| Index: src/pathops/SkDQuadIntersection.cpp
|
| ===================================================================
|
| --- src/pathops/SkDQuadIntersection.cpp (revision 0)
|
| +++ src/pathops/SkDQuadIntersection.cpp (revision 0)
|
| @@ -0,0 +1,496 @@
|
| +// Another approach is to start with the implicit form of one curve and solve
|
| +// (seek implicit coefficients in QuadraticParameter.cpp
|
| +// by substituting in the parametric form of the other.
|
| +// The downside of this approach is that early rejects are difficult to come by.
|
| +// http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html#step
|
| +
|
| +
|
| +#include "SkDQuadImplicit.h"
|
| +#include "SkIntersections.h"
|
| +#include "SkPathOpsLine.h"
|
| +#include "SkQuarticRoot.h"
|
| +#include "SkTDArray.h"
|
| +#include "TSearch.h"
|
| +
|
| +/* given the implicit form 0 = Ax^2 + Bxy + Cy^2 + Dx + Ey + F
|
| + * and given x = at^2 + bt + c (the parameterized form)
|
| + * y = dt^2 + et + f
|
| + * then
|
| + * 0 = A(at^2+bt+c)(at^2+bt+c)+B(at^2+bt+c)(dt^2+et+f)+C(dt^2+et+f)(dt^2+et+f)+D(at^2+bt+c)+E(dt^2+et+f)+F
|
| + */
|
| +
|
| +static int findRoots(const SkDQuadImplicit& i, const SkDQuad& q2, double roots[4],
|
| + bool oneHint, int firstCubicRoot) {
|
| + double a, b, c;
|
| + SkDQuad::SetABC(&q2[0].fX, &a, &b, &c);
|
| + double d, e, f;
|
| + SkDQuad::SetABC(&q2[0].fY, &d, &e, &f);
|
| + const double t4 = i.x2() * a * a
|
| + + i.xy() * a * d
|
| + + i.y2() * d * d;
|
| + const double t3 = 2 * i.x2() * a * b
|
| + + i.xy() * (a * e + b * d)
|
| + + 2 * i.y2() * d * e;
|
| + const double t2 = i.x2() * (b * b + 2 * a * c)
|
| + + i.xy() * (c * d + b * e + a * f)
|
| + + i.y2() * (e * e + 2 * d * f)
|
| + + i.x() * a
|
| + + i.y() * d;
|
| + const double t1 = 2 * i.x2() * b * c
|
| + + i.xy() * (c * e + b * f)
|
| + + 2 * i.y2() * e * f
|
| + + i.x() * b
|
| + + i.y() * e;
|
| + const double t0 = i.x2() * c * c
|
| + + i.xy() * c * f
|
| + + i.y2() * f * f
|
| + + i.x() * c
|
| + + i.y() * f
|
| + + i.c();
|
| + int rootCount = SkReducedQuarticRoots(t4, t3, t2, t1, t0, oneHint, roots);
|
| + if (rootCount >= 0) {
|
| + return rootCount;
|
| + }
|
| + return SkQuarticRootsReal(firstCubicRoot, t4, t3, t2, t1, t0, roots);
|
| +}
|
| +
|
| +static int addValidRoots(const double roots[4], const int count, double valid[4]) {
|
| + int result = 0;
|
| + int index;
|
| + for (index = 0; index < count; ++index) {
|
| + if (!approximately_zero_or_more(roots[index]) || !approximately_one_or_less(roots[index])) {
|
| + continue;
|
| + }
|
| + double t = 1 - roots[index];
|
| + if (approximately_less_than_zero(t)) {
|
| + t = 0;
|
| + } else if (approximately_greater_than_one(t)) {
|
| + t = 1;
|
| + }
|
| + valid[result++] = t;
|
| + }
|
| + return result;
|
| +}
|
| +
|
