Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(2538)

Unified Diff: cc/base/math_util.cc

Issue 1531403002: Revert "Delete CC." (Closed) Base URL: https://github.com/domokit/mojo.git@master
Patch Set: Created 5 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « cc/base/math_util.h ('k') | cc/base/math_util_unittest.cc » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: cc/base/math_util.cc
diff --git a/cc/base/math_util.cc b/cc/base/math_util.cc
new file mode 100644
index 0000000000000000000000000000000000000000..e2fd565eb9774943c0c75c64ada9906fc1804ebb
--- /dev/null
+++ b/cc/base/math_util.cc
@@ -0,0 +1,870 @@
+// Copyright 2012 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "cc/base/math_util.h"
+
+#include <algorithm>
+#include <cmath>
+#include <limits>
+
+#include "base/trace_event/trace_event_argument.h"
+#include "base/values.h"
+#include "ui/gfx/geometry/quad_f.h"
+#include "ui/gfx/geometry/rect.h"
+#include "ui/gfx/geometry/rect_conversions.h"
+#include "ui/gfx/geometry/rect_f.h"
+#include "ui/gfx/geometry/vector2d_f.h"
+#include "ui/gfx/transform.h"
+
+namespace cc {
+
+const double MathUtil::kPiDouble = 3.14159265358979323846;
+const float MathUtil::kPiFloat = 3.14159265358979323846f;
+
+static HomogeneousCoordinate ProjectHomogeneousPoint(
+ const gfx::Transform& transform,
+ const gfx::PointF& p) {
+ // In this case, the layer we are trying to project onto is perpendicular to
+ // ray (point p and z-axis direction) that we are trying to project. This
+ // happens when the layer is rotated so that it is infinitesimally thin, or
+ // when it is co-planar with the camera origin -- i.e. when the layer is
+ // invisible anyway.
+ if (!transform.matrix().get(2, 2))
+ return HomogeneousCoordinate(0.0, 0.0, 0.0, 1.0);
+
+ SkMScalar z = -(transform.matrix().get(2, 0) * p.x() +
+ transform.matrix().get(2, 1) * p.y() +
+ transform.matrix().get(2, 3)) /
+ transform.matrix().get(2, 2);
+ HomogeneousCoordinate result(p.x(), p.y(), z, 1.0);
+ transform.matrix().mapMScalars(result.vec, result.vec);
+ return result;
+}
+
+static HomogeneousCoordinate ProjectHomogeneousPoint(
+ const gfx::Transform& transform,
+ const gfx::PointF& p,
+ bool* clipped) {
+ HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p);
+ *clipped = h.w() <= 0;
+ return h;
+}
+
+static HomogeneousCoordinate MapHomogeneousPoint(
+ const gfx::Transform& transform,
+ const gfx::Point3F& p) {
+ HomogeneousCoordinate result(p.x(), p.y(), p.z(), 1.0);
+ transform.matrix().mapMScalars(result.vec, result.vec);
+ return result;
+}
+
+static HomogeneousCoordinate ComputeClippedPointForEdge(
+ const HomogeneousCoordinate& h1,
+ const HomogeneousCoordinate& h2) {
+ // Points h1 and h2 form a line in 4d, and any point on that line can be
+ // represented as an interpolation between h1 and h2:
+ // p = (1-t) h1 + (t) h2
+ //
+ // We want to compute point p such that p.w == epsilon, where epsilon is a
+ // small non-zero number. (but the smaller the number is, the higher the risk
+ // of overflow)
+ // To do this, we solve for t in the following equation:
+ // p.w = epsilon = (1-t) * h1.w + (t) * h2.w
+ //
+ // Once paramter t is known, the rest of p can be computed via
+ // p = (1-t) h1 + (t) h2.
+
+ // Technically this is a special case of the following assertion, but its a
+ // good idea to keep it an explicit sanity check here.
+ DCHECK_NE(h2.w(), h1.w());
+ // Exactly one of h1 or h2 (but not both) must be on the negative side of the
+ // w plane when this is called.
