| Index: cc/base/math_util.cc
|
| diff --git a/cc/base/math_util.cc b/cc/base/math_util.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..e2fd565eb9774943c0c75c64ada9906fc1804ebb
|
| --- /dev/null
|
| +++ b/cc/base/math_util.cc
|
| @@ -0,0 +1,870 @@
|
| +// Copyright 2012 The Chromium Authors. All rights reserved.
|
| +// Use of this source code is governed by a BSD-style license that can be
|
| +// found in the LICENSE file.
|
| +
|
| +#include "cc/base/math_util.h"
|
| +
|
| +#include <algorithm>
|
| +#include <cmath>
|
| +#include <limits>
|
| +
|
| +#include "base/trace_event/trace_event_argument.h"
|
| +#include "base/values.h"
|
| +#include "ui/gfx/geometry/quad_f.h"
|
| +#include "ui/gfx/geometry/rect.h"
|
| +#include "ui/gfx/geometry/rect_conversions.h"
|
| +#include "ui/gfx/geometry/rect_f.h"
|
| +#include "ui/gfx/geometry/vector2d_f.h"
|
| +#include "ui/gfx/transform.h"
|
| +
|
| +namespace cc {
|
| +
|
| +const double MathUtil::kPiDouble = 3.14159265358979323846;
|
| +const float MathUtil::kPiFloat = 3.14159265358979323846f;
|
| +
|
| +static HomogeneousCoordinate ProjectHomogeneousPoint(
|
| + const gfx::Transform& transform,
|
| + const gfx::PointF& p) {
|
| + // In this case, the layer we are trying to project onto is perpendicular to
|
| + // ray (point p and z-axis direction) that we are trying to project. This
|
| + // happens when the layer is rotated so that it is infinitesimally thin, or
|
| + // when it is co-planar with the camera origin -- i.e. when the layer is
|
| + // invisible anyway.
|
| + if (!transform.matrix().get(2, 2))
|
| + return HomogeneousCoordinate(0.0, 0.0, 0.0, 1.0);
|
| +
|
| + SkMScalar z = -(transform.matrix().get(2, 0) * p.x() +
|
| + transform.matrix().get(2, 1) * p.y() +
|
| + transform.matrix().get(2, 3)) /
|
| + transform.matrix().get(2, 2);
|
| + HomogeneousCoordinate result(p.x(), p.y(), z, 1.0);
|
| + transform.matrix().mapMScalars(result.vec, result.vec);
|
| + return result;
|
| +}
|
| +
|
| +static HomogeneousCoordinate ProjectHomogeneousPoint(
|
| + const gfx::Transform& transform,
|
| + const gfx::PointF& p,
|
| + bool* clipped) {
|
| + HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p);
|
| + *clipped = h.w() <= 0;
|
| + return h;
|
| +}
|
| +
|
| +static HomogeneousCoordinate MapHomogeneousPoint(
|
| + const gfx::Transform& transform,
|
| + const gfx::Point3F& p) {
|
| + HomogeneousCoordinate result(p.x(), p.y(), p.z(), 1.0);
|
| + transform.matrix().mapMScalars(result.vec, result.vec);
|
| + return result;
|
| +}
|
| +
|
| +static HomogeneousCoordinate ComputeClippedPointForEdge(
|
| + const HomogeneousCoordinate& h1,
|
| + const HomogeneousCoordinate& h2) {
|
| + // Points h1 and h2 form a line in 4d, and any point on that line can be
|
| + // represented as an interpolation between h1 and h2:
|
| + // p = (1-t) h1 + (t) h2
|
| + //
|
| + // We want to compute point p such that p.w == epsilon, where epsilon is a
|
| + // small non-zero number. (but the smaller the number is, the higher the risk
|
| + // of overflow)
|
| + // To do this, we solve for t in the following equation:
|
| + // p.w = epsilon = (1-t) * h1.w + (t) * h2.w
|
| + //
|
| + // Once paramter t is known, the rest of p can be computed via
|
| + // p = (1-t) h1 + (t) h2.
|
| +
|
| + // Technically this is a special case of the following assertion, but its a
|
| + // good idea to keep it an explicit sanity check here.
|
| + DCHECK_NE(h2.w(), h1.w());
|
| + // Exactly one of h1 or h2 (but not both) must be on the negative side of the
|
| + // w plane when this is called.
