| Index: src/opts/SkOpts_sse41.cpp
|
| diff --git a/src/opts/SkOpts_sse41.cpp b/src/opts/SkOpts_sse41.cpp
|
| index f097e56c5e34a8eab9ebb6ecbff715ec3baa0010..16ba87ad87c04fa07327bd7719b87e7675e0cbb1 100644
|
| --- a/src/opts/SkOpts_sse41.cpp
|
| +++ b/src/opts/SkOpts_sse41.cpp
|
| @@ -12,67 +12,88 @@
|
|
|
| #ifndef SK_SUPPORT_LEGACY_X86_BLITS
|
|
|
| -namespace sk_sse41 {
|
| +// This file deals mostly with unpacked 8-bit values,
|
| +// i.e. values between 0 and 255, but in 16-bit lanes with 0 at the top.
|
|
|
| -// An SSE register holding at most 64 bits of useful data in the low lanes.
|
| -struct m64i {
|
| - __m128i v;
|
| - /*implicit*/ m64i(__m128i v) : v(v) {}
|
| - operator __m128i() const { return v; }
|
| -};
|
| +// So __m128i typically represents 1 or 2 pixels, and m128ix2 represents 4.
|
| +struct m128ix2 { __m128i lo, hi; };
|
|
|
| -// Load 4, 2, or 1 constant pixels or coverages (4x replicated).
|
| -static __m128i next4(uint32_t val) { return _mm_set1_epi32(val); }
|
| -static m64i next2(uint32_t val) { return _mm_set1_epi32(val); }
|
| -static m64i next1(uint32_t val) { return _mm_set1_epi32(val); }
|
| +// unpack{lo,hi}() get our raw pixels unpacked, from half of 4 packed pixels to 2 unpacked pixels.
|
| +static inline __m128i unpacklo(__m128i x) { return _mm_cvtepu8_epi16(x); }
|
| +static inline __m128i unpackhi(__m128i x) { return _mm_unpackhi_epi8(x, _mm_setzero_si128()); }
|
|
|
| -static __m128i next4(uint8_t val) { return _mm_set1_epi8(val); }
|
| -static m64i next2(uint8_t val) { return _mm_set1_epi8(val); }
|
| -static m64i next1(uint8_t val) { return _mm_set1_epi8(val); }
|
| +// pack() converts back, from 4 unpacked pixels to 4 packed pixels.
|
| +static inline __m128i pack(__m128i lo, __m128i hi) { return _mm_packus_epi16(lo, hi); }
|
|
|
| -// Load 4, 2, or 1 variable pixels or coverages (4x replicated),
|
| -// incrementing the pointer past what we read.
|
| -static __m128i next4(const uint32_t*& ptr) {
|
| - auto r = _mm_loadu_si128((const __m128i*)ptr);
|
| +// These nextN() functions abstract over the difference between iterating over
|
| +// an array of values and returning a constant value, for uint8_t and uint32_t.
|
| +// The nextN() taking pointers increment that pointer past where they read.
|
| +//
|
| +// nextN() returns N unpacked pixels or 4N unpacked coverage values.
