Index: src/pathops/SkLineParameters.h |
=================================================================== |
--- src/pathops/SkLineParameters.h (revision 0) |
+++ src/pathops/SkLineParameters.h (revision 0) |
@@ -0,0 +1,110 @@ |
+/* |
+ * Copyright 2012 Google Inc. |
+ * |
+ * Use of this source code is governed by a BSD-style license that can be |
+ * found in the LICENSE file. |
+ */ |
+#include "SkPathOpsCubic.h" |
+#include "SkPathOpsLine.h" |
+#include "SkPathOpsQuad.h" |
+ |
+// Sources |
+// computer-aided design - volume 22 number 9 november 1990 pp 538 - 549 |
+// online at http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf |
+ |
+// This turns a line segment into a parameterized line, of the form |
+// ax + by + c = 0 |
+// When a^2 + b^2 == 1, the line is normalized. |
+// The distance to the line for (x, y) is d(x,y) = ax + by + c |
+// |
+// Note that the distances below are not necessarily normalized. To get the true |
+// distance, it's necessary to either call normalize() after xxxEndPoints(), or |
+// divide the result of xxxDistance() by sqrt(normalSquared()) |
+ |
+class SkLineParameters { |
+public: |
+ void cubicEndPoints(const SkDCubic& pts) { |
+ cubicEndPoints(pts, 0, 3); |
+ } |
+ |
+ void cubicEndPoints(const SkDCubic& pts, int s, int e) { |
+ a = approximately_pin(pts[s].fY - pts[e].fY); |
+ b = approximately_pin(pts[e].fX - pts[s].fX); |
+ c = pts[s].fX * pts[e].fY - pts[e].fX * pts[s].fY; |
+ } |
+ |
+ void lineEndPoints(const SkDLine& pts) { |
+ a = approximately_pin(pts[0].fY - pts[1].fY); |
+ b = approximately_pin(pts[1].fX - pts[0].fX); |
+ c = pts[0].fX * pts[1].fY - pts[1].fX * pts[0].fY; |
+ } |
+ |
+ void quadEndPoints(const SkDQuad& pts) { |
+ quadEndPoints(pts, 0, 2); |
+ } |
+ |
+ void quadEndPoints(const SkDQuad& pts, int s, int e) { |
+ a = approximately_pin(pts[s].fY - pts[e].fY); |
+ b = approximately_pin(pts[e].fX - pts[s].fX); |
+ c = pts[s].fX * pts[e].fY - pts[e].fX * pts[s].fY; |
+ } |
+ |
+ double normalSquared() const { |
+ return a * a + b * b; |
+ } |
+ |
+ bool normalize() { |
+ double normal = sqrt(normalSquared()); |
+ if (approximately_zero(normal)) { |
+ a = b = c = 0; |
+ return false; |
+ } |
+ double reciprocal = 1 / normal; |
+ a *= reciprocal; |
+ b *= reciprocal; |
+ c *= reciprocal; |
+ return true; |
+ } |
+ |
+ void cubicDistanceY(const SkDCubic& pts, SkDCubic& distance) const { |
+ double oneThird = 1 / 3.0; |
+ for (int index = 0; index < 4; ++index) { |
+ distance[index].fX = index * oneThird; |
+ distance[index].fY = a * pts[index].fX + b * pts[index].fY + c; |
+ } |
+ } |
+ |
+ void quadDistanceY(const SkDQuad& pts, SkDQuad& distance) const { |
+ double oneHalf = 1 / 2.0; |
+ for (int index = 0; index < 3; ++index) { |
+ distance[index].fX = index * oneHalf; |
+ distance[index].fY = a * pts[index].fX + b * pts[index].fY + c; |
+ } |
+ } |
+ |
+ double controlPtDistance(const SkDCubic& pts, int index) const { |
+ SkASSERT(index == 1 || index == 2); |
+ return a * pts[index].fX + b * pts[index].fY + c; |
+ } |
+ |
+ double controlPtDistance(const SkDQuad& pts) const { |
+ return a * pts[1].fX + b * pts[1].fY + c; |
+ } |
+ |
+ double pointDistance(const SkDPoint& pt) const { |
+ return a * pt.fX + b * pt.fY + c; |
+ } |
+ |
+ double dx() const { |
+ return b; |
+ } |
+ |
+ double dy() const { |
+ return -a; |
+ } |
+ |
+private: |
+ double a; |
+ double b; |
+ double c; |
+}; |