Index: cc/base/math_util.cc |
diff --git a/cc/base/math_util.cc b/cc/base/math_util.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..e2fd565eb9774943c0c75c64ada9906fc1804ebb |
--- /dev/null |
+++ b/cc/base/math_util.cc |
@@ -0,0 +1,870 @@ |
+// Copyright 2012 The Chromium Authors. All rights reserved. |
+// Use of this source code is governed by a BSD-style license that can be |
+// found in the LICENSE file. |
+ |
+#include "cc/base/math_util.h" |
+ |
+#include <algorithm> |
+#include <cmath> |
+#include <limits> |
+ |
+#include "base/trace_event/trace_event_argument.h" |
+#include "base/values.h" |
+#include "ui/gfx/geometry/quad_f.h" |
+#include "ui/gfx/geometry/rect.h" |
+#include "ui/gfx/geometry/rect_conversions.h" |
+#include "ui/gfx/geometry/rect_f.h" |
+#include "ui/gfx/geometry/vector2d_f.h" |
+#include "ui/gfx/transform.h" |
+ |
+namespace cc { |
+ |
+const double MathUtil::kPiDouble = 3.14159265358979323846; |
+const float MathUtil::kPiFloat = 3.14159265358979323846f; |
+ |
+static HomogeneousCoordinate ProjectHomogeneousPoint( |
+ const gfx::Transform& transform, |
+ const gfx::PointF& p) { |
+ // In this case, the layer we are trying to project onto is perpendicular to |
+ // ray (point p and z-axis direction) that we are trying to project. This |
+ // happens when the layer is rotated so that it is infinitesimally thin, or |
+ // when it is co-planar with the camera origin -- i.e. when the layer is |
+ // invisible anyway. |
+ if (!transform.matrix().get(2, 2)) |
+ return HomogeneousCoordinate(0.0, 0.0, 0.0, 1.0); |
+ |
+ SkMScalar z = -(transform.matrix().get(2, 0) * p.x() + |
+ transform.matrix().get(2, 1) * p.y() + |
+ transform.matrix().get(2, 3)) / |
+ transform.matrix().get(2, 2); |
+ HomogeneousCoordinate result(p.x(), p.y(), z, 1.0); |
+ transform.matrix().mapMScalars(result.vec, result.vec); |
+ return result; |
+} |
+ |
+static HomogeneousCoordinate ProjectHomogeneousPoint( |
+ const gfx::Transform& transform, |
+ const gfx::PointF& p, |
+ bool* clipped) { |
+ HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p); |
+ *clipped = h.w() <= 0; |
+ return h; |
+} |
+ |
+static HomogeneousCoordinate MapHomogeneousPoint( |
+ const gfx::Transform& transform, |
+ const gfx::Point3F& p) { |
+ HomogeneousCoordinate result(p.x(), p.y(), p.z(), 1.0); |
+ transform.matrix().mapMScalars(result.vec, result.vec); |
+ return result; |
+} |
+ |
+static HomogeneousCoordinate ComputeClippedPointForEdge( |
+ const HomogeneousCoordinate& h1, |
+ const HomogeneousCoordinate& h2) { |
+ // Points h1 and h2 form a line in 4d, and any point on that line can be |
+ // represented as an interpolation between h1 and h2: |
+ // p = (1-t) h1 + (t) h2 |
+ // |
+ // We want to compute point p such that p.w == epsilon, where epsilon is a |
+ // small non-zero number. (but the smaller the number is, the higher the risk |
+ // of overflow) |
+ // To do this, we solve for t in the following equation: |
+ // p.w = epsilon = (1-t) * h1.w + (t) * h2.w |
+ // |
+ // Once paramter t is known, the rest of p can be computed via |
+ // p = (1-t) h1 + (t) h2. |
+ |
+ // Technically this is a special case of the following assertion, but its a |
+ // good idea to keep it an explicit sanity check here. |
+ DCHECK_NE(h2.w(), h1.w()); |
+ // Exactly one of h1 or h2 (but not both) must be on the negative side of the |
+ // w plane when this is called. |
+ DCHECK(h1.ShouldBeClipped() ^ h2.ShouldBeClipped()); |
+ |
+ // ...or any positive non-zero small epsilon |
+ SkMScalar w = 0.00001f; |
+ SkMScalar t = (w - h1.w()) / (h2.w() - h1.w()); |
+ |
+ SkMScalar x = (SK_MScalar1 - t) * h1.x() + t * h2.x(); |
+ SkMScalar y = (SK_MScalar1 - t) * h1.y() + t * h2.y(); |
+ SkMScalar z = (SK_MScalar1 - t) * h1.z() + t * h2.z(); |
+ |