|
| + DCHECK(h1.ShouldBeClipped() ^ h2.ShouldBeClipped());
|
| +
|
| + // ...or any positive non-zero small epsilon
|
| + SkMScalar w = 0.00001f;
|
| + SkMScalar t = (w - h1.w()) / (h2.w() - h1.w());
|
| +
|
| + SkMScalar x = (SK_MScalar1 - t) * h1.x() + t * h2.x();
|
| + SkMScalar y = (SK_MScalar1 - t) * h1.y() + t * h2.y();
|
| + SkMScalar z = (SK_MScalar1 - t) * h1.z() + t * h2.z();
|
| +
|
| + return HomogeneousCoordinate(x, y, z, w);
|
| +}
|
| +
|
| +static inline void ExpandBoundsToIncludePoint(float* xmin,
|
| + float* xmax,
|
| + float* ymin,
|
| + float* ymax,
|
| + const gfx::PointF& p) {
|
| + *xmin = std::min(p.x(), *xmin);
|
| + *xmax = std::max(p.x(), *xmax);
|
| + *ymin = std::min(p.y(), *ymin);
|
| + *ymax = std::max(p.y(), *ymax);
|
| +}
|
| +
|
| +static inline void AddVertexToClippedQuad(const gfx::PointF& new_vertex,
|
| + gfx::PointF clipped_quad[8],
|
| + int* num_vertices_in_clipped_quad) {
|
| + clipped_quad[*num_vertices_in_clipped_quad] = new_vertex;
|
| + (*num_vertices_in_clipped_quad)++;
|
| +}
|
| +
|
| +static inline void AddVertexToClippedQuad3d(const gfx::Point3F& new_vertex,
|
| + gfx::Point3F clipped_quad[8],
|
| + int* num_vertices_in_clipped_quad) {
|
| + clipped_quad[*num_vertices_in_clipped_quad] = new_vertex;
|
| + (*num_vertices_in_clipped_quad)++;
|
| +}
|
| +
|
| +gfx::Rect MathUtil::MapEnclosingClippedRect(const gfx::Transform& transform,
|
| + const gfx::Rect& src_rect) {
|
| + if (transform.IsIdentityOrIntegerTranslation()) {
|
| + gfx::Vector2d offset(static_cast<int>(transform.matrix().getFloat(0, 3)),
|
| + static_cast<int>(transform.matrix().getFloat(1, 3)));
|
| + return src_rect + offset;
|
| + }
|
| + return gfx::ToEnclosingRect(MapClippedRect(transform, gfx::RectF(src_rect)));
|
| +}
|
| +
|
| +gfx::RectF MathUtil::MapClippedRect(const gfx::Transform& transform,
|
| + const gfx::RectF& src_rect) {
|
| + if (transform.IsIdentityOrTranslation()) {
|
| + gfx::Vector2dF offset(transform.matrix().getFloat(0, 3),
|
| + transform.matrix().getFloat(1, 3));
|
| + return src_rect + offset;
|
| + }
|
| +
|
| + // Apply the transform, but retain the result in homogeneous coordinates.
|
| +
|
| + SkMScalar quad[4 * 2]; // input: 4 x 2D points
|
| + quad[0] = src_rect.x();
|
| + quad[1] = src_rect.y();
|
| + quad[2] = src_rect.right();
|
| + quad[3] = src_rect.y();
|
| + quad[4] = src_rect.right();
|
| + quad[5] = src_rect.bottom();
|
| + quad[6] = src_rect.x();
|
| + quad[7] = src_rect.bottom();
|
| +
|
| + SkMScalar result[4 * 4]; // output: 4 x 4D homogeneous points
|
| + transform.matrix().map2(quad, 4, result);
|
| +
|
| + HomogeneousCoordinate hc0(result[0], result[1], result[2], result[3]);
|
| + HomogeneousCoordinate hc1(result[4], result[5], result[6], result[7]);
|
| + HomogeneousCoordinate hc2(result[8], result[9], result[10], result[11]);
|
| + HomogeneousCoordinate hc3(result[12], result[13], result[14], result[15]);
|
| + return ComputeEnclosingClippedRect(hc0, hc1, hc2, hc3);
|
| +}
|
| +
|
| +gfx::Rect MathUtil::ProjectEnclosingClippedRect(const gfx::Transform& transform,
|
| + const gfx::Rect& src_rect) {
|
| + if (transform.IsIdentityOrIntegerTranslation()) {
|
| + gfx::Vector2d offset(static_cast<int>(transform.matrix().getFloat(0, 3)),
|
| + static_cast<int>(transform.matrix().getFloat(1, 3)));
|
| + return src_rect + offset;
|
| + }
|
| + return gfx::ToEnclosingRect(
|
| + ProjectClippedRect(transform, gfx::RectF(src_rect)));
|
| +}
|
| +
|
| +gfx::RectF MathUtil::ProjectClippedRect(const gfx::Transform& transform,
|
| + const gfx::RectF& src_rect) {
|
| + if (transform.IsIdentityOrTranslation()) {
|
| + gfx::Vector2dF offset(transform.matrix().getFloat(0, 3),
|
| + transform.matrix().getFloat(1, 3));
|
| + return src_rect + offset;
|
| + }
|
| +
|
| + // Perform the projection, but retain the result in homogeneous coordinates.
