Index: src/pathops/SkDQuadIntersection.cpp |
=================================================================== |
--- src/pathops/SkDQuadIntersection.cpp (revision 0) |
+++ src/pathops/SkDQuadIntersection.cpp (revision 0) |
@@ -0,0 +1,496 @@ |
+// Another approach is to start with the implicit form of one curve and solve |
+// (seek implicit coefficients in QuadraticParameter.cpp |
+// by substituting in the parametric form of the other. |
+// The downside of this approach is that early rejects are difficult to come by. |
+// http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html#step |
+ |
+ |
+#include "SkDQuadImplicit.h" |
+#include "SkIntersections.h" |
+#include "SkPathOpsLine.h" |
+#include "SkQuarticRoot.h" |
+#include "SkTDArray.h" |
+#include "TSearch.h" |
+ |
+/* given the implicit form 0 = Ax^2 + Bxy + Cy^2 + Dx + Ey + F |
+ * and given x = at^2 + bt + c (the parameterized form) |
+ * y = dt^2 + et + f |
+ * then |
+ * 0 = A(at^2+bt+c)(at^2+bt+c)+B(at^2+bt+c)(dt^2+et+f)+C(dt^2+et+f)(dt^2+et+f)+D(at^2+bt+c)+E(dt^2+et+f)+F |
+ */ |
+ |
+static int findRoots(const SkDQuadImplicit& i, const SkDQuad& q2, double roots[4], |
+ bool oneHint, int firstCubicRoot) { |
+ double a, b, c; |
+ SkDQuad::SetABC(&q2[0].fX, &a, &b, &c); |
+ double d, e, f; |
+ SkDQuad::SetABC(&q2[0].fY, &d, &e, &f); |
+ const double t4 = i.x2() * a * a |
+ + i.xy() * a * d |
+ + i.y2() * d * d; |
+ const double t3 = 2 * i.x2() * a * b |
+ + i.xy() * (a * e + b * d) |
+ + 2 * i.y2() * d * e; |
+ const double t2 = i.x2() * (b * b + 2 * a * c) |
+ + i.xy() * (c * d + b * e + a * f) |
+ + i.y2() * (e * e + 2 * d * f) |
+ + i.x() * a |
+ + i.y() * d; |
+ const double t1 = 2 * i.x2() * b * c |
+ + i.xy() * (c * e + b * f) |
+ + 2 * i.y2() * e * f |
+ + i.x() * b |
+ + i.y() * e; |
+ const double t0 = i.x2() * c * c |
+ + i.xy() * c * f |
+ + i.y2() * f * f |
+ + i.x() * c |
+ + i.y() * f |
+ + i.c(); |
+ int rootCount = SkReducedQuarticRoots(t4, t3, t2, t1, t0, oneHint, roots); |
+ if (rootCount >= 0) { |
+ return rootCount; |
+ } |
+ return SkQuarticRootsReal(firstCubicRoot, t4, t3, t2, t1, t0, roots); |
+} |
+ |
+static int addValidRoots(const double roots[4], const int count, double valid[4]) { |
+ int result = 0; |
+ int index; |
+ for (index = 0; index < count; ++index) { |
+ if (!approximately_zero_or_more(roots[index]) || !approximately_one_or_less(roots[index])) { |
+ continue; |
+ } |
+ double t = 1 - roots[index]; |
+ if (approximately_less_than_zero(t)) { |
+ t = 0; |
+ } else if (approximately_greater_than_one(t)) { |
+ t = 1; |
+ } |
+ valid[result++] = t; |
+ } |
+ return result; |
+} |
+ |
+static bool only_end_pts_in_common(const SkDQuad& q1, const SkDQuad& q2, SkIntersections* i) { |
+// the idea here is to see at minimum do a quick reject by rotating all points |
+// to either side of the line formed by connecting the endpoints |
+// if the opposite curves points are on the line or on the other side, the |
+// curves at most intersect at the endpoints |
+ for (int oddMan = 0; oddMan < 3; ++oddMan) { |
+ const SkDPoint* endPt[2]; |
+ for (int opp = 1; opp < 3; ++opp) { |
+ int end = oddMan ^ opp; |
+ if (end == 3) { |
+ end = opp; |
+ } |
+ endPt[opp - 1] = &q1[end]; |