+ return HomogeneousCoordinate(x, y, z, w); |
+} |
+ |
+static inline void ExpandBoundsToIncludePoint(float* xmin, |
+ float* xmax, |
+ float* ymin, |
+ float* ymax, |
+ const gfx::PointF& p) { |
+ *xmin = std::min(p.x(), *xmin); |
+ *xmax = std::max(p.x(), *xmax); |
+ *ymin = std::min(p.y(), *ymin); |
+ *ymax = std::max(p.y(), *ymax); |
+} |
+ |
+static inline void AddVertexToClippedQuad(const gfx::PointF& new_vertex, |
+ gfx::PointF clipped_quad[8], |
+ int* num_vertices_in_clipped_quad) { |
+ clipped_quad[*num_vertices_in_clipped_quad] = new_vertex; |
+ (*num_vertices_in_clipped_quad)++; |
+} |
+ |
+static inline void AddVertexToClippedQuad3d(const gfx::Point3F& new_vertex, |
+ gfx::Point3F clipped_quad[8], |
+ int* num_vertices_in_clipped_quad) { |
+ clipped_quad[*num_vertices_in_clipped_quad] = new_vertex; |
+ (*num_vertices_in_clipped_quad)++; |
+} |
+ |
+gfx::Rect MathUtil::MapEnclosingClippedRect(const gfx::Transform& transform, |
+ const gfx::Rect& src_rect) { |
+ if (transform.IsIdentityOrIntegerTranslation()) { |
+ gfx::Vector2d offset(static_cast<int>(transform.matrix().getFloat(0, 3)), |
+ static_cast<int>(transform.matrix().getFloat(1, 3))); |
+ return src_rect + offset; |
+ } |
+ return gfx::ToEnclosingRect(MapClippedRect(transform, gfx::RectF(src_rect))); |
+} |
+ |
+gfx::RectF MathUtil::MapClippedRect(const gfx::Transform& transform, |
+ const gfx::RectF& src_rect) { |
+ if (transform.IsIdentityOrTranslation()) { |
+ gfx::Vector2dF offset(transform.matrix().getFloat(0, 3), |
+ transform.matrix().getFloat(1, 3)); |
+ return src_rect + offset; |
+ } |
+ |
+ // Apply the transform, but retain the result in homogeneous coordinates. |
+ |
+ SkMScalar quad[4 * 2]; // input: 4 x 2D points |
+ quad[0] = src_rect.x(); |
+ quad[1] = src_rect.y(); |
+ quad[2] = src_rect.right(); |
+ quad[3] = src_rect.y(); |
+ quad[4] = src_rect.right(); |
+ quad[5] = src_rect.bottom(); |
+ quad[6] = src_rect.x(); |
+ quad[7] = src_rect.bottom(); |
+ |
+ SkMScalar result[4 * 4]; // output: 4 x 4D homogeneous points |
+ transform.matrix().map2(quad, 4, result); |
+ |
+ HomogeneousCoordinate hc0(result[0], result[1], result[2], result[3]); |
+ HomogeneousCoordinate hc1(result[4], result[5], result[6], result[7]); |
+ HomogeneousCoordinate hc2(result[8], result[9], result[10], result[11]); |
+ HomogeneousCoordinate hc3(result[12], result[13], result[14], result[15]); |
+ return ComputeEnclosingClippedRect(hc0, hc1, hc2, hc3); |
+} |
+ |
+gfx::Rect MathUtil::ProjectEnclosingClippedRect(const gfx::Transform& transform, |
+ const gfx::Rect& src_rect) { |
+ if (transform.IsIdentityOrIntegerTranslation()) { |
+ gfx::Vector2d offset(static_cast<int>(transform.matrix().getFloat(0, 3)), |
+ static_cast<int>(transform.matrix().getFloat(1, 3))); |
+ return src_rect + offset; |
+ } |
+ return gfx::ToEnclosingRect( |
+ ProjectClippedRect(transform, gfx::RectF(src_rect))); |
+} |
+ |
+gfx::RectF MathUtil::ProjectClippedRect(const gfx::Transform& transform, |
+ const gfx::RectF& src_rect) { |
+ if (transform.IsIdentityOrTranslation()) { |
+ gfx::Vector2dF offset(transform.matrix().getFloat(0, 3), |
+ transform.matrix().getFloat(1, 3)); |
+ return src_rect + offset; |
+ } |
+ |
+ // Perform the projection, but retain the result in homogeneous coordinates. |
+ gfx::QuadF q = gfx::QuadF(src_rect); |
+ HomogeneousCoordinate h1 = ProjectHomogeneousPoint(transform, q.p1()); |
+ HomogeneousCoordinate h2 = ProjectHomogeneousPoint(transform, q.p2()); |
+ HomogeneousCoordinate h3 = ProjectHomogeneousPoint(transform, q.p3()); |
+ HomogeneousCoordinate h4 = ProjectHomogeneousPoint(transform, q.p4()); |
+ |
+ return ComputeEnclosingClippedRect(h1, h2, h3, h4); |
+} |
+ |
+gfx::Rect MathUtil::MapEnclosedRectWith2dAxisAlignedTransform( |
+ const gfx::Transform& transform, |
