OLD | NEW |
(Empty) | |
| 1 /* origin: FreeBSD /usr/src/lib/msun/src/s_log1p.c */ |
| 2 /* |
| 3 * ==================================================== |
| 4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 5 * |
| 6 * Developed at SunPro, a Sun Microsystems, Inc. business. |
| 7 * Permission to use, copy, modify, and distribute this |
| 8 * software is freely granted, provided that this notice |
| 9 * is preserved. |
| 10 * ==================================================== |
| 11 */ |
| 12 /* double log1p(double x) |
| 13 * Return the natural logarithm of 1+x. |
| 14 * |
| 15 * Method : |
| 16 * 1. Argument Reduction: find k and f such that |
| 17 * 1+x = 2^k * (1+f), |
| 18 * where sqrt(2)/2 < 1+f < sqrt(2) . |
| 19 * |
| 20 * Note. If k=0, then f=x is exact. However, if k!=0, then f |
| 21 * may not be representable exactly. In that case, a correction |
| 22 * term is need. Let u=1+x rounded. Let c = (1+x)-u, then |
| 23 * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u), |
| 24 * and add back the correction term c/u. |
| 25 * (Note: when x > 2**53, one can simply return log(x)) |
| 26 * |
| 27 * 2. Approximation of log(1+f): See log.c |
| 28 * |
| 29 * 3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c |
| 30 * |
| 31 * Special cases: |
| 32 * log1p(x) is NaN with signal if x < -1 (including -INF) ; |
| 33 * log1p(+INF) is +INF; log1p(-1) is -INF with signal; |
| 34 * log1p(NaN) is that NaN with no signal. |
| 35 * |
| 36 * Accuracy: |
| 37 * according to an error analysis, the error is always less than |
| 38 * 1 ulp (unit in the last place). |
| 39 * |
| 40 * Constants: |
| 41 * The hexadecimal values are the intended ones for the following |
| 42 * constants. The decimal values may be used, provided that the |
| 43 * compiler will convert from decimal to binary accurately enough |
| 44 * to produce the hexadecimal values shown. |
| 45 * |
| 46 * Note: Assuming log() return accurate answer, the following |
| 47 * algorithm can be used to compute log1p(x) to within a few ULP: |
| 48 * |
| 49 * u = 1+x; |
| 50 * if(u==1.0) return x ; else |
| 51 * return log(u)*(x/(u-1.0)); |
| 52 * |
| 53 * See HP-15C Advanced Functions Handbook, p.193. |
| 54 */ |
| 55 |
| 56 #include "libm.h" |
| 57 |
| 58 static const double |
| 59 ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ |
| 60 ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ |
| 61 Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ |
| 62 Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ |
| 63 Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ |
| 64 Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ |
| 65 Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ |
| 66 Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ |
| 67 Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ |
| 68 |
| 69 double log1p(double x) |
| 70 { |
| 71 union {double f; uint64_t i;} u = {x}; |
| 72 double_t hfsq,f,c,s,z,R,w,t1,t2,dk; |
| 73 uint32_t hx,hu; |
| 74 int k; |
| 75 |
| 76 hx = u.i>>32; |
| 77 k = 1; |
| 78 if (hx < 0x3fda827a || hx>>31) { /* 1+x < sqrt(2)+ */ |
| 79 if (hx >= 0xbff00000) { /* x <= -1.0 */ |
| 80 if (x == -1) |
| 81 return x/0.0; /* log1p(-1) = -inf */ |
| 82 return (x-x)/0.0; /* log1p(x<-1) = NaN */ |
| 83 } |
| 84 if (hx<<1 < 0x3ca00000<<1) { /* |x| < 2**-53 */ |
| 85 /* underflow if subnormal */ |
| 86 if ((hx&0x7ff00000) == 0) |
| 87 FORCE_EVAL((float)x); |
| 88 return x; |
| 89 } |
| 90 if (hx <= 0xbfd2bec4) { /* sqrt(2)/2- <= 1+x < sqrt(2)+ */ |
| 91 k = 0; |
| 92 c = 0; |
| 93 f = x; |
| 94 } |
| 95 } else if (hx >= 0x7ff00000) |
| 96 return x; |
| 97 if (k) { |
| 98 u.f = 1 + x; |
| 99 hu = u.i>>32; |
| 100 hu += 0x3ff00000 - 0x3fe6a09e; |
| 101 k = (int)(hu>>20) - 0x3ff; |
| 102 /* correction term ~ log(1+x)-log(u), avoid underflow in c/u */ |
| 103 if (k < 54) { |
| 104 c = k >= 2 ? 1-(u.f-x) : x-(u.f-1); |
| 105 c /= u.f; |
| 106 } else |
| 107 c = 0; |
| 108 /* reduce u into [sqrt(2)/2, sqrt(2)] */ |
| 109 hu = (hu&0x000fffff) + 0x3fe6a09e; |
| 110 u.i = (uint64_t)hu<<32 | (u.i&0xffffffff); |
| 111 f = u.f - 1; |
| 112 } |
| 113 hfsq = 0.5*f*f; |
| 114 s = f/(2.0+f); |
| 115 z = s*s; |
| 116 w = z*z; |
| 117 t1 = w*(Lg2+w*(Lg4+w*Lg6)); |
| 118 t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); |
| 119 R = t2 + t1; |
| 120 dk = k; |
| 121 return s*(hfsq+R) + (dk*ln2_lo+c) - hfsq + f + dk*ln2_hi; |
| 122 } |
OLD | NEW |