|
| + gfx::QuadF q = gfx::QuadF(src_rect);
|
| + HomogeneousCoordinate h1 = ProjectHomogeneousPoint(transform, q.p1());
|
| + HomogeneousCoordinate h2 = ProjectHomogeneousPoint(transform, q.p2());
|
| + HomogeneousCoordinate h3 = ProjectHomogeneousPoint(transform, q.p3());
|
| + HomogeneousCoordinate h4 = ProjectHomogeneousPoint(transform, q.p4());
|
| +
|
| + return ComputeEnclosingClippedRect(h1, h2, h3, h4);
|
| +}
|
| +
|
| +gfx::Rect MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(
|
| + const gfx::Transform& transform,
|
| + const gfx::Rect& rect) {
|
| + DCHECK(transform.Preserves2dAxisAlignment());
|
| +
|
| + if (transform.IsIdentityOrIntegerTranslation()) {
|
| + gfx::Vector2d offset(static_cast<int>(transform.matrix().getFloat(0, 3)),
|
| + static_cast<int>(transform.matrix().getFloat(1, 3)));
|
| + return rect + offset;
|
| + }
|
| + if (transform.IsIdentityOrTranslation()) {
|
| + gfx::Vector2dF offset(transform.matrix().getFloat(0, 3),
|
| + transform.matrix().getFloat(1, 3));
|
| + return gfx::ToEnclosedRect(rect + offset);
|
| + }
|
| +
|
| + SkMScalar quad[2 * 2]; // input: 2 x 2D points
|
| + quad[0] = rect.x();
|
| + quad[1] = rect.y();
|
| + quad[2] = rect.right();
|
| + quad[3] = rect.bottom();
|
| +
|
| + SkMScalar result[4 * 2]; // output: 2 x 4D homogeneous points
|
| + transform.matrix().map2(quad, 2, result);
|
| +
|
| + HomogeneousCoordinate hc0(result[0], result[1], result[2], result[3]);
|
| + HomogeneousCoordinate hc1(result[4], result[5], result[6], result[7]);
|
| + DCHECK(!hc0.ShouldBeClipped());
|
| + DCHECK(!hc1.ShouldBeClipped());
|
| +
|
| + gfx::PointF top_left(hc0.CartesianPoint2d());
|
| + gfx::PointF bottom_right(hc1.CartesianPoint2d());
|
| + return gfx::ToEnclosedRect(gfx::BoundingRect(top_left, bottom_right));
|
| +}
|
| +
|
| +void MathUtil::MapClippedQuad(const gfx::Transform& transform,
|
| + const gfx::QuadF& src_quad,
|
| + gfx::PointF clipped_quad[8],
|
| + int* num_vertices_in_clipped_quad) {
|
| + HomogeneousCoordinate h1 =
|
| + MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p1()));
|
| + HomogeneousCoordinate h2 =
|
| + MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p2()));
|
| + HomogeneousCoordinate h3 =
|
| + MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p3()));
|
| + HomogeneousCoordinate h4 =
|
| + MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p4()));
|
| +
|
| + // The order of adding the vertices to the array is chosen so that
|
| + // clockwise / counter-clockwise orientation is retained.
|
| +
|
| + *num_vertices_in_clipped_quad = 0;
|
| +
|
| + if (!h1.ShouldBeClipped()) {
|
| + AddVertexToClippedQuad(
|
| + h1.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
|
| + }
|
| +
|
| + if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped()) {
|
| + AddVertexToClippedQuad(
|
| + ComputeClippedPointForEdge(h1, h2).CartesianPoint2d(),
|
| + clipped_quad,
|
| + num_vertices_in_clipped_quad);
|
| + }
|
| +
|
| + if (!h2.ShouldBeClipped()) {
|
| + AddVertexToClippedQuad(
|
| + h2.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
|
| + }
|
| +
|
| + if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped()) {
|
| + AddVertexToClippedQuad(
|
| + ComputeClippedPointForEdge(h2, h3).CartesianPoint2d(),
|
| + clipped_quad,
|
| + num_vertices_in_clipped_quad);
|
| + }
|
| +
|
| + if (!h3.ShouldBeClipped()) {
|
| + AddVertexToClippedQuad(
|
| + h3.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
|
| + }
|
| +
|
| + if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped()) {
|
| + AddVertexToClippedQuad(
|
| + ComputeClippedPointForEdge(h3, h4).CartesianPoint2d(),
|
| + clipped_quad,
|
| + num_vertices_in_clipped_quad);
|
| + }
|
| +
|
| + if (!h4.ShouldBeClipped()) {
|
| + AddVertexToClippedQuad(
|
| + h4.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
|
| + }
|
| +
|
| + if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped()) {
|
| + AddVertexToClippedQuad(
|
| + ComputeClippedPointForEdge(h4, h1).CartesianPoint2d(),
|
| + clipped_quad,
|
| + num_vertices_in_clipped_quad);
|
| + }
|
| +
|
| + DCHECK_LE(*num_vertices_in_clipped_quad, 8);
|
| +}
|
| +
|
| +bool MathUtil::MapClippedQuad3d(const gfx::Transform& transform,
|
| + const gfx::QuadF& src_quad,
|
| + gfx::Point3F clipped_quad[8],
|
| + int* num_vertices_in_clipped_quad) {
|
| + HomogeneousCoordinate h1 =
|
| + MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p1()));
|
| + HomogeneousCoordinate h2 =
|
| + MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p2()));
|
| + HomogeneousCoordinate h3 =
|
| + MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p3()));
|
| + HomogeneousCoordinate h4 =
|
| + MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p4()));
|
| +
|
| + // The order of adding the vertices to the array is chosen so that
|
| + // clockwise / counter-clockwise orientation is retained.