+ DCHECK(h1.ShouldBeClipped() ^ h2.ShouldBeClipped());
+
+ // ...or any positive non-zero small epsilon
+ SkMScalar w = 0.00001f;
+ SkMScalar t = (w - h1.w()) / (h2.w() - h1.w());
+
+ SkMScalar x = (SK_MScalar1 - t) * h1.x() + t * h2.x();
+ SkMScalar y = (SK_MScalar1 - t) * h1.y() + t * h2.y();
+ SkMScalar z = (SK_MScalar1 - t) * h1.z() + t * h2.z();
+
+ return HomogeneousCoordinate(x, y, z, w);
+}
+
+static inline void ExpandBoundsToIncludePoint(float* xmin,
+ float* xmax,
+ float* ymin,
+ float* ymax,
+ const gfx::PointF& p) {
+ *xmin = std::min(p.x(), *xmin);
+ *xmax = std::max(p.x(), *xmax);
+ *ymin = std::min(p.y(), *ymin);
+ *ymax = std::max(p.y(), *ymax);
+}
+
+static inline void AddVertexToClippedQuad(const gfx::PointF& new_vertex,
+ gfx::PointF clipped_quad[8],
+ int* num_vertices_in_clipped_quad) {
+ clipped_quad[*num_vertices_in_clipped_quad] = new_vertex;
+ (*num_vertices_in_clipped_quad)++;
+}
+
+static inline void AddVertexToClippedQuad3d(const gfx::Point3F& new_vertex,
+ gfx::Point3F clipped_quad[8],
+ int* num_vertices_in_clipped_quad) {
+ clipped_quad[*num_vertices_in_clipped_quad] = new_vertex;
+ (*num_vertices_in_clipped_quad)++;
+}
+
+gfx::Rect MathUtil::MapEnclosingClippedRect(const gfx::Transform& transform,
+ const gfx::Rect& src_rect) {
+ if (transform.IsIdentityOrIntegerTranslation()) {
+ gfx::Vector2d offset(static_cast<int>(transform.matrix().getFloat(0, 3)),
+ static_cast<int>(transform.matrix().getFloat(1, 3)));
+ return src_rect + offset;
+ }
+ return gfx::ToEnclosingRect(MapClippedRect(transform, gfx::RectF(src_rect)));
+}
+
+gfx::RectF MathUtil::MapClippedRect(const gfx::Transform& transform,
+ const gfx::RectF& src_rect) {
+ if (transform.IsIdentityOrTranslation()) {
+ gfx::Vector2dF offset(transform.matrix().getFloat(0, 3),
+ transform.matrix().getFloat(1, 3));
+ return src_rect + offset;
+ }
+
+ // Apply the transform, but retain the result in homogeneous coordinates.
+
+ SkMScalar quad[4 * 2]; // input: 4 x 2D points
+ quad[0] = src_rect.x();
+ quad[1] = src_rect.y();
+ quad[2] = src_rect.right();
+ quad[3] = src_rect.y();
+ quad[4] = src_rect.right();
+ quad[5] = src_rect.bottom();
+ quad[6] = src_rect.x();
+ quad[7] = src_rect.bottom();
+
+ SkMScalar result[4 * 4]; // output: 4 x 4D homogeneous points
+ transform.matrix().map2(quad, 4, result);
+
+ HomogeneousCoordinate hc0(result[0], result[1], result[2], result[3]);
+ HomogeneousCoordinate hc1(result[4], result[5], result[6], result[7]);
+ HomogeneousCoordinate hc2(result[8], result[9], result[10], result[11]);
+ HomogeneousCoordinate hc3(result[12], result[13], result[14], result[15]);
+ return ComputeEnclosingClippedRect(hc0, hc1, hc2, hc3);
+}
+
+gfx::Rect MathUtil::ProjectEnclosingClippedRect(const gfx::Transform& transform,
+ const gfx::Rect& src_rect) {
+ if (transform.IsIdentityOrIntegerTranslation()) {
+ gfx::Vector2d offset(static_cast<int>(transform.matrix().getFloat(0, 3)),
+ static_cast<int>(transform.matrix().getFloat(1, 3)));
+ return src_rect + offset;
+ }
+ return gfx::ToEnclosingRect(
+ ProjectClippedRect(transform, gfx::RectF(src_rect)));
+}
+
+gfx::RectF MathUtil::ProjectClippedRect(const gfx::Transform& transform,
+ const gfx::RectF& src_rect) {
+ if (transform.IsIdentityOrTranslation()) {
+ gfx::Vector2dF offset(transform.matrix().getFloat(0, 3),
+ transform.matrix().getFloat(1, 3));
+ return src_rect + offset;
+ }
+
+ // Perform the projection, but retain the result in homogeneous coordinates.
