Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(885)

Unified Diff: src/pathops/SkDQuadIntersection.cpp

Issue 12880016: Add intersections for path ops (Closed) Base URL: http://skia.googlecode.com/svn/trunk/
Patch Set: Created 7 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/pathops/SkDQuadImplicit.cpp ('k') | src/pathops/SkDQuadLineIntersection.cpp » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/pathops/SkDQuadIntersection.cpp
===================================================================
--- src/pathops/SkDQuadIntersection.cpp (revision 0)
+++ src/pathops/SkDQuadIntersection.cpp (revision 0)
@@ -0,0 +1,496 @@
+// Another approach is to start with the implicit form of one curve and solve
+// (seek implicit coefficients in QuadraticParameter.cpp
+// by substituting in the parametric form of the other.
+// The downside of this approach is that early rejects are difficult to come by.
+// http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html#step
+
+
+#include "SkDQuadImplicit.h"
+#include "SkIntersections.h"
+#include "SkPathOpsLine.h"
+#include "SkQuarticRoot.h"
+#include "SkTDArray.h"
+#include "TSearch.h"
+
+/* given the implicit form 0 = Ax^2 + Bxy + Cy^2 + Dx + Ey + F
+ * and given x = at^2 + bt + c (the parameterized form)
+ * y = dt^2 + et + f
+ * then
+ * 0 = A(at^2+bt+c)(at^2+bt+c)+B(at^2+bt+c)(dt^2+et+f)+C(dt^2+et+f)(dt^2+et+f)+D(at^2+bt+c)+E(dt^2+et+f)+F
+ */
+
+static int findRoots(const SkDQuadImplicit& i, const SkDQuad& q2, double roots[4],
+ bool oneHint, int firstCubicRoot) {
+ double a, b, c;
+ SkDQuad::SetABC(&q2[0].fX, &a, &b, &c);
+ double d, e, f;
+ SkDQuad::SetABC(&q2[0].fY, &d, &e, &f);
+ const double t4 = i.x2() * a * a
+ + i.xy() * a * d
+ + i.y2() * d * d;
+ const double t3 = 2 * i.x2() * a * b
+ + i.xy() * (a * e + b * d)
+ + 2 * i.y2() * d * e;
+ const double t2 = i.x2() * (b * b + 2 * a * c)
+ + i.xy() * (c * d + b * e + a * f)
+ + i.y2() * (e * e + 2 * d * f)
+ + i.x() * a
+ + i.y() * d;
+ const double t1 = 2 * i.x2() * b * c
+ + i.xy() * (c * e + b * f)
+ + 2 * i.y2() * e * f
+ + i.x() * b
+ + i.y() * e;
+ const double t0 = i.x2() * c * c
+ + i.xy() * c * f
+ + i.y2() * f * f
+ + i.x() * c
+ + i.y() * f
+ + i.c();
+ int rootCount = SkReducedQuarticRoots(t4, t3, t2, t1, t0, oneHint, roots);
+ if (rootCount >= 0) {
+ return rootCount;
+ }
+ return SkQuarticRootsReal(firstCubicRoot, t4, t3, t2, t1, t0, roots);
+}
+
+static int addValidRoots(const double roots[4], const int count, double valid[4]) {
+ int result = 0;
+ int index;
+ for (index = 0; index < count; ++index) {
+ if (!approximately_zero_or_more(roots[index]) || !approximately_one_or_less(roots[index])) {
+ continue;
+ }
+ double t = 1 - roots[index];
+ if (approximately_less_than_zero(t)) {
+ t = 0;
+ } else if (approximately_greater_than_one(t)) {
+ t = 1;
+ }
+ valid[result++] = t;
+ }
+ return result;
+}
+
+static bool only_end_pts_in_common(const SkDQuad& q1, const SkDQuad& q2, SkIntersections* i) {
+// the idea here is to see at minimum do a quick reject by rotating all points
+// to either side of the line formed by connecting the endpoints
