Index: src/opts/SkOpts_avx2.cpp |
diff --git a/src/opts/SkOpts_avx2.cpp b/src/opts/SkOpts_avx2.cpp |
deleted file mode 100644 |
index b943317227a245df3b7a3c195c0b8a995d7a6b61..0000000000000000000000000000000000000000 |
--- a/src/opts/SkOpts_avx2.cpp |
+++ /dev/null |
@@ -1,237 +0,0 @@ |
-/* |
- * Copyright 2015 Google Inc. |
- * |
- * Use of this source code is governed by a BSD-style license that can be |
- * found in the LICENSE file. |
- */ |
- |
-#include "SkOpts.h" |
-#define SK_OPTS_NS sk_avx2 |
- |
-#ifndef SK_SUPPORT_LEGACY_X86_BLITS |
- |
-namespace sk_avx2 { |
- |
-// AVX2 has masked loads and stores. We'll use them for N<4 pixels. |
-static __m128i mask(int n) { |
- static const int masks[][4] = { |
- { 0, 0, 0, 0}, |
- {~0, 0, 0, 0}, |
- {~0,~0, 0, 0}, |
- {~0,~0,~0, 0}, |
- }; |
- return _mm_load_si128((const __m128i*)masks+n); |
-} |
- |
-// Load 8, 4, or 1-3 constant pixels or coverages (4x replicated). |
-static __m256i next8( uint32_t val) { return _mm256_set1_epi32(val); } |
-static __m128i next4( uint32_t val) { return _mm_set1_epi32(val); } |
-static __m128i tail(int, uint32_t val) { return _mm_set1_epi32(val); } |
- |
-static __m256i next8( uint8_t val) { return _mm256_set1_epi8(val); } |
-static __m128i next4( uint8_t val) { return _mm_set1_epi8(val); } |
-static __m128i tail(int, uint8_t val) { return _mm_set1_epi8(val); } |
- |
-// Load 8, 4, or 1-3 variable pixels or coverages (4x replicated). |
-// next8() and next4() increment their pointer past what they just read. tail() doesn't bother. |
-static __m256i next8(const uint32_t*& ptr) { |
- auto r = _mm256_loadu_si256((const __m256i*)ptr); |
- ptr += 8; |
- return r; |
-} |
-static __m128i next4(const uint32_t*& ptr) { |
- auto r = _mm_loadu_si128((const __m128i*)ptr); |
- ptr += 4; |
- return r; |
-} |
-static __m128i tail(int n, const uint32_t* ptr) { |
- return _mm_maskload_epi32((const int*)ptr, mask(n)); |
-} |
- |
-static __m256i next8(const uint8_t*& ptr) { |
- auto r = _mm256_cvtepu8_epi32(_mm_loadl_epi64((const __m128i*)ptr)); |
- r = _mm256_shuffle_epi8(r, _mm256_setr_epi8(0,0,0,0, 4,4,4,4, 8,8,8,8, 12,12,12,12, |
- 0,0,0,0, 4,4,4,4, 8,8,8,8, 12,12,12,12)); |
- ptr += 8; |
- return r; |
-} |
-static __m128i next4(const uint8_t*& ptr) { |
- auto r = _mm_shuffle_epi8(_mm_cvtsi32_si128(*(const uint32_t*)ptr), |
- _mm_setr_epi8(0,0,0,0, 1,1,1,1, 2,2,2,2, 3,3,3,3)); |
- ptr += 4; |
- return r; |
-} |
-static __m128i tail(int n, const uint8_t* ptr) { |
- uint32_t x = 0; |
- switch (n) { |
- case 3: x |= (uint32_t)ptr[2] << 16; |
- case 2: x |= (uint32_t)ptr[1] << 8; |
- case 1: x |= (uint32_t)ptr[0] << 0; |
- } |
- auto p = (const uint8_t*)&x; |
- return next4(p); |
-} |
- |
-// For i = 0...n, tgt = fn(dst,src,cov), where Dst,Src,and Cov can be constants or arrays. |
-template <typename Dst, typename Src, typename Cov, typename Fn> |
-static void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov, Fn&& fn) { |