+ } |
+ double origX = endPt[0]->fX; |
+ double origY = endPt[0]->fY; |
+ double adj = endPt[1]->fX - origX; |
+ double opp = endPt[1]->fY - origY; |
+ double sign = (q1[oddMan].fY - origY) * adj - (q1[oddMan].fX - origX) * opp; |
+ if (approximately_zero(sign)) { |
+ goto tryNextHalfPlane; |
+ } |
+ for (int n = 0; n < 3; ++n) { |
+ double test = (q2[n].fY - origY) * adj - (q2[n].fX - origX) * opp; |
+ if (test * sign > 0) { |
+ goto tryNextHalfPlane; |
+ } |
+ } |
+ for (int i1 = 0; i1 < 3; i1 += 2) { |
+ for (int i2 = 0; i2 < 3; i2 += 2) { |
+ if (q1[i1] == q2[i2]) { |
+ i->insert(i1 >> 1, i2 >> 1, q1[i1]); |
+ } |
+ } |
+ } |
+ SkASSERT(i->used() < 3); |
+ return true; |
+tryNextHalfPlane: |
+ ; |
+ } |
+ return false; |
+} |
+ |
+// returns false if there's more than one intercept or the intercept doesn't match the point |
+// returns true if the intercept was successfully added or if the |
+// original quads need to be subdivided |
+static bool add_intercept(const SkDQuad& q1, const SkDQuad& q2, double tMin, double tMax, |
+ SkIntersections* i, bool* subDivide) { |
+ double tMid = (tMin + tMax) / 2; |
+ SkDPoint mid = q2.xyAtT(tMid); |
+ SkDLine line; |
+ line[0] = line[1] = mid; |
+ SkDVector dxdy = q2.dxdyAtT(tMid); |
+ line[0] -= dxdy; |
+ line[1] += dxdy; |
+ SkIntersections rootTs; |
+ int roots = rootTs.intersect(q1, line); |
+ if (roots == 0) { |
+ if (subDivide) { |
+ *subDivide = true; |
+ } |
+ return true; |
+ } |
+ if (roots == 2) { |
+ return false; |
+ } |
+ SkDPoint pt2 = q1.xyAtT(rootTs[0][0]); |
+ if (!pt2.approximatelyEqualHalf(mid)) { |
+ return false; |
+ } |
+ i->insertSwap(rootTs[0][0], tMid, pt2); |
+ return true; |
+} |
+ |
+static bool is_linear_inner(const SkDQuad& q1, double t1s, double t1e, const SkDQuad& q2, |
+ double t2s, double t2e, SkIntersections* i, bool* subDivide) { |
+ SkDQuad hull = q1.subDivide(t1s, t1e); |
+ SkDLine line = {{hull[2], hull[0]}}; |
+ const SkDLine* testLines[] = { &line, (const SkDLine*) &hull[0], (const SkDLine*) &hull[1] }; |
+ size_t testCount = sizeof(testLines) / sizeof(testLines[0]); |
+ SkTDArray<double> tsFound; |
+ for (size_t index = 0; index < testCount; ++index) { |
+ SkIntersections rootTs; |
+ int roots = rootTs.intersect(q2, *testLines[index]); |
+ for (int idx2 = 0; idx2 < roots; ++idx2) { |
+ double t = rootTs[0][idx2]; |
+#ifdef SK_DEBUG |
+ SkDPoint qPt = q2.xyAtT(t); |
+ SkDPoint lPt = testLines[index]->xyAtT(rootTs[1][idx2]); |
+ SkASSERT(qPt.approximatelyEqual(lPt)); |
+#endif |
+ if (approximately_negative(t - t2s) || approximately_positive(t - t2e)) { |
+ continue; |
+ } |
+ *tsFound.append() = rootTs[0][idx2]; |
+ } |
+ } |
+ int tCount = tsFound.count(); |
+ if (!tCount) { |
+ return true; |
+ } |
+ double tMin, tMax; |
+ if (tCount == 1) { |
+ tMin = tMax = tsFound[0]; |
+ } else if (tCount > 1) { |
+ QSort<double>(tsFound.begin(), tsFound.end() - 1); |
+ tMin = tsFound[0]; |
+ tMax = tsFound[tsFound.count() - 1]; |
+ } |
+ SkDPoint end = q2.xyAtT(t2s); |
+ bool startInTriangle = hull.pointInHull(end); |
+ if (startInTriangle) { |
+ tMin = t2s; |
+ } |
+ end = q2.xyAtT(t2e); |
+ bool endInTriangle = hull.pointInHull(end); |
+ if (endInTriangle) { |
+ tMax = t2e; |
+ } |