|
| +
|
| +static inline __m128i next1(uint8_t val) { return _mm_set1_epi16(val); }
|
| +static inline __m128i next2(uint8_t val) { return _mm_set1_epi16(val); }
|
| +static inline m128ix2 next4(uint8_t val) { return { next2(val), next2(val) }; }
|
| +
|
| +static inline __m128i next1(uint32_t val) { return unpacklo(_mm_cvtsi32_si128(val)); }
|
| +static inline __m128i next2(uint32_t val) { return unpacklo(_mm_set1_epi32(val)); }
|
| +static inline m128ix2 next4(uint32_t val) { return { next2(val), next2(val) }; }
|
| +
|
| +static inline __m128i next1(const uint8_t*& ptr) { return _mm_set1_epi16(*ptr++); }
|
| +static inline __m128i next2(const uint8_t*& ptr) {
|
| + auto r = _mm_cvtsi32_si128(*(const uint16_t*)ptr);
|
| + ptr += 2;
|
| + const int _ = ~0;
|
| + return _mm_shuffle_epi8(r, _mm_setr_epi8(0,_,0,_,0,_,0,_, 1,_,1,_,1,_,1,_));
|
| +}
|
| +static inline m128ix2 next4(const uint8_t*& ptr) {
|
| + auto r = _mm_cvtsi32_si128(*(const uint32_t*)ptr);
|
| ptr += 4;
|
| - return r;
|
| + const int _ = ~0;
|
| + auto lo = _mm_shuffle_epi8(r, _mm_setr_epi8(0,_,0,_,0,_,0,_, 1,_,1,_,1,_,1,_)),
|
| + hi = _mm_shuffle_epi8(r, _mm_setr_epi8(2,_,2,_,2,_,2,_, 3,_,3,_,3,_,3,_));
|
| + return { lo, hi };
|
| }
|
| -static m64i next2(const uint32_t*& ptr) {
|
| - auto r = _mm_loadl_epi64((const __m128i*)ptr);
|
| +
|
| +static inline __m128i next1(const uint32_t*& ptr) { return unpacklo(_mm_cvtsi32_si128(*ptr++)); }
|
| +static inline __m128i next2(const uint32_t*& ptr) {
|
| + auto r = unpacklo(_mm_loadl_epi64((const __m128i*)ptr));
|
| ptr += 2;
|
| return r;
|
| }
|
| -static m64i next1(const uint32_t*& ptr) {
|
| - auto r = _mm_cvtsi32_si128(*ptr);
|
| - ptr += 1;
|
| - return r;
|
| +static inline m128ix2 next4(const uint32_t*& ptr) {
|
| + auto packed = _mm_loadu_si128((const __m128i*)ptr);
|
| + ptr += 4;
|
| + return { unpacklo(packed), unpackhi(packed) };
|
| }
|
|
|
| -// xyzw -> xxxx yyyy zzzz wwww
|
| -static __m128i replicate_coverage(__m128i xyzw) {
|
| - const uint8_t mask[] = { 0,0,0,0, 1,1,1,1, 2,2,2,2, 3,3,3,3 };
|
| - return _mm_shuffle_epi8(xyzw, _mm_load_si128((const __m128i*)mask));
|
| +// Divide by 255 with rounding.
|
| +// (x+127)/255 == ((x+128)*257)>>16.
|
| +// Sometimes we can be more efficient by breaking this into two parts.
|
| +static inline __m128i div255_part1(__m128i x) { return _mm_add_epi16(x, _mm_set1_epi16(128)); }
|
| +static inline __m128i div255_part2(__m128i x) { return _mm_mulhi_epu16(x, _mm_set1_epi16(257)); }
|
| +static inline __m128i div255(__m128i x) { return div255_part2(div255_part1(x)); }
|
| +
|
| +// (x*y+127)/255, a byte multiply.
|
| +static inline __m128i scale(__m128i x, __m128i y) {
|
| + return div255(_mm_mullo_epi16(x, y));
|
| }
|
|
|
| -static __m128i next4(const uint8_t*& ptr) {
|
| - auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint32_t*)ptr));
|
| - ptr += 4;
|
| - return r;
|
| +// (255 - x).
|
| +static inline __m128i inv(__m128i x) {
|
| + return _mm_xor_si128(_mm_set1_epi16(0x00ff), x); // This seems a bit faster than _mm_sub_epi16.
|
| }
|
| -static m64i next2(const uint8_t*& ptr) {
|
| - auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint16_t*)ptr));
|
| - ptr += 2;
|
| - return r;
|
| -}
|
| -static m64i next1(const uint8_t*& ptr) {
|
| - auto r = replicate_coverage(_mm_cvtsi32_si128(*ptr));
|
| - ptr += 1;
|
| - return r;
|
| +
|
| +// ARGB argb -> AAAA aaaa
|
| +static inline __m128i alphas(__m128i px) {
|
| + const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so this is typically 6.
|
| + const int _ = ~0;
|
| + return _mm_shuffle_epi8(px, _mm_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, a+8,_,a+8,_,a+8,_,a+8,_));
|
| }
|
|
|
| // For i = 0...n, tgt = fn(dst,src,cov), where Dst,Src,and Cov can be constants or arrays.
