| Index: fusl/src/math/log10l.c
|
| diff --git a/fusl/src/math/log10l.c b/fusl/src/math/log10l.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..63dcc286d6211d455f291dc9fff2704792a2d236
|
| --- /dev/null
|
| +++ b/fusl/src/math/log10l.c
|
| @@ -0,0 +1,191 @@
|
| +/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_log10l.c */
|
| +/*
|
| + * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
|
| + *
|
| + * Permission to use, copy, modify, and distribute this software for any
|
| + * purpose with or without fee is hereby granted, provided that the above
|
| + * copyright notice and this permission notice appear in all copies.
|
| + *
|
| + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
| + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
| + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
| + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
| + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
| + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
| + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
| + */
|
| +/*
|
| + * Common logarithm, long double precision
|
| + *
|
| + *
|
| + * SYNOPSIS:
|
| + *
|
| + * long double x, y, log10l();
|
| + *
|
| + * y = log10l( x );
|
| + *
|
| + *
|
| + * DESCRIPTION:
|
| + *
|
| + * Returns the base 10 logarithm of x.
|
| + *
|
| + * The argument is separated into its exponent and fractional
|
| + * parts. If the exponent is between -1 and +1, the logarithm
|
| + * of the fraction is approximated by
|
| + *
|
| + * log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
|
| + *
|
| + * Otherwise, setting z = 2(x-1)/x+1),
|
| + *
|
| + * log(x) = z + z**3 P(z)/Q(z).
|
| + *
|
| + *
|
| + * ACCURACY:
|
| + *
|
| + * Relative error:
|
| + * arithmetic domain # trials peak rms
|
| + * IEEE 0.5, 2.0 30000 9.0e-20 2.6e-20
|
| + * IEEE exp(+-10000) 30000 6.0e-20 2.3e-20
|
| + *
|
| + * In the tests over the interval exp(+-10000), the logarithms
|
| + * of the random arguments were uniformly distributed over
|
| + * [-10000, +10000].
|
| + *
|
| + * ERROR MESSAGES:
|
| + *
|
| + * log singularity: x = 0; returns MINLOG
|
| + * log domain: x < 0; returns MINLOG
|
| + */
|
| +
|
| +#include "libm.h"
|
| +
|
| +#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
|
| +long double log10l(long double x)
|
| +{
|
| + return log10(x);
|
| +}
|
| +#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
|
| +/* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
|
| + * 1/sqrt(2) <= x < sqrt(2)
|
| + * Theoretical peak relative error = 6.2e-22
|
| + */
|
| +static const long double P[] = {
|
| + 4.9962495940332550844739E-1L,
|
| + 1.0767376367209449010438E1L,
|
| + 7.7671073698359539859595E1L,
|
| + 2.5620629828144409632571E2L,
|
| + 4.2401812743503691187826E2L,
|
| + 3.4258224542413922935104E2L,
|
| + 1.0747524399916215149070E2L,
|
| +};
|
| +static const long double Q[] = {
|
| +/* 1.0000000000000000000000E0,*/
|
| + 2.3479774160285863271658E1L,
|
| + 1.9444210022760132894510E2L,
|
| + 7.7952888181207260646090E2L,
|
| + 1.6911722418503949084863E3L,
|
| + 2.0307734695595183428202E3L,
|
| + 1.2695660352705325274404E3L,
|
| + 3.2242573199748645407652E2L,
|
| +};
|
| +
|
| +/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
|
| + * where z = 2(x-1)/(x+1)
|
| + * 1/sqrt(2) <= x < sqrt(2)
|
| + * Theoretical peak relative error = 6.16e-22
|
| + */
|
| +static const long double R[4] = {
|
| + 1.9757429581415468984296E-3L,
|
| +-7.1990767473014147232598E-1L,
|
| + 1.0777257190312272158094E1L,
|
| +-3.5717684488096787370998E1L,
|
| +};
|
| +static const long double S[4] = {
|
| +/* 1.00000000000000000000E0L,*/
|
| +-2.6201045551331104417768E1L,
|
| + 1.9361891836232102174846E2L,
|
| +-4.2861221385716144629696E2L,
|
| +};
|
| +/* log10(2) */
|
| +#define L102A 0.3125L
|
| +#define L102B -1.1470004336018804786261e-2L
|
| +/* log10(e) */
|
| +#define L10EA 0.5L
|
| +#define L10EB -6.5705518096748172348871e-2L
|
| +
|
| +#define SQRTH 0.70710678118654752440L
|
| +
|
| +long double log10l(long double x)
|
| +{
|
| + long double y, z;
|
| + int e;
|
| +
|
| + if (isnan(x))
|
| + return x;
|
| + if(x <= 0.0) {
|
| + if(x == 0.0)
|
| + return -1.0 / (x*x);
|
| + return (x - x) / 0.0;
|
| + }
|
| + if (x == INFINITY)
|
| + return INFINITY;
|
| + /* separate mantissa from exponent */
|
| + /* Note, frexp is used so that denormal numbers
|
| + * will be handled properly.
|
| + */
|
| + x = frexpl(x, &e);
|
| +
|
| + /* logarithm using log(x) = z + z**3 P(z)/Q(z),
|
| + * where z = 2(x-1)/x+1)
|
| + */
|
| + if (e > 2 || e < -2) {
|
| + if (x < SQRTH) { /* 2(2x-1)/(2x+1) */
|
| + e -= 1;
|
| + z = x - 0.5;
|
| + y = 0.5 * z + 0.5;
|
| + } else { /* 2 (x-1)/(x+1) */
|
| + z = x - 0.5;
|
| + z -= 0.5;
|
| + y = 0.5 * x + 0.5;
|
| + }
|
| + x = z / y;
|
| + z = x*x;
|
| + y = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3));
|
| + goto done;
|
| + }
|
| +
|
| + /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
|
| + if (x < SQRTH) {
|
| + e -= 1;
|
| + x = 2.0*x - 1.0;
|
| + } else {
|
| + x = x - 1.0;
|
| + }
|
| + z = x*x;
|
| + y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 7));
|
| + y = y - 0.5*z;
|
| +
|
| +done:
|
| + /* Multiply log of fraction by log10(e)
|
| + * and base 2 exponent by log10(2).
|
| + *
|
| + * ***CAUTION***
|
| + *
|
| + * This sequence of operations is critical and it may
|
| + * be horribly defeated by some compiler optimizers.
|
| + */
|
| + z = y * (L10EB);
|
| + z += x * (L10EB);
|
| + z += e * (L102B);
|
| + z += y * (L10EA);
|
| + z += x * (L10EA);
|
| + z += e * (L102A);
|
| + return z;
|
| +}
|
| +#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
|
| +// TODO: broken implementation to make things compile
|
| +long double log10l(long double x)
|
| +{
|
| + return log10(x);
|
| +}
|
| +#endif
|
|
|