OLD | NEW |
1 /* | 1 /* |
2 * Copyright 2015 Google Inc. | 2 * Copyright 2015 Google Inc. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
6 */ | 6 */ |
7 | 7 |
8 #include "SkOpts.h" | 8 #include "SkOpts.h" |
9 | 9 |
10 #define SK_OPTS_NS sk_sse41 | 10 #define SK_OPTS_NS sk_sse41 |
11 #include "SkBlurImageFilter_opts.h" | 11 #include "SkBlurImageFilter_opts.h" |
12 | 12 |
13 #ifndef SK_SUPPORT_LEGACY_X86_BLITS | 13 #ifndef SK_SUPPORT_LEGACY_X86_BLITS |
14 | 14 |
15 namespace sk_sse41 { | 15 // This file deals mostly with unpacked 8-bit values, |
| 16 // i.e. values between 0 and 255, but in 16-bit lanes with 0 at the top. |
16 | 17 |
17 // An SSE register holding at most 64 bits of useful data in the low lanes. | 18 // So __m128i typically represents 1 or 2 pixels, and m128ix2 represents 4. |
18 struct m64i { | 19 struct m128ix2 { __m128i lo, hi; }; |
19 __m128i v; | |
20 /*implicit*/ m64i(__m128i v) : v(v) {} | |
21 operator __m128i() const { return v; } | |
22 }; | |
23 | 20 |
24 // Load 4, 2, or 1 constant pixels or coverages (4x replicated). | 21 // unpack{lo,hi}() get our raw pixels unpacked, from half of 4 packed pixels to
2 unpacked pixels. |
25 static __m128i next4(uint32_t val) { return _mm_set1_epi32(val); } | 22 static inline __m128i unpacklo(__m128i x) { return _mm_cvtepu8_epi16(x); } |
26 static m64i next2(uint32_t val) { return _mm_set1_epi32(val); } | 23 static inline __m128i unpackhi(__m128i x) { return _mm_unpackhi_epi8(x, _mm_setz
ero_si128()); } |
27 static m64i next1(uint32_t val) { return _mm_set1_epi32(val); } | |
28 | 24 |
29 static __m128i next4(uint8_t val) { return _mm_set1_epi8(val); } | 25 // pack() converts back, from 4 unpacked pixels to 4 packed pixels. |
30 static m64i next2(uint8_t val) { return _mm_set1_epi8(val); } | 26 static inline __m128i pack(__m128i lo, __m128i hi) { return _mm_packus_epi16(lo,
hi); } |
31 static m64i next1(uint8_t val) { return _mm_set1_epi8(val); } | |
32 | 27 |
33 // Load 4, 2, or 1 variable pixels or coverages (4x replicated), | 28 // These nextN() functions abstract over the difference between iterating over |
34 // incrementing the pointer past what we read. | 29 // an array of values and returning a constant value, for uint8_t and uint32_t. |
35 static __m128i next4(const uint32_t*& ptr) { | 30 // The nextN() taking pointers increment that pointer past where they read. |
36 auto r = _mm_loadu_si128((const __m128i*)ptr); | 31 // |
| 32 // nextN() returns N unpacked pixels or 4N unpacked coverage values. |
| 33 |
| 34 static inline __m128i next1(uint8_t val) { return _mm_set1_epi16(val); } |
| 35 static inline __m128i next2(uint8_t val) { return _mm_set1_epi16(val); } |
| 36 static inline m128ix2 next4(uint8_t val) { return { next2(val), next2(val) }; } |
| 37 |
| 38 static inline __m128i next1(uint32_t val) { return unpacklo(_mm_cvtsi32_si128(va
l)); } |
| 39 static inline __m128i next2(uint32_t val) { return unpacklo(_mm_set1_epi32(val))
; } |
| 40 static inline m128ix2 next4(uint32_t val) { return { next2(val), next2(val) }; } |
| 41 |
| 42 static inline __m128i next1(const uint8_t*& ptr) { return _mm_set1_epi16(*ptr++)
; } |
| 43 static inline __m128i next2(const uint8_t*& ptr) { |
| 44 auto r = _mm_cvtsi32_si128(*(const uint16_t*)ptr); |