+ int split = 0; |
+ SkDVector dxy1, dxy2; |
+ if (tMin != tMax || tCount > 2) { |
+ dxy2 = q2.dxdyAtT(tMin); |
+ for (int index = 1; index < tCount; ++index) { |
+ dxy1 = dxy2; |
+ dxy2 = q2.dxdyAtT(tsFound[index]); |
+ double dot = dxy1.dot(dxy2); |
+ if (dot < 0) { |
+ split = index - 1; |
+ break; |
+ } |
+ } |
+ } |
+ if (split == 0) { // there's one point |
+ if (add_intercept(q1, q2, tMin, tMax, i, subDivide)) { |
+ return true; |
+ } |
+ i->swap(); |
+ return is_linear_inner(q2, tMin, tMax, q1, t1s, t1e, i, subDivide); |
+ } |
+ // At this point, we have two ranges of t values -- treat each separately at the split |
+ bool result; |
+ if (add_intercept(q1, q2, tMin, tsFound[split - 1], i, subDivide)) { |
+ result = true; |
+ } else { |
+ i->swap(); |
+ result = is_linear_inner(q2, tMin, tsFound[split - 1], q1, t1s, t1e, i, subDivide); |
+ } |
+ if (add_intercept(q1, q2, tsFound[split], tMax, i, subDivide)) { |
+ result = true; |
+ } else { |
+ i->swap(); |
+ result |= is_linear_inner(q2, tsFound[split], tMax, q1, t1s, t1e, i, subDivide); |
+ } |
+ return result; |
+} |
+ |
+static double flat_measure(const SkDQuad& q) { |
+ SkDVector mid = q[1] - q[0]; |
+ SkDVector dxy = q[2] - q[0]; |
+ double length = dxy.length(); // OPTIMIZE: get rid of sqrt |
+ return fabs(mid.cross(dxy) / length); |
+} |
+ |
+// FIXME ? should this measure both and then use the quad that is the flattest as the line? |
+static bool is_linear(const SkDQuad& q1, const SkDQuad& q2, SkIntersections* i) { |
+ double measure = flat_measure(q1); |
+ // OPTIMIZE: (get rid of sqrt) use approximately_zero |
+ if (!approximately_zero_sqrt(measure)) { |
+ return false; |
+ } |
+ return is_linear_inner(q1, 0, 1, q2, 0, 1, i, NULL); |
+} |
+ |
+// FIXME: if flat measure is sufficiently large, then probably the quartic solution failed |
+static void relaxed_is_linear(const SkDQuad& q1, const SkDQuad& q2, SkIntersections* i) { |
+ double m1 = flat_measure(q1); |
+ double m2 = flat_measure(q2); |
+#if DEBUG_FLAT_QUADS |
+ double min = SkTMin(m1, m2); |
+ if (min > 5) { |
+ SkDebugf("%s maybe not flat enough.. %1.9g\n", __FUNCTION__, min); |
+ } |
+#endif |
+ i->reset(); |
+ const SkDQuad& rounder = m2 < m1 ? q1 : q2; |
+ const SkDQuad& flatter = m2 < m1 ? q2 : q1; |
+ bool subDivide = false; |
+ is_linear_inner(flatter, 0, 1, rounder, 0, 1, i, &subDivide); |
+ if (subDivide) { |
+ SkDQuadPair pair = flatter.chopAt(0.5); |
+ SkIntersections firstI, secondI; |
+ relaxed_is_linear(pair.first(), rounder, &firstI); |
+ for (int index = 0; index < firstI.used(); ++index) { |
+ i->insert(firstI[0][index] * 0.5, firstI[1][index], firstI.pt(index)); |
+ } |
+ relaxed_is_linear(pair.second(), rounder, &secondI); |
+ for (int index = 0; index < secondI.used(); ++index) { |
+ i->insert(0.5 + secondI[0][index] * 0.5, secondI[1][index], secondI.pt(index)); |
+ } |
+ } |
+ if (m2 < m1) { |
+ i->swapPts(); |
+ } |
+} |
+ |
+// each time through the loop, this computes values it had from the last loop |
+// if i == j == 1, the center values are still good |
+// otherwise, for i != 1 or j != 1, four of the values are still good |
+// and if i == 1 ^ j == 1, an additional value is good |