+ const gfx::Rect& rect) { |
+ DCHECK(transform.Preserves2dAxisAlignment()); |
+ |
+ if (transform.IsIdentityOrIntegerTranslation()) { |
+ gfx::Vector2d offset(static_cast<int>(transform.matrix().getFloat(0, 3)), |
+ static_cast<int>(transform.matrix().getFloat(1, 3))); |
+ return rect + offset; |
+ } |
+ if (transform.IsIdentityOrTranslation()) { |
+ gfx::Vector2dF offset(transform.matrix().getFloat(0, 3), |
+ transform.matrix().getFloat(1, 3)); |
+ return gfx::ToEnclosedRect(rect + offset); |
+ } |
+ |
+ SkMScalar quad[2 * 2]; // input: 2 x 2D points |
+ quad[0] = rect.x(); |
+ quad[1] = rect.y(); |
+ quad[2] = rect.right(); |
+ quad[3] = rect.bottom(); |
+ |
+ SkMScalar result[4 * 2]; // output: 2 x 4D homogeneous points |
+ transform.matrix().map2(quad, 2, result); |
+ |
+ HomogeneousCoordinate hc0(result[0], result[1], result[2], result[3]); |
+ HomogeneousCoordinate hc1(result[4], result[5], result[6], result[7]); |
+ DCHECK(!hc0.ShouldBeClipped()); |
+ DCHECK(!hc1.ShouldBeClipped()); |
+ |
+ gfx::PointF top_left(hc0.CartesianPoint2d()); |
+ gfx::PointF bottom_right(hc1.CartesianPoint2d()); |
+ return gfx::ToEnclosedRect(gfx::BoundingRect(top_left, bottom_right)); |
+} |
+ |
+void MathUtil::MapClippedQuad(const gfx::Transform& transform, |
+ const gfx::QuadF& src_quad, |
+ gfx::PointF clipped_quad[8], |
+ int* num_vertices_in_clipped_quad) { |
+ HomogeneousCoordinate h1 = |
+ MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p1())); |
+ HomogeneousCoordinate h2 = |
+ MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p2())); |
+ HomogeneousCoordinate h3 = |
+ MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p3())); |
+ HomogeneousCoordinate h4 = |
+ MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p4())); |
+ |
+ // The order of adding the vertices to the array is chosen so that |
+ // clockwise / counter-clockwise orientation is retained. |
+ |
+ *num_vertices_in_clipped_quad = 0; |
+ |
+ if (!h1.ShouldBeClipped()) { |
+ AddVertexToClippedQuad( |
+ h1.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad); |
+ } |
+ |
+ if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped()) { |
+ AddVertexToClippedQuad( |
+ ComputeClippedPointForEdge(h1, h2).CartesianPoint2d(), |
+ clipped_quad, |
+ num_vertices_in_clipped_quad); |
+ } |
+ |
+ if (!h2.ShouldBeClipped()) { |
+ AddVertexToClippedQuad( |
+ h2.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad); |
+ } |
+ |
+ if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped()) { |
+ AddVertexToClippedQuad( |
+ ComputeClippedPointForEdge(h2, h3).CartesianPoint2d(), |
+ clipped_quad, |
+ num_vertices_in_clipped_quad); |
+ } |
+ |
+ if (!h3.ShouldBeClipped()) { |
+ AddVertexToClippedQuad( |
+ h3.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad); |
+ } |
+ |
+ if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped()) { |
+ AddVertexToClippedQuad( |
+ ComputeClippedPointForEdge(h3, h4).CartesianPoint2d(), |
+ clipped_quad, |
+ num_vertices_in_clipped_quad); |
+ } |
+ |
+ if (!h4.ShouldBeClipped()) { |
+ AddVertexToClippedQuad( |
+ h4.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad); |
+ } |
+ |
+ if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped()) { |
+ AddVertexToClippedQuad( |
+ ComputeClippedPointForEdge(h4, h1).CartesianPoint2d(), |
+ clipped_quad, |
+ num_vertices_in_clipped_quad); |
+ } |
+ |
+ DCHECK_LE(*num_vertices_in_clipped_quad, 8); |
+} |
+ |
+bool MathUtil::MapClippedQuad3d(const gfx::Transform& transform, |
+ const gfx::QuadF& src_quad, |
+ gfx::Point3F clipped_quad[8], |
+ int* num_vertices_in_clipped_quad) { |
+ HomogeneousCoordinate h1 = |
+ MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p1())); |
+ HomogeneousCoordinate h2 = |
+ MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p2())); |