|
| +
|
| + *num_vertices_in_clipped_quad = 0;
|
| +
|
| + if (!h1.ShouldBeClipped()) {
|
| + AddVertexToClippedQuad3d(
|
| + h1.CartesianPoint3d(), clipped_quad, num_vertices_in_clipped_quad);
|
| + }
|
| +
|
| + if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped()) {
|
| + AddVertexToClippedQuad3d(
|
| + ComputeClippedPointForEdge(h1, h2).CartesianPoint3d(),
|
| + clipped_quad,
|
| + num_vertices_in_clipped_quad);
|
| + }
|
| +
|
| + if (!h2.ShouldBeClipped()) {
|
| + AddVertexToClippedQuad3d(
|
| + h2.CartesianPoint3d(), clipped_quad, num_vertices_in_clipped_quad);
|
| + }
|
| +
|
| + if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped()) {
|
| + AddVertexToClippedQuad3d(
|
| + ComputeClippedPointForEdge(h2, h3).CartesianPoint3d(),
|
| + clipped_quad,
|
| + num_vertices_in_clipped_quad);
|
| + }
|
| +
|
| + if (!h3.ShouldBeClipped()) {
|
| + AddVertexToClippedQuad3d(
|
| + h3.CartesianPoint3d(), clipped_quad, num_vertices_in_clipped_quad);
|
| + }
|
| +
|
| + if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped()) {
|
| + AddVertexToClippedQuad3d(
|
| + ComputeClippedPointForEdge(h3, h4).CartesianPoint3d(),
|
| + clipped_quad,
|
| + num_vertices_in_clipped_quad);
|
| + }
|
| +
|
| + if (!h4.ShouldBeClipped()) {
|
| + AddVertexToClippedQuad3d(
|
| + h4.CartesianPoint3d(), clipped_quad, num_vertices_in_clipped_quad);
|
| + }
|
| +
|
| + if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped()) {
|
| + AddVertexToClippedQuad3d(
|
| + ComputeClippedPointForEdge(h4, h1).CartesianPoint3d(),
|
| + clipped_quad,
|
| + num_vertices_in_clipped_quad);
|
| + }
|
| +
|
| + DCHECK_LE(*num_vertices_in_clipped_quad, 8);
|
| + return (*num_vertices_in_clipped_quad >= 4);
|
| +}
|
| +
|
| +gfx::RectF MathUtil::ComputeEnclosingRectOfVertices(
|
| + const gfx::PointF vertices[],
|
| + int num_vertices) {
|
| + if (num_vertices < 2)
|
| + return gfx::RectF();
|
| +
|
| + float xmin = std::numeric_limits<float>::max();
|
| + float xmax = -std::numeric_limits<float>::max();
|
| + float ymin = std::numeric_limits<float>::max();
|
| + float ymax = -std::numeric_limits<float>::max();
|
| +
|
| + for (int i = 0; i < num_vertices; ++i)
|
| + ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, vertices[i]);
|
| +
|
| + return gfx::RectF(gfx::PointF(xmin, ymin),
|
| + gfx::SizeF(xmax - xmin, ymax - ymin));
|
| +}
|
| +
|
| +gfx::RectF MathUtil::ComputeEnclosingClippedRect(
|
| + const HomogeneousCoordinate& h1,
|
| + const HomogeneousCoordinate& h2,
|
| + const HomogeneousCoordinate& h3,
|
| + const HomogeneousCoordinate& h4) {
|
| + // This function performs clipping as necessary and computes the enclosing 2d
|
| + // gfx::RectF of the vertices. Doing these two steps simultaneously allows us
|
| + // to avoid the overhead of storing an unknown number of clipped vertices.
|
| +
|
| + // If no vertices on the quad are clipped, then we can simply return the
|
| + // enclosing rect directly.
