Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(229)

Unified Diff: src/opts/SkOpts_sse41.cpp

Issue 1632713002: Revert of AVX 2 SrcOver blits: color32, blitmask. (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: Created 4 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/opts/SkOpts_avx2.cpp ('k') | no next file » | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/opts/SkOpts_sse41.cpp
diff --git a/src/opts/SkOpts_sse41.cpp b/src/opts/SkOpts_sse41.cpp
index f097e56c5e34a8eab9ebb6ecbff715ec3baa0010..16ba87ad87c04fa07327bd7719b87e7675e0cbb1 100644
--- a/src/opts/SkOpts_sse41.cpp
+++ b/src/opts/SkOpts_sse41.cpp
@@ -12,67 +12,88 @@
#ifndef SK_SUPPORT_LEGACY_X86_BLITS
-namespace sk_sse41 {
+// This file deals mostly with unpacked 8-bit values,
+// i.e. values between 0 and 255, but in 16-bit lanes with 0 at the top.
-// An SSE register holding at most 64 bits of useful data in the low lanes.
-struct m64i {
- __m128i v;
- /*implicit*/ m64i(__m128i v) : v(v) {}
- operator __m128i() const { return v; }
-};
+// So __m128i typically represents 1 or 2 pixels, and m128ix2 represents 4.
+struct m128ix2 { __m128i lo, hi; };
-// Load 4, 2, or 1 constant pixels or coverages (4x replicated).
-static __m128i next4(uint32_t val) { return _mm_set1_epi32(val); }
-static m64i next2(uint32_t val) { return _mm_set1_epi32(val); }
-static m64i next1(uint32_t val) { return _mm_set1_epi32(val); }
+// unpack{lo,hi}() get our raw pixels unpacked, from half of 4 packed pixels to 2 unpacked pixels.
+static inline __m128i unpacklo(__m128i x) { return _mm_cvtepu8_epi16(x); }
+static inline __m128i unpackhi(__m128i x) { return _mm_unpackhi_epi8(x, _mm_setzero_si128()); }
-static __m128i next4(uint8_t val) { return _mm_set1_epi8(val); }
-static m64i next2(uint8_t val) { return _mm_set1_epi8(val); }
-static m64i next1(uint8_t val) { return _mm_set1_epi8(val); }
+// pack() converts back, from 4 unpacked pixels to 4 packed pixels.
+static inline __m128i pack(__m128i lo, __m128i hi) { return _mm_packus_epi16(lo, hi); }
-// Load 4, 2, or 1 variable pixels or coverages (4x replicated),
-// incrementing the pointer past what we read.
-static __m128i next4(const uint32_t*& ptr) {
- auto r = _mm_loadu_si128((const __m128i*)ptr);
+// These nextN() functions abstract over the difference between iterating over
+// an array of values and returning a constant value, for uint8_t and uint32_t.
+// The nextN() taking pointers increment that pointer past where they read.
+//
+// nextN() returns N unpacked pixels or 4N unpacked coverage values.
+
+static inline __m128i next1(uint8_t val) { return _mm_set1_epi16(val); }
+static inline __m128i next2(uint8_t val) { return _mm_set1_epi16(val); }
+static inline m128ix2 next4(uint8_t val) { return { next2(val), next2(val) }; }
+
+static inline __m128i next1(uint32_t val) { return unpacklo(_mm_cvtsi32_si128(val)); }
+static inline __m128i next2(uint32_t val) { return unpacklo(_mm_set1_epi32(val)); }
+static inline m128ix2 next4(uint32_t val) { return { next2(val), next2(val) }; }
+
+static inline __m128i next1(const uint8_t*& ptr) { return _mm_set1_epi16(*ptr++); }
+static inline __m128i next2(const uint8_t*& ptr) {
+ auto r = _mm_cvtsi32_si128(*(const uint16_t*)ptr);
+ ptr += 2;
+ const int _ = ~0;
+ return _mm_shuffle_epi8(r, _mm_setr_epi8(0,_,0,_,0,_,0,_, 1,_,1,_,1,_,1,_));
+}
+static inline m128ix2 next4(const uint8_t*& ptr) {
+ auto r = _mm_cvtsi32_si128(*(const uint32_t*)ptr);
ptr += 4;
- return r;
+ const int _ = ~0;
+ auto lo = _mm_shuffle_epi8(r, _mm_setr_epi8(0,_,0,_,0,_,0,_, 1,_,1,_,1,_,1,_)),
+ hi = _mm_shuffle_epi8(r, _mm_setr_epi8(2,_,2,_,2,_,2,_, 3,_,3,_,3,_,3,_));
+ return { lo, hi };
}
-static m64i next2(const uint32_t*& ptr) {
- auto r = _mm_loadl_epi64((const __m128i*)ptr);
+
+static inline __m128i next1(const uint32_t*& ptr) { return unpacklo(_mm_cvtsi32_si128(*ptr++)); }
+static inline __m128i next2(const uint32_t*& ptr) {
+ auto r = unpacklo(_mm_loadl_epi64((const __m128i*)ptr));
ptr += 2;
return r;
}
-static m64i next1(const uint32_t*& ptr) {
- auto r = _mm_cvtsi32_si128(*ptr);
- ptr += 1;
- return r;
+static inline m128ix2 next4(const uint32_t*& ptr) {
+ auto packed = _mm_loadu_si128((const __m128i*)ptr);
+ ptr += 4;
+ return { unpacklo(packed), unpackhi(packed) };
}
-// xyzw -> xxxx yyyy zzzz wwww
-static __m128i replicate_coverage(__m128i xyzw) {
- const uint8_t mask[] = { 0,0,0,0, 1,1,1,1, 2,2,2,2, 3,3,3,3 };
- return _mm_shuffle_epi8(xyzw, _mm_load_si128((const __m128i*)mask));
+// Divide by 255 with rounding.
