, constant_pool, access, ConstantPoolEntry::INTPTR)); | |
| 456 } | 458 } |
| 457 | 459 |
| 458 Instr instr1 = instr_at(pc); | 460 #if V8_TARGET_ARCH_S390X |
| 459 Instr instr2 = instr_at(pc + kInstrSize); | 461 int instr1_length = |
| 460 // Interpret 2 instructions generated by lis/ori | 462 Instruction::InstructionLength(reinterpret_cast<const byte*>(pc)); |
| 461 if (IsLis(instr1) && IsOri(instr2)) { | 463 Opcode op2 = Instruction::S390OpcodeValue( |
| 462 #if V8_TARGET_ARCH_PPC64 | 464 reinterpret_cast<const byte*>(pc + instr1_length)); |
| 463 Instr instr4 = instr_at(pc + (3 * kInstrSize)); | 465 SixByteInstr instr_2 = Instruction::InstructionBits( |
| 464 Instr instr5 = instr_at(pc + (4 * kInstrSize)); | 466 reinterpret_cast<const byte*>(pc + instr1_length)); |
| 465 // Assemble the 64 bit value. | 467 // IIHF for hi_32, IILF for lo_32 |
| 466 uint64_t hi = (static_cast<uint32_t>((instr1 & kImm16Mask) << 16) | | 468 if (IIHF == op1 && IILF == op2) { |
| 467 static_cast<uint32_t>(instr2 & kImm16Mask)); | 469 return reinterpret_cast<Address>(((instr_1 & 0xFFFFFFFF) << 32) | |
| 468 uint64_t lo = (static_cast<uint32_t>((instr4 & kImm16Mask) << 16) | | 470 ((instr_2 & 0xFFFFFFFF))); |
| 469 static_cast<uint32_t>(instr5 & kImm16Mask)); | 471 } |
| 470 return reinterpret_cast<Address>((hi << 32) | lo); | |
| 471 #else | 472 #else |
| 472 // Assemble the 32 bit value. | 473 // IILF loads 32-bits |
| 473 return reinterpret_cast<Address>(((instr1 & kImm16Mask) << 16) | | 474 if (IILF == op1 || CFI == op1) { |
| 474 (instr2 & kImm16Mask)); | 475 return reinterpret_cast<Address>((instr_1 & 0xFFFFFFFF)); |
| 475 #endif | |
| 476 } | 476 } |
| 477 | |
| 478 UNREACHABLE(); | |
| 479 return NULL; | |
| 480 } | |
| 481 | |
| 482 | |
| 483 #if V8_TARGET_ARCH_PPC64 | |
| 484 const int kLoadIntptrOpcode = LD; | |
| 485 #else | |
| 486 const int kLoadIntptrOpcode = LWZ; | |
| 487 #endif | 477 #endif |
| 488 | 478 |
| 489 // Constant pool load sequence detection: | 479 UNIMPLEMENTED(); |
| 490 // 1) REGULAR access: | 480 return (Address)0; |
| 491 // load <dst>, kConstantPoolRegister + <offset> | |
| 492 // | |
| 493 // 2) OVERFLOWED access: | |
| 494 // addis <scratch>, kConstantPoolRegister, <offset_high> | |
| 495 // load <dst>, <scratch> + <offset_low> | |
| 496 bool Assembler::IsConstantPoolLoadStart(Address pc, | |
| 497 ConstantPoolEntry::Access* access) { | |
| 498 Instr instr = instr_at(pc); | |
| 499 int opcode = instr & kOpcodeMask; | |
| 500 if (!GetRA(instr).is(kConstantPoolRegister)) return false; | |
| 501 bool overflowed = (opcode == ADDIS); | |
| 502 #ifdef DEBUG | |
| 503 if (overflowed) { | |
| 504 opcode = instr_at(pc + kInstrSize) & kOpcodeMask; | |
| 505 } | |
| 506 DCHECK(opcode == kLoadIntptrOpcode || opcode == LFD); | |
| 507 #endif | |
| 508 if (access) { | |
| 509 *access = (overflowed ? ConstantPoolEntry::OVERFLOWED | |
| 510 : ConstantPoolEntry::REGULAR); | |
| 511 } | |
| 512 return true; | |
| 513 } | 481 } |
| 514 | 482 |
| 515 | |
| 516 bool Assembler::IsConstantPoolLoadEnd(Address pc, | |
| 517 ConstantPoolEntry::Access* access) { | |
| 518 Instr instr = instr_at(pc); | |
| 519 int opcode = instr & kOpcodeMask; | |
| 520 bool overflowed = false; | |
| 521 if (!(opcode == kLoadIntptrOpcode || opcode == LFD)) return false; | |