|
| + bool something_clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
|
| + h3.ShouldBeClipped() || h4.ShouldBeClipped();
|
| + if (!something_clipped) {
|
| + gfx::QuadF mapped_quad = gfx::QuadF(h1.CartesianPoint2d(),
|
| + h2.CartesianPoint2d(),
|
| + h3.CartesianPoint2d(),
|
| + h4.CartesianPoint2d());
|
| + return mapped_quad.BoundingBox();
|
| + }
|
| +
|
| + bool everything_clipped = h1.ShouldBeClipped() && h2.ShouldBeClipped() &&
|
| + h3.ShouldBeClipped() && h4.ShouldBeClipped();
|
| + if (everything_clipped)
|
| + return gfx::RectF();
|
| +
|
| + float xmin = std::numeric_limits<float>::max();
|
| + float xmax = -std::numeric_limits<float>::max();
|
| + float ymin = std::numeric_limits<float>::max();
|
| + float ymax = -std::numeric_limits<float>::max();
|
| +
|
| + if (!h1.ShouldBeClipped())
|
| + ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
|
| + h1.CartesianPoint2d());
|
| +
|
| + if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped())
|
| + ExpandBoundsToIncludePoint(&xmin,
|
| + &xmax,
|
| + &ymin,
|
| + &ymax,
|
| + ComputeClippedPointForEdge(h1, h2)
|
| + .CartesianPoint2d());
|
| +
|
| + if (!h2.ShouldBeClipped())
|
| + ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
|
| + h2.CartesianPoint2d());
|
| +
|
| + if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped())
|
| + ExpandBoundsToIncludePoint(&xmin,
|
| + &xmax,
|
| + &ymin,
|
| + &ymax,
|
| + ComputeClippedPointForEdge(h2, h3)
|
| + .CartesianPoint2d());
|
| +
|
| + if (!h3.ShouldBeClipped())
|
| + ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
|
| + h3.CartesianPoint2d());
|
| +
|
| + if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped())
|
| + ExpandBoundsToIncludePoint(&xmin,
|
| + &xmax,
|
| + &ymin,
|
| + &ymax,
|
| + ComputeClippedPointForEdge(h3, h4)
|
| + .CartesianPoint2d());
|
| +
|
| + if (!h4.ShouldBeClipped())
|
| + ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
|
| + h4.CartesianPoint2d());
|
| +
|
| + if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped())
|
| + ExpandBoundsToIncludePoint(&xmin,
|
| + &xmax,
|
| + &ymin,
|
| + &ymax,
|
| + ComputeClippedPointForEdge(h4, h1)
|
| + .CartesianPoint2d());
|
| +
|
| + return gfx::RectF(gfx::PointF(xmin, ymin),
|
| + gfx::SizeF(xmax - xmin, ymax - ymin));
|
| +}
|
| +
|
| +gfx::QuadF MathUtil::MapQuad(const gfx::Transform& transform,
|
| + const gfx::QuadF& q,
|
| + bool* clipped) {
|
| + if (transform.IsIdentityOrTranslation()) {
|
| + gfx::QuadF mapped_quad(q);
|
| + mapped_quad += gfx::Vector2dF(transform.matrix().getFloat(0, 3),
|
| + transform.matrix().getFloat(1, 3));
|
| + *clipped = false;
|
| + return mapped_quad;
|
| + }
|
| +
|
| + HomogeneousCoordinate h1 =
|
| + MapHomogeneousPoint(transform, gfx::Point3F(q.p1()));
|
| + HomogeneousCoordinate h2 =
|
| + MapHomogeneousPoint(transform, gfx::Point3F(q.p2()));
|
| + HomogeneousCoordinate h3 =
|
| + MapHomogeneousPoint(transform, gfx::Point3F(q.p3()));
|
| + HomogeneousCoordinate h4 =
|
| + MapHomogeneousPoint(transform, gfx::Point3F(q.p4()));
|
| +
|
| + *clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
|
| + h3.ShouldBeClipped() || h4.ShouldBeClipped();
|
| +
|
| + // Result will be invalid if clipped == true. But, compute it anyway just in
|
| + // case, to emulate existing behavior.
|
| + return gfx::QuadF(h1.CartesianPoint2d(),
|
| + h2.CartesianPoint2d(),
|
| + h3.CartesianPoint2d(),
|
| + h4.CartesianPoint2d());
|
| +}
|
| +
|
| +gfx::QuadF MathUtil::MapQuad3d(const gfx::Transform& transform,
|
| + const gfx::QuadF& q,
|
| + gfx::Point3F* p,
|
| + bool* clipped) {
|
| + if (transform.IsIdentityOrTranslation()) {
|
| + gfx::QuadF mapped_quad(q);
|
| + mapped_quad += gfx::Vector2dF(transform.matrix().getFloat(0, 3),
|
| + transform.matrix().getFloat(1, 3));
|
| + *clipped = false;
|
| + p[0] = gfx::Point3F(mapped_quad.p1().x(), mapped_quad.p1().y(), 0.0f);
|
| + p[1] = gfx::Point3F(mapped_quad.p2().x(), mapped_quad.p2().y(), 0.0f);
|
| + p[2] = gfx::Point3F(mapped_quad.p3().x(), mapped_quad.p3().y(), 0.0f);
|
| + p[3] = gfx::Point3F(mapped_quad.p4().x(), mapped_quad.p4().y(), 0.0f);
|
| + return mapped_quad;
|
| + }
|
| +
|
| + HomogeneousCoordinate h1 =
|
| + MapHomogeneousPoint(transform, gfx::Point3F(q.p1()));
|
| + HomogeneousCoordinate h2 =
|
| + MapHomogeneousPoint(transform, gfx::Point3F(q.p2()));
|
| + HomogeneousCoordinate h3 =
|
| + MapHomogeneousPoint(transform, gfx::Point3F(q.p3()));
|
| + HomogeneousCoordinate h4 =
|
| + MapHomogeneousPoint(transform, gfx::Point3F(q.p4()));
|
| +
|
| + *clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
|
| + h3.ShouldBeClipped() || h4.ShouldBeClipped();
|
| +
|
| + // Result will be invalid if clipped == true. But, compute it anyway just in
|
| + // case, to emulate existing behavior.