+// (x+127)/255 == ((x+128)*257)>>16.
+// Sometimes we can be more efficient by breaking this into two parts.
+static inline __m128i div255_part1(__m128i x) { return _mm_add_epi16(x, _mm_set1_epi16(128)); }
+static inline __m128i div255_part2(__m128i x) { return _mm_mulhi_epu16(x, _mm_set1_epi16(257)); }
+static inline __m128i div255(__m128i x) { return div255_part2(div255_part1(x)); }
+
+// (x*y+127)/255, a byte multiply.
+static inline __m128i scale(__m128i x, __m128i y) {
+ return div255(_mm_mullo_epi16(x, y));
}
-static __m128i next4(const uint8_t*& ptr) {
- auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint32_t*)ptr));
- ptr += 4;
- return r;
+// (255 - x).
+static inline __m128i inv(__m128i x) {
+ return _mm_xor_si128(_mm_set1_epi16(0x00ff), x); // This seems a bit faster than _mm_sub_epi16.
}
-static m64i next2(const uint8_t*& ptr) {
- auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint16_t*)ptr));
- ptr += 2;
- return r;
-}
-static m64i next1(const uint8_t*& ptr) {
- auto r = replicate_coverage(_mm_cvtsi32_si128(*ptr));
- ptr += 1;
- return r;
+
+// ARGB argb -> AAAA aaaa
+static inline __m128i alphas(__m128i px) {
+ const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so this is typically 6.
+ const int _ = ~0;
+ return _mm_shuffle_epi8(px, _mm_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, a+8,_,a+8,_,a+8,_,a+8,_));
}
// For i = 0...n, tgt = fn(dst,src,cov), where Dst,Src,and Cov can be constants or arrays.
template <typename Dst, typename Src, typename Cov, typename Fn>
-static void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov, Fn&& fn) {
+static inline void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov, Fn&& fn) {
// We don't want to muck with the callers' pointers, so we make them const and copy here.
Dst d = dst;
Src s = src;
@@ -81,85 +102,30 @@
// Writing this as a single while-loop helps hoist loop invariants from fn.
while (n) {
if (n >= 4) {
- _mm_storeu_si128((__m128i*)t, fn(next4(d), next4(s), next4(c)));
+ auto d4 = next4(d),
+ s4 = next4(s),
+ c4 = next4(c);
+ auto lo = fn(d4.lo, s4.lo, c4.lo),
+ hi = fn(d4.hi, s4.hi, c4.hi);
+ _mm_storeu_si128((__m128i*)t, pack(lo,hi));
t += 4;
n -= 4;
continue;
}
if (n & 2) {
- _mm_storel_epi64((__m128i*)t, fn(next2(d), next2(s), next2(c)));
+ auto r = fn(next2(d), next2(s), next2(c));
+ _mm_storel_epi64((__m128i*)t, pack(r,r));
t += 2;
}
if (n & 1) {
- *t = _mm_cvtsi128_si32(fn(next1(d), next1(s), next1(c)));
+ auto r = fn(next1(d), next1(s), next1(c));
+ *t = _mm_cvtsi128_si32(pack(r,r));
}
return;
}
}
-// packed
-// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //
-// unpacked
-
-// Everything on the packed side of the squiggly line deals with densely packed 8-bit data,
-// e.g. [BGRA bgra ... ] for pixels or [ CCCC cccc ... ] for coverage.
-//
-// Everything on the unpacked side of the squiggly line deals with unpacked 8-bit data,
-// e.g [B_G_ R_A_ b_g_ r_a_ ] for pixels or [ C_C_ C_C_ c_c_ c_c_ c_c_ ] for coverage,
-// where _ is a zero byte.
-//
-// Adapt<Fn> / adapt(fn) allow the two sides to interoperate,
-// by unpacking arguments, calling fn, then packing the results.
-//
-// This lets us write most of our code in terms of unpacked inputs (considerably simpler)
-// and all the packing and unpacking is handled automatically.