|
| template <typename Dst, typename Src, typename Cov, typename Fn>
|
| -static void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov, Fn&& fn) {
|
| +static inline void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov, Fn&& fn) {
|
| // We don't want to muck with the callers' pointers, so we make them const and copy here.
|
| Dst d = dst;
|
| Src s = src;
|
| @@ -81,85 +102,30 @@
|
| // Writing this as a single while-loop helps hoist loop invariants from fn.
|
| while (n) {
|
| if (n >= 4) {
|
| - _mm_storeu_si128((__m128i*)t, fn(next4(d), next4(s), next4(c)));
|
| + auto d4 = next4(d),
|
| + s4 = next4(s),
|
| + c4 = next4(c);
|
| + auto lo = fn(d4.lo, s4.lo, c4.lo),
|
| + hi = fn(d4.hi, s4.hi, c4.hi);
|
| + _mm_storeu_si128((__m128i*)t, pack(lo,hi));
|
| t += 4;
|
| n -= 4;
|
| continue;
|
| }
|
| if (n & 2) {
|
| - _mm_storel_epi64((__m128i*)t, fn(next2(d), next2(s), next2(c)));
|
| + auto r = fn(next2(d), next2(s), next2(c));
|
| + _mm_storel_epi64((__m128i*)t, pack(r,r));
|
| t += 2;
|
| }
|
| if (n & 1) {
|
| - *t = _mm_cvtsi128_si32(fn(next1(d), next1(s), next1(c)));
|
| + auto r = fn(next1(d), next1(s), next1(c));
|
| + *t = _mm_cvtsi128_si32(pack(r,r));
|
| }
|
| return;
|
| }
|
| }
|
|
|
| -// packed
|
| -// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //
|
| -// unpacked
|
| -
|
| -// Everything on the packed side of the squiggly line deals with densely packed 8-bit data,
|
| -// e.g. [BGRA bgra ... ] for pixels or [ CCCC cccc ... ] for coverage.
|
| -//
|
| -// Everything on the unpacked side of the squiggly line deals with unpacked 8-bit data,
|
| -// e.g [B_G_ R_A_ b_g_ r_a_ ] for pixels or [ C_C_ C_C_ c_c_ c_c_ c_c_ ] for coverage,
|
| -// where _ is a zero byte.
|
| -//
|
| -// Adapt<Fn> / adapt(fn) allow the two sides to interoperate,
|
| -// by unpacking arguments, calling fn, then packing the results.
|
| -//
|
| -// This lets us write most of our code in terms of unpacked inputs (considerably simpler)
|
| -// and all the packing and unpacking is handled automatically.
|
| -
|
| -template <typename Fn>
|
| -struct Adapt {
|
| - Fn fn;
|
| -
|
| - __m128i operator()(__m128i d, __m128i s, __m128i c) {
|
| - auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128()); };
|
| - auto hi = [](__m128i x) { return _mm_unpackhi_epi8(x, _mm_setzero_si128()); };
|
| - return _mm_packus_epi16(fn(lo(d), lo(s), lo(c)),
|
| - fn(hi(d), hi(s), hi(c)));
|
| - }
|
| -
|
| - m64i operator()(const m64i& d, const m64i& s, const m64i& c) {
|
| - auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128()); };
|
| - auto r = fn(lo(d), lo(s), lo(c));
|
| - return _mm_packus_epi16(r, r);
|
| - }
|
| -};
|
| -
|
| -template <typename Fn>
|
| -static Adapt<Fn> adapt(Fn&& fn) { return { fn }; }
|
| -
|
| -// These helpers all work exclusively with unpacked 8-bit values,
|
| -// except div255() with is 16-bit -> unpacked 8-bit, and mul255() which is the reverse.
|
| -
|
| -// Divide by 255 with rounding.
|
| -// (x+127)/255 == ((x+128)*257)>>16.
|
| -// Sometimes we can be more efficient by breaking this into two parts.
|
| -static __m128i div255_part1(__m128i x) { return _mm_add_epi16(x, _mm_set1_epi16(128)); }
|
| -static __m128i div255_part2(__m128i x) { return _mm_mulhi_epu16(x, _mm_set1_epi16(257)); }
|
| -static __m128i div255(__m128i x) { return div255_part2(div255_part1(x)); }
|
| -
|
| -// (x*y+127)/255, a byte multiply.