| 522 if (!GetRA(instr).is(kConstantPoolRegister)) { | |
| 523 instr = instr_at(pc - kInstrSize); | |
| 524 opcode = instr & kOpcodeMask; | |
| 525 if ((opcode != ADDIS) || !GetRA(instr).is(kConstantPoolRegister)) { | |
| 526 return false; | |
| 527 } | |
| 528 overflowed = true; | |
| 529 } | |
| 530 if (access) { | |
| 531 *access = (overflowed ? ConstantPoolEntry::OVERFLOWED | |
| 532 : ConstantPoolEntry::REGULAR); | |
| 533 } | |
| 534 return true; | |
| 535 } | |
| 536 | |
| 537 | |
| 538 int Assembler::GetConstantPoolOffset(Address pc, | |
| 539 ConstantPoolEntry::Access access, | |
| 540 ConstantPoolEntry::Type type) { | |
| 541 bool overflowed = (access == ConstantPoolEntry::OVERFLOWED); | |
| 542 #ifdef DEBUG | |
| 543 ConstantPoolEntry::Access access_check = | |
| 544 static_cast<ConstantPoolEntry::Access>(-1); | |
| 545 DCHECK(IsConstantPoolLoadStart(pc, &access_check)); | |
| 546 DCHECK(access_check == access); | |
| 547 #endif | |
| 548 int offset; | |
| 549 if (overflowed) { | |
| 550 offset = (instr_at(pc) & kImm16Mask) << 16; | |
| 551 offset += SIGN_EXT_IMM16(instr_at(pc + kInstrSize) & kImm16Mask); | |
| 552 DCHECK(!is_int16(offset)); | |
| 553 } else { | |
| 554 offset = SIGN_EXT_IMM16((instr_at(pc) & kImm16Mask)); | |
| 555 } | |
| 556 return offset; | |
| 557 } | |
| 558 | |
| 559 | |
| 560 void Assembler::PatchConstantPoolAccessInstruction( | |
| 561 int pc_offset, int offset, ConstantPoolEntry::Access access, | |
| 562 ConstantPoolEntry::Type type) { | |
| 563 Address pc = buffer_ + pc_offset; | |
| 564 bool overflowed = (access == ConstantPoolEntry::OVERFLOWED); | |
| 565 CHECK(overflowed != is_int16(offset)); | |
| 566 #ifdef DEBUG | |
| 567 ConstantPoolEntry::Access access_check = | |
| 568 static_cast<ConstantPoolEntry::Access>(-1); | |
| 569 DCHECK(IsConstantPoolLoadStart(pc, &access_check)); | |
| 570 DCHECK(access_check == access); | |
| 571 #endif | |
| 572 if (overflowed) { | |
| 573 int hi_word = static_cast<int>(offset >> 16); | |
| 574 int lo_word = static_cast<int>(offset & 0xffff); | |
| 575 if (lo_word & 0x8000) hi_word++; | |
| 576 | |
| 577 Instr instr1 = instr_at(pc); | |
| 578 Instr instr2 = instr_at(pc + kInstrSize); | |
| 579 instr1 &= ~kImm16Mask; | |
| 580 instr1 |= (hi_word & kImm16Mask); | |
| 581 instr2 &= ~kImm16Mask; | |
| 582 instr2 |= (lo_word & kImm16Mask); | |
| 583 instr_at_put(pc, instr1); | |
| 584 instr_at_put(pc + kInstrSize, instr2); | |
| 585 } else { | |
| 586 Instr instr = instr_at(pc); | |
| 587 instr &= ~kImm16Mask; | |
| 588 instr |= (offset & kImm16Mask); | |
| 589 instr_at_put(pc, instr); | |
| 590 } | |
| 591 } | |
| 592 | |
| 593 | |
| 594 Address Assembler::target_constant_pool_address_at( | |
| 595 Address pc, Address constant_pool, ConstantPoolEntry::Access access, | |
| 596 ConstantPoolEntry::Type type) { | |
| 597 Address addr = constant_pool; | |
| 598 DCHECK(addr); | |
| 599 addr += GetConstantPoolOffset(pc, access, type); | |
| 600 return addr; | |
| 601 } | |
| 602 | |
| 603 | |
| 604 // This sets the branch destination (which gets loaded at the call address). | 483 // This sets the branch destination (which gets loaded at the call address). |
| 605 // This is for calls and branches within generated code. The serializer | 484 // This is for calls and branches within generated code. The serializer |