| 45 ptr += 2; |
| 46 const int _ = ~0; |
| 47 return _mm_shuffle_epi8(r, _mm_setr_epi8(0,_,0,_,0,_,0,_, 1,_,1,_,1,_,1,_)); |
| 48 } |
| 49 static inline m128ix2 next4(const uint8_t*& ptr) { |
| 50 auto r = _mm_cvtsi32_si128(*(const uint32_t*)ptr); |
37 ptr += 4; | 51 ptr += 4; |
38 return r; | 52 const int _ = ~0; |
| 53 auto lo = _mm_shuffle_epi8(r, _mm_setr_epi8(0,_,0,_,0,_,0,_, 1,_,1,_,1,_,1,_
)), |
| 54 hi = _mm_shuffle_epi8(r, _mm_setr_epi8(2,_,2,_,2,_,2,_, 3,_,3,_,3,_,3,_
)); |
| 55 return { lo, hi }; |
39 } | 56 } |
40 static m64i next2(const uint32_t*& ptr) { | 57 |
41 auto r = _mm_loadl_epi64((const __m128i*)ptr); | 58 static inline __m128i next1(const uint32_t*& ptr) { return unpacklo(_mm_cvtsi32_
si128(*ptr++)); } |
| 59 static inline __m128i next2(const uint32_t*& ptr) { |
| 60 auto r = unpacklo(_mm_loadl_epi64((const __m128i*)ptr)); |
42 ptr += 2; | 61 ptr += 2; |
43 return r; | 62 return r; |
44 } | 63 } |
45 static m64i next1(const uint32_t*& ptr) { | 64 static inline m128ix2 next4(const uint32_t*& ptr) { |
46 auto r = _mm_cvtsi32_si128(*ptr); | 65 auto packed = _mm_loadu_si128((const __m128i*)ptr); |
47 ptr += 1; | 66 ptr += 4; |
48 return r; | 67 return { unpacklo(packed), unpackhi(packed) }; |
49 } | 68 } |
50 | 69 |
51 // xyzw -> xxxx yyyy zzzz wwww | 70 // Divide by 255 with rounding. |
52 static __m128i replicate_coverage(__m128i xyzw) { | 71 // (x+127)/255 == ((x+128)*257)>>16. |
53 const uint8_t mask[] = { 0,0,0,0, 1,1,1,1, 2,2,2,2, 3,3,3,3 }; | 72 // Sometimes we can be more efficient by breaking this into two parts. |
54 return _mm_shuffle_epi8(xyzw, _mm_load_si128((const __m128i*)mask)); | 73 static inline __m128i div255_part1(__m128i x) { return _mm_add_epi16(x, _mm_set1
_epi16(128)); } |
| 74 static inline __m128i div255_part2(__m128i x) { return _mm_mulhi_epu16(x, _mm_se
t1_epi16(257)); } |
| 75 static inline __m128i div255(__m128i x) { return div255_part2(div255_part1(x));
} |
| 76 |
| 77 // (x*y+127)/255, a byte multiply. |
| 78 static inline __m128i scale(__m128i x, __m128i y) { |
| 79 return div255(_mm_mullo_epi16(x, y)); |
55 } | 80 } |
56 | 81 |
57 static __m128i next4(const uint8_t*& ptr) { | 82 // (255 - x). |
58 auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint32_t*)ptr)); | 83 static inline __m128i inv(__m128i x) { |
59 ptr += 4; | 84 return _mm_xor_si128(_mm_set1_epi16(0x00ff), x); // This seems a bit faster
than _mm_sub_epi16. |
60 return r; | |
61 } | 85 } |
62 static m64i next2(const uint8_t*& ptr) { | 86 |
63 auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint16_t*)ptr)); | 87 // ARGB argb -> AAAA aaaa |
64 ptr += 2; | 88 static inline __m128i alphas(__m128i px) { |
65 return r; | 89 const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so thi
s is typically 6. |
66 } | 90 const int _ = ~0; |
67 static m64i next1(const uint8_t*& ptr) { | 91 return _mm_shuffle_epi8(px, _mm_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, a+8,_,a+8
,_,a+8,_,a+8,_)); |
68 auto r = replicate_coverage(_mm_cvtsi32_si128(*ptr)); | |
69 ptr += 1; | |
70 return r; | |
71 } | 92 } |
72 | 93 |
73 // For i = 0...n, tgt = fn(dst,src,cov), where Dst,Src,and Cov can be constants
or arrays. | 94 // For i = 0...n, tgt = fn(dst,src,cov), where Dst,Src,and Cov can be constants