| +static bool only_end_pts_in_common(const SkDQuad& q1, const SkDQuad& q2, SkIntersections* i) {
|
| +// the idea here is to see at minimum do a quick reject by rotating all points
|
| +// to either side of the line formed by connecting the endpoints
|
| +// if the opposite curves points are on the line or on the other side, the
|
| +// curves at most intersect at the endpoints
|
| + for (int oddMan = 0; oddMan < 3; ++oddMan) {
|
| + const SkDPoint* endPt[2];
|
| + for (int opp = 1; opp < 3; ++opp) {
|
| + int end = oddMan ^ opp;
|
| + if (end == 3) {
|
| + end = opp;
|
| + }
|
| + endPt[opp - 1] = &q1[end];
|
| + }
|
| + double origX = endPt[0]->fX;
|
| + double origY = endPt[0]->fY;
|
| + double adj = endPt[1]->fX - origX;
|
| + double opp = endPt[1]->fY - origY;
|
| + double sign = (q1[oddMan].fY - origY) * adj - (q1[oddMan].fX - origX) * opp;
|
| + if (approximately_zero(sign)) {
|
| + goto tryNextHalfPlane;
|
| + }
|
| + for (int n = 0; n < 3; ++n) {
|
| + double test = (q2[n].fY - origY) * adj - (q2[n].fX - origX) * opp;
|
| + if (test * sign > 0) {
|
| + goto tryNextHalfPlane;
|
| + }
|
| + }
|
| + for (int i1 = 0; i1 < 3; i1 += 2) {
|
| + for (int i2 = 0; i2 < 3; i2 += 2) {
|
| + if (q1[i1] == q2[i2]) {
|
| + i->insert(i1 >> 1, i2 >> 1, q1[i1]);
|
| + }
|
| + }
|
| + }
|
| + SkASSERT(i->used() < 3);
|
| + return true;
|
| +tryNextHalfPlane:
|
| + ;
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +// returns false if there's more than one intercept or the intercept doesn't match the point
|
| +// returns true if the intercept was successfully added or if the
|
| +// original quads need to be subdivided
|
| +static bool add_intercept(const SkDQuad& q1, const SkDQuad& q2, double tMin, double tMax,
|
| + SkIntersections* i, bool* subDivide) {
|
| + double tMid = (tMin + tMax) / 2;
|
| + SkDPoint mid = q2.xyAtT(tMid);
|
| + SkDLine line;
|
| + line[0] = line[1] = mid;
|
| + SkDVector dxdy = q2.dxdyAtT(tMid);
|
| + line[0] -= dxdy;
|
| + line[1] += dxdy;
|
| + SkIntersections rootTs;
|
| + int roots = rootTs.intersect(q1, line);
|
| + if (roots == 0) {
|
| + if (subDivide) {
|
| + *subDivide = true;
|
| + }
|
| + return true;
|
| + }
|
| + if (roots == 2) {
|
| + return false;
|
| + }
|
| + SkDPoint pt2 = q1.xyAtT(rootTs[0][0]);
|
| + if (!pt2.approximatelyEqualHalf(mid)) {
|
| + return false;
|
| + }
|
| + i->insertSwap(rootTs[0][0], tMid, pt2);
|
| + return true;
|
| +}
|
| +
|
| +static bool is_linear_inner(const SkDQuad& q1, double t1s, double t1e, const SkDQuad& q2,
|
| + double t2s, double t2e, SkIntersections* i, bool* subDivide) {
|
| + SkDQuad hull = q1.subDivide(t1s, t1e);
|
| + SkDLine line = {{hull[2], hull[0]}};
|
| + const SkDLine* testLines[] = { &line, (const SkDLine*) &hull[0], (const SkDLine*) &hull[1] };
|