| 606 // has already deserialized the mov instructions etc. | 485 // has already deserialized the mov instructions etc. |
| 607 // There is a FIXED_SEQUENCE assumption here | 486 // There is a FIXED_SEQUENCE assumption here |
| 608 void Assembler::deserialization_set_special_target_at( | 487 void Assembler::deserialization_set_special_target_at( |
| 609 Isolate* isolate, Address instruction_payload, Code* code, Address target) { | 488 Isolate* isolate, Address instruction_payload, Code* code, Address target) { |
| 610 set_target_address_at(isolate, instruction_payload, code, target); | 489 set_target_address_at(isolate, instruction_payload, code, target); |
| 611 } | 490 } |
| 612 | 491 |
| 613 | |
| 614 void Assembler::deserialization_set_target_internal_reference_at( | 492 void Assembler::deserialization_set_target_internal_reference_at( |
| 615 Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) { | 493 Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) { |
| 616 if (RelocInfo::IsInternalReferenceEncoded(mode)) { | 494 if (RelocInfo::IsInternalReferenceEncoded(mode)) { |
| 617 Code* code = NULL; | 495 Code* code = NULL; |
| 618 set_target_address_at(isolate, pc, code, target, SKIP_ICACHE_FLUSH); | 496 set_target_address_at(isolate, pc, code, target, SKIP_ICACHE_FLUSH); |
| 619 } else { | 497 } else { |
| 620 Memory::Address_at(pc) = target; | 498 Memory::Address_at(pc) = target; |
| 621 } | 499 } |
| 622 } | 500 } |
| 623 | 501 |
| 624 | 502 // This code assumes the FIXED_SEQUENCE of IIHF/IILF |
| 625 // This code assumes the FIXED_SEQUENCE of lis/ori | |
| 626 void Assembler::set_target_address_at(Isolate* isolate, Address pc, | 503 void Assembler::set_target_address_at(Isolate* isolate, Address pc, |
| 627 Address constant_pool, Address target, | 504 Address constant_pool, Address target, |
| 628 ICacheFlushMode icache_flush_mode) { | 505 ICacheFlushMode icache_flush_mode) { |
| 629 if (FLAG_enable_embedded_constant_pool && constant_pool) { | 506 // Check for instructions generated by Asm::mov() |
| 630 ConstantPoolEntry::Access access; | 507 Opcode op1 = Instruction::S390OpcodeValue(reinterpret_cast<const byte*>(pc)); |
| 631 if (IsConstantPoolLoadStart(pc, &access)) { | 508 SixByteInstr instr_1 = |
| 632 Memory::Address_at(target_constant_pool_address_at( | 509 Instruction::InstructionBits(reinterpret_cast<const byte*>(pc)); |
| 633 pc, constant_pool, access, ConstantPoolEntry::INTPTR)) = target; | 510 bool patched = false; |
| 634 return; | 511 |
| 512 if (BRASL == op1 || BRCL == op1) { |
| 513 instr_1 >>= 32; // Zero out the lower 32-bits |
| 514 instr_1 <<= 32; |
| 515 int32_t halfwords = (target - pc) / 2; // number of halfwords |
| 516 instr_1 |= static_cast<uint32_t>(halfwords); |
| 517 Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc), |
| 518 instr_1); |
| 519 if (icache_flush_mode != SKIP_ICACHE_FLUSH) { |
| 520 Assembler::FlushICache(isolate, pc, 6); |
| 635 } | 521 } |
| 636 } | 522 patched = true; |
| 523 } else { |
| 524 #if V8_TARGET_ARCH_S390X |
| 525 int instr1_length = |
| 526 Instruction::InstructionLength(reinterpret_cast<const byte*>(pc)); |
| 527 Opcode op2 = Instruction::S390OpcodeValue( |
| 528 reinterpret_cast<const byte*>(pc + instr1_length)); |
| 529 SixByteInstr instr_2 = Instruction::InstructionBits( |
