Index: src/opts/SkOpts_sse41.cpp |
diff --git a/src/opts/SkOpts_sse41.cpp b/src/opts/SkOpts_sse41.cpp |
index f097e56c5e34a8eab9ebb6ecbff715ec3baa0010..16ba87ad87c04fa07327bd7719b87e7675e0cbb1 100644 |
--- a/src/opts/SkOpts_sse41.cpp |
+++ b/src/opts/SkOpts_sse41.cpp |
@@ -12,67 +12,88 @@ |
#ifndef SK_SUPPORT_LEGACY_X86_BLITS |
-namespace sk_sse41 { |
+// This file deals mostly with unpacked 8-bit values, |
+// i.e. values between 0 and 255, but in 16-bit lanes with 0 at the top. |
-// An SSE register holding at most 64 bits of useful data in the low lanes. |
-struct m64i { |
- __m128i v; |
- /*implicit*/ m64i(__m128i v) : v(v) {} |
- operator __m128i() const { return v; } |
-}; |
+// So __m128i typically represents 1 or 2 pixels, and m128ix2 represents 4. |
+struct m128ix2 { __m128i lo, hi; }; |
-// Load 4, 2, or 1 constant pixels or coverages (4x replicated). |
-static __m128i next4(uint32_t val) { return _mm_set1_epi32(val); } |
-static m64i next2(uint32_t val) { return _mm_set1_epi32(val); } |
-static m64i next1(uint32_t val) { return _mm_set1_epi32(val); } |
+// unpack{lo,hi}() get our raw pixels unpacked, from half of 4 packed pixels to 2 unpacked pixels. |
+static inline __m128i unpacklo(__m128i x) { return _mm_cvtepu8_epi16(x); } |
+static inline __m128i unpackhi(__m128i x) { return _mm_unpackhi_epi8(x, _mm_setzero_si128()); } |
-static __m128i next4(uint8_t val) { return _mm_set1_epi8(val); } |
-static m64i next2(uint8_t val) { return _mm_set1_epi8(val); } |
-static m64i next1(uint8_t val) { return _mm_set1_epi8(val); } |
+// pack() converts back, from 4 unpacked pixels to 4 packed pixels. |
+static inline __m128i pack(__m128i lo, __m128i hi) { return _mm_packus_epi16(lo, hi); } |
-// Load 4, 2, or 1 variable pixels or coverages (4x replicated), |
-// incrementing the pointer past what we read. |
-static __m128i next4(const uint32_t*& ptr) { |
- auto r = _mm_loadu_si128((const __m128i*)ptr); |
+// These nextN() functions abstract over the difference between iterating over |
+// an array of values and returning a constant value, for uint8_t and uint32_t. |
+// The nextN() taking pointers increment that pointer past where they read. |
+// |
+// nextN() returns N unpacked pixels or 4N unpacked coverage values. |
+ |
+static inline __m128i next1(uint8_t val) { return _mm_set1_epi16(val); } |
+static inline __m128i next2(uint8_t val) { return _mm_set1_epi16(val); } |
+static inline m128ix2 next4(uint8_t val) { return { next2(val), next2(val) }; } |
+ |
+static inline __m128i next1(uint32_t val) { return unpacklo(_mm_cvtsi32_si128(val)); } |
+static inline __m128i next2(uint32_t val) { return unpacklo(_mm_set1_epi32(val)); } |
+static inline m128ix2 next4(uint32_t val) { return { next2(val), next2(val) }; } |
+ |
+static inline __m128i next1(const uint8_t*& ptr) { return _mm_set1_epi16(*ptr++); } |
+static inline __m128i next2(const uint8_t*& ptr) { |
+ auto r = _mm_cvtsi32_si128(*(const uint16_t*)ptr); |
+ ptr += 2; |
+ const int _ = ~0; |
+ return _mm_shuffle_epi8(r, _mm_setr_epi8(0,_,0,_,0,_,0,_, 1,_,1,_,1,_,1,_)); |
+} |
+static inline m128ix2 next4(const uint8_t*& ptr) { |
+ auto r = _mm_cvtsi32_si128(*(const uint32_t*)ptr); |
ptr += 4; |
- return r; |
+ const int _ = ~0; |
+ auto lo = _mm_shuffle_epi8(r, _mm_setr_epi8(0,_,0,_,0,_,0,_, 1,_,1,_,1,_,1,_)), |
+ hi = _mm_shuffle_epi8(r, _mm_setr_epi8(2,_,2,_,2,_,2,_, 3,_,3,_,3,_,3,_)); |
+ return { lo, hi }; |
} |
-static m64i next2(const uint32_t*& ptr) { |
- auto r = _mm_loadl_epi64((const __m128i*)ptr); |
+ |
+static inline __m128i next1(const uint32_t*& ptr) { return unpacklo(_mm_cvtsi32_si128(*ptr++)); } |
+static inline __m128i next2(const uint32_t*& ptr) { |
+ auto r = unpacklo(_mm_loadl_epi64((const __m128i*)ptr)); |
ptr += 2; |
return r; |
} |
-static m64i next1(const uint32_t*& ptr) { |
- auto r = _mm_cvtsi32_si128(*ptr); |
- ptr += 1; |
- return r; |
+static inline m128ix2 next4(const uint32_t*& ptr) { |
