Index: fusl/src/math/log1p.c |
diff --git a/fusl/src/math/log1p.c b/fusl/src/math/log1p.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..0097134940378136f861708e6b952a8d67f76b3c |
--- /dev/null |
+++ b/fusl/src/math/log1p.c |
@@ -0,0 +1,122 @@ |
+/* origin: FreeBSD /usr/src/lib/msun/src/s_log1p.c */ |
+/* |
+ * ==================================================== |
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
+ * |
+ * Developed at SunPro, a Sun Microsystems, Inc. business. |
+ * Permission to use, copy, modify, and distribute this |
+ * software is freely granted, provided that this notice |
+ * is preserved. |
+ * ==================================================== |
+ */ |
+/* double log1p(double x) |
+ * Return the natural logarithm of 1+x. |
+ * |
+ * Method : |
+ * 1. Argument Reduction: find k and f such that |
+ * 1+x = 2^k * (1+f), |
+ * where sqrt(2)/2 < 1+f < sqrt(2) . |
+ * |
+ * Note. If k=0, then f=x is exact. However, if k!=0, then f |
+ * may not be representable exactly. In that case, a correction |
+ * term is need. Let u=1+x rounded. Let c = (1+x)-u, then |
+ * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u), |
+ * and add back the correction term c/u. |
+ * (Note: when x > 2**53, one can simply return log(x)) |
+ * |
+ * 2. Approximation of log(1+f): See log.c |
+ * |
+ * 3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c |
+ * |
+ * Special cases: |
+ * log1p(x) is NaN with signal if x < -1 (including -INF) ; |
+ * log1p(+INF) is +INF; log1p(-1) is -INF with signal; |
+ * log1p(NaN) is that NaN with no signal. |
+ * |
+ * Accuracy: |
+ * according to an error analysis, the error is always less than |
+ * 1 ulp (unit in the last place). |
+ * |
+ * Constants: |
+ * The hexadecimal values are the intended ones for the following |
+ * constants. The decimal values may be used, provided that the |
+ * compiler will convert from decimal to binary accurately enough |
+ * to produce the hexadecimal values shown. |
+ * |
+ * Note: Assuming log() return accurate answer, the following |
+ * algorithm can be used to compute log1p(x) to within a few ULP: |
+ * |
+ * u = 1+x; |
+ * if(u==1.0) return x ; else |
+ * return log(u)*(x/(u-1.0)); |
+ * |
+ * See HP-15C Advanced Functions Handbook, p.193. |
+ */ |
+ |
+#include "libm.h" |
+ |
+static const double |
+ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ |
+ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ |
+Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ |
+Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ |
+Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ |
+Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ |
+Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ |
+Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ |
+Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ |
+ |
+double log1p(double x) |
+{ |
+ union {double f; uint64_t i;} u = {x}; |
+ double_t hfsq,f,c,s,z,R,w,t1,t2,dk; |
+ uint32_t hx,hu; |
+ int k; |
+ |
+ hx = u.i>>32; |
+ k = 1; |
+ if (hx < 0x3fda827a || hx>>31) { /* 1+x < sqrt(2)+ */ |
+ if (hx >= 0xbff00000) { /* x <= -1.0 */ |
+ if (x == -1) |
+ return x/0.0; /* log1p(-1) = -inf */ |
+ return (x-x)/0.0; /* log1p(x<-1) = NaN */ |
+ } |
+ if (hx<<1 < 0x3ca00000<<1) { /* |x| < 2**-53 */ |
+ /* underflow if subnormal */ |
+ if ((hx&0x7ff00000) == 0) |
+ FORCE_EVAL((float)x); |
+ return x; |
+ } |
+ if (hx <= 0xbfd2bec4) { /* sqrt(2)/2- <= 1+x < sqrt(2)+ */ |
+ k = 0; |
+ c = 0; |
+ f = x; |
+ } |
+ } else if (hx >= 0x7ff00000) |
+ return x; |
+ if (k) { |
+ u.f = 1 + x; |
+ hu = u.i>>32; |
+ hu += 0x3ff00000 - 0x3fe6a09e; |
+ k = (int)(hu>>20) - 0x3ff; |
+ /* correction term ~ log(1+x)-log(u), avoid underflow in c/u */ |
+ if (k < 54) { |
+ c = k >= 2 ? 1-(u.f-x) : x-(u.f-1); |
+ c /= u.f; |
+ } else |
+ c = 0; |
+ /* reduce u into [sqrt(2)/2, sqrt(2)] */ |
+ hu = (hu&0x000fffff) + 0x3fe6a09e; |
+ u.i = (uint64_t)hu<<32 | (u.i&0xffffffff); |
+ f = u.f - 1; |
+ } |
+ hfsq = 0.5*f*f; |
+ s = f/(2.0+f); |
+ z = s*s; |
+ w = z*z; |
+ t1 = w*(Lg2+w*(Lg4+w*Lg6)); |
+ t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); |
+ R = t2 + t1; |
+ dk = k; |
+ return s*(hfsq+R) + (dk*ln2_lo+c) - hfsq + f + dk*ln2_hi; |
+} |