- // We don't want to muck with the callers' pointers, so we make them const and copy here. |
- Dst d = dst; |
- Src s = src; |
- Cov c = cov; |
- |
- // Writing this as a single while-loop helps hoist loop invariants from fn. |
- while (n) { |
- if (n >= 8) { |
- _mm256_storeu_si256((__m256i*)t, fn(next8(d), next8(s), next8(c))); |
- t += 8; |
- n -= 8; |
- continue; |
- } |
- if (n >= 4) { |
- _mm_storeu_si128((__m128i*)t, fn(next4(d), next4(s), next4(c))); |
- t += 4; |
- n -= 4; |
- } |
- if (n) { |
- _mm_maskstore_epi32((int*)t, mask(n), fn(tail(n,d), tail(n,s), tail(n,c))); |
- } |
- return; |
- } |
-} |
- |
-// packed // |
-// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // |
-// unpacked // |
- |
-// Everything on the packed side of the squiggly line deals with densely packed 8-bit data, |
-// e.g [ BGRA bgra ... ] for pixels or [ CCCC cccc ... ] for coverage. |
-// |
-// Everything on the unpacked side of the squiggly line deals with unpacked 8-bit data, |
-// e.g. [ B_G_ R_A_ b_g_ r_a_ ... ] for pixels or [ C_C_ C_C_ c_c_ c_c_ ... ] for coverage, |
-// where _ is a zero byte. |
-// |
-// Adapt<Fn> / adapt(fn) allow the two sides to interoperate, |
-// by unpacking arguments, calling fn, then packing the results. |
-// |
-// This lets us write most of our code in terms of unpacked inputs (considerably simpler) |
-// and all the packing and unpacking is handled automatically. |
- |
-template <typename Fn> |
-struct Adapt { |
- Fn fn; |
- |
- __m256i operator()(__m256i d, __m256i s, __m256i c) { |
- auto lo = [](__m256i x) { return _mm256_unpacklo_epi8(x, _mm256_setzero_si256()); }; |
- auto hi = [](__m256i x) { return _mm256_unpackhi_epi8(x, _mm256_setzero_si256()); }; |
- return _mm256_packus_epi16(fn(lo(d), lo(s), lo(c)), |
- fn(hi(d), hi(s), hi(c))); |
- } |
- |
- __m128i operator()(__m128i d, __m128i s, __m128i c) { |
- auto unpack = [](__m128i x) { return _mm256_cvtepu8_epi16(x); }; |
- auto pack = [](__m256i x) { |
- auto x01 = x, |
- x23 = _mm256_permute4x64_epi64(x, 0xe); // 0b1110 |
- return _mm256_castsi256_si128(_mm256_packus_epi16(x01, x23)); |
- }; |
- return pack(fn(unpack(d), unpack(s), unpack(c))); |
- } |
-}; |
- |
-template <typename Fn> |
-static Adapt<Fn> adapt(Fn&& fn) { return { fn }; } |
- |
-// These helpers all work exclusively with unpacked 8-bit values, |
-// except div255() which is 16-bit -> unpacked 8-bit, and mul255() which is the reverse. |
- |
-// Divide by 255 with rounding. |
-// (x+127)/255 == ((x+128)*257)>>16. |
-// Sometimes we can be more efficient by breaking this into two parts. |
-static __m256i div255_part1(__m256i x) { return _mm256_add_epi16 (x, _mm256_set1_epi16(128)); } |
-static __m256i div255_part2(__m256i x) { return _mm256_mulhi_epu16(x, _mm256_set1_epi16(257)); } |
-static __m256i div255(__m256i x) { return div255_part2(div255_part1(x)); } |
- |
-// (x*y+127)/255, a byte multiply. |