+ gfx::QuadF q = gfx::QuadF(src_rect);
+ HomogeneousCoordinate h1 = ProjectHomogeneousPoint(transform, q.p1());
+ HomogeneousCoordinate h2 = ProjectHomogeneousPoint(transform, q.p2());
+ HomogeneousCoordinate h3 = ProjectHomogeneousPoint(transform, q.p3());
+ HomogeneousCoordinate h4 = ProjectHomogeneousPoint(transform, q.p4());
+
+ return ComputeEnclosingClippedRect(h1, h2, h3, h4);
+}
+
+gfx::Rect MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(
+ const gfx::Transform& transform,
+ const gfx::Rect& rect) {
+ DCHECK(transform.Preserves2dAxisAlignment());
+
+ if (transform.IsIdentityOrIntegerTranslation()) {
+ gfx::Vector2d offset(static_cast<int>(transform.matrix().getFloat(0, 3)),
+ static_cast<int>(transform.matrix().getFloat(1, 3)));
+ return rect + offset;
+ }
+ if (transform.IsIdentityOrTranslation()) {
+ gfx::Vector2dF offset(transform.matrix().getFloat(0, 3),
+ transform.matrix().getFloat(1, 3));
+ return gfx::ToEnclosedRect(rect + offset);
+ }
+
+ SkMScalar quad[2 * 2]; // input: 2 x 2D points
+ quad[0] = rect.x();
+ quad[1] = rect.y();
+ quad[2] = rect.right();
+ quad[3] = rect.bottom();
+
+ SkMScalar result[4 * 2]; // output: 2 x 4D homogeneous points
+ transform.matrix().map2(quad, 2, result);
+
+ HomogeneousCoordinate hc0(result[0], result[1], result[2], result[3]);
+ HomogeneousCoordinate hc1(result[4], result[5], result[6], result[7]);
+ DCHECK(!hc0.ShouldBeClipped());
+ DCHECK(!hc1.ShouldBeClipped());
+
+ gfx::PointF top_left(hc0.CartesianPoint2d());
+ gfx::PointF bottom_right(hc1.CartesianPoint2d());
+ return gfx::ToEnclosedRect(gfx::BoundingRect(top_left, bottom_right));
+}
+
+void MathUtil::MapClippedQuad(const gfx::Transform& transform,
+ const gfx::QuadF& src_quad,
+ gfx::PointF clipped_quad[8],
+ int* num_vertices_in_clipped_quad) {
+ HomogeneousCoordinate h1 =
+ MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p1()));
+ HomogeneousCoordinate h2 =
+ MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p2()));
+ HomogeneousCoordinate h3 =
+ MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p3()));
+ HomogeneousCoordinate h4 =
+ MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p4()));
+
+ // The order of adding the vertices to the array is chosen so that
+ // clockwise / counter-clockwise orientation is retained.
+
+ *num_vertices_in_clipped_quad = 0;
+
+ if (!h1.ShouldBeClipped()) {
+ AddVertexToClippedQuad(
+ h1.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
+ }
+
+ if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped()) {
+ AddVertexToClippedQuad(
+ ComputeClippedPointForEdge(h1, h2).CartesianPoint2d(),
+ clipped_quad,
+ num_vertices_in_clipped_quad);
+ }
+
+ if (!h2.ShouldBeClipped()) {
+ AddVertexToClippedQuad(
+ h2.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
+ }
+
+ if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped()) {
+ AddVertexToClippedQuad(
+ ComputeClippedPointForEdge(h2, h3).CartesianPoint2d(),
+ clipped_quad,
+ num_vertices_in_clipped_quad);
+ }
+
+ if (!h3.ShouldBeClipped()) {
+ AddVertexToClippedQuad(
+ h3.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
+ }
+
+ if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped()) {
+ AddVertexToClippedQuad(
+ ComputeClippedPointForEdge(h3, h4).CartesianPoint2d(),
+ clipped_quad,
+ num_vertices_in_clipped_quad);
+ }
+
+ if (!h4.ShouldBeClipped()) {
+ AddVertexToClippedQuad(
+ h4.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
+ }
+
+ if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped()) {
+ AddVertexToClippedQuad(
+ ComputeClippedPointForEdge(h4, h1).CartesianPoint2d(),
+ clipped_quad,
+ num_vertices_in_clipped_quad);
+ }
+
+ DCHECK_LE(*num_vertices_in_clipped_quad, 8);
+}
+
+bool MathUtil::MapClippedQuad3d(const gfx::Transform& transform,
+ const gfx::QuadF& src_quad,
+ gfx::Point3F clipped_quad[8],
+ int* num_vertices_in_clipped_quad) {
+ HomogeneousCoordinate h1 =
+ MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p1()));
+ HomogeneousCoordinate h2 =
+ MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p2()));
+ HomogeneousCoordinate h3 =
+ MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p3()));
+ HomogeneousCoordinate h4 =
+ MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p4()));
+
+ // The order of adding the vertices to the array is chosen so that
+ // clockwise / counter-clockwise orientation is retained.
