| Index: fusl/src/math/sqrt.c
 | 
| diff --git a/fusl/src/math/sqrt.c b/fusl/src/math/sqrt.c
 | 
| new file mode 100644
 | 
| index 0000000000000000000000000000000000000000..b27756738595dc29a8a7f35e7bffa8da64214826
 | 
| --- /dev/null
 | 
| +++ b/fusl/src/math/sqrt.c
 | 
| @@ -0,0 +1,185 @@
 | 
| +/* origin: FreeBSD /usr/src/lib/msun/src/e_sqrt.c */
 | 
| +/*
 | 
| + * ====================================================
 | 
| + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | 
| + *
 | 
| + * Developed at SunSoft, a Sun Microsystems, Inc. business.
 | 
| + * Permission to use, copy, modify, and distribute this
 | 
| + * software is freely granted, provided that this notice
 | 
| + * is preserved.
 | 
| + * ====================================================
 | 
| + */
 | 
| +/* sqrt(x)
 | 
| + * Return correctly rounded sqrt.
 | 
| + *           ------------------------------------------
 | 
| + *           |  Use the hardware sqrt if you have one |
 | 
| + *           ------------------------------------------
 | 
| + * Method:
 | 
| + *   Bit by bit method using integer arithmetic. (Slow, but portable)
 | 
| + *   1. Normalization
 | 
| + *      Scale x to y in [1,4) with even powers of 2:
 | 
| + *      find an integer k such that  1 <= (y=x*2^(2k)) < 4, then
 | 
| + *              sqrt(x) = 2^k * sqrt(y)
 | 
| + *   2. Bit by bit computation
 | 
| + *      Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
 | 
| + *           i                                                   0
 | 
| + *                                     i+1         2
 | 
| + *          s  = 2*q , and      y  =  2   * ( y - q  ).         (1)
 | 
| + *           i      i            i                 i
 | 
| + *
 | 
| + *      To compute q    from q , one checks whether
 | 
| + *                  i+1       i
 | 
| + *
 | 
| + *                            -(i+1) 2
 | 
| + *                      (q + 2      ) <= y.                     (2)
 | 
| + *                        i
 | 
| + *                                                            -(i+1)
 | 
| + *      If (2) is false, then q   = q ; otherwise q   = q  + 2      .
 | 
| + *                             i+1   i             i+1   i
 | 
| + *
 | 
| + *      With some algebric manipulation, it is not difficult to see
 | 
| + *      that (2) is equivalent to
 | 
| + *                             -(i+1)
 | 
| + *                      s  +  2       <= y                      (3)
 | 
| + *                       i                i
 | 
| + *
 | 
| + *      The advantage of (3) is that s  and y  can be computed by
 | 
| + *                                    i      i
 | 
| + *      the following recurrence formula:
 | 
| + *          if (3) is false
 | 
| + *
 | 
| + *          s     =  s  ,       y    = y   ;                    (4)
 | 
| + *           i+1      i          i+1    i
 | 
| + *
 | 
| + *          otherwise,
 | 
| + *                         -i                     -(i+1)
 | 
| + *          s     =  s  + 2  ,  y    = y  -  s  - 2             (5)
 | 
| + *           i+1      i          i+1    i     i
 | 
| + *
 | 
| + *      One may easily use induction to prove (4) and (5).
 | 
| + *      Note. Since the left hand side of (3) contain only i+2 bits,
 | 
| + *            it does not necessary to do a full (53-bit) comparison
 | 
| + *            in (3).
 | 
| + *   3. Final rounding
 | 
| + *      After generating the 53 bits result, we compute one more bit.
 | 
| + *      Together with the remainder, we can decide whether the
 | 
| + *      result is exact, bigger than 1/2ulp, or less than 1/2ulp
 | 
| + *      (it will never equal to 1/2ulp).
 | 
| + *      The rounding mode can be detected by checking whether
 | 
| + *      huge + tiny is equal to huge, and whether huge - tiny is
 | 
| + *      equal to huge for some floating point number "huge" and "tiny".