| 530 reinterpret_cast<const byte*>(pc + instr1_length)); |
| 531 // IIHF for hi_32, IILF for lo_32 |
| 532 if (IIHF == op1 && IILF == op2) { |
| 533 // IIHF |
| 534 instr_1 >>= 32; // Zero out the lower 32-bits |
| 535 instr_1 <<= 32; |
| 536 instr_1 |= reinterpret_cast<uint64_t>(target) >> 32; |
| 637 | 537 |
| 638 Instr instr1 = instr_at(pc); | 538 Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc), |
| 639 Instr instr2 = instr_at(pc + kInstrSize); | 539 instr_1); |
| 640 // Interpret 2 instructions generated by lis/ori | |
| 641 if (IsLis(instr1) && IsOri(instr2)) { | |
| 642 #if V8_TARGET_ARCH_PPC64 | |
| 643 Instr instr4 = instr_at(pc + (3 * kInstrSize)); | |
| 644 Instr instr5 = instr_at(pc + (4 * kInstrSize)); | |
| 645 // Needs to be fixed up when mov changes to handle 64-bit values. | |
| 646 uint32_t* p = reinterpret_cast<uint32_t*>(pc); | |
| 647 uintptr_t itarget = reinterpret_cast<uintptr_t>(target); | |
| 648 | 540 |
| 649 instr5 &= ~kImm16Mask; | 541 // IILF |
| 650 instr5 |= itarget & kImm16Mask; | 542 instr_2 >>= 32; |
| 651 itarget = itarget >> 16; | 543 instr_2 <<= 32; |
| 544 instr_2 |= reinterpret_cast<uint64_t>(target) & 0xFFFFFFFF; |
| 652 | 545 |
| 653 instr4 &= ~kImm16Mask; | 546 Instruction::SetInstructionBits<SixByteInstr>( |
| 654 instr4 |= itarget & kImm16Mask; | 547 reinterpret_cast<byte*>(pc + instr1_length), instr_2); |
| 655 itarget = itarget >> 16; | 548 if (icache_flush_mode != SKIP_ICACHE_FLUSH) { |
| 656 | 549 Assembler::FlushICache(isolate, pc, 12); |
| 657 instr2 &= ~kImm16Mask; | 550 } |
| 658 instr2 |= itarget & kImm16Mask; | 551 patched = true; |
| 659 itarget = itarget >> 16; | |
| 660 | |
| 661 instr1 &= ~kImm16Mask; | |
| 662 instr1 |= itarget & kImm16Mask; | |
| 663 itarget = itarget >> 16; | |
| 664 | |
| 665 *p = instr1; | |
| 666 *(p + 1) = instr2; | |
| 667 *(p + 3) = instr4; | |
| 668 *(p + 4) = instr5; | |
| 669 if (icache_flush_mode != SKIP_ICACHE_FLUSH) { | |
| 670 Assembler::FlushICache(isolate, p, 5 * kInstrSize); | |
| 671 } | 552 } |
| 672 #else | 553 #else |
| 673 uint32_t* p = reinterpret_cast<uint32_t*>(pc); | 554 // IILF loads 32-bits |
| 674 uint32_t itarget = reinterpret_cast<uint32_t>(target); | 555 if (IILF == op1 || CFI == op1) { |
| 675 int lo_word = itarget & kImm16Mask; | 556 instr_1 >>= 32; // Zero out the lower 32-bits |
| 676 int hi_word = itarget >> 16; | 557 instr_1 <<= 32; |
| 677 instr1 &= ~kImm16Mask; | 558 instr_1 |= reinterpret_cast<uint32_t>(target); |
| 678 instr1 |= hi_word; | |
| 679 instr2 &= ~kImm16Mask; | |
| 680 instr2 |= lo_word; | |
| 681 | 559 |
| 682 *p = instr1; | 560 Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc), |
| 683 *(p + 1) = instr2; | 561 instr_1); |
| 684 if (icache_flush_mode != SKIP_ICACHE_FLUSH) { | 562 if (icache_flush_mode != SKIP_ICACHE_FLUSH) { |
| 685 Assembler::FlushICache(isolate, p, 2 * kInstrSize); | 563 Assembler::FlushICache(isolate, pc, 6); |
| 564 } |
| 565 patched = true; |
| 686 } | 566 } |
| 687 #endif | 567 #endif |
| 688 return; | |
| 689 } | 568 } |
| 690 UNREACHABLE(); | 569 if (!patched) UNREACHABLE(); |
| 691 } | 570 } |
| 571 |
| 692 } // namespace internal | 572 } // namespace internal |
| 693 } // namespace v8 | 573 } // namespace v8 |
| 694 | 574 |
| 695 #endif // V8_PPC_ASSEMBLER_PPC_INL_H_ | 575 #endif // V8_S390_ASSEMBLER_S390_INL_H_ |
| OLD | NEW |