+
+ *num_vertices_in_clipped_quad = 0;
+
+ if (!h1.ShouldBeClipped()) {
+ AddVertexToClippedQuad3d(
+ h1.CartesianPoint3d(), clipped_quad, num_vertices_in_clipped_quad);
+ }
+
+ if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped()) {
+ AddVertexToClippedQuad3d(
+ ComputeClippedPointForEdge(h1, h2).CartesianPoint3d(),
+ clipped_quad,
+ num_vertices_in_clipped_quad);
+ }
+
+ if (!h2.ShouldBeClipped()) {
+ AddVertexToClippedQuad3d(
+ h2.CartesianPoint3d(), clipped_quad, num_vertices_in_clipped_quad);
+ }
+
+ if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped()) {
+ AddVertexToClippedQuad3d(
+ ComputeClippedPointForEdge(h2, h3).CartesianPoint3d(),
+ clipped_quad,
+ num_vertices_in_clipped_quad);
+ }
+
+ if (!h3.ShouldBeClipped()) {
+ AddVertexToClippedQuad3d(
+ h3.CartesianPoint3d(), clipped_quad, num_vertices_in_clipped_quad);
+ }
+
+ if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped()) {
+ AddVertexToClippedQuad3d(
+ ComputeClippedPointForEdge(h3, h4).CartesianPoint3d(),
+ clipped_quad,
+ num_vertices_in_clipped_quad);
+ }
+
+ if (!h4.ShouldBeClipped()) {
+ AddVertexToClippedQuad3d(
+ h4.CartesianPoint3d(), clipped_quad, num_vertices_in_clipped_quad);
+ }
+
+ if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped()) {
+ AddVertexToClippedQuad3d(
+ ComputeClippedPointForEdge(h4, h1).CartesianPoint3d(),
+ clipped_quad,
+ num_vertices_in_clipped_quad);
+ }
+
+ DCHECK_LE(*num_vertices_in_clipped_quad, 8);
+ return (*num_vertices_in_clipped_quad >= 4);
+}
+
+gfx::RectF MathUtil::ComputeEnclosingRectOfVertices(
+ const gfx::PointF vertices[],
+ int num_vertices) {
+ if (num_vertices < 2)
+ return gfx::RectF();
+
+ float xmin = std::numeric_limits<float>::max();
+ float xmax = -std::numeric_limits<float>::max();
+ float ymin = std::numeric_limits<float>::max();
+ float ymax = -std::numeric_limits<float>::max();
+
+ for (int i = 0; i < num_vertices; ++i)
+ ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, vertices[i]);
+
+ return gfx::RectF(gfx::PointF(xmin, ymin),
+ gfx::SizeF(xmax - xmin, ymax - ymin));
+}
+
+gfx::RectF MathUtil::ComputeEnclosingClippedRect(
+ const HomogeneousCoordinate& h1,
+ const HomogeneousCoordinate& h2,
+ const HomogeneousCoordinate& h3,
+ const HomogeneousCoordinate& h4) {
+ // This function performs clipping as necessary and computes the enclosing 2d
+ // gfx::RectF of the vertices. Doing these two steps simultaneously allows us
+ // to avoid the overhead of storing an unknown number of clipped vertices.
+
+ // If no vertices on the quad are clipped, then we can simply return the
+ // enclosing rect directly.