+ HomogeneousCoordinate h3 = |
+ MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p3())); |
+ HomogeneousCoordinate h4 = |
+ MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p4())); |
+ |
+ // The order of adding the vertices to the array is chosen so that |
+ // clockwise / counter-clockwise orientation is retained. |
+ |
+ *num_vertices_in_clipped_quad = 0; |
+ |
+ if (!h1.ShouldBeClipped()) { |
+ AddVertexToClippedQuad3d( |
+ h1.CartesianPoint3d(), clipped_quad, num_vertices_in_clipped_quad); |
+ } |
+ |
+ if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped()) { |
+ AddVertexToClippedQuad3d( |
+ ComputeClippedPointForEdge(h1, h2).CartesianPoint3d(), |
+ clipped_quad, |
+ num_vertices_in_clipped_quad); |
+ } |
+ |
+ if (!h2.ShouldBeClipped()) { |
+ AddVertexToClippedQuad3d( |
+ h2.CartesianPoint3d(), clipped_quad, num_vertices_in_clipped_quad); |
+ } |
+ |
+ if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped()) { |
+ AddVertexToClippedQuad3d( |
+ ComputeClippedPointForEdge(h2, h3).CartesianPoint3d(), |
+ clipped_quad, |
+ num_vertices_in_clipped_quad); |
+ } |
+ |
+ if (!h3.ShouldBeClipped()) { |
+ AddVertexToClippedQuad3d( |
+ h3.CartesianPoint3d(), clipped_quad, num_vertices_in_clipped_quad); |
+ } |
+ |
+ if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped()) { |
+ AddVertexToClippedQuad3d( |
+ ComputeClippedPointForEdge(h3, h4).CartesianPoint3d(), |
+ clipped_quad, |
+ num_vertices_in_clipped_quad); |
+ } |
+ |
+ if (!h4.ShouldBeClipped()) { |
+ AddVertexToClippedQuad3d( |
+ h4.CartesianPoint3d(), clipped_quad, num_vertices_in_clipped_quad); |
+ } |
+ |
+ if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped()) { |
+ AddVertexToClippedQuad3d( |
+ ComputeClippedPointForEdge(h4, h1).CartesianPoint3d(), |
+ clipped_quad, |
+ num_vertices_in_clipped_quad); |
+ } |
+ |
+ DCHECK_LE(*num_vertices_in_clipped_quad, 8); |
+ return (*num_vertices_in_clipped_quad >= 4); |
+} |
+ |
+gfx::RectF MathUtil::ComputeEnclosingRectOfVertices( |
+ const gfx::PointF vertices[], |
+ int num_vertices) { |
+ if (num_vertices < 2) |
+ return gfx::RectF(); |
+ |
+ float xmin = std::numeric_limits<float>::max(); |
+ float xmax = -std::numeric_limits<float>::max(); |
+ float ymin = std::numeric_limits<float>::max(); |
+ float ymax = -std::numeric_limits<float>::max(); |
+ |
+ for (int i = 0; i < num_vertices; ++i) |
+ ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, vertices[i]); |
+ |
+ return gfx::RectF(gfx::PointF(xmin, ymin), |
+ gfx::SizeF(xmax - xmin, ymax - ymin)); |
+} |
+ |
+gfx::RectF MathUtil::ComputeEnclosingClippedRect( |
+ const HomogeneousCoordinate& h1, |
+ const HomogeneousCoordinate& h2, |
+ const HomogeneousCoordinate& h3, |
+ const HomogeneousCoordinate& h4) { |
+ // This function performs clipping as necessary and computes the enclosing 2d |
+ // gfx::RectF of the vertices. Doing these two steps simultaneously allows us |
+ // to avoid the overhead of storing an unknown number of clipped vertices. |
+ |
+ // If no vertices on the quad are clipped, then we can simply return the |
+ // enclosing rect directly. |
+ bool something_clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() || |
+ h3.ShouldBeClipped() || h4.ShouldBeClipped(); |
+ if (!something_clipped) { |
+ gfx::QuadF mapped_quad = gfx::QuadF(h1.CartesianPoint2d(), |
+ h2.CartesianPoint2d(), |
+ h3.CartesianPoint2d(), |
+ h4.CartesianPoint2d()); |
+ return mapped_quad.BoundingBox(); |
+ } |
+ |
+ bool everything_clipped = h1.ShouldBeClipped() && h2.ShouldBeClipped() && |
+ h3.ShouldBeClipped() && h4.ShouldBeClipped(); |
+ if (everything_clipped) |
+ return gfx::RectF(); |
+ |
+ float xmin = std::numeric_limits<float>::max(); |
+ float xmax = -std::numeric_limits<float>::max(); |
+ float ymin = std::numeric_limits<float>::max(); |