+// if the opposite curves points are on the line or on the other side, the
+// curves at most intersect at the endpoints
+ for (int oddMan = 0; oddMan < 3; ++oddMan) {
+ const SkDPoint* endPt[2];
+ for (int opp = 1; opp < 3; ++opp) {
+ int end = oddMan ^ opp;
+ if (end == 3) {
+ end = opp;
+ }
+ endPt[opp - 1] = &q1[end];
+ }
+ double origX = endPt[0]->fX;
+ double origY = endPt[0]->fY;
+ double adj = endPt[1]->fX - origX;
+ double opp = endPt[1]->fY - origY;
+ double sign = (q1[oddMan].fY - origY) * adj - (q1[oddMan].fX - origX) * opp;
+ if (approximately_zero(sign)) {
+ goto tryNextHalfPlane;
+ }
+ for (int n = 0; n < 3; ++n) {
+ double test = (q2[n].fY - origY) * adj - (q2[n].fX - origX) * opp;
+ if (test * sign > 0) {
+ goto tryNextHalfPlane;
+ }
+ }
+ for (int i1 = 0; i1 < 3; i1 += 2) {
+ for (int i2 = 0; i2 < 3; i2 += 2) {
+ if (q1[i1] == q2[i2]) {
+ i->insert(i1 >> 1, i2 >> 1, q1[i1]);
+ }
+ }
+ }
+ SkASSERT(i->used() < 3);
+ return true;
+tryNextHalfPlane:
+ ;
+ }
+ return false;
+}
+
+// returns false if there's more than one intercept or the intercept doesn't match the point
+// returns true if the intercept was successfully added or if the
+// original quads need to be subdivided
+static bool add_intercept(const SkDQuad& q1, const SkDQuad& q2, double tMin, double tMax,
+ SkIntersections* i, bool* subDivide) {
+ double tMid = (tMin + tMax) / 2;
+ SkDPoint mid = q2.xyAtT(tMid);
+ SkDLine line;
+ line[0] = line[1] = mid;
+ SkDVector dxdy = q2.dxdyAtT(tMid);
+ line[0] -= dxdy;
+ line[1] += dxdy;
+ SkIntersections rootTs;
+ int roots = rootTs.intersect(q1, line);
+ if (roots == 0) {
+ if (subDivide) {
+ *subDivide = true;
+ }
+ return true;
+ }
+ if (roots == 2) {
+ return false;
+ }
+ SkDPoint pt2 = q1.xyAtT(rootTs[0][0]);
+ if (!pt2.approximatelyEqualHalf(mid)) {
+ return false;
+ }
+ i->insertSwap(rootTs[0][0], tMid, pt2);
+ return true;
+}
+
+static bool is_linear_inner(const SkDQuad& q1, double t1s, double t1e, const SkDQuad& q2,
+ double t2s, double t2e, SkIntersections* i, bool* subDivide) {
+ SkDQuad hull = q1.subDivide(t1s, t1e);
+ SkDLine line = {{hull[2], hull[0]}};
+ const SkDLine* testLines[] = { &line, (const SkDLine*) &hull[0], (const SkDLine*) &hull[1] };
+ size_t testCount = sizeof(testLines) / sizeof(testLines[0]);
+ SkTDArray<double> tsFound;
+ for (size_t index = 0; index < testCount; ++index) {
+ SkIntersections rootTs;
+ int roots = rootTs.intersect(q2, *testLines[index]);
+ for (int idx2 = 0; idx2 < roots; ++idx2) {
+ double t = rootTs[0][idx2];
+#ifdef SK_DEBUG
+ SkDPoint qPt = q2.xyAtT(t);
+ SkDPoint lPt = testLines[index]->xyAtT(rootTs[1][idx2]);
+ SkASSERT(qPt.approximatelyEqual(lPt));
+#endif
+ if (approximately_negative(t - t2s) || approximately_positive(t - t2e)) {
+ continue;
+ }
+ *tsFound.append() = rootTs[0][idx2];
+ }
+ }
+ int tCount = tsFound.count();
+ if (!tCount) {
+ return true;
+ }
+ double tMin, tMax;
+ if (tCount == 1) {
+ tMin = tMax = tsFound[0];
+ } else if (tCount > 1) {
+ QSort<double>(tsFound.begin(), tsFound.end() - 1);
+ tMin = tsFound[0];
+ tMax = tsFound[tsFound.count() - 1];
+ }
+ SkDPoint end = q2.xyAtT(t2s);