+ bool something_clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
+ h3.ShouldBeClipped() || h4.ShouldBeClipped();
+ if (!something_clipped) {
+ gfx::QuadF mapped_quad = gfx::QuadF(h1.CartesianPoint2d(),
+ h2.CartesianPoint2d(),
+ h3.CartesianPoint2d(),
+ h4.CartesianPoint2d());
+ return mapped_quad.BoundingBox();
+ }
+
+ bool everything_clipped = h1.ShouldBeClipped() && h2.ShouldBeClipped() &&
+ h3.ShouldBeClipped() && h4.ShouldBeClipped();
+ if (everything_clipped)
+ return gfx::RectF();
+
+ float xmin = std::numeric_limits<float>::max();
+ float xmax = -std::numeric_limits<float>::max();
+ float ymin = std::numeric_limits<float>::max();
+ float ymax = -std::numeric_limits<float>::max();
+
+ if (!h1.ShouldBeClipped())
+ ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
+ h1.CartesianPoint2d());
+
+ if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped())
+ ExpandBoundsToIncludePoint(&xmin,
+ &xmax,
+ &ymin,
+ &ymax,
+ ComputeClippedPointForEdge(h1, h2)
+ .CartesianPoint2d());
+
+ if (!h2.ShouldBeClipped())
+ ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
+ h2.CartesianPoint2d());
+
+ if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped())
+ ExpandBoundsToIncludePoint(&xmin,
+ &xmax,
+ &ymin,
+ &ymax,
+ ComputeClippedPointForEdge(h2, h3)
+ .CartesianPoint2d());
+
+ if (!h3.ShouldBeClipped())
+ ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
+ h3.CartesianPoint2d());
+
+ if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped())
+ ExpandBoundsToIncludePoint(&xmin,
+ &xmax,
+ &ymin,
+ &ymax,
+ ComputeClippedPointForEdge(h3, h4)
+ .CartesianPoint2d());
+
+ if (!h4.ShouldBeClipped())
+ ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
+ h4.CartesianPoint2d());
+
+ if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped())
+ ExpandBoundsToIncludePoint(&xmin,
+ &xmax,
+ &ymin,
+ &ymax,
+ ComputeClippedPointForEdge(h4, h1)
+ .CartesianPoint2d());
+
+ return gfx::RectF(gfx::PointF(xmin, ymin),
+ gfx::SizeF(xmax - xmin, ymax - ymin));
+}
+
+gfx::QuadF MathUtil::MapQuad(const gfx::Transform& transform,
+ const gfx::QuadF& q,
+ bool* clipped) {
+ if (transform.IsIdentityOrTranslation()) {
+ gfx::QuadF mapped_quad(q);
+ mapped_quad += gfx::Vector2dF(transform.matrix().getFloat(0, 3),
+ transform.matrix().getFloat(1, 3));
+ *clipped = false;
+ return mapped_quad;
+ }
+
+ HomogeneousCoordinate h1 =
+ MapHomogeneousPoint(transform, gfx::Point3F(q.p1()));
+ HomogeneousCoordinate h2 =
+ MapHomogeneousPoint(transform, gfx::Point3F(q.p2()));
+ HomogeneousCoordinate h3 =
+ MapHomogeneousPoint(transform, gfx::Point3F(q.p3()));
+ HomogeneousCoordinate h4 =
+ MapHomogeneousPoint(transform, gfx::Point3F(q.p4()));
+
+ *clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
+ h3.ShouldBeClipped() || h4.ShouldBeClipped();
+
+ // Result will be invalid if clipped == true. But, compute it anyway just in
+ // case, to emulate existing behavior.
+ return gfx::QuadF(h1.CartesianPoint2d(),
+ h2.CartesianPoint2d(),
+ h3.CartesianPoint2d(),
+ h4.CartesianPoint2d());
+}
+
+gfx::QuadF MathUtil::MapQuad3d(const gfx::Transform& transform,
+ const gfx::QuadF& q,
+ gfx::Point3F* p,
+ bool* clipped) {
+ if (transform.IsIdentityOrTranslation()) {
+ gfx::QuadF mapped_quad(q);
+ mapped_quad += gfx::Vector2dF(transform.matrix().getFloat(0, 3),
+ transform.matrix().getFloat(1, 3));
+ *clipped = false;
+ p[0] = gfx::Point3F(mapped_quad.p1().x(), mapped_quad.p1().y(), 0.0f);
+ p[1] = gfx::Point3F(mapped_quad.p2().x(), mapped_quad.p2().y(), 0.0f);
+ p[2] = gfx::Point3F(mapped_quad.p3().x(), mapped_quad.p3().y(), 0.0f);
+ p[3] = gfx::Point3F(mapped_quad.p4().x(), mapped_quad.p4().y(), 0.0f);
+ return mapped_quad;
+ }
+
+ HomogeneousCoordinate h1 =
+ MapHomogeneousPoint(transform, gfx::Point3F(q.p1()));
+ HomogeneousCoordinate h2 =
+ MapHomogeneousPoint(transform, gfx::Point3F(q.p2()));
+ HomogeneousCoordinate h3 =
+ MapHomogeneousPoint(transform, gfx::Point3F(q.p3()));
+ HomogeneousCoordinate h4 =
+ MapHomogeneousPoint(transform, gfx::Point3F(q.p4()));
+
+ *clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
+ h3.ShouldBeClipped() || h4.ShouldBeClipped();
+
+ // Result will be invalid if clipped == true. But, compute it anyway just in
+ // case, to emulate existing behavior.
