OLD | NEW |
(Empty) | |
| 1 /* origin: FreeBSD /usr/src/lib/msun/src/e_sqrt.c */ |
| 2 /* |
| 3 * ==================================================== |
| 4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 5 * |
| 6 * Developed at SunSoft, a Sun Microsystems, Inc. business. |
| 7 * Permission to use, copy, modify, and distribute this |
| 8 * software is freely granted, provided that this notice |
| 9 * is preserved. |
| 10 * ==================================================== |
| 11 */ |
| 12 /* sqrt(x) |
| 13 * Return correctly rounded sqrt. |
| 14 * ------------------------------------------ |
| 15 * | Use the hardware sqrt if you have one | |
| 16 * ------------------------------------------ |
| 17 * Method: |
| 18 * Bit by bit method using integer arithmetic. (Slow, but portable) |
| 19 * 1. Normalization |
| 20 * Scale x to y in [1,4) with even powers of 2: |
| 21 * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then |
| 22 * sqrt(x) = 2^k * sqrt(y) |
| 23 * 2. Bit by bit computation |
| 24 * Let q = sqrt(y) truncated to i bit after binary point (q = 1), |
| 25 * i 0 |
| 26 * i+1 2 |
| 27 * s = 2*q , and y = 2 * ( y - q ). (1) |
| 28 * i i i i |
| 29 * |
| 30 * To compute q from q , one checks whether |
| 31 * i+1 i |
| 32 * |
| 33 * -(i+1) 2 |
| 34 * (q + 2 ) <= y. (2) |
| 35 * i |
| 36 * -(i+1) |
| 37 * If (2) is false, then q = q ; otherwise q = q + 2 . |
| 38 * i+1 i i+1 i |
| 39 * |
| 40 * With some algebric manipulation, it is not difficult to see |
| 41 * that (2) is equivalent to |
| 42 * -(i+1) |
| 43 * s + 2 <= y (3) |
| 44 * i i |
| 45 * |
| 46 * The advantage of (3) is that s and y can be computed by |
| 47 * i i |
| 48 * the following recurrence formula: |
| 49 * if (3) is false |
| 50 * |
| 51 * s = s , y = y ; (4) |
| 52 * i+1 i i+1 i |
| 53 * |
| 54 * otherwise, |
| 55 * -i -(i+1) |
| 56 * s = s + 2 , y = y - s - 2 (5) |
| 57 * i+1 i i+1 i i |
| 58 * |
| 59 * One may easily use induction to prove (4) and (5). |
| 60 * Note. Since the left hand side of (3) contain only i+2 bits, |
| 61 * it does not necessary to do a full (53-bit) comparison |
| 62 * in (3). |
| 63 * 3. Final rounding |
| 64 * After generating the 53 bits result, we compute one more bit. |
| 65 * Together with the remainder, we can decide whether the |
| 66 * result is exact, bigger than 1/2ulp, or less than 1/2ulp |
| 67 * (it will never equal to 1/2ulp). |
| 68 * The rounding mode can be detected by checking whether |
| 69 * huge + tiny is equal to huge, and whether huge - tiny is |
| 70 * equal to huge for some floating point number "huge" and "tiny". |
| 71 * |
| 72 * Special cases: |
| 73 * sqrt(+-0) = +-0 ... exact |
| 74 * sqrt(inf) = inf |
| 75 * sqrt(-ve) = NaN ... with invalid signal |
| 76 * sqrt(NaN) = NaN ... with invalid signal for signaling NaN |