+ bool startInTriangle = hull.pointInHull(end);
+ if (startInTriangle) {
+ tMin = t2s;
+ }
+ end = q2.xyAtT(t2e);
+ bool endInTriangle = hull.pointInHull(end);
+ if (endInTriangle) {
+ tMax = t2e;
+ }
+ int split = 0;
+ SkDVector dxy1, dxy2;
+ if (tMin != tMax || tCount > 2) {
+ dxy2 = q2.dxdyAtT(tMin);
+ for (int index = 1; index < tCount; ++index) {
+ dxy1 = dxy2;
+ dxy2 = q2.dxdyAtT(tsFound[index]);
+ double dot = dxy1.dot(dxy2);
+ if (dot < 0) {
+ split = index - 1;
+ break;
+ }
+ }
+ }
+ if (split == 0) { // there's one point
+ if (add_intercept(q1, q2, tMin, tMax, i, subDivide)) {
+ return true;
+ }
+ i->swap();
+ return is_linear_inner(q2, tMin, tMax, q1, t1s, t1e, i, subDivide);
+ }
+ // At this point, we have two ranges of t values -- treat each separately at the split
+ bool result;
+ if (add_intercept(q1, q2, tMin, tsFound[split - 1], i, subDivide)) {
+ result = true;
+ } else {
+ i->swap();
+ result = is_linear_inner(q2, tMin, tsFound[split - 1], q1, t1s, t1e, i, subDivide);
+ }
+ if (add_intercept(q1, q2, tsFound[split], tMax, i, subDivide)) {
+ result = true;
+ } else {
+ i->swap();
+ result |= is_linear_inner(q2, tsFound[split], tMax, q1, t1s, t1e, i, subDivide);
+ }
+ return result;
+}
+
+static double flat_measure(const SkDQuad& q) {
+ SkDVector mid = q[1] - q[0];
+ SkDVector dxy = q[2] - q[0];
+ double length = dxy.length(); // OPTIMIZE: get rid of sqrt
+ return fabs(mid.cross(dxy) / length);
+}
+
+// FIXME ? should this measure both and then use the quad that is the flattest as the line?
+static bool is_linear(const SkDQuad& q1, const SkDQuad& q2, SkIntersections* i) {
+ double measure = flat_measure(q1);
+ // OPTIMIZE: (get rid of sqrt) use approximately_zero
+ if (!approximately_zero_sqrt(measure)) {
+ return false;
+ }
+ return is_linear_inner(q1, 0, 1, q2, 0, 1, i, NULL);
+}
+
+// FIXME: if flat measure is sufficiently large, then probably the quartic solution failed
+static void relaxed_is_linear(const SkDQuad& q1, const SkDQuad& q2, SkIntersections* i) {
+ double m1 = flat_measure(q1);
+ double m2 = flat_measure(q2);
+#if DEBUG_FLAT_QUADS
+ double min = SkTMin(m1, m2);
+ if (min > 5) {
+ SkDebugf("%s maybe not flat enough.. %1.9g\n", __FUNCTION__, min);
+ }
+#endif
+ i->reset();
+ const SkDQuad& rounder = m2 < m1 ? q1 : q2;
+ const SkDQuad& flatter = m2 < m1 ? q2 : q1;
+ bool subDivide = false;
+ is_linear_inner(flatter, 0, 1, rounder, 0, 1, i, &subDivide);
+ if (subDivide) {
+ SkDQuadPair pair = flatter.chopAt(0.5);
+ SkIntersections firstI, secondI;
+ relaxed_is_linear(pair.first(), rounder, &firstI);
+ for (int index = 0; index < firstI.used(); ++index) {
+ i->insert(firstI[0][index] * 0.5, firstI[1][index], firstI.pt(index));
+ }
+ relaxed_is_linear(pair.second(), rounder, &secondI);
+ for (int index = 0; index < secondI.used(); ++index) {
+ i->insert(0.5 + secondI[0][index] * 0.5, secondI[1][index], secondI.pt(index));
+ }
+ }
+ if (m2 < m1) {
+ i->swapPts();
+ }
+}
+
+// each time through the loop, this computes values it had from the last loop
+// if i == j == 1, the center values are still good
+// otherwise, for i != 1 or j != 1, four of the values are still good