+ p[0] = h1.CartesianPoint3d();
+ p[1] = h2.CartesianPoint3d();
+ p[2] = h3.CartesianPoint3d();
+ p[3] = h4.CartesianPoint3d();
+
+ return gfx::QuadF(h1.CartesianPoint2d(),
+ h2.CartesianPoint2d(),
+ h3.CartesianPoint2d(),
+ h4.CartesianPoint2d());
+}
+
+gfx::PointF MathUtil::MapPoint(const gfx::Transform& transform,
+ const gfx::PointF& p,
+ bool* clipped) {
+ HomogeneousCoordinate h = MapHomogeneousPoint(transform, gfx::Point3F(p));
+
+ if (h.w() > 0) {
+ *clipped = false;
+ return h.CartesianPoint2d();
+ }
+
+ // The cartesian coordinates will be invalid after dividing by w.
+ *clipped = true;
+
+ // Avoid dividing by w if w == 0.
+ if (!h.w())
+ return gfx::PointF();
+
+ // This return value will be invalid because clipped == true, but (1) users of
+ // this code should be ignoring the return value when clipped == true anyway,
+ // and (2) this behavior is more consistent with existing behavior of WebKit
+ // transforms if the user really does not ignore the return value.
+ return h.CartesianPoint2d();
+}
+
+gfx::Point3F MathUtil::MapPoint(const gfx::Transform& transform,
+ const gfx::Point3F& p,
+ bool* clipped) {
+ HomogeneousCoordinate h = MapHomogeneousPoint(transform, p);
+
+ if (h.w() > 0) {
+ *clipped = false;
+ return h.CartesianPoint3d();
+ }
+
+ // The cartesian coordinates will be invalid after dividing by w.
+ *clipped = true;
+
+ // Avoid dividing by w if w == 0.
+ if (!h.w())
+ return gfx::Point3F();
+
+ // This return value will be invalid because clipped == true, but (1) users of
+ // this code should be ignoring the return value when clipped == true anyway,
+ // and (2) this behavior is more consistent with existing behavior of WebKit
+ // transforms if the user really does not ignore the return value.
+ return h.CartesianPoint3d();
+}
+
+gfx::QuadF MathUtil::ProjectQuad(const gfx::Transform& transform,
+ const gfx::QuadF& q,
+ bool* clipped) {
+ gfx::QuadF projected_quad;
+ bool clipped_point;
+ projected_quad.set_p1(ProjectPoint(transform, q.p1(), &clipped_point));
+ *clipped = clipped_point;
+ projected_quad.set_p2(ProjectPoint(transform, q.p2(), &clipped_point));
+ *clipped |= clipped_point;
+ projected_quad.set_p3(ProjectPoint(transform, q.p3(), &clipped_point));
+ *clipped |= clipped_point;
+ projected_quad.set_p4(ProjectPoint(transform, q.p4(), &clipped_point));
+ *clipped |= clipped_point;
+
+ return projected_quad;
+}
+
+gfx::PointF MathUtil::ProjectPoint(const gfx::Transform& transform,
+ const gfx::PointF& p,
+ bool* clipped) {
+ HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p, clipped);
+ // Avoid dividing by w if w == 0.
+ if (!h.w())
+ return gfx::PointF();
+
+ // This return value will be invalid if clipped == true, but (1) users of
+ // this code should be ignoring the return value when clipped == true anyway,
+ // and (2) this behavior is more consistent with existing behavior of WebKit
+ // transforms if the user really does not ignore the return value.
