Index: src/pathops/SkDQuadLineIntersection.cpp |
=================================================================== |
--- src/pathops/SkDQuadLineIntersection.cpp (revision 0) |
+++ src/pathops/SkDQuadLineIntersection.cpp (revision 0) |
@@ -0,0 +1,333 @@ |
+/* |
+ * Copyright 2012 Google Inc. |
+ * |
+ * Use of this source code is governed by a BSD-style license that can be |
+ * found in the LICENSE file. |
+ */ |
+#include "SkIntersections.h" |
+#include "SkPathOpsLine.h" |
+#include "SkPathOpsQuad.h" |
+ |
+/* |
+Find the interection of a line and quadratic by solving for valid t values. |
+ |
+From http://stackoverflow.com/questions/1853637/how-to-find-the-mathematical-function-defining-a-bezier-curve |
+ |
+"A Bezier curve is a parametric function. A quadratic Bezier curve (i.e. three |
+control points) can be expressed as: F(t) = A(1 - t)^2 + B(1 - t)t + Ct^2 where |
+A, B and C are points and t goes from zero to one. |
+ |
+This will give you two equations: |
+ |
+ x = a(1 - t)^2 + b(1 - t)t + ct^2 |
+ y = d(1 - t)^2 + e(1 - t)t + ft^2 |
+ |
+If you add for instance the line equation (y = kx + m) to that, you'll end up |
+with three equations and three unknowns (x, y and t)." |
+ |
+Similar to above, the quadratic is represented as |
+ x = a(1-t)^2 + 2b(1-t)t + ct^2 |
+ y = d(1-t)^2 + 2e(1-t)t + ft^2 |
+and the line as |
+ y = g*x + h |
+ |
+Using Mathematica, solve for the values of t where the quadratic intersects the |
+line: |
+ |
+ (in) t1 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - x, |
+ d*(1 - t)^2 + 2*e*(1 - t)*t + f*t^2 - g*x - h, x] |
+ (out) -d + h + 2 d t - 2 e t - d t^2 + 2 e t^2 - f t^2 + |
+ g (a - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2) |
+ (in) Solve[t1 == 0, t] |
+ (out) { |
+ {t -> (-2 d + 2 e + 2 a g - 2 b g - |
+ Sqrt[(2 d - 2 e - 2 a g + 2 b g)^2 - |
+ 4 (-d + 2 e - f + a g - 2 b g + c g) (-d + a g + h)]) / |
+ (2 (-d + 2 e - f + a g - 2 b g + c g)) |
+ }, |
+ {t -> (-2 d + 2 e + 2 a g - 2 b g + |
+ Sqrt[(2 d - 2 e - 2 a g + 2 b g)^2 - |
+ 4 (-d + 2 e - f + a g - 2 b g + c g) (-d + a g + h)]) / |
+ (2 (-d + 2 e - f + a g - 2 b g + c g)) |
+ } |
+ } |
+ |
+Using the results above (when the line tends towards horizontal) |
+ A = (-(d - 2*e + f) + g*(a - 2*b + c) ) |
+ B = 2*( (d - e ) - g*(a - b ) ) |
+ C = (-(d ) + g*(a ) + h ) |
+ |
+If g goes to infinity, we can rewrite the line in terms of x. |
+ x = g'*y + h' |
+ |
+And solve accordingly in Mathematica: |
+ |
+ (in) t2 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - g'*y - h', |
+ d*(1 - t)^2 + 2*e*(1 - t)*t + f*t^2 - y, y] |
+ (out) a - h' - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2 - |
+ g' (d - 2 d t + 2 e t + d t^2 - 2 e t^2 + f t^2) |
+ (in) Solve[t2 == 0, t] |
+ (out) { |
+ {t -> (2 a - 2 b - 2 d g' + 2 e g' - |
+ Sqrt[(-2 a + 2 b + 2 d g' - 2 e g')^2 - |
+ 4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')]) / |
+ (2 (a - 2 b + c - d g' + 2 e g' - f g')) |
+ }, |
+ {t -> (2 a - 2 b - 2 d g' + 2 e g' + |
+ Sqrt[(-2 a + 2 b + 2 d g' - 2 e g')^2 - |