 | 
| + *
 | 
| + * Special cases:
 | 
| + *      sqrt(+-0) = +-0         ... exact
 | 
| + *      sqrt(inf) = inf
 | 
| + *      sqrt(-ve) = NaN         ... with invalid signal
 | 
| + *      sqrt(NaN) = NaN         ... with invalid signal for signaling NaN
 | 
| + */
 | 
| +
 | 
| +#include "libm.h"
 | 
| +
 | 
| +static const double tiny = 1.0e-300;
 | 
| +
 | 
| +double sqrt(double x)
 | 
| +{
 | 
| +	double z;
 | 
| +	int32_t sign = (int)0x80000000;
 | 
| +	int32_t ix0,s0,q,m,t,i;
 | 
| +	uint32_t r,t1,s1,ix1,q1;
 | 
| +
 | 
| +	EXTRACT_WORDS(ix0, ix1, x);
 | 
| +
 | 
| +	/* take care of Inf and NaN */
 | 
| +	if ((ix0&0x7ff00000) == 0x7ff00000) {
 | 
| +		return x*x + x;  /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */
 | 
| +	}
 | 
| +	/* take care of zero */
 | 
| +	if (ix0 <= 0) {
 | 
| +		if (((ix0&~sign)|ix1) == 0)
 | 
| +			return x;  /* sqrt(+-0) = +-0 */
 | 
| +		if (ix0 < 0)
 | 
| +			return (x-x)/(x-x);  /* sqrt(-ve) = sNaN */
 | 
| +	}
 | 
| +	/* normalize x */
 | 
| +	m = ix0>>20;
 | 
| +	if (m == 0) {  /* subnormal x */
 | 
| +		while (ix0 == 0) {
 | 
| +			m -= 21;
 | 
| +			ix0 |= (ix1>>11);
 | 
| +			ix1 <<= 21;
 | 
| +		}
 | 
| +		for (i=0; (ix0&0x00100000) == 0; i++)
 | 
| +			ix0<<=1;
 | 
| +		m -= i - 1;
 | 
| +		ix0 |= ix1>>(32-i);
 | 
| +		ix1 <<= i;
 | 
| +	}
 | 
| +	m -= 1023;    /* unbias exponent */
 | 
| +	ix0 = (ix0&0x000fffff)|0x00100000;
 | 
| +	if (m & 1) {  /* odd m, double x to make it even */
 | 
| +		ix0 += ix0 + ((ix1&sign)>>31);
 | 
| +		ix1 += ix1;
 | 
| +	}
 | 
| +	m >>= 1;      /* m = [m/2] */
 | 
| +
 | 
| +	/* generate sqrt(x) bit by bit */
 | 
| +	ix0 += ix0 + ((ix1&sign)>>31);
 | 
| +	ix1 += ix1;
 | 
| +	q = q1 = s0 = s1 = 0;  /* [q,q1] = sqrt(x) */
 | 
| +	r = 0x00200000;        /* r = moving bit from right to left */
 | 
| +
 | 
| +	while (r != 0) {
 | 
| +		t = s0 + r;
 | 
| +		if (t <= ix0) {
 | 
| +			s0   = t + r;
 | 
| +			ix0 -= t;
 | 
| +			q   += r;
 | 
| +		}
 | 
| +		ix0 += ix0 + ((ix1&sign)>>31);
 | 
| +		ix1 += ix1;
 | 
| +		r >>= 1;
 | 
| +	}
 | 
| +
 | 
| +	r = sign;
 | 
| +	while (r != 0) {
 | 
| +		t1 = s1 + r;
 | 
| +		t  = s0;
 | 
| +		if (t < ix0 || (t == ix0 && t1 <= ix1)) {
 | 
| +			s1 = t1 + r;
 | 
| +			if ((t1&sign) == sign && (s1&sign) == 0)
 | 
| +				s0++;
 | 
| +			ix0 -= t;
 | 
| +			if (ix1 < t1)
 | 
| +				ix0--;
 | 
| +			ix1 -= t1;
 | 
| +			q1 += r;
 | 
| +		}
 | 
| +		ix0 += ix0 + ((ix1&sign)>>31);
 | 
| +		ix1 += ix1;
 | 
| +		r >>= 1;
 | 
| +	}
 | 
| +
 | 
| +	/* use floating add to find out rounding direction */
 | 
| +	if ((ix0|ix1) != 0) {
 | 
| +		z = 1.0 - tiny; /* raise inexact flag */
 | 
| +		if (z >= 1.0) {
 | 
| +			z = 1.0 + tiny;
 | 
| +			if (q1 == (uint32_t)0xffffffff) {
 | 
| +				q1 = 0;
 | 
| +				q++;
 | 
| +			} else if (z > 1.0) {
 | 
| +				if (q1 == (uint32_t)0xfffffffe)
 | 
| +					q++;
 | 
| +				q1 += 2;
 | 
| +			} else
 | 
| +				q1 += q1 & 1;
 | 
| +		}
 | 
| +	}
 | 
| +	ix0 = (q>>1) + 0x3fe00000;
 | 
| +	ix1 = q1>>1;
 | 
| +	if (q&1)
 | 
| +		ix1 |= sign;
 | 
| +	ix0 += m << 20;
 | 
| +	INSERT_WORDS(z, ix0, ix1);
 | 
| +	return z;
 | 
| +}
 | 
| 
 |