+ return h.CartesianPoint2d();
+}
+
+gfx::Point3F MathUtil::ProjectPoint3D(const gfx::Transform& transform,
+ const gfx::PointF& p,
+ bool* clipped) {
+ HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p, clipped);
+ if (!h.w())
+ return gfx::Point3F();
+ return h.CartesianPoint3d();
+}
+
+gfx::RectF MathUtil::ScaleRectProportional(const gfx::RectF& input_outer_rect,
+ const gfx::RectF& scale_outer_rect,
+ const gfx::RectF& scale_inner_rect) {
+ gfx::RectF output_inner_rect = input_outer_rect;
+ float scale_rect_to_input_scale_x =
+ scale_outer_rect.width() / input_outer_rect.width();
+ float scale_rect_to_input_scale_y =
+ scale_outer_rect.height() / input_outer_rect.height();
+
+ gfx::Vector2dF top_left_diff =
+ scale_inner_rect.origin() - scale_outer_rect.origin();
+ gfx::Vector2dF bottom_right_diff =
+ scale_inner_rect.bottom_right() - scale_outer_rect.bottom_right();
+ output_inner_rect.Inset(top_left_diff.x() / scale_rect_to_input_scale_x,
+ top_left_diff.y() / scale_rect_to_input_scale_y,
+ -bottom_right_diff.x() / scale_rect_to_input_scale_x,
+ -bottom_right_diff.y() / scale_rect_to_input_scale_y);
+ return output_inner_rect;
+}
+
+static inline bool NearlyZero(double value) {
+ return std::abs(value) < std::numeric_limits<double>::epsilon();
+}
+
+static inline float ScaleOnAxis(double a, double b, double c) {
+ if (NearlyZero(b) && NearlyZero(c))
+ return std::abs(a);
+ if (NearlyZero(a) && NearlyZero(c))
+ return std::abs(b);
+ if (NearlyZero(a) && NearlyZero(b))
+ return std::abs(c);
+
+ // Do the sqrt as a double to not lose precision.
+ return static_cast<float>(std::sqrt(a * a + b * b + c * c));
+}
+
+gfx::Vector2dF MathUtil::ComputeTransform2dScaleComponents(
+ const gfx::Transform& transform,
+ float fallback_value) {
+ if (transform.HasPerspective())
+ return gfx::Vector2dF(fallback_value, fallback_value);
+ float x_scale = ScaleOnAxis(transform.matrix().getDouble(0, 0),
+ transform.matrix().getDouble(1, 0),
+ transform.matrix().getDouble(2, 0));
+ float y_scale = ScaleOnAxis(transform.matrix().getDouble(0, 1),
+ transform.matrix().getDouble(1, 1),
+ transform.matrix().getDouble(2, 1));
+ return gfx::Vector2dF(x_scale, y_scale);
+}
+
+float MathUtil::SmallestAngleBetweenVectors(const gfx::Vector2dF& v1,
+ const gfx::Vector2dF& v2) {
+ double dot_product = gfx::DotProduct(v1, v2) / v1.Length() / v2.Length();
+ // Clamp to compensate for rounding errors.
+ dot_product = std::max(-1.0, std::min(1.0, dot_product));
+ return static_cast<float>(Rad2Deg(std::acos(dot_product)));
+}
+
+gfx::Vector2dF MathUtil::ProjectVector(const gfx::Vector2dF& source,
+ const gfx::Vector2dF& destination) {
+ float projected_length =
+ gfx::DotProduct(source, destination) / destination.LengthSquared();
+ return gfx::Vector2dF(projected_length * destination.x(),
+ projected_length * destination.y());
+}
+
+scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Size& s) {
+ scoped_ptr<base::DictionaryValue> res(new base::DictionaryValue());
+ res->SetDouble("width", s.width());
+ res->SetDouble("height", s.height());
+ return res.Pass();
+}
+
+scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Rect& r) {
+ scoped_ptr<base::ListValue> res(new base::ListValue());
+ res->AppendInteger(r.x());
+ res->AppendInteger(r.y());
+ res->AppendInteger(r.width());
+ res->AppendInteger(r.height());
+ return res.Pass();
+}
+
+bool MathUtil::FromValue(const base::Value* raw_value, gfx::Rect* out_rect) {
+ const base::ListValue* value = nullptr;
+ if (!raw_value->GetAsList(&value))
+ return false;
+
+ if (value->GetSize() != 4)
+ return false;
+
+ int x, y, w, h;
+ bool ok = true;
+ ok &= value->GetInteger(0, &x);
+ ok &= value->GetInteger(1, &y);
+ ok &= value->GetInteger(2, &w);
+ ok &= value->GetInteger(3, &h);
+ if (!ok)
+ return false;
+
+ *out_rect = gfx::Rect(x, y, w, h);
+ return true;
+}
+
+scoped_ptr<base::Value> MathUtil::AsValue(const gfx::PointF& pt) {