|
| + p[0] = h1.CartesianPoint3d();
|
| + p[1] = h2.CartesianPoint3d();
|
| + p[2] = h3.CartesianPoint3d();
|
| + p[3] = h4.CartesianPoint3d();
|
| +
|
| + return gfx::QuadF(h1.CartesianPoint2d(),
|
| + h2.CartesianPoint2d(),
|
| + h3.CartesianPoint2d(),
|
| + h4.CartesianPoint2d());
|
| +}
|
| +
|
| +gfx::PointF MathUtil::MapPoint(const gfx::Transform& transform,
|
| + const gfx::PointF& p,
|
| + bool* clipped) {
|
| + HomogeneousCoordinate h = MapHomogeneousPoint(transform, gfx::Point3F(p));
|
| +
|
| + if (h.w() > 0) {
|
| + *clipped = false;
|
| + return h.CartesianPoint2d();
|
| + }
|
| +
|
| + // The cartesian coordinates will be invalid after dividing by w.
|
| + *clipped = true;
|
| +
|
| + // Avoid dividing by w if w == 0.
|
| + if (!h.w())
|
| + return gfx::PointF();
|
| +
|
| + // This return value will be invalid because clipped == true, but (1) users of
|
| + // this code should be ignoring the return value when clipped == true anyway,
|
| + // and (2) this behavior is more consistent with existing behavior of WebKit
|
| + // transforms if the user really does not ignore the return value.
|
| + return h.CartesianPoint2d();
|
| +}
|
| +
|
| +gfx::Point3F MathUtil::MapPoint(const gfx::Transform& transform,
|
| + const gfx::Point3F& p,
|
| + bool* clipped) {
|
| + HomogeneousCoordinate h = MapHomogeneousPoint(transform, p);
|
| +
|
| + if (h.w() > 0) {
|
| + *clipped = false;
|
| + return h.CartesianPoint3d();
|
| + }
|
| +
|
| + // The cartesian coordinates will be invalid after dividing by w.
|
| + *clipped = true;
|
| +
|
| + // Avoid dividing by w if w == 0.
|
| + if (!h.w())
|
| + return gfx::Point3F();
|
| +
|
| + // This return value will be invalid because clipped == true, but (1) users of
|
| + // this code should be ignoring the return value when clipped == true anyway,
|
| + // and (2) this behavior is more consistent with existing behavior of WebKit
|
| + // transforms if the user really does not ignore the return value.
|
| + return h.CartesianPoint3d();
|
| +}
|
| +
|
| +gfx::QuadF MathUtil::ProjectQuad(const gfx::Transform& transform,
|
| + const gfx::QuadF& q,
|
| + bool* clipped) {
|
| + gfx::QuadF projected_quad;
|
| + bool clipped_point;
|
| + projected_quad.set_p1(ProjectPoint(transform, q.p1(), &clipped_point));
|
| + *clipped = clipped_point;
|
| + projected_quad.set_p2(ProjectPoint(transform, q.p2(), &clipped_point));
|
| + *clipped |= clipped_point;
|
| + projected_quad.set_p3(ProjectPoint(transform, q.p3(), &clipped_point));
|
| + *clipped |= clipped_point;
|
| + projected_quad.set_p4(ProjectPoint(transform, q.p4(), &clipped_point));
|
| + *clipped |= clipped_point;
|
| +
|
| + return projected_quad;
|
| +}
|
| +
|
| +gfx::PointF MathUtil::ProjectPoint(const gfx::Transform& transform,
|
| + const gfx::PointF& p,
|
| + bool* clipped) {
|
| + HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p, clipped);
|
| + // Avoid dividing by w if w == 0.
|
| + if (!h.w())
|
| + return gfx::PointF();
|
| +
|
| + // This return value will be invalid if clipped == true, but (1) users of
|
| + // this code should be ignoring the return value when clipped == true anyway,
|
| + // and (2) this behavior is more consistent with existing behavior of WebKit
|
| + // transforms if the user really does not ignore the return value.