| + size_t testCount = sizeof(testLines) / sizeof(testLines[0]);
|
| + SkTDArray<double> tsFound;
|
| + for (size_t index = 0; index < testCount; ++index) {
|
| + SkIntersections rootTs;
|
| + int roots = rootTs.intersect(q2, *testLines[index]);
|
| + for (int idx2 = 0; idx2 < roots; ++idx2) {
|
| + double t = rootTs[0][idx2];
|
| +#ifdef SK_DEBUG
|
| + SkDPoint qPt = q2.xyAtT(t);
|
| + SkDPoint lPt = testLines[index]->xyAtT(rootTs[1][idx2]);
|
| + SkASSERT(qPt.approximatelyEqual(lPt));
|
| +#endif
|
| + if (approximately_negative(t - t2s) || approximately_positive(t - t2e)) {
|
| + continue;
|
| + }
|
| + *tsFound.append() = rootTs[0][idx2];
|
| + }
|
| + }
|
| + int tCount = tsFound.count();
|
| + if (!tCount) {
|
| + return true;
|
| + }
|
| + double tMin, tMax;
|
| + if (tCount == 1) {
|
| + tMin = tMax = tsFound[0];
|
| + } else if (tCount > 1) {
|
| + QSort<double>(tsFound.begin(), tsFound.end() - 1);
|
| + tMin = tsFound[0];
|
| + tMax = tsFound[tsFound.count() - 1];
|
| + }
|
| + SkDPoint end = q2.xyAtT(t2s);
|
| + bool startInTriangle = hull.pointInHull(end);
|
| + if (startInTriangle) {
|
| + tMin = t2s;
|
| + }
|
| + end = q2.xyAtT(t2e);
|
| + bool endInTriangle = hull.pointInHull(end);
|
| + if (endInTriangle) {
|
| + tMax = t2e;
|
| + }
|
| + int split = 0;
|
| + SkDVector dxy1, dxy2;
|
| + if (tMin != tMax || tCount > 2) {
|
| + dxy2 = q2.dxdyAtT(tMin);
|
| + for (int index = 1; index < tCount; ++index) {
|
| + dxy1 = dxy2;
|
| + dxy2 = q2.dxdyAtT(tsFound[index]);
|
| + double dot = dxy1.dot(dxy2);
|
| + if (dot < 0) {
|
| + split = index - 1;
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + if (split == 0) { // there's one point
|
| + if (add_intercept(q1, q2, tMin, tMax, i, subDivide)) {
|
| + return true;
|
| + }
|
| + i->swap();
|
| + return is_linear_inner(q2, tMin, tMax, q1, t1s, t1e, i, subDivide);
|
| + }
|
| + // At this point, we have two ranges of t values -- treat each separately at the split
|
| + bool result;
|
| + if (add_intercept(q1, q2, tMin, tsFound[split - 1], i, subDivide)) {
|
| + result = true;
|
| + } else {
|
| + i->swap();
|
| + result = is_linear_inner(q2, tMin, tsFound[split - 1], q1, t1s, t1e, i, subDivide);
|
| + }
|
| + if (add_intercept(q1, q2, tsFound[split], tMax, i, subDivide)) {
|
| + result = true;
|
| + } else {
|
| + i->swap();
|
| + result |= is_linear_inner(q2, tsFound[split], tMax, q1, t1s, t1e, i, subDivide);
|
| + }
|
| + return result;
|
| +}
|
| +
|
| +static double flat_measure(const SkDQuad& q) {
|
| + SkDVector mid = q[1] - q[0];
|
| + SkDVector dxy = q[2] - q[0];
|
| + double length = dxy.length(); // OPTIMIZE: get rid of sqrt
|
| + return fabs(mid.cross(dxy) / length);
|
| +}
|
| +
|
| +// FIXME ? should this measure both and then use the quad that is the flattest as the line?