|
| -static __m128i scale(__m128i x, __m128i y) { return div255(_mm_mullo_epi16(x, y)); }
|
| -
|
| -// (255 * x).
|
| -static __m128i mul255(__m128i x) { return _mm_sub_epi16(_mm_slli_epi16(x, 8), x); }
|
| -
|
| -// (255 - x).
|
| -static __m128i inv(__m128i x) { return _mm_xor_si128(_mm_set1_epi16(0x00ff), x); }
|
| -
|
| -// ARGB argb -> AAAA aaaa
|
| -static __m128i alphas(__m128i px) {
|
| - const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so this is typically 6.
|
| - const int _ = ~0;
|
| - return _mm_shuffle_epi8(px, _mm_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, a+8,_,a+8,_,a+8,_,a+8,_));
|
| -}
|
| +namespace sk_sse41 {
|
|
|
| // SrcOver, with a constant source and full coverage.
|
| static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMColor src) {
|
| @@ -168,14 +134,14 @@
|
|
|
| // But we can go one step further to ((s*255 + 128 + d*inv(alphas(s)))*257)>>16.
|
| // This lets us hoist (s*255+128) and inv(alphas(s)) out of the loop.
|
| - __m128i s = _mm_unpacklo_epi8(_mm_set1_epi32(src), _mm_setzero_si128()),
|
| - s_255_128 = div255_part1(mul255(s)),
|
| + __m128i s = next2(src),
|
| + s_255_128 = div255_part1(_mm_mullo_epi16(s, _mm_set1_epi16(255))),
|
| A = inv(alphas(s));
|
|
|
| const uint8_t cov = 0xff;
|
| - loop(n, tgt, dst, src, cov, adapt([=](__m128i d, __m128i, __m128i) {
|
| + loop(n, tgt, dst, src, cov, [=](__m128i d, __m128i, __m128i) {
|
| return div255_part2(_mm_add_epi16(s_255_128, _mm_mullo_epi16(d, A)));
|
| - }));
|
| + });
|
| }
|
|
|
| // SrcOver, with a constant source and variable coverage.
|
| @@ -186,26 +152,23 @@
|
| if (SkColorGetA(color) == 0xFF) {
|
| const SkPMColor src = SkSwizzle_BGRA_to_PMColor(color);
|
| while (h --> 0) {
|
| - loop(w, dst, (const SkPMColor*)dst, src, cov,
|
| - adapt([](__m128i d, __m128i s, __m128i c) {
|
| + loop(w, dst, (const SkPMColor*)dst, src, cov, [](__m128i d, __m128i s, __m128i c) {
|
| // Src blend mode: a simple lerp from d to s by c.
|
| // TODO: try a pmaddubsw version?
|
| - return div255(_mm_add_epi16(_mm_mullo_epi16(inv(c),d),
|
| - _mm_mullo_epi16( c ,s)));
|
| - }));
|
| + return div255(_mm_add_epi16(_mm_mullo_epi16(inv(c),d), _mm_mullo_epi16(c,s)));
|
| + });
|
| dst += dstRB / sizeof(*dst);
|
| cov += covRB / sizeof(*cov);
|
| }
|
| } else {
|
| const SkPMColor src = SkPreMultiplyColor(color);
|
| while (h --> 0) {
|
| - loop(w, dst, (const SkPMColor*)dst, src, cov,
|
| - adapt([](__m128i d, __m128i s, __m128i c) {
|
| + loop(w, dst, (const SkPMColor*)dst, src, cov, [](__m128i d, __m128i s, __m128i c) {
|
| // SrcOver blend mode, with coverage folded into source alpha.
|
| __m128i sc = scale(s,c),
|
| AC = inv(alphas(sc));
|
| return _mm_add_epi16(sc, scale(d,AC));
|
| - }));
|
| + });
|
| dst += dstRB / sizeof(*dst);
|
| cov += covRB / sizeof(*cov);
|
| }
|
| @@ -213,7 +176,6 @@
|
| }
|
|
|
| } // namespace sk_sse41
|
| -
|
| #endif
|
|
|
| namespace SkOpts {
|
|
|