|
| + return h.CartesianPoint2d();
|
| +}
|
| +
|
| +gfx::Point3F MathUtil::ProjectPoint3D(const gfx::Transform& transform,
|
| + const gfx::PointF& p,
|
| + bool* clipped) {
|
| + HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p, clipped);
|
| + if (!h.w())
|
| + return gfx::Point3F();
|
| + return h.CartesianPoint3d();
|
| +}
|
| +
|
| +gfx::RectF MathUtil::ScaleRectProportional(const gfx::RectF& input_outer_rect,
|
| + const gfx::RectF& scale_outer_rect,
|
| + const gfx::RectF& scale_inner_rect) {
|
| + gfx::RectF output_inner_rect = input_outer_rect;
|
| + float scale_rect_to_input_scale_x =
|
| + scale_outer_rect.width() / input_outer_rect.width();
|
| + float scale_rect_to_input_scale_y =
|
| + scale_outer_rect.height() / input_outer_rect.height();
|
| +
|
| + gfx::Vector2dF top_left_diff =
|
| + scale_inner_rect.origin() - scale_outer_rect.origin();
|
| + gfx::Vector2dF bottom_right_diff =
|
| + scale_inner_rect.bottom_right() - scale_outer_rect.bottom_right();
|
| + output_inner_rect.Inset(top_left_diff.x() / scale_rect_to_input_scale_x,
|
| + top_left_diff.y() / scale_rect_to_input_scale_y,
|
| + -bottom_right_diff.x() / scale_rect_to_input_scale_x,
|
| + -bottom_right_diff.y() / scale_rect_to_input_scale_y);
|
| + return output_inner_rect;
|
| +}
|
| +
|
| +static inline bool NearlyZero(double value) {
|
| + return std::abs(value) < std::numeric_limits<double>::epsilon();
|
| +}
|
| +
|
| +static inline float ScaleOnAxis(double a, double b, double c) {
|
| + if (NearlyZero(b) && NearlyZero(c))
|
| + return std::abs(a);
|
| + if (NearlyZero(a) && NearlyZero(c))
|
| + return std::abs(b);
|
| + if (NearlyZero(a) && NearlyZero(b))
|
| + return std::abs(c);
|
| +
|
| + // Do the sqrt as a double to not lose precision.
|
| + return static_cast<float>(std::sqrt(a * a + b * b + c * c));
|
| +}
|
| +
|
| +gfx::Vector2dF MathUtil::ComputeTransform2dScaleComponents(
|
| + const gfx::Transform& transform,
|
| + float fallback_value) {
|
| + if (transform.HasPerspective())
|
| + return gfx::Vector2dF(fallback_value, fallback_value);
|
| + float x_scale = ScaleOnAxis(transform.matrix().getDouble(0, 0),
|
| + transform.matrix().getDouble(1, 0),
|
| + transform.matrix().getDouble(2, 0));
|
| + float y_scale = ScaleOnAxis(transform.matrix().getDouble(0, 1),
|
| + transform.matrix().getDouble(1, 1),
|
| + transform.matrix().getDouble(2, 1));
|
| + return gfx::Vector2dF(x_scale, y_scale);
|
| +}
|
| +
|
| +float MathUtil::SmallestAngleBetweenVectors(const gfx::Vector2dF& v1,
|
| + const gfx::Vector2dF& v2) {
|
| + double dot_product = gfx::DotProduct(v1, v2) / v1.Length() / v2.Length();
|
| + // Clamp to compensate for rounding errors.
|
| + dot_product = std::max(-1.0, std::min(1.0, dot_product));
|
| + return static_cast<float>(Rad2Deg(std::acos(dot_product)));
|
| +}
|
| +
|
| +gfx::Vector2dF MathUtil::ProjectVector(const gfx::Vector2dF& source,
|
| + const gfx::Vector2dF& destination) {
|
| + float projected_length =
|
| + gfx::DotProduct(source, destination) / destination.LengthSquared();
|
| + return gfx::Vector2dF(projected_length * destination.x(),
|
| + projected_length * destination.y());
|
| +}
|
| +
|
| +scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Size& s) {
|
| + scoped_ptr<base::DictionaryValue> res(new base::DictionaryValue());
|
| + res->SetDouble("width", s.width());
|
| + res->SetDouble("height", s.height());
|
| + return res.Pass();
|
| +}
|
| +
|
| +scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Rect& r) {
|
| + scoped_ptr<base::ListValue> res(new base::ListValue());
|
| + res->AppendInteger(r.x());
|
| + res->AppendInteger(r.y());
|
| + res->AppendInteger(r.width());
|
| + res->AppendInteger(r.height());
|
| + return res.Pass();
|
| +}
|
| +
|
| +bool MathUtil::FromValue(const base::Value* raw_value, gfx::Rect* out_rect) {
|
| + const base::ListValue* value = nullptr;
|
| + if (!raw_value->GetAsList(&value))
|
| + return false;
|
| +
|
| + if (value->GetSize() != 4)
|
| + return false;
|
| +
|
| + int x, y, w, h;
|
| + bool ok = true;
|
| + ok &= value->GetInteger(0, &x);
|
| + ok &= value->GetInteger(1, &y);
|
| + ok &= value->GetInteger(2, &w);
|
| + ok &= value->GetInteger(3, &h);
|
| + if (!ok)
|
| + return false;
|
| +
|
| + *out_rect = gfx::Rect(x, y, w, h);
|
| + return true;
|
| +}
|
| +
|
| +scoped_ptr<base::Value> MathUtil::AsValue(const gfx::PointF& pt) {