|
| +static bool is_linear(const SkDQuad& q1, const SkDQuad& q2, SkIntersections* i) {
|
| + double measure = flat_measure(q1);
|
| + // OPTIMIZE: (get rid of sqrt) use approximately_zero
|
| + if (!approximately_zero_sqrt(measure)) {
|
| + return false;
|
| + }
|
| + return is_linear_inner(q1, 0, 1, q2, 0, 1, i, NULL);
|
| +}
|
| +
|
| +// FIXME: if flat measure is sufficiently large, then probably the quartic solution failed
|
| +static void relaxed_is_linear(const SkDQuad& q1, const SkDQuad& q2, SkIntersections* i) {
|
| + double m1 = flat_measure(q1);
|
| + double m2 = flat_measure(q2);
|
| +#if DEBUG_FLAT_QUADS
|
| + double min = SkTMin(m1, m2);
|
| + if (min > 5) {
|
| + SkDebugf("%s maybe not flat enough.. %1.9g\n", __FUNCTION__, min);
|
| + }
|
| +#endif
|
| + i->reset();
|
| + const SkDQuad& rounder = m2 < m1 ? q1 : q2;
|
| + const SkDQuad& flatter = m2 < m1 ? q2 : q1;
|
| + bool subDivide = false;
|
| + is_linear_inner(flatter, 0, 1, rounder, 0, 1, i, &subDivide);
|
| + if (subDivide) {
|
| + SkDQuadPair pair = flatter.chopAt(0.5);
|
| + SkIntersections firstI, secondI;
|
| + relaxed_is_linear(pair.first(), rounder, &firstI);
|
| + for (int index = 0; index < firstI.used(); ++index) {
|
| + i->insert(firstI[0][index] * 0.5, firstI[1][index], firstI.pt(index));
|
| + }
|
| + relaxed_is_linear(pair.second(), rounder, &secondI);
|
| + for (int index = 0; index < secondI.used(); ++index) {
|
| + i->insert(0.5 + secondI[0][index] * 0.5, secondI[1][index], secondI.pt(index));
|
| + }
|
| + }
|
| + if (m2 < m1) {
|
| + i->swapPts();
|
| + }
|
| +}
|
| +
|
| +// each time through the loop, this computes values it had from the last loop
|
| +// if i == j == 1, the center values are still good
|
| +// otherwise, for i != 1 or j != 1, four of the values are still good
|
| +// and if i == 1 ^ j == 1, an additional value is good
|
| +static bool binary_search(const SkDQuad& quad1, const SkDQuad& quad2, double* t1Seed,
|
| + double* t2Seed, SkDPoint* pt) {
|
| + double tStep = ROUGH_EPSILON;
|
| + SkDPoint t1[3], t2[3];
|
| + int calcMask = ~0;
|
| + do {
|
| + if (calcMask & (1 << 1)) t1[1] = quad1.xyAtT(*t1Seed);
|
| + if (calcMask & (1 << 4)) t2[1] = quad2.xyAtT(*t2Seed);
|
| + if (t1[1].approximatelyEqual(t2[1])) {
|
| + *pt = t1[1];
|
| + #if ONE_OFF_DEBUG
|
| + SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) == (%1.9g,%1.9g)\n", __FUNCTION__,
|
| + t1Seed, t2Seed, t1[1].fX, t1[1].fY, t1[2].fX, t1[2].fY);
|
| + #endif
|
| + return true;
|
| + }
|
| + if (calcMask & (1 << 0)) t1[0] = quad1.xyAtT(*t1Seed - tStep);
|
| + if (calcMask & (1 << 2)) t1[2] = quad1.xyAtT(*t1Seed + tStep);
|
| + if (calcMask & (1 << 3)) t2[0] = quad2.xyAtT(*t2Seed - tStep);
|
| + if (calcMask & (1 << 5)) t2[2] = quad2.xyAtT(*t2Seed + tStep);
|
| + double dist[3][3];
|
| + // OPTIMIZE: using calcMask value permits skipping some distance calcuations
|