-static __m256i scale(__m256i x, __m256i y) { return div255(_mm256_mullo_epi16(x, y)); } |
- |
-// (255 * x). |
-static __m256i mul255(__m256i x) { return _mm256_sub_epi16(_mm256_slli_epi16(x, 8), x); } |
- |
-// (255 - x). |
-static __m256i inv(__m256i x) { return _mm256_xor_si256(_mm256_set1_epi16(0x00ff), x); } |
- |
-// ARGB argb ... -> AAAA aaaa ... |
-static __m256i alphas(__m256i px) { |
- const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so this is typically 6. |
- const int _ = ~0; |
- return _mm256_shuffle_epi8(px, _mm256_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, |
- a+8,_,a+8,_,a+8,_,a+8,_, |
- a+0,_,a+0,_,a+0,_,a+0,_, |
- a+8,_,a+8,_,a+8,_,a+8,_)); |
-} |
- |
- |
-// SrcOver, with a constant source and full coverage. |
-static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMColor src) { |
- // We want to calculate s + (d * inv(alphas(s)) + 127)/255. |
- // We'd generally do that div255 as s + ((d * inv(alphas(s)) + 128)*257)>>16. |
- |
- // But we can go one step further to ((s*255 + 128 + d*inv(alphas(s)))*257)>>16. |
- // This lets us hoist (s*255+128) and inv(alphas(s)) out of the loop. |
- auto s = _mm256_cvtepu8_epi16(_mm_set1_epi32(src)), |
- s_255_128 = div255_part1(mul255(s)), |
- A = inv(alphas(s)); |
- |
- const uint8_t cov = 0xff; |
- loop(n, tgt, dst, src, cov, adapt([=](__m256i d, __m256i, __m256i) { |
- return div255_part2(_mm256_add_epi16(s_255_128, _mm256_mullo_epi16(d, A))); |
- })); |
-} |
- |
-// SrcOver, with a constant source and variable coverage. |
-// If the source is opaque, SrcOver becomes Src. |
-static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB, |
- const SkAlpha* cov, size_t covRB, |
- SkColor color, int w, int h) { |
- if (SkColorGetA(color) == 0xFF) { |
- const SkPMColor src = SkSwizzle_BGRA_to_PMColor(color); |
- while (h --> 0) { |
- loop(w, dst, (const SkPMColor*)dst, src, cov, |
- adapt([](__m256i d, __m256i s, __m256i c) { |
- // Src blend mode: a simple lerp from d to s by c. |
- // TODO: try a pmaddubsw version? |
- return div255(_mm256_add_epi16(_mm256_mullo_epi16(inv(c),d), |
- _mm256_mullo_epi16( c ,s))); |
- })); |
- dst += dstRB / sizeof(*dst); |
- cov += covRB / sizeof(*cov); |
- } |
- } else { |
- const SkPMColor src = SkPreMultiplyColor(color); |
- while (h --> 0) { |
- loop(w, dst, (const SkPMColor*)dst, src, cov, |
- adapt([](__m256i d, __m256i s, __m256i c) { |
- // SrcOver blend mode, with coverage folded into source alpha. |
- auto sc = scale(s,c), |
- AC = inv(alphas(sc)); |
- return _mm256_add_epi16(sc, scale(d,AC)); |
- })); |
- dst += dstRB / sizeof(*dst); |
- cov += covRB / sizeof(*cov); |
- } |
- } |
-} |
- |
-} // namespace sk_avx2 |
- |
-#endif |
- |
-namespace SkOpts { |
- void Init_avx2() { |
- #ifndef SK_SUPPORT_LEGACY_X86_BLITS |
- blit_row_color32 = sk_avx2::blit_row_color32; |
- blit_mask_d32_a8 = sk_avx2::blit_mask_d32_a8; |
- #endif |
- } |
-} |