+// and if i == 1 ^ j == 1, an additional value is good
+static bool binary_search(const SkDQuad& quad1, const SkDQuad& quad2, double* t1Seed,
+ double* t2Seed, SkDPoint* pt) {
+ double tStep = ROUGH_EPSILON;
+ SkDPoint t1[3], t2[3];
+ int calcMask = ~0;
+ do {
+ if (calcMask & (1 << 1)) t1[1] = quad1.xyAtT(*t1Seed);
+ if (calcMask & (1 << 4)) t2[1] = quad2.xyAtT(*t2Seed);
+ if (t1[1].approximatelyEqual(t2[1])) {
+ *pt = t1[1];
+ #if ONE_OFF_DEBUG
+ SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) == (%1.9g,%1.9g)\n", __FUNCTION__,
+ t1Seed, t2Seed, t1[1].fX, t1[1].fY, t1[2].fX, t1[2].fY);
+ #endif
+ return true;
+ }
+ if (calcMask & (1 << 0)) t1[0] = quad1.xyAtT(*t1Seed - tStep);
+ if (calcMask & (1 << 2)) t1[2] = quad1.xyAtT(*t1Seed + tStep);
+ if (calcMask & (1 << 3)) t2[0] = quad2.xyAtT(*t2Seed - tStep);
+ if (calcMask & (1 << 5)) t2[2] = quad2.xyAtT(*t2Seed + tStep);
+ double dist[3][3];
+ // OPTIMIZE: using calcMask value permits skipping some distance calcuations
+ // if prior loop's results are moved to correct slot for reuse
+ dist[1][1] = t1[1].distanceSquared(t2[1]);
+ int best_i = 1, best_j = 1;
+ for (int i = 0; i < 3; ++i) {
+ for (int j = 0; j < 3; ++j) {
+ if (i == 1 && j == 1) {
+ continue;
+ }
+ dist[i][j] = t1[i].distanceSquared(t2[j]);
+ if (dist[best_i][best_j] > dist[i][j]) {
+ best_i = i;
+ best_j = j;
+ }
+ }
+ }
+ if (best_i == 1 && best_j == 1) {
+ tStep /= 2;
+ if (tStep < FLT_EPSILON_HALF) {
+ break;
+ }
+ calcMask = (1 << 0) | (1 << 2) | (1 << 3) | (1 << 5);
+ continue;
+ }
+ if (best_i == 0) {
+ *t1Seed -= tStep;
+ t1[2] = t1[1];
+ t1[1] = t1[0];
+ calcMask = 1 << 0;
+ } else if (best_i == 2) {
+ *t1Seed += tStep;
+ t1[0] = t1[1];
+ t1[1] = t1[2];
+ calcMask = 1 << 2;
+ } else {
+ calcMask = 0;
+ }
+ if (best_j == 0) {
+ *t2Seed -= tStep;
+ t2[2] = t2[1];
+ t2[1] = t2[0];
+ calcMask |= 1 << 3;
+ } else if (best_j == 2) {
+ *t2Seed += tStep;
+ t2[0] = t2[1];
+ t2[1] = t2[2];
+ calcMask |= 1 << 5;
+ }
+ } while (true);
+#if ONE_OFF_DEBUG
+ SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) != (%1.9g,%1.9g) %s\n", __FUNCTION__,
+ t1Seed, t2Seed, t1[1].fX, t1[1].fY, t1[2].fX, t1[2].fY);
+#endif
+ return false;
+}
+
+int SkIntersections::intersect(const SkDQuad& q1, const SkDQuad& q2) {
+ // if the quads share an end point, check to see if they overlap
+
+ if (only_end_pts_in_common(q1, q2, this)) {
+ return fUsed;
+ }
+ if (only_end_pts_in_common(q2, q1, this)) {
+ swapPts();
+ return fUsed;
+ }
+ // see if either quad is really a line
+ if (is_linear(q1, q2, this)) {
+ return fUsed;
+ }
+ if (is_linear(q2, q1, this)) {
+ swapPts();
+ return fUsed;
+ }
+ SkDQuadImplicit i1(q1);
+ SkDQuadImplicit i2(q2);
+ if (i1.match(i2)) {
+ // FIXME: compute T values
+ // compute the intersections of the ends to find the coincident span
+ bool useVertical = fabs(q1[0].fX - q1[2].fX) < fabs(q1[0].fY - q1[2].fY);
+ double t;
+ if ((t = SkIntersections::Axial(q1, q2[0], useVertical)) >= 0) {
+ insertCoincident(t, 0, q2[0]);
+ }
+ if ((t = SkIntersections::Axial(q1, q2[2], useVertical)) >= 0) {
+ insertCoincident(t, 1, q2[2]);
+ }