+ float ymax = -std::numeric_limits<float>::max(); |
+ |
+ if (!h1.ShouldBeClipped()) |
+ ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, |
+ h1.CartesianPoint2d()); |
+ |
+ if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped()) |
+ ExpandBoundsToIncludePoint(&xmin, |
+ &xmax, |
+ &ymin, |
+ &ymax, |
+ ComputeClippedPointForEdge(h1, h2) |
+ .CartesianPoint2d()); |
+ |
+ if (!h2.ShouldBeClipped()) |
+ ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, |
+ h2.CartesianPoint2d()); |
+ |
+ if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped()) |
+ ExpandBoundsToIncludePoint(&xmin, |
+ &xmax, |
+ &ymin, |
+ &ymax, |
+ ComputeClippedPointForEdge(h2, h3) |
+ .CartesianPoint2d()); |
+ |
+ if (!h3.ShouldBeClipped()) |
+ ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, |
+ h3.CartesianPoint2d()); |
+ |
+ if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped()) |
+ ExpandBoundsToIncludePoint(&xmin, |
+ &xmax, |
+ &ymin, |
+ &ymax, |
+ ComputeClippedPointForEdge(h3, h4) |
+ .CartesianPoint2d()); |
+ |
+ if (!h4.ShouldBeClipped()) |
+ ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, |
+ h4.CartesianPoint2d()); |
+ |
+ if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped()) |
+ ExpandBoundsToIncludePoint(&xmin, |
+ &xmax, |
+ &ymin, |
+ &ymax, |
+ ComputeClippedPointForEdge(h4, h1) |
+ .CartesianPoint2d()); |
+ |
+ return gfx::RectF(gfx::PointF(xmin, ymin), |
+ gfx::SizeF(xmax - xmin, ymax - ymin)); |
+} |
+ |
+gfx::QuadF MathUtil::MapQuad(const gfx::Transform& transform, |
+ const gfx::QuadF& q, |
+ bool* clipped) { |
+ if (transform.IsIdentityOrTranslation()) { |
+ gfx::QuadF mapped_quad(q); |
+ mapped_quad += gfx::Vector2dF(transform.matrix().getFloat(0, 3), |
+ transform.matrix().getFloat(1, 3)); |
+ *clipped = false; |
+ return mapped_quad; |
+ } |
+ |
+ HomogeneousCoordinate h1 = |
+ MapHomogeneousPoint(transform, gfx::Point3F(q.p1())); |
+ HomogeneousCoordinate h2 = |
+ MapHomogeneousPoint(transform, gfx::Point3F(q.p2())); |
+ HomogeneousCoordinate h3 = |
+ MapHomogeneousPoint(transform, gfx::Point3F(q.p3())); |
+ HomogeneousCoordinate h4 = |
+ MapHomogeneousPoint(transform, gfx::Point3F(q.p4())); |
+ |
+ *clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() || |
+ h3.ShouldBeClipped() || h4.ShouldBeClipped(); |
+ |
+ // Result will be invalid if clipped == true. But, compute it anyway just in |
+ // case, to emulate existing behavior. |
+ return gfx::QuadF(h1.CartesianPoint2d(), |
+ h2.CartesianPoint2d(), |
+ h3.CartesianPoint2d(), |
+ h4.CartesianPoint2d()); |
+} |
+ |
+gfx::QuadF MathUtil::MapQuad3d(const gfx::Transform& transform, |
+ const gfx::QuadF& q, |
+ gfx::Point3F* p, |
+ bool* clipped) { |
+ if (transform.IsIdentityOrTranslation()) { |
+ gfx::QuadF mapped_quad(q); |
+ mapped_quad += gfx::Vector2dF(transform.matrix().getFloat(0, 3), |
+ transform.matrix().getFloat(1, 3)); |
+ *clipped = false; |
+ p[0] = gfx::Point3F(mapped_quad.p1().x(), mapped_quad.p1().y(), 0.0f); |
+ p[1] = gfx::Point3F(mapped_quad.p2().x(), mapped_quad.p2().y(), 0.0f); |
+ p[2] = gfx::Point3F(mapped_quad.p3().x(), mapped_quad.p3().y(), 0.0f); |
+ p[3] = gfx::Point3F(mapped_quad.p4().x(), mapped_quad.p4().y(), 0.0f); |
+ return mapped_quad; |
+ } |
+ |
+ HomogeneousCoordinate h1 = |
+ MapHomogeneousPoint(transform, gfx::Point3F(q.p1())); |
+ HomogeneousCoordinate h2 = |
+ MapHomogeneousPoint(transform, gfx::Point3F(q.p2())); |
+ HomogeneousCoordinate h3 = |
+ MapHomogeneousPoint(transform, gfx::Point3F(q.p3())); |
+ HomogeneousCoordinate h4 = |
+ MapHomogeneousPoint(transform, gfx::Point3F(q.p4())); |
+ |
+ *clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() || |
+ h3.ShouldBeClipped() || h4.ShouldBeClipped(); |
+ |
+ // Result will be invalid if clipped == true. But, compute it anyway just in |