or arrays. |
74 template <typename Dst, typename Src, typename Cov, typename Fn> | 95 template <typename Dst, typename Src, typename Cov, typename Fn> |
75 static void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov
, Fn&& fn) { | 96 static inline void loop(int n, uint32_t* t, const Dst dst, const Src src, const
Cov cov, Fn&& fn) { |
76 // We don't want to muck with the callers' pointers, so we make them const a
nd copy here. | 97 // We don't want to muck with the callers' pointers, so we make them const a
nd copy here. |
77 Dst d = dst; | 98 Dst d = dst; |
78 Src s = src; | 99 Src s = src; |
79 Cov c = cov; | 100 Cov c = cov; |
80 | 101 |
81 // Writing this as a single while-loop helps hoist loop invariants from fn. | 102 // Writing this as a single while-loop helps hoist loop invariants from fn. |
82 while (n) { | 103 while (n) { |
83 if (n >= 4) { | 104 if (n >= 4) { |
84 _mm_storeu_si128((__m128i*)t, fn(next4(d), next4(s), next4(c))); | 105 auto d4 = next4(d), |
| 106 s4 = next4(s), |
| 107 c4 = next4(c); |
| 108 auto lo = fn(d4.lo, s4.lo, c4.lo), |
| 109 hi = fn(d4.hi, s4.hi, c4.hi); |
| 110 _mm_storeu_si128((__m128i*)t, pack(lo,hi)); |
85 t += 4; | 111 t += 4; |
86 n -= 4; | 112 n -= 4; |
87 continue; | 113 continue; |
88 } | 114 } |
89 if (n & 2) { | 115 if (n & 2) { |
90 _mm_storel_epi64((__m128i*)t, fn(next2(d), next2(s), next2(c))); | 116 auto r = fn(next2(d), next2(s), next2(c)); |
| 117 _mm_storel_epi64((__m128i*)t, pack(r,r)); |
91 t += 2; | 118 t += 2; |
92 } | 119 } |
93 if (n & 1) { | 120 if (n & 1) { |
94 *t = _mm_cvtsi128_si32(fn(next1(d), next1(s), next1(c))); | 121 auto r = fn(next1(d), next1(s), next1(c)); |
| 122 *t = _mm_cvtsi128_si32(pack(r,r)); |
95 } | 123 } |
96 return; | 124 return; |
97 } | 125 } |
98 } | 126 } |
99 | 127 |
100 // packed | 128 namespace sk_sse41 { |
101 // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~ // | |
102 // unpacked | |
103 | |
104 // Everything on the packed side of the squiggly line deals with densely packed
8-bit data, | |
105 // e.g. [BGRA bgra ... ] for pixels or [ CCCC cccc ... ] for coverage. | |
106 // | |
107 // Everything on the unpacked side of the squiggly line deals with unpacked 8-bi
t data, | |
108 // e.g [B_G_ R_A_ b_g_ r_a_ ] for pixels or [ C_C_ C_C_ c_c_ c_c_ c_c_ ] for cov
erage, | |
109 // where _ is a zero byte. | |
110 // | |
111 // Adapt<Fn> / adapt(fn) allow the two sides to interoperate, | |
112 // by unpacking arguments, calling fn, then packing the results. | |
113 // | |
114 // This lets us write most of our code in terms of unpacked inputs (considerably
simpler) | |
115 // and all the packing and unpacking is handled automatically. | |
116 | |
117 template <typename Fn> | |
118 struct Adapt { | |
119 Fn fn; | |
120 | |
121 __m128i operator()(__m128i d, __m128i s, __m128i c) { | |
122 auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128(
)); }; | |
123 auto hi = [](__m128i x) { return _mm_unpackhi_epi8(x, _mm_setzero_si128(
)); }; | |
124 return _mm_packus_epi16(fn(lo(d), lo(s), lo(c)), | |
125 fn(hi(d), hi(s), hi(c))); | |
126 } | |
127 | |
128 m64i operator()(const m64i& d, const m64i& s, const m64i& c) { | |
129 auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128(