+static bool binary_search(const SkDQuad& quad1, const SkDQuad& quad2, double* t1Seed, |
+ double* t2Seed, SkDPoint* pt) { |
+ double tStep = ROUGH_EPSILON; |
+ SkDPoint t1[3], t2[3]; |
+ int calcMask = ~0; |
+ do { |
+ if (calcMask & (1 << 1)) t1[1] = quad1.xyAtT(*t1Seed); |
+ if (calcMask & (1 << 4)) t2[1] = quad2.xyAtT(*t2Seed); |
+ if (t1[1].approximatelyEqual(t2[1])) { |
+ *pt = t1[1]; |
+ #if ONE_OFF_DEBUG |
+ SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) == (%1.9g,%1.9g)\n", __FUNCTION__, |
+ t1Seed, t2Seed, t1[1].fX, t1[1].fY, t1[2].fX, t1[2].fY); |
+ #endif |
+ return true; |
+ } |
+ if (calcMask & (1 << 0)) t1[0] = quad1.xyAtT(*t1Seed - tStep); |
+ if (calcMask & (1 << 2)) t1[2] = quad1.xyAtT(*t1Seed + tStep); |
+ if (calcMask & (1 << 3)) t2[0] = quad2.xyAtT(*t2Seed - tStep); |
+ if (calcMask & (1 << 5)) t2[2] = quad2.xyAtT(*t2Seed + tStep); |
+ double dist[3][3]; |
+ // OPTIMIZE: using calcMask value permits skipping some distance calcuations |
+ // if prior loop's results are moved to correct slot for reuse |
+ dist[1][1] = t1[1].distanceSquared(t2[1]); |
+ int best_i = 1, best_j = 1; |
+ for (int i = 0; i < 3; ++i) { |
+ for (int j = 0; j < 3; ++j) { |
+ if (i == 1 && j == 1) { |
+ continue; |
+ } |
+ dist[i][j] = t1[i].distanceSquared(t2[j]); |
+ if (dist[best_i][best_j] > dist[i][j]) { |
+ best_i = i; |
+ best_j = j; |
+ } |
+ } |
+ } |
+ if (best_i == 1 && best_j == 1) { |
+ tStep /= 2; |
+ if (tStep < FLT_EPSILON_HALF) { |
+ break; |
+ } |
+ calcMask = (1 << 0) | (1 << 2) | (1 << 3) | (1 << 5); |
+ continue; |
+ } |
+ if (best_i == 0) { |
+ *t1Seed -= tStep; |
+ t1[2] = t1[1]; |
+ t1[1] = t1[0]; |
+ calcMask = 1 << 0; |
+ } else if (best_i == 2) { |
+ *t1Seed += tStep; |
+ t1[0] = t1[1]; |
+ t1[1] = t1[2]; |
+ calcMask = 1 << 2; |
+ } else { |
+ calcMask = 0; |
+ } |
+ if (best_j == 0) { |
+ *t2Seed -= tStep; |
+ t2[2] = t2[1]; |
+ t2[1] = t2[0]; |
+ calcMask |= 1 << 3; |
+ } else if (best_j == 2) { |
+ *t2Seed += tStep; |
+ t2[0] = t2[1]; |
+ t2[1] = t2[2]; |
+ calcMask |= 1 << 5; |
+ } |
+ } while (true); |
+#if ONE_OFF_DEBUG |
+ SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) != (%1.9g,%1.9g) %s\n", __FUNCTION__, |
+ t1Seed, t2Seed, t1[1].fX, t1[1].fY, t1[2].fX, t1[2].fY); |
+#endif |
+ return false; |
+} |
+ |
+int SkIntersections::intersect(const SkDQuad& q1, const SkDQuad& q2) { |
+ // if the quads share an end point, check to see if they overlap |
+ |
+ if (only_end_pts_in_common(q1, q2, this)) { |
+ return fUsed; |
+ } |
+ if (only_end_pts_in_common(q2, q1, this)) { |
+ swapPts(); |
+ return fUsed; |
+ } |
+ // see if either quad is really a line |
+ if (is_linear(q1, q2, this)) { |
+ return fUsed; |
+ } |
+ if (is_linear(q2, q1, this)) { |
+ swapPts(); |
+ return fUsed; |
+ } |
+ SkDQuadImplicit i1(q1); |
+ SkDQuadImplicit i2(q2); |
+ if (i1.match(i2)) { |
+ // FIXME: compute T values |
+ // compute the intersections of the ends to find the coincident span |
+ bool useVertical = fabs(q1[0].fX - q1[2].fX) < fabs(q1[0].fY - q1[2].fY); |
+ double t; |
+ if ((t = SkIntersections::Axial(q1, q2[0], useVertical)) >= 0) { |
+ insertCoincident(t, 0, q2[0]); |
+ } |
+ if ((t = SkIntersections::Axial(q1, q2[2], useVertical)) >= 0) { |