| + // if prior loop's results are moved to correct slot for reuse
|
| + dist[1][1] = t1[1].distanceSquared(t2[1]);
|
| + int best_i = 1, best_j = 1;
|
| + for (int i = 0; i < 3; ++i) {
|
| + for (int j = 0; j < 3; ++j) {
|
| + if (i == 1 && j == 1) {
|
| + continue;
|
| + }
|
| + dist[i][j] = t1[i].distanceSquared(t2[j]);
|
| + if (dist[best_i][best_j] > dist[i][j]) {
|
| + best_i = i;
|
| + best_j = j;
|
| + }
|
| + }
|
| + }
|
| + if (best_i == 1 && best_j == 1) {
|
| + tStep /= 2;
|
| + if (tStep < FLT_EPSILON_HALF) {
|
| + break;
|
| + }
|
| + calcMask = (1 << 0) | (1 << 2) | (1 << 3) | (1 << 5);
|
| + continue;
|
| + }
|
| + if (best_i == 0) {
|
| + *t1Seed -= tStep;
|
| + t1[2] = t1[1];
|
| + t1[1] = t1[0];
|
| + calcMask = 1 << 0;
|
| + } else if (best_i == 2) {
|
| + *t1Seed += tStep;
|
| + t1[0] = t1[1];
|
| + t1[1] = t1[2];
|
| + calcMask = 1 << 2;
|
| + } else {
|
| + calcMask = 0;
|
| + }
|
| + if (best_j == 0) {
|
| + *t2Seed -= tStep;
|
| + t2[2] = t2[1];
|
| + t2[1] = t2[0];
|
| + calcMask |= 1 << 3;
|
| + } else if (best_j == 2) {
|
| + *t2Seed += tStep;
|
| + t2[0] = t2[1];
|
| + t2[1] = t2[2];
|
| + calcMask |= 1 << 5;
|
| + }
|
| + } while (true);
|
| +#if ONE_OFF_DEBUG
|
| + SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) != (%1.9g,%1.9g) %s\n", __FUNCTION__,
|
| + t1Seed, t2Seed, t1[1].fX, t1[1].fY, t1[2].fX, t1[2].fY);
|
| +#endif
|
| + return false;
|
| +}
|
| +
|
| +int SkIntersections::intersect(const SkDQuad& q1, const SkDQuad& q2) {
|
| + // if the quads share an end point, check to see if they overlap
|
| +
|
| + if (only_end_pts_in_common(q1, q2, this)) {
|
| + return fUsed;
|
| + }
|
| + if (only_end_pts_in_common(q2, q1, this)) {
|
| + swapPts();
|
| + return fUsed;
|
| + }
|
| + // see if either quad is really a line
|
| + if (is_linear(q1, q2, this)) {
|
| + return fUsed;
|
| + }
|
| + if (is_linear(q2, q1, this)) {
|
| + swapPts();
|
| + return fUsed;
|
| + }
|
| + SkDQuadImplicit i1(q1);
|
| + SkDQuadImplicit i2(q2);
|
| + if (i1.match(i2)) {
|
| + // FIXME: compute T values
|
| + // compute the intersections of the ends to find the coincident span
|
| + bool useVertical = fabs(q1[0].fX - q1[2].fX) < fabs(q1[0].fY - q1[2].fY);
|
| + double t;
|
| + if ((t = SkIntersections::Axial(q1, q2[0], useVertical)) >= 0) {
|
| + insertCoincident(t, 0, q2[0]);
|
| + }
|
| + if ((t = SkIntersections::Axial(q1, q2[2], useVertical)) >= 0) {
|
| + insertCoincident(t, 1, q2[2]);
|
| + }
|
| + useVertical = fabs(q2[0].fX - q2[2].fX) < fabs(q2[0].fY - q2[2].fY);
|
| + if ((t = SkIntersections::Axial(q2, q1[0], useVertical)) >= 0) {
|
| + insertCoincident(0, t, q1[0]);
|
| + }
|
| + if ((t = SkIntersections::Axial(q2, q1[2], useVertical)) >= 0) {
|
| + insertCoincident(1, t, q1[2]);
|
| + }
|
| + SkASSERT(coincidentUsed() <= 2);
|
| + return fUsed;
|
| + }
|
| + int index;
|
| + bool useCubic = q1[0] == q2[0] || q1[0] == q2[2] || q1[2] == q2[0];
|
| + double roots1[4];
|