+ useVertical = fabs(q2[0].fX - q2[2].fX) < fabs(q2[0].fY - q2[2].fY);
+ if ((t = SkIntersections::Axial(q2, q1[0], useVertical)) >= 0) {
+ insertCoincident(0, t, q1[0]);
+ }
+ if ((t = SkIntersections::Axial(q2, q1[2], useVertical)) >= 0) {
+ insertCoincident(1, t, q1[2]);
+ }
+ SkASSERT(coincidentUsed() <= 2);
+ return fUsed;
+ }
+ int index;
+ bool useCubic = q1[0] == q2[0] || q1[0] == q2[2] || q1[2] == q2[0];
+ double roots1[4];
+ int rootCount = findRoots(i2, q1, roots1, useCubic, 0);
+ // OPTIMIZATION: could short circuit here if all roots are < 0 or > 1
+ double roots1Copy[4];
+ int r1Count = addValidRoots(roots1, rootCount, roots1Copy);
+ SkDPoint pts1[4];
+ for (index = 0; index < r1Count; ++index) {
+ pts1[index] = q1.xyAtT(roots1Copy[index]);
+ }
+ double roots2[4];
+ int rootCount2 = findRoots(i1, q2, roots2, useCubic, 0);
+ double roots2Copy[4];
+ int r2Count = addValidRoots(roots2, rootCount2, roots2Copy);
+ SkDPoint pts2[4];
+ for (index = 0; index < r2Count; ++index) {
+ pts2[index] = q2.xyAtT(roots2Copy[index]);
+ }
+ if (r1Count == r2Count && r1Count <= 1) {
+ if (r1Count == 1) {
+ if (pts1[0].approximatelyEqualHalf(pts2[0])) {
+ insert(roots1Copy[0], roots2Copy[0], pts1[0]);
+ } else if (pts1[0].moreRoughlyEqual(pts2[0])) {
+ // experiment: try to find intersection by chasing t
+ rootCount = findRoots(i2, q1, roots1, useCubic, 0);
+ (void) addValidRoots(roots1, rootCount, roots1Copy);
+ rootCount2 = findRoots(i1, q2, roots2, useCubic, 0);
+ (void) addValidRoots(roots2, rootCount2, roots2Copy);
+ if (binary_search(q1, q2, roots1Copy, roots2Copy, pts1)) {
+ insert(roots1Copy[0], roots2Copy[0], pts1[0]);
+ }
+ }
+ }
+ return fUsed;
+ }
+ int closest[4];
+ double dist[4];
+ bool foundSomething = false;
+ for (index = 0; index < r1Count; ++index) {
+ dist[index] = DBL_MAX;
+ closest[index] = -1;
+ for (int ndex2 = 0; ndex2 < r2Count; ++ndex2) {
+ if (!pts2[ndex2].approximatelyEqualHalf(pts1[index])) {
+ continue;
+ }
+ double dx = pts2[ndex2].fX - pts1[index].fX;
+ double dy = pts2[ndex2].fY - pts1[index].fY;
+ double distance = dx * dx + dy * dy;
+ if (dist[index] <= distance) {
+ continue;
+ }
+ for (int outer = 0; outer < index; ++outer) {
+ if (closest[outer] != ndex2) {
+ continue;
+ }
+ if (dist[outer] < distance) {
+ goto next;
+ }
+ closest[outer] = -1;
+ }
+ dist[index] = distance;
+ closest[index] = ndex2;
+ foundSomething = true;
+ next:
+ ;
+ }
+ }
+ if (r1Count && r2Count && !foundSomething) {
+ relaxed_is_linear(q1, q2, this);
+ return fUsed;
+ }
+ int used = 0;
+ do {
+ double lowest = DBL_MAX;
+ int lowestIndex = -1;
+ for (index = 0; index < r1Count; ++index) {
+ if (closest[index] < 0) {
+ continue;
+ }
+ if (roots1Copy[index] < lowest) {
+ lowestIndex = index;
+ lowest = roots1Copy[index];
+ }
+ }
+ if (lowestIndex < 0) {
+ break;
+ }
+ insert(roots1Copy[lowestIndex], roots2Copy[closest[lowestIndex]],
+ pts1[lowestIndex]);
+ closest[lowestIndex] = -1;
+ } while (++used < r1Count);
+ return fUsed;
+}
« no previous file with comments | « src/pathops/SkDQuadImplicit.cpp ('k') | src/pathops/SkDQuadLineIntersection.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698