+ // case, to emulate existing behavior. |
+ p[0] = h1.CartesianPoint3d(); |
+ p[1] = h2.CartesianPoint3d(); |
+ p[2] = h3.CartesianPoint3d(); |
+ p[3] = h4.CartesianPoint3d(); |
+ |
+ return gfx::QuadF(h1.CartesianPoint2d(), |
+ h2.CartesianPoint2d(), |
+ h3.CartesianPoint2d(), |
+ h4.CartesianPoint2d()); |
+} |
+ |
+gfx::PointF MathUtil::MapPoint(const gfx::Transform& transform, |
+ const gfx::PointF& p, |
+ bool* clipped) { |
+ HomogeneousCoordinate h = MapHomogeneousPoint(transform, gfx::Point3F(p)); |
+ |
+ if (h.w() > 0) { |
+ *clipped = false; |
+ return h.CartesianPoint2d(); |
+ } |
+ |
+ // The cartesian coordinates will be invalid after dividing by w. |
+ *clipped = true; |
+ |
+ // Avoid dividing by w if w == 0. |
+ if (!h.w()) |
+ return gfx::PointF(); |
+ |
+ // This return value will be invalid because clipped == true, but (1) users of |
+ // this code should be ignoring the return value when clipped == true anyway, |
+ // and (2) this behavior is more consistent with existing behavior of WebKit |
+ // transforms if the user really does not ignore the return value. |
+ return h.CartesianPoint2d(); |
+} |
+ |
+gfx::Point3F MathUtil::MapPoint(const gfx::Transform& transform, |
+ const gfx::Point3F& p, |
+ bool* clipped) { |
+ HomogeneousCoordinate h = MapHomogeneousPoint(transform, p); |
+ |
+ if (h.w() > 0) { |
+ *clipped = false; |
+ return h.CartesianPoint3d(); |
+ } |
+ |
+ // The cartesian coordinates will be invalid after dividing by w. |
+ *clipped = true; |
+ |
+ // Avoid dividing by w if w == 0. |
+ if (!h.w()) |
+ return gfx::Point3F(); |
+ |
+ // This return value will be invalid because clipped == true, but (1) users of |
+ // this code should be ignoring the return value when clipped == true anyway, |
+ // and (2) this behavior is more consistent with existing behavior of WebKit |
+ // transforms if the user really does not ignore the return value. |
+ return h.CartesianPoint3d(); |
+} |
+ |
+gfx::QuadF MathUtil::ProjectQuad(const gfx::Transform& transform, |
+ const gfx::QuadF& q, |
+ bool* clipped) { |
+ gfx::QuadF projected_quad; |
+ bool clipped_point; |
+ projected_quad.set_p1(ProjectPoint(transform, q.p1(), &clipped_point)); |
+ *clipped = clipped_point; |
+ projected_quad.set_p2(ProjectPoint(transform, q.p2(), &clipped_point)); |
+ *clipped |= clipped_point; |
+ projected_quad.set_p3(ProjectPoint(transform, q.p3(), &clipped_point)); |
+ *clipped |= clipped_point; |
+ projected_quad.set_p4(ProjectPoint(transform, q.p4(), &clipped_point)); |
+ *clipped |= clipped_point; |
+ |
+ return projected_quad; |
+} |
+ |
+gfx::PointF MathUtil::ProjectPoint(const gfx::Transform& transform, |
+ const gfx::PointF& p, |
+ bool* clipped) { |
+ HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p, clipped); |
+ // Avoid dividing by w if w == 0. |
+ if (!h.w()) |
+ return gfx::PointF(); |
+ |
+ // This return value will be invalid if clipped == true, but (1) users of |
+ // this code should be ignoring the return value when clipped == true anyway, |
+ // and (2) this behavior is more consistent with existing behavior of WebKit |
+ // transforms if the user really does not ignore the return value. |
+ return h.CartesianPoint2d(); |
+} |
+ |
+gfx::Point3F MathUtil::ProjectPoint3D(const gfx::Transform& transform, |
+ const gfx::PointF& p, |
+ bool* clipped) { |
+ HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p, clipped); |
+ if (!h.w()) |
+ return gfx::Point3F(); |
+ return h.CartesianPoint3d(); |
+} |
+ |
+gfx::RectF MathUtil::ScaleRectProportional(const gfx::RectF& input_outer_rect, |
+ const gfx::RectF& scale_outer_rect, |
+ const gfx::RectF& scale_inner_rect) { |
+ gfx::RectF output_inner_rect = input_outer_rect; |
+ float scale_rect_to_input_scale_x = |
+ scale_outer_rect.width() / input_outer_rect.width(); |