-
-template <typename Fn>
-struct Adapt {
- Fn fn;
-
- __m128i operator()(__m128i d, __m128i s, __m128i c) {
- auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128()); };
- auto hi = [](__m128i x) { return _mm_unpackhi_epi8(x, _mm_setzero_si128()); };
- return _mm_packus_epi16(fn(lo(d), lo(s), lo(c)),
- fn(hi(d), hi(s), hi(c)));
- }
-
- m64i operator()(const m64i& d, const m64i& s, const m64i& c) {
- auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128()); };
- auto r = fn(lo(d), lo(s), lo(c));
- return _mm_packus_epi16(r, r);
- }
-};
-
-template <typename Fn>
-static Adapt<Fn> adapt(Fn&& fn) { return { fn }; }
-
-// These helpers all work exclusively with unpacked 8-bit values,
-// except div255() with is 16-bit -> unpacked 8-bit, and mul255() which is the reverse.
-
-// Divide by 255 with rounding.
-// (x+127)/255 == ((x+128)*257)>>16.
-// Sometimes we can be more efficient by breaking this into two parts.
-static __m128i div255_part1(__m128i x) { return _mm_add_epi16(x, _mm_set1_epi16(128)); }
-static __m128i div255_part2(__m128i x) { return _mm_mulhi_epu16(x, _mm_set1_epi16(257)); }
-static __m128i div255(__m128i x) { return div255_part2(div255_part1(x)); }
-
-// (x*y+127)/255, a byte multiply.
-static __m128i scale(__m128i x, __m128i y) { return div255(_mm_mullo_epi16(x, y)); }
-
-// (255 * x).
-static __m128i mul255(__m128i x) { return _mm_sub_epi16(_mm_slli_epi16(x, 8), x); }
-
-// (255 - x).
-static __m128i inv(__m128i x) { return _mm_xor_si128(_mm_set1_epi16(0x00ff), x); }
-
-// ARGB argb -> AAAA aaaa
-static __m128i alphas(__m128i px) {
- const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so this is typically 6.
- const int _ = ~0;
- return _mm_shuffle_epi8(px, _mm_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, a+8,_,a+8,_,a+8,_,a+8,_));
-}
+namespace sk_sse41 {
// SrcOver, with a constant source and full coverage.
static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMColor src) {
@@ -168,14 +134,14 @@
// But we can go one step further to ((s*255 + 128 + d*inv(alphas(s)))*257)>>16.
// This lets us hoist (s*255+128) and inv(alphas(s)) out of the loop.
- __m128i s = _mm_unpacklo_epi8(_mm_set1_epi32(src), _mm_setzero_si128()),
- s_255_128 = div255_part1(mul255(s)),
+ __m128i s = next2(src),
+ s_255_128 = div255_part1(_mm_mullo_epi16(s, _mm_set1_epi16(255))),
A = inv(alphas(s));
const uint8_t cov = 0xff;
- loop(n, tgt, dst, src, cov, adapt([=](__m128i d, __m128i, __m128i) {
+ loop(n, tgt, dst, src, cov, [=](__m128i d, __m128i, __m128i) {
return div255_part2(_mm_add_epi16(s_255_128, _mm_mullo_epi16(d, A)));
- }));
+ });
}
// SrcOver, with a constant source and variable coverage.
@@ -186,26 +152,23 @@
if (SkColorGetA(color) == 0xFF) {
const SkPMColor src = SkSwizzle_BGRA_to_PMColor(color);
while (h --> 0) {
- loop(w, dst, (const SkPMColor*)dst, src, cov,
- adapt([](__m128i d, __m128i s, __m128i c) {
+ loop(w, dst, (const SkPMColor*)dst, src, cov, [](__m128i d, __m128i s, __m128i c) {
// Src blend mode: a simple lerp from d to s by c.
// TODO: try a pmaddubsw version?
- return div255(_mm_add_epi16(_mm_mullo_epi16(inv(c),d),
- _mm_mullo_epi16( c ,s)));
- }));
+ return div255(_mm_add_epi16(_mm_mullo_epi16(inv(c),d), _mm_mullo_epi16(c,s)));
+ });
dst += dstRB / sizeof(*dst);
cov += covRB / sizeof(*cov);
}
} else {
const SkPMColor src = SkPreMultiplyColor(color);
while (h --> 0) {
- loop(w, dst, (const SkPMColor*)dst, src, cov,
- adapt([](__m128i d, __m128i s, __m128i c) {
+ loop(w, dst, (const SkPMColor*)dst, src, cov, [](__m128i d, __m128i s, __m128i c) {
// SrcOver blend mode, with coverage folded into source alpha.
__m128i sc = scale(s,c),
AC = inv(alphas(sc));
return _mm_add_epi16(sc, scale(d,AC));
- }));
+ });
dst += dstRB / sizeof(*dst);
cov += covRB / sizeof(*cov);
}
@@ -213,7 +176,6 @@
}
} // namespace sk_sse41
-
#endif
namespace SkOpts {
« no previous file with comments | « src/opts/SkOpts_avx2.cpp ('k') | no next file » | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698