+ scoped_ptr<base::ListValue> res(new base::ListValue());
+ res->AppendDouble(pt.x());
+ res->AppendDouble(pt.y());
+ return res.Pass();
+}
+
+void MathUtil::AddToTracedValue(const char* name,
+ const gfx::Size& s,
+ base::trace_event::TracedValue* res) {
+ res->BeginDictionary(name);
+ res->SetDouble("width", s.width());
+ res->SetDouble("height", s.height());
+ res->EndDictionary();
+}
+
+void MathUtil::AddToTracedValue(const char* name,
+ const gfx::SizeF& s,
+ base::trace_event::TracedValue* res) {
+ res->BeginDictionary(name);
+ res->SetDouble("width", s.width());
+ res->SetDouble("height", s.height());
+ res->EndDictionary();
+}
+
+void MathUtil::AddToTracedValue(const char* name,
+ const gfx::Rect& r,
+ base::trace_event::TracedValue* res) {
+ res->BeginArray(name);
+ res->AppendInteger(r.x());
+ res->AppendInteger(r.y());
+ res->AppendInteger(r.width());
+ res->AppendInteger(r.height());
+ res->EndArray();
+}
+
+void MathUtil::AddToTracedValue(const char* name,
+ const gfx::PointF& pt,
+ base::trace_event::TracedValue* res) {
+ res->BeginArray(name);
+ res->AppendDouble(pt.x());
+ res->AppendDouble(pt.y());
+ res->EndArray();
+}
+
+void MathUtil::AddToTracedValue(const char* name,
+ const gfx::Point3F& pt,
+ base::trace_event::TracedValue* res) {
+ res->BeginArray(name);
+ res->AppendDouble(pt.x());
+ res->AppendDouble(pt.y());
+ res->AppendDouble(pt.z());
+ res->EndArray();
+}
+
+void MathUtil::AddToTracedValue(const char* name,
+ const gfx::Vector2d& v,
+ base::trace_event::TracedValue* res) {
+ res->BeginArray(name);
+ res->AppendInteger(v.x());
+ res->AppendInteger(v.y());
+ res->EndArray();
+}
+
+void MathUtil::AddToTracedValue(const char* name,
+ const gfx::Vector2dF& v,
+ base::trace_event::TracedValue* res) {
+ res->BeginArray(name);
+ res->AppendDouble(v.x());
+ res->AppendDouble(v.y());
+ res->EndArray();
+}
+
+void MathUtil::AddToTracedValue(const char* name,
+ const gfx::ScrollOffset& v,
+ base::trace_event::TracedValue* res) {
+ res->BeginArray(name);
+ res->AppendDouble(v.x());
+ res->AppendDouble(v.y());
+ res->EndArray();
+}
+
+void MathUtil::AddToTracedValue(const char* name,
+ const gfx::QuadF& q,
+ base::trace_event::TracedValue* res) {
+ res->BeginArray(name);
+ res->AppendDouble(q.p1().x());
+ res->AppendDouble(q.p1().y());
+ res->AppendDouble(q.p2().x());
+ res->AppendDouble(q.p2().y());
+ res->AppendDouble(q.p3().x());
+ res->AppendDouble(q.p3().y());
+ res->AppendDouble(q.p4().x());
+ res->AppendDouble(q.p4().y());
+ res->EndArray();
+}
+
+void MathUtil::AddToTracedValue(const char* name,
+ const gfx::RectF& rect,
+ base::trace_event::TracedValue* res) {
+ res->BeginArray(name);
+ res->AppendDouble(rect.x());
+ res->AppendDouble(rect.y());
+ res->AppendDouble(rect.width());
+ res->AppendDouble(rect.height());
+ res->EndArray();
+}
+
+void MathUtil::AddToTracedValue(const char* name,
+ const gfx::Transform& transform,
+ base::trace_event::TracedValue* res) {
+ res->BeginArray(name);
+ const SkMatrix44& m = transform.matrix();
+ for (int row = 0; row < 4; ++row) {
+ for (int col = 0; col < 4; ++col)
+ res->AppendDouble(m.getDouble(row, col));
+ }
+ res->EndArray();
+}
+
+void MathUtil::AddToTracedValue(const char* name,
+ const gfx::BoxF& box,
+ base::trace_event::TracedValue* res) {
+ res->BeginArray(name);
+ res->AppendInteger(box.x());
+ res->AppendInteger(box.y());
+ res->AppendInteger(box.z());
+ res->AppendInteger(box.width());
+ res->AppendInteger(box.height());
+ res->AppendInteger(box.depth());
+ res->EndArray();
+}
+
+double MathUtil::AsDoubleSafely(double value) {
+ return std::min(value, std::numeric_limits<double>::max());
+}
+
+float MathUtil::AsFloatSafely(float value) {
+ return std::min(value, std::numeric_limits<float>::max());
+}
+
+} // namespace cc
« no previous file with comments | « cc/base/math_util.h ('k') | cc/base/math_util_unittest.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698