+ float scale_rect_to_input_scale_y = |
+ scale_outer_rect.height() / input_outer_rect.height(); |
+ |
+ gfx::Vector2dF top_left_diff = |
+ scale_inner_rect.origin() - scale_outer_rect.origin(); |
+ gfx::Vector2dF bottom_right_diff = |
+ scale_inner_rect.bottom_right() - scale_outer_rect.bottom_right(); |
+ output_inner_rect.Inset(top_left_diff.x() / scale_rect_to_input_scale_x, |
+ top_left_diff.y() / scale_rect_to_input_scale_y, |
+ -bottom_right_diff.x() / scale_rect_to_input_scale_x, |
+ -bottom_right_diff.y() / scale_rect_to_input_scale_y); |
+ return output_inner_rect; |
+} |
+ |
+static inline bool NearlyZero(double value) { |
+ return std::abs(value) < std::numeric_limits<double>::epsilon(); |
+} |
+ |
+static inline float ScaleOnAxis(double a, double b, double c) { |
+ if (NearlyZero(b) && NearlyZero(c)) |
+ return std::abs(a); |
+ if (NearlyZero(a) && NearlyZero(c)) |
+ return std::abs(b); |
+ if (NearlyZero(a) && NearlyZero(b)) |
+ return std::abs(c); |
+ |
+ // Do the sqrt as a double to not lose precision. |
+ return static_cast<float>(std::sqrt(a * a + b * b + c * c)); |
+} |
+ |
+gfx::Vector2dF MathUtil::ComputeTransform2dScaleComponents( |
+ const gfx::Transform& transform, |
+ float fallback_value) { |
+ if (transform.HasPerspective()) |
+ return gfx::Vector2dF(fallback_value, fallback_value); |
+ float x_scale = ScaleOnAxis(transform.matrix().getDouble(0, 0), |
+ transform.matrix().getDouble(1, 0), |
+ transform.matrix().getDouble(2, 0)); |
+ float y_scale = ScaleOnAxis(transform.matrix().getDouble(0, 1), |
+ transform.matrix().getDouble(1, 1), |
+ transform.matrix().getDouble(2, 1)); |
+ return gfx::Vector2dF(x_scale, y_scale); |
+} |
+ |
+float MathUtil::SmallestAngleBetweenVectors(const gfx::Vector2dF& v1, |
+ const gfx::Vector2dF& v2) { |
+ double dot_product = gfx::DotProduct(v1, v2) / v1.Length() / v2.Length(); |
+ // Clamp to compensate for rounding errors. |
+ dot_product = std::max(-1.0, std::min(1.0, dot_product)); |
+ return static_cast<float>(Rad2Deg(std::acos(dot_product))); |
+} |
+ |
+gfx::Vector2dF MathUtil::ProjectVector(const gfx::Vector2dF& source, |
+ const gfx::Vector2dF& destination) { |
+ float projected_length = |
+ gfx::DotProduct(source, destination) / destination.LengthSquared(); |
+ return gfx::Vector2dF(projected_length * destination.x(), |
+ projected_length * destination.y()); |
+} |
+ |
+scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Size& s) { |
+ scoped_ptr<base::DictionaryValue> res(new base::DictionaryValue()); |
+ res->SetDouble("width", s.width()); |
+ res->SetDouble("height", s.height()); |
+ return res.Pass(); |
+} |
+ |
+scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Rect& r) { |
+ scoped_ptr<base::ListValue> res(new base::ListValue()); |
+ res->AppendInteger(r.x()); |
+ res->AppendInteger(r.y()); |
+ res->AppendInteger(r.width()); |
+ res->AppendInteger(r.height()); |
+ return res.Pass(); |
+} |
+ |
+bool MathUtil::FromValue(const base::Value* raw_value, gfx::Rect* out_rect) { |
+ const base::ListValue* value = nullptr; |
+ if (!raw_value->GetAsList(&value)) |
+ return false; |
+ |
+ if (value->GetSize() != 4) |
+ return false; |
+ |
+ int x, y, w, h; |
+ bool ok = true; |
+ ok &= value->GetInteger(0, &x); |
+ ok &= value->GetInteger(1, &y); |
+ ok &= value->GetInteger(2, &w); |
+ ok &= value->GetInteger(3, &h); |
+ if (!ok) |
+ return false; |
+ |
+ *out_rect = gfx::Rect(x, y, w, h); |
+ return true; |
+} |
+ |
+scoped_ptr<base::Value> MathUtil::AsValue(const gfx::PointF& pt) { |
+ scoped_ptr<base::ListValue> res(new base::ListValue()); |
+ res->AppendDouble(pt.x()); |
+ res->AppendDouble(pt.y()); |
+ return res.Pass(); |
+} |
+ |
+void MathUtil::AddToTracedValue(const char* name, |
+ const gfx::Size& s, |
+ base::trace_event::TracedValue* res) { |