+ insertCoincident(t, 1, q2[2]); |
+ } |
+ useVertical = fabs(q2[0].fX - q2[2].fX) < fabs(q2[0].fY - q2[2].fY); |
+ if ((t = SkIntersections::Axial(q2, q1[0], useVertical)) >= 0) { |
+ insertCoincident(0, t, q1[0]); |
+ } |
+ if ((t = SkIntersections::Axial(q2, q1[2], useVertical)) >= 0) { |
+ insertCoincident(1, t, q1[2]); |
+ } |
+ SkASSERT(coincidentUsed() <= 2); |
+ return fUsed; |
+ } |
+ int index; |
+ bool useCubic = q1[0] == q2[0] || q1[0] == q2[2] || q1[2] == q2[0]; |
+ double roots1[4]; |
+ int rootCount = findRoots(i2, q1, roots1, useCubic, 0); |
+ // OPTIMIZATION: could short circuit here if all roots are < 0 or > 1 |
+ double roots1Copy[4]; |
+ int r1Count = addValidRoots(roots1, rootCount, roots1Copy); |
+ SkDPoint pts1[4]; |
+ for (index = 0; index < r1Count; ++index) { |
+ pts1[index] = q1.xyAtT(roots1Copy[index]); |
+ } |
+ double roots2[4]; |
+ int rootCount2 = findRoots(i1, q2, roots2, useCubic, 0); |
+ double roots2Copy[4]; |
+ int r2Count = addValidRoots(roots2, rootCount2, roots2Copy); |
+ SkDPoint pts2[4]; |
+ for (index = 0; index < r2Count; ++index) { |
+ pts2[index] = q2.xyAtT(roots2Copy[index]); |
+ } |
+ if (r1Count == r2Count && r1Count <= 1) { |
+ if (r1Count == 1) { |
+ if (pts1[0].approximatelyEqualHalf(pts2[0])) { |
+ insert(roots1Copy[0], roots2Copy[0], pts1[0]); |
+ } else if (pts1[0].moreRoughlyEqual(pts2[0])) { |
+ // experiment: try to find intersection by chasing t |
+ rootCount = findRoots(i2, q1, roots1, useCubic, 0); |
+ (void) addValidRoots(roots1, rootCount, roots1Copy); |
+ rootCount2 = findRoots(i1, q2, roots2, useCubic, 0); |
+ (void) addValidRoots(roots2, rootCount2, roots2Copy); |
+ if (binary_search(q1, q2, roots1Copy, roots2Copy, pts1)) { |
+ insert(roots1Copy[0], roots2Copy[0], pts1[0]); |
+ } |
+ } |
+ } |
+ return fUsed; |
+ } |
+ int closest[4]; |
+ double dist[4]; |
+ bool foundSomething = false; |
+ for (index = 0; index < r1Count; ++index) { |
+ dist[index] = DBL_MAX; |
+ closest[index] = -1; |
+ for (int ndex2 = 0; ndex2 < r2Count; ++ndex2) { |
+ if (!pts2[ndex2].approximatelyEqualHalf(pts1[index])) { |
+ continue; |
+ } |
+ double dx = pts2[ndex2].fX - pts1[index].fX; |
+ double dy = pts2[ndex2].fY - pts1[index].fY; |
+ double distance = dx * dx + dy * dy; |
+ if (dist[index] <= distance) { |
+ continue; |
+ } |
+ for (int outer = 0; outer < index; ++outer) { |
+ if (closest[outer] != ndex2) { |
+ continue; |
+ } |
+ if (dist[outer] < distance) { |
+ goto next; |
+ } |
+ closest[outer] = -1; |
+ } |
+ dist[index] = distance; |
+ closest[index] = ndex2; |
+ foundSomething = true; |
+ next: |
+ ; |
+ } |
+ } |
+ if (r1Count && r2Count && !foundSomething) { |
+ relaxed_is_linear(q1, q2, this); |
+ return fUsed; |
+ } |
+ int used = 0; |
+ do { |
+ double lowest = DBL_MAX; |
+ int lowestIndex = -1; |
+ for (index = 0; index < r1Count; ++index) { |
+ if (closest[index] < 0) { |
+ continue; |
+ } |
+ if (roots1Copy[index] < lowest) { |
+ lowestIndex = index; |
+ lowest = roots1Copy[index]; |
+ } |
+ } |
+ if (lowestIndex < 0) { |
+ break; |
+ } |
+ insert(roots1Copy[lowestIndex], roots2Copy[closest[lowestIndex]], |
+ pts1[lowestIndex]); |
+ closest[lowestIndex] = -1; |
+ } while (++used < r1Count); |
+ return fUsed; |
+} |