)); }; | |
130 auto r = fn(lo(d), lo(s), lo(c)); | |
131 return _mm_packus_epi16(r, r); | |
132 } | |
133 }; | |
134 | |
135 template <typename Fn> | |
136 static Adapt<Fn> adapt(Fn&& fn) { return { fn }; } | |
137 | |
138 // These helpers all work exclusively with unpacked 8-bit values, | |
139 // except div255() with is 16-bit -> unpacked 8-bit, and mul255() which is the r
everse. | |
140 | |
141 // Divide by 255 with rounding. | |
142 // (x+127)/255 == ((x+128)*257)>>16. | |
143 // Sometimes we can be more efficient by breaking this into two parts. | |
144 static __m128i div255_part1(__m128i x) { return _mm_add_epi16(x, _mm_set1_epi16(
128)); } | |
145 static __m128i div255_part2(__m128i x) { return _mm_mulhi_epu16(x, _mm_set1_epi1
6(257)); } | |
146 static __m128i div255(__m128i x) { return div255_part2(div255_part1(x)); } | |
147 | |
148 // (x*y+127)/255, a byte multiply. | |
149 static __m128i scale(__m128i x, __m128i y) { return div255(_mm_mullo_epi16(x, y)
); } | |
150 | |
151 // (255 * x). | |
152 static __m128i mul255(__m128i x) { return _mm_sub_epi16(_mm_slli_epi16(x, 8), x)
; } | |
153 | |
154 // (255 - x). | |
155 static __m128i inv(__m128i x) { return _mm_xor_si128(_mm_set1_epi16(0x00ff), x);
} | |
156 | |
157 // ARGB argb -> AAAA aaaa | |
158 static __m128i alphas(__m128i px) { | |
159 const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so thi
s is typically 6. | |
160 const int _ = ~0; | |
161 return _mm_shuffle_epi8(px, _mm_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, a+8,_,a+8
,_,a+8,_,a+8,_)); | |
162 } | |
163 | 129 |
164 // SrcOver, with a constant source and full coverage. | 130 // SrcOver, with a constant source and full coverage. |
165 static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMCo
lor src) { | 131 static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMCo
lor src) { |
166 // We want to calculate s + (d * inv(alphas(s)) + 127)/255. | 132 // We want to calculate s + (d * inv(alphas(s)) + 127)/255. |
167 // We'd generally do that div255 as s + ((d * inv(alphas(s)) + 128)*257)>>16
. | 133 // We'd generally do that div255 as s + ((d * inv(alphas(s)) + 128)*257)>>16
. |
168 | 134 |
169 // But we can go one step further to ((s*255 + 128 + d*inv(alphas(s)))*257)>
>16. | 135 // But we can go one step further to ((s*255 + 128 + d*inv(alphas(s)))*257)>
>16. |
170 // This lets us hoist (s*255+128) and inv(alphas(s)) out of the loop. | 136 // This lets us hoist (s*255+128) and inv(alphas(s)) out of the loop. |
171 __m128i s = _mm_unpacklo_epi8(_mm_set1_epi32(src), _mm_setzero_si128()), | 137 __m128i s = next2(src), |
172 s_255_128 = div255_part1(mul255(s)), | 138 s_255_128 = div255_part1(_mm_mullo_epi16(s, _mm_set1_epi16(255))), |
173 A = inv(alphas(s)); | 139 A = inv(alphas(s)); |
174 | 140 |
175 const uint8_t cov = 0xff; | 141 const uint8_t cov = 0xff; |
176 loop(n, tgt, dst, src, cov, adapt([=](__m128i d, __m128i, __m128i) { | 142 loop(n, tgt, dst, src, cov, [=](__m128i d, __m128i, __m128i) { |
177 return div255_part2(_mm_add_epi16(s_255_128, _mm_mullo_epi16(d, A))); | 143 return div255_part2(_mm_add_epi16(s_255_128, _mm_mullo_epi16(d, A))); |
178 })); | 144 }); |
179 } | 145 } |
180 | 146 |