| 77 */ |
| 78 |
| 79 #include "libm.h" |
| 80 |
| 81 static const double tiny = 1.0e-300; |
| 82 |
| 83 double sqrt(double x) |
| 84 { |
| 85 double z; |
| 86 int32_t sign = (int)0x80000000; |
| 87 int32_t ix0,s0,q,m,t,i; |
| 88 uint32_t r,t1,s1,ix1,q1; |
| 89 |
| 90 EXTRACT_WORDS(ix0, ix1, x); |
| 91 |
| 92 /* take care of Inf and NaN */ |
| 93 if ((ix0&0x7ff00000) == 0x7ff00000) { |
| 94 return x*x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=s
NaN */ |
| 95 } |
| 96 /* take care of zero */ |
| 97 if (ix0 <= 0) { |
| 98 if (((ix0&~sign)|ix1) == 0) |
| 99 return x; /* sqrt(+-0) = +-0 */ |
| 100 if (ix0 < 0) |
| 101 return (x-x)/(x-x); /* sqrt(-ve) = sNaN */ |
| 102 } |
| 103 /* normalize x */ |
| 104 m = ix0>>20; |
| 105 if (m == 0) { /* subnormal x */ |
| 106 while (ix0 == 0) { |
| 107 m -= 21; |
| 108 ix0 |= (ix1>>11); |
| 109 ix1 <<= 21; |
| 110 } |
| 111 for (i=0; (ix0&0x00100000) == 0; i++) |
| 112 ix0<<=1; |
| 113 m -= i - 1; |
| 114 ix0 |= ix1>>(32-i); |
| 115 ix1 <<= i; |
| 116 } |
| 117 m -= 1023; /* unbias exponent */ |
| 118 ix0 = (ix0&0x000fffff)|0x00100000; |
| 119 if (m & 1) { /* odd m, double x to make it even */ |
| 120 ix0 += ix0 + ((ix1&sign)>>31); |
| 121 ix1 += ix1; |
| 122 } |
| 123 m >>= 1; /* m = [m/2] */ |
| 124 |
| 125 /* generate sqrt(x) bit by bit */ |
| 126 ix0 += ix0 + ((ix1&sign)>>31); |
| 127 ix1 += ix1; |
| 128 q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */ |
| 129 r = 0x00200000; /* r = moving bit from right to left */ |
| 130 |
| 131 while (r != 0) { |
| 132 t = s0 + r; |
| 133 if (t <= ix0) { |
| 134 s0 = t + r; |
| 135 ix0 -= t; |
| 136 q += r; |
| 137 } |
| 138 ix0 += ix0 + ((ix1&sign)>>31); |
| 139 ix1 += ix1; |
| 140 r >>= 1; |
| 141 } |
| 142 |
| 143 r = sign; |
| 144 while (r != 0) { |
| 145 t1 = s1 + r; |
| 146 t = s0; |
| 147 if (t < ix0 || (t == ix0 && t1 <= ix1)) { |
| 148 s1 = t1 + r; |
| 149 if ((t1&sign) == sign && (s1&sign) == 0) |
| 150 s0++; |
| 151 ix0 -= t; |
| 152 if (ix1 < t1) |
| 153 ix0--; |
| 154 ix1 -= t1; |
| 155 q1 += r; |
| 156 } |
| 157 ix0 += ix0 + ((ix1&sign)>>31); |
| 158 ix1 += ix1; |
| 159 r >>= 1; |
| 160 } |
| 161 |
| 162 /* use floating add to find out rounding direction */ |
| 163 if ((ix0|ix1) != 0) { |
| 164 z = 1.0 - tiny; /* raise inexact flag */ |
| 165 if (z >= 1.0) { |
| 166 z = 1.0 + tiny; |
| 167 if (q1 == (uint32_t)0xffffffff) { |
| 168 q1 = 0; |
| 169 q++; |
| 170 } else if (z > 1.0) { |
| 171 if (q1 == (uint32_t)0xfffffffe) |
| 172 q++; |
| 173 q1 += 2; |
| 174 } else |
| 175 q1 += q1 & 1; |
| 176 } |
| 177 } |
| 178 ix0 = (q>>1) + 0x3fe00000; |
| 179 ix1 = q1>>1; |
| 180 if (q&1) |
| 181 ix1 |= sign; |
| 182 ix0 += m << 20; |
| 183 INSERT_WORDS(z, ix0, ix1); |
| 184 return z; |
| 185 } |
OLD | NEW |