+ auto packed = _mm_loadu_si128((const __m128i*)ptr); |
+ ptr += 4; |
+ return { unpacklo(packed), unpackhi(packed) }; |
} |
-// xyzw -> xxxx yyyy zzzz wwww |
-static __m128i replicate_coverage(__m128i xyzw) { |
- const uint8_t mask[] = { 0,0,0,0, 1,1,1,1, 2,2,2,2, 3,3,3,3 }; |
- return _mm_shuffle_epi8(xyzw, _mm_load_si128((const __m128i*)mask)); |
+// Divide by 255 with rounding. |
+// (x+127)/255 == ((x+128)*257)>>16. |
+// Sometimes we can be more efficient by breaking this into two parts. |
+static inline __m128i div255_part1(__m128i x) { return _mm_add_epi16(x, _mm_set1_epi16(128)); } |
+static inline __m128i div255_part2(__m128i x) { return _mm_mulhi_epu16(x, _mm_set1_epi16(257)); } |
+static inline __m128i div255(__m128i x) { return div255_part2(div255_part1(x)); } |
+ |
+// (x*y+127)/255, a byte multiply. |
+static inline __m128i scale(__m128i x, __m128i y) { |
+ return div255(_mm_mullo_epi16(x, y)); |
} |
-static __m128i next4(const uint8_t*& ptr) { |
- auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint32_t*)ptr)); |
- ptr += 4; |
- return r; |
+// (255 - x). |
+static inline __m128i inv(__m128i x) { |
+ return _mm_xor_si128(_mm_set1_epi16(0x00ff), x); // This seems a bit faster than _mm_sub_epi16. |
} |
-static m64i next2(const uint8_t*& ptr) { |
- auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint16_t*)ptr)); |
- ptr += 2; |
- return r; |
-} |
-static m64i next1(const uint8_t*& ptr) { |
- auto r = replicate_coverage(_mm_cvtsi32_si128(*ptr)); |
- ptr += 1; |
- return r; |
+ |
+// ARGB argb -> AAAA aaaa |
+static inline __m128i alphas(__m128i px) { |
+ const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so this is typically 6. |
+ const int _ = ~0; |
+ return _mm_shuffle_epi8(px, _mm_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, a+8,_,a+8,_,a+8,_,a+8,_)); |
} |
// For i = 0...n, tgt = fn(dst,src,cov), where Dst,Src,and Cov can be constants or arrays. |
template <typename Dst, typename Src, typename Cov, typename Fn> |
-static void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov, Fn&& fn) { |
+static inline void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov, Fn&& fn) { |
// We don't want to muck with the callers' pointers, so we make them const and copy here. |
Dst d = dst; |
Src s = src; |
@@ -81,85 +102,30 @@ |
// Writing this as a single while-loop helps hoist loop invariants from fn. |
while (n) { |
if (n >= 4) { |
- _mm_storeu_si128((__m128i*)t, fn(next4(d), next4(s), next4(c))); |
+ auto d4 = next4(d), |
+ s4 = next4(s), |
+ c4 = next4(c); |
+ auto lo = fn(d4.lo, s4.lo, c4.lo), |
+ hi = fn(d4.hi, s4.hi, c4.hi); |
+ _mm_storeu_si128((__m128i*)t, pack(lo,hi)); |
t += 4; |
n -= 4; |
continue; |
} |
if (n & 2) { |
- _mm_storel_epi64((__m128i*)t, fn(next2(d), next2(s), next2(c))); |
+ auto r = fn(next2(d), next2(s), next2(c)); |
+ _mm_storel_epi64((__m128i*)t, pack(r,r)); |
t += 2; |
} |
if (n & 1) { |
- *t = _mm_cvtsi128_si32(fn(next1(d), next1(s), next1(c))); |
+ auto r = fn(next1(d), next1(s), next1(c)); |
+ *t = _mm_cvtsi128_si32(pack(r,r)); |
} |
return; |
} |
} |
-// packed |
-// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // |
-// unpacked |
- |
-// Everything on the packed side of the squiggly line deals with densely packed 8-bit data, |
-// e.g. [BGRA bgra ... ] for pixels or [ CCCC cccc ... ] for coverage. |
-// |
-// Everything on the unpacked side of the squiggly line deals with unpacked 8-bit data, |
-// e.g [B_G_ R_A_ b_g_ r_a_ ] for pixels or [ C_C_ C_C_ c_c_ c_c_ c_c_ ] for coverage, |
-// where _ is a zero byte. |
-// |
-// Adapt<Fn> / adapt(fn) allow the two sides to interoperate, |
-// by unpacking arguments, calling fn, then packing the results. |
-// |
-// This lets us write most of our code in terms of unpacked inputs (considerably simpler) |
-// and all the packing and unpacking is handled automatically. |
- |
-template <typename Fn> |
-struct Adapt { |
- Fn fn; |
- |
- __m128i operator()(__m128i d, __m128i s, __m128i c) { |
- auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128()); }; |
- auto hi = [](__m128i x) { return _mm_unpackhi_epi8(x, _mm_setzero_si128()); }; |
- return _mm_packus_epi16(fn(lo(d), lo(s), lo(c)), |
- fn(hi(d), hi(s), hi(c))); |
- } |
- |
- m64i operator()(const m64i& d, const m64i& s, const m64i& c) { |
- auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128()); }; |
- auto r = fn(lo(d), lo(s), lo(c)); |
- return _mm_packus_epi16(r, r); |
- } |
-}; |
- |
-template <typename Fn> |
-static Adapt<Fn> adapt(Fn&& fn) { return { fn }; } |
- |
-// These helpers all work exclusively with unpacked 8-bit values, |
-// except div255() with is 16-bit -> unpacked 8-bit, and mul255() which is the reverse. |
- |
-// Divide by 255 with rounding. |
-// (x+127)/255 == ((x+128)*257)>>16. |
-// Sometimes we can be more efficient by breaking this into two parts. |
-static __m128i div255_part1(__m128i x) { return _mm_add_epi16(x, _mm_set1_epi16(128)); } |
-static __m128i div255_part2(__m128i x) { return _mm_mulhi_epu16(x, _mm_set1_epi16(257)); } |
-static __m128i div255(__m128i x) { return div255_part2(div255_part1(x)); } |
- |
-// (x*y+127)/255, a byte multiply. |
-static __m128i scale(__m128i x, __m128i y) { return div255(_mm_mullo_epi16(x, y)); } |
- |
-// (255 * x). |
-static __m128i mul255(__m128i x) { return _mm_sub_epi16(_mm_slli_epi16(x, 8), x); } |
- |
-// (255 - x). |
-static __m128i inv(__m128i x) { return _mm_xor_si128(_mm_set1_epi16(0x00ff), x); } |
- |
-// ARGB argb -> AAAA aaaa |
-static __m128i alphas(__m128i px) { |
- const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so this is typically 6. |
- const int _ = ~0; |
- return _mm_shuffle_epi8(px, _mm_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, a+8,_,a+8,_,a+8,_,a+8,_)); |
-} |
+namespace sk_sse41 { |
// SrcOver, with a constant source and full coverage. |
static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMColor src) { |
@@ -168,14 +134,14 @@ |
// But we can go one step further to ((s*255 + 128 + d*inv(alphas(s)))*257)>>16. |
// This lets us hoist (s*255+128) and inv(alphas(s)) out of the loop. |
- __m128i s = _mm_unpacklo_epi8(_mm_set1_epi32(src), _mm_setzero_si128()), |
- s_255_128 = div255_part1(mul255(s)), |
+ __m128i s = next2(src), |
+ s_255_128 = div255_part1(_mm_mullo_epi16(s, _mm_set1_epi16(255))), |
A = inv(alphas(s)); |
const uint8_t cov = 0xff; |
- loop(n, tgt, dst, src, cov, adapt([=](__m128i d, __m128i, __m128i) { |
+ loop(n, tgt, dst, src, cov, [=](__m128i d, __m128i, __m128i) { |
return div255_part2(_mm_add_epi16(s_255_128, _mm_mullo_epi16(d, A))); |
- })); |
+ }); |
} |
// SrcOver, with a constant source and variable coverage. |
@@ -186,26 +152,23 @@ |
if (SkColorGetA(color) == 0xFF) { |
const SkPMColor src = SkSwizzle_BGRA_to_PMColor(color); |
while (h --> 0) { |
- loop(w, dst, (const SkPMColor*)dst, src, cov, |
- adapt([](__m128i d, __m128i s, __m128i c) { |
+ loop(w, dst, (const SkPMColor*)dst, src, cov, [](__m128i d, __m128i s, __m128i c) { |
// Src blend mode: a simple lerp from d to s by c. |
// TODO: try a pmaddubsw version? |
- return div255(_mm_add_epi16(_mm_mullo_epi16(inv(c),d), |
- _mm_mullo_epi16( c ,s))); |
- })); |
+ return div255(_mm_add_epi16(_mm_mullo_epi16(inv(c),d), _mm_mullo_epi16(c,s))); |
+ }); |
dst += dstRB / sizeof(*dst); |
cov += covRB / sizeof(*cov); |
} |
} else { |
const SkPMColor src = SkPreMultiplyColor(color); |
while (h --> 0) { |
- loop(w, dst, (const SkPMColor*)dst, src, cov, |
- adapt([](__m128i d, __m128i s, __m128i c) { |
+ loop(w, dst, (const SkPMColor*)dst, src, cov, [](__m128i d, __m128i s, __m128i c) { |
// SrcOver blend mode, with coverage folded into source alpha. |
__m128i sc = scale(s,c), |
AC = inv(alphas(sc)); |
return _mm_add_epi16(sc, scale(d,AC)); |
- })); |
+ }); |
dst += dstRB / sizeof(*dst); |
cov += covRB / sizeof(*cov); |
} |
@@ -213,7 +176,6 @@ |
} |
} // namespace sk_sse41 |
- |
#endif |
namespace SkOpts { |