+ res->BeginDictionary(name); |
+ res->SetDouble("width", s.width()); |
+ res->SetDouble("height", s.height()); |
+ res->EndDictionary(); |
+} |
+ |
+void MathUtil::AddToTracedValue(const char* name, |
+ const gfx::SizeF& s, |
+ base::trace_event::TracedValue* res) { |
+ res->BeginDictionary(name); |
+ res->SetDouble("width", s.width()); |
+ res->SetDouble("height", s.height()); |
+ res->EndDictionary(); |
+} |
+ |
+void MathUtil::AddToTracedValue(const char* name, |
+ const gfx::Rect& r, |
+ base::trace_event::TracedValue* res) { |
+ res->BeginArray(name); |
+ res->AppendInteger(r.x()); |
+ res->AppendInteger(r.y()); |
+ res->AppendInteger(r.width()); |
+ res->AppendInteger(r.height()); |
+ res->EndArray(); |
+} |
+ |
+void MathUtil::AddToTracedValue(const char* name, |
+ const gfx::PointF& pt, |
+ base::trace_event::TracedValue* res) { |
+ res->BeginArray(name); |
+ res->AppendDouble(pt.x()); |
+ res->AppendDouble(pt.y()); |
+ res->EndArray(); |
+} |
+ |
+void MathUtil::AddToTracedValue(const char* name, |
+ const gfx::Point3F& pt, |
+ base::trace_event::TracedValue* res) { |
+ res->BeginArray(name); |
+ res->AppendDouble(pt.x()); |
+ res->AppendDouble(pt.y()); |
+ res->AppendDouble(pt.z()); |
+ res->EndArray(); |
+} |
+ |
+void MathUtil::AddToTracedValue(const char* name, |
+ const gfx::Vector2d& v, |
+ base::trace_event::TracedValue* res) { |
+ res->BeginArray(name); |
+ res->AppendInteger(v.x()); |
+ res->AppendInteger(v.y()); |
+ res->EndArray(); |
+} |
+ |
+void MathUtil::AddToTracedValue(const char* name, |
+ const gfx::Vector2dF& v, |
+ base::trace_event::TracedValue* res) { |
+ res->BeginArray(name); |
+ res->AppendDouble(v.x()); |
+ res->AppendDouble(v.y()); |
+ res->EndArray(); |
+} |
+ |
+void MathUtil::AddToTracedValue(const char* name, |
+ const gfx::ScrollOffset& v, |
+ base::trace_event::TracedValue* res) { |
+ res->BeginArray(name); |
+ res->AppendDouble(v.x()); |
+ res->AppendDouble(v.y()); |
+ res->EndArray(); |
+} |
+ |
+void MathUtil::AddToTracedValue(const char* name, |
+ const gfx::QuadF& q, |
+ base::trace_event::TracedValue* res) { |
+ res->BeginArray(name); |
+ res->AppendDouble(q.p1().x()); |
+ res->AppendDouble(q.p1().y()); |
+ res->AppendDouble(q.p2().x()); |
+ res->AppendDouble(q.p2().y()); |
+ res->AppendDouble(q.p3().x()); |
+ res->AppendDouble(q.p3().y()); |
+ res->AppendDouble(q.p4().x()); |
+ res->AppendDouble(q.p4().y()); |
+ res->EndArray(); |
+} |
+ |
+void MathUtil::AddToTracedValue(const char* name, |
+ const gfx::RectF& rect, |
+ base::trace_event::TracedValue* res) { |
+ res->BeginArray(name); |
+ res->AppendDouble(rect.x()); |
+ res->AppendDouble(rect.y()); |
+ res->AppendDouble(rect.width()); |
+ res->AppendDouble(rect.height()); |
+ res->EndArray(); |
+} |
+ |
+void MathUtil::AddToTracedValue(const char* name, |
+ const gfx::Transform& transform, |
+ base::trace_event::TracedValue* res) { |
+ res->BeginArray(name); |
+ const SkMatrix44& m = transform.matrix(); |
+ for (int row = 0; row < 4; ++row) { |
+ for (int col = 0; col < 4; ++col) |
+ res->AppendDouble(m.getDouble(row, col)); |
+ } |
+ res->EndArray(); |
+} |
+ |
+void MathUtil::AddToTracedValue(const char* name, |
+ const gfx::BoxF& box, |
+ base::trace_event::TracedValue* res) { |
+ res->BeginArray(name); |
+ res->AppendInteger(box.x()); |
+ res->AppendInteger(box.y()); |
+ res->AppendInteger(box.z()); |
+ res->AppendInteger(box.width()); |
+ res->AppendInteger(box.height()); |
+ res->AppendInteger(box.depth()); |
+ res->EndArray(); |
+} |
+ |
+double MathUtil::AsDoubleSafely(double value) { |
+ return std::min(value, std::numeric_limits<double>::max()); |
+} |
+ |
+float MathUtil::AsFloatSafely(float value) { |
+ return std::min(value, std::numeric_limits<float>::max()); |
+} |
+ |
+} // namespace cc |