|
| + scoped_ptr<base::ListValue> res(new base::ListValue());
|
| + res->AppendDouble(pt.x());
|
| + res->AppendDouble(pt.y());
|
| + return res.Pass();
|
| +}
|
| +
|
| +void MathUtil::AddToTracedValue(const char* name,
|
| + const gfx::Size& s,
|
| + base::trace_event::TracedValue* res) {
|
| + res->BeginDictionary(name);
|
| + res->SetDouble("width", s.width());
|
| + res->SetDouble("height", s.height());
|
| + res->EndDictionary();
|
| +}
|
| +
|
| +void MathUtil::AddToTracedValue(const char* name,
|
| + const gfx::SizeF& s,
|
| + base::trace_event::TracedValue* res) {
|
| + res->BeginDictionary(name);
|
| + res->SetDouble("width", s.width());
|
| + res->SetDouble("height", s.height());
|
| + res->EndDictionary();
|
| +}
|
| +
|
| +void MathUtil::AddToTracedValue(const char* name,
|
| + const gfx::Rect& r,
|
| + base::trace_event::TracedValue* res) {
|
| + res->BeginArray(name);
|
| + res->AppendInteger(r.x());
|
| + res->AppendInteger(r.y());
|
| + res->AppendInteger(r.width());
|
| + res->AppendInteger(r.height());
|
| + res->EndArray();
|
| +}
|
| +
|
| +void MathUtil::AddToTracedValue(const char* name,
|
| + const gfx::PointF& pt,
|
| + base::trace_event::TracedValue* res) {
|
| + res->BeginArray(name);
|
| + res->AppendDouble(pt.x());
|
| + res->AppendDouble(pt.y());
|
| + res->EndArray();
|
| +}
|
| +
|
| +void MathUtil::AddToTracedValue(const char* name,
|
| + const gfx::Point3F& pt,
|
| + base::trace_event::TracedValue* res) {
|
| + res->BeginArray(name);
|
| + res->AppendDouble(pt.x());
|
| + res->AppendDouble(pt.y());
|
| + res->AppendDouble(pt.z());
|
| + res->EndArray();
|
| +}
|
| +
|
| +void MathUtil::AddToTracedValue(const char* name,
|
| + const gfx::Vector2d& v,
|
| + base::trace_event::TracedValue* res) {
|
| + res->BeginArray(name);
|
| + res->AppendInteger(v.x());
|
| + res->AppendInteger(v.y());
|
| + res->EndArray();
|
| +}
|
| +
|
| +void MathUtil::AddToTracedValue(const char* name,
|
| + const gfx::Vector2dF& v,
|
| + base::trace_event::TracedValue* res) {
|
| + res->BeginArray(name);
|
| + res->AppendDouble(v.x());
|
| + res->AppendDouble(v.y());
|
| + res->EndArray();
|
| +}
|
| +
|
| +void MathUtil::AddToTracedValue(const char* name,
|
| + const gfx::ScrollOffset& v,
|
| + base::trace_event::TracedValue* res) {
|
| + res->BeginArray(name);
|
| + res->AppendDouble(v.x());
|
| + res->AppendDouble(v.y());
|
| + res->EndArray();
|
| +}
|
| +
|
| +void MathUtil::AddToTracedValue(const char* name,
|
| + const gfx::QuadF& q,
|
| + base::trace_event::TracedValue* res) {
|
| + res->BeginArray(name);
|
| + res->AppendDouble(q.p1().x());
|
| + res->AppendDouble(q.p1().y());
|
| + res->AppendDouble(q.p2().x());
|
| + res->AppendDouble(q.p2().y());
|
| + res->AppendDouble(q.p3().x());
|
| + res->AppendDouble(q.p3().y());
|
| + res->AppendDouble(q.p4().x());
|
| + res->AppendDouble(q.p4().y());
|
| + res->EndArray();
|
| +}
|
| +
|
| +void MathUtil::AddToTracedValue(const char* name,
|
| + const gfx::RectF& rect,
|
| + base::trace_event::TracedValue* res) {
|
| + res->BeginArray(name);
|
| + res->AppendDouble(rect.x());
|
| + res->AppendDouble(rect.y());
|
| + res->AppendDouble(rect.width());
|
| + res->AppendDouble(rect.height());
|
| + res->EndArray();
|
| +}
|
| +
|
| +void MathUtil::AddToTracedValue(const char* name,
|
| + const gfx::Transform& transform,
|
| + base::trace_event::TracedValue* res) {
|
| + res->BeginArray(name);
|
| + const SkMatrix44& m = transform.matrix();
|
| + for (int row = 0; row < 4; ++row) {
|
| + for (int col = 0; col < 4; ++col)
|
| + res->AppendDouble(m.getDouble(row, col));
|
| + }
|
| + res->EndArray();
|
| +}
|
| +
|
| +void MathUtil::AddToTracedValue(const char* name,
|
| + const gfx::BoxF& box,
|
| + base::trace_event::TracedValue* res) {
|
| + res->BeginArray(name);
|
| + res->AppendInteger(box.x());
|
| + res->AppendInteger(box.y());
|
| + res->AppendInteger(box.z());
|
| + res->AppendInteger(box.width());
|
| + res->AppendInteger(box.height());
|
| + res->AppendInteger(box.depth());
|
| + res->EndArray();
|
| +}
|
| +
|
| +double MathUtil::AsDoubleSafely(double value) {
|
| + return std::min(value, std::numeric_limits<double>::max());
|
| +}
|
| +
|
| +float MathUtil::AsFloatSafely(float value) {
|
| + return std::min(value, std::numeric_limits<float>::max());
|
| +}
|
| +
|
| +} // namespace cc
|
|
|