181 // SrcOver, with a constant source and variable coverage. | 147 // SrcOver, with a constant source and variable coverage. |
182 // If the source is opaque, SrcOver becomes Src. | 148 // If the source is opaque, SrcOver becomes Src. |
183 static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB, | 149 static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB, |
184 const SkAlpha* cov, size_t covRB, | 150 const SkAlpha* cov, size_t covRB, |
185 SkColor color, int w, int h) { | 151 SkColor color, int w, int h) { |
186 if (SkColorGetA(color) == 0xFF) { | 152 if (SkColorGetA(color) == 0xFF) { |
187 const SkPMColor src = SkSwizzle_BGRA_to_PMColor(color); | 153 const SkPMColor src = SkSwizzle_BGRA_to_PMColor(color); |
188 while (h --> 0) { | 154 while (h --> 0) { |
189 loop(w, dst, (const SkPMColor*)dst, src, cov, | 155 loop(w, dst, (const SkPMColor*)dst, src, cov, [](__m128i d, __m128i
s, __m128i c) { |
190 adapt([](__m128i d, __m128i s, __m128i c) { | |
191 // Src blend mode: a simple lerp from d to s by c. | 156 // Src blend mode: a simple lerp from d to s by c. |
192 // TODO: try a pmaddubsw version? | 157 // TODO: try a pmaddubsw version? |
193 return div255(_mm_add_epi16(_mm_mullo_epi16(inv(c),d), | 158 return div255(_mm_add_epi16(_mm_mullo_epi16(inv(c),d), _mm_mullo
_epi16(c,s))); |
194 _mm_mullo_epi16( c ,s))); | 159 }); |
195 })); | |
196 dst += dstRB / sizeof(*dst); | 160 dst += dstRB / sizeof(*dst); |
197 cov += covRB / sizeof(*cov); | 161 cov += covRB / sizeof(*cov); |
198 } | 162 } |
199 } else { | 163 } else { |
200 const SkPMColor src = SkPreMultiplyColor(color); | 164 const SkPMColor src = SkPreMultiplyColor(color); |
201 while (h --> 0) { | 165 while (h --> 0) { |
202 loop(w, dst, (const SkPMColor*)dst, src, cov, | 166 loop(w, dst, (const SkPMColor*)dst, src, cov, [](__m128i d, __m128i
s, __m128i c) { |
203 adapt([](__m128i d, __m128i s, __m128i c) { | |
204 // SrcOver blend mode, with coverage folded into source alpha. | 167 // SrcOver blend mode, with coverage folded into source alpha. |
205 __m128i sc = scale(s,c), | 168 __m128i sc = scale(s,c), |
206 AC = inv(alphas(sc)); | 169 AC = inv(alphas(sc)); |
207 return _mm_add_epi16(sc, scale(d,AC)); | 170 return _mm_add_epi16(sc, scale(d,AC)); |
208 })); | 171 }); |
209 dst += dstRB / sizeof(*dst); | 172 dst += dstRB / sizeof(*dst); |
210 cov += covRB / sizeof(*cov); | 173 cov += covRB / sizeof(*cov); |
211 } | 174 } |
212 } | 175 } |
213 } | 176 } |
214 | 177 |
215 } // namespace sk_sse41 | 178 } // namespace sk_sse41 |
216 | |
217 #endif | 179 #endif |
218 | 180 |
219 namespace SkOpts { | 181 namespace SkOpts { |
220 void Init_sse41() { | 182 void Init_sse41() { |
221 box_blur_xx = sk_sse41::box_blur_xx; | 183 box_blur_xx = sk_sse41::box_blur_xx; |
222 box_blur_xy = sk_sse41::box_blur_xy; | 184 box_blur_xy = sk_sse41::box_blur_xy; |
223 box_blur_yx = sk_sse41::box_blur_yx; | 185 box_blur_yx = sk_sse41::box_blur_yx; |
224 | 186 |
225 #ifndef SK_SUPPORT_LEGACY_X86_BLITS | 187 #ifndef SK_SUPPORT_LEGACY_X86_BLITS |
226 blit_row_color32 = sk_sse41::blit_row_color32; | 188 blit_row_color32 = sk_sse41::blit_row_color32; |
227 blit_mask_d32_a8 = sk_sse41::blit_mask_d32_a8; | 189 blit_mask_d32_a8 = sk_sse41::blit_mask_d32_a8; |
228 #endif | 190 #endif |
229 } | 191 } |
230 } | 192 } |
OLD | NEW |