| + int rootCount = findRoots(i2, q1, roots1, useCubic, 0);
|
| + // OPTIMIZATION: could short circuit here if all roots are < 0 or > 1
|
| + double roots1Copy[4];
|
| + int r1Count = addValidRoots(roots1, rootCount, roots1Copy);
|
| + SkDPoint pts1[4];
|
| + for (index = 0; index < r1Count; ++index) {
|
| + pts1[index] = q1.xyAtT(roots1Copy[index]);
|
| + }
|
| + double roots2[4];
|
| + int rootCount2 = findRoots(i1, q2, roots2, useCubic, 0);
|
| + double roots2Copy[4];
|
| + int r2Count = addValidRoots(roots2, rootCount2, roots2Copy);
|
| + SkDPoint pts2[4];
|
| + for (index = 0; index < r2Count; ++index) {
|
| + pts2[index] = q2.xyAtT(roots2Copy[index]);
|
| + }
|
| + if (r1Count == r2Count && r1Count <= 1) {
|
| + if (r1Count == 1) {
|
| + if (pts1[0].approximatelyEqualHalf(pts2[0])) {
|
| + insert(roots1Copy[0], roots2Copy[0], pts1[0]);
|
| + } else if (pts1[0].moreRoughlyEqual(pts2[0])) {
|
| + // experiment: try to find intersection by chasing t
|
| + rootCount = findRoots(i2, q1, roots1, useCubic, 0);
|
| + (void) addValidRoots(roots1, rootCount, roots1Copy);
|
| + rootCount2 = findRoots(i1, q2, roots2, useCubic, 0);
|
| + (void) addValidRoots(roots2, rootCount2, roots2Copy);
|
| + if (binary_search(q1, q2, roots1Copy, roots2Copy, pts1)) {
|
| + insert(roots1Copy[0], roots2Copy[0], pts1[0]);
|
| + }
|
| + }
|
| + }
|
| + return fUsed;
|
| + }
|
| + int closest[4];
|
| + double dist[4];
|
| + bool foundSomething = false;
|
| + for (index = 0; index < r1Count; ++index) {
|
| + dist[index] = DBL_MAX;
|
| + closest[index] = -1;
|
| + for (int ndex2 = 0; ndex2 < r2Count; ++ndex2) {
|
| + if (!pts2[ndex2].approximatelyEqualHalf(pts1[index])) {
|
| + continue;
|
| + }
|
| + double dx = pts2[ndex2].fX - pts1[index].fX;
|
| + double dy = pts2[ndex2].fY - pts1[index].fY;
|
| + double distance = dx * dx + dy * dy;
|
| + if (dist[index] <= distance) {
|
| + continue;
|
| + }
|
| + for (int outer = 0; outer < index; ++outer) {
|
| + if (closest[outer] != ndex2) {
|
| + continue;
|
| + }
|
| + if (dist[outer] < distance) {
|
| + goto next;
|
| + }
|
| + closest[outer] = -1;
|
| + }
|
| + dist[index] = distance;
|
| + closest[index] = ndex2;
|
| + foundSomething = true;
|
| + next:
|
| + ;
|
| + }
|
| + }
|
| + if (r1Count && r2Count && !foundSomething) {
|
| + relaxed_is_linear(q1, q2, this);
|
| + return fUsed;
|
| + }
|
| + int used = 0;
|
| + do {
|
| + double lowest = DBL_MAX;
|
| + int lowestIndex = -1;
|
| + for (index = 0; index < r1Count; ++index) {
|
| + if (closest[index] < 0) {
|
| + continue;
|
| + }
|
| + if (roots1Copy[index] < lowest) {
|
| + lowestIndex = index;
|
| + lowest = roots1Copy[index];
|
| + }
|
| + }
|
| + if (lowestIndex < 0) {
|
| + break;
|
| + }
|
| + insert(roots1Copy[lowestIndex], roots2Copy[closest[lowestIndex]],
|
| + pts1[lowestIndex]);
|
| + closest[lowestIndex] = -1;
|
| + } while (++used < r1Count);
|
| + return fUsed;
|
| +}
|
|
|