+ 4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')])/ |
+ (2 (a - 2 b + c - d g' + 2 e g' - f g')) |
+ } |
+ } |
+ |
+Thus, if the slope of the line tends towards vertical, we use: |
+ A = ( (a - 2*b + c) - g'*(d - 2*e + f) ) |
+ B = 2*(-(a - b ) + g'*(d - e ) ) |
+ C = ( (a ) - g'*(d ) - h' ) |
+ */ |
+ |
+ |
+class LineQuadraticIntersections { |
+public: |
+ LineQuadraticIntersections(const SkDQuad& q, const SkDLine& l, SkIntersections* i) |
+ : quad(q) |
+ , line(l) |
+ , intersections(i) { |
+ } |
+ |
+ int intersectRay(double roots[2]) { |
+ /* |
+ solve by rotating line+quad so line is horizontal, then finding the roots |
+ set up matrix to rotate quad to x-axis |
+ |cos(a) -sin(a)| |
+ |sin(a) cos(a)| |
+ note that cos(a) = A(djacent) / Hypoteneuse |
+ sin(a) = O(pposite) / Hypoteneuse |
+ since we are computing Ts, we can ignore hypoteneuse, the scale factor: |
+ | A -O | |
+ | O A | |
+ A = line[1].fX - line[0].fX (adjacent side of the right triangle) |
+ O = line[1].fY - line[0].fY (opposite side of the right triangle) |
+ for each of the three points (e.g. n = 0 to 2) |
+ quad[n].fY' = (quad[n].fY - line[0].fY) * A - (quad[n].fX - line[0].fX) * O |
+ */ |
+ double adj = line[1].fX - line[0].fX; |
+ double opp = line[1].fY - line[0].fY; |
+ double r[3]; |
+ for (int n = 0; n < 3; ++n) { |
+ r[n] = (quad[n].fY - line[0].fY) * adj - (quad[n].fX - line[0].fX) * opp; |
+ } |
+ double A = r[2]; |
+ double B = r[1]; |
+ double C = r[0]; |
+ A += C - 2 * B; // A = a - 2*b + c |
+ B -= C; // B = -(b - c) |
+ return SkDQuad::RootsValidT(A, 2 * B, C, roots); |
+ } |
+ |
+ int intersect() { |
+ addEndPoints(); |
+ double rootVals[2]; |
+ int roots = intersectRay(rootVals); |
+ for (int index = 0; index < roots; ++index) { |
+ double quadT = rootVals[index]; |
+ double lineT = findLineT(quadT); |
+ if (PinTs(&quadT, &lineT)) { |
+ SkDPoint pt = line.xyAtT(lineT); |
+ intersections->insert(quadT, lineT, pt); |
+ } |
+ } |
+ return intersections->used(); |
+ } |
+ |
+ int horizontalIntersect(double axisIntercept, double roots[2]) { |
+ double D = quad[2].fY; // f |
+ double E = quad[1].fY; // e |
+ double F = quad[0].fY; // d |
+ D += F - 2 * E; // D = d - 2*e + f |
+ E -= F; // E = -(d - e) |
+ F -= axisIntercept; |
+ return SkDQuad::RootsValidT(D, 2 * E, F, roots); |
+ } |
+ |
+ int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) { |
+ addHorizontalEndPoints(left, right, axisIntercept); |
+ double rootVals[2]; |
+ int roots = horizontalIntersect(axisIntercept, rootVals); |
+ for (int index = 0; index < roots; ++index) { |
+ double quadT = rootVals[index]; |
+ SkDPoint pt = quad.xyAtT(quadT); |
+ double lineT = (pt.fX - left) / (right - left); |
+ if (PinTs(&quadT, &lineT)) { |
+ intersections->insert(quadT, lineT, pt); |
+ } |
+ } |
+ if (flipped) { |
+ intersections->flip(); |
+ } |
+ return intersections->used(); |
+ } |
+ |
+ int verticalIntersect(double axisIntercept, double roots[2]) { |
+ double D = quad[2].fX; // f |
+ double E = quad[1].fX; // e |
+ double F = quad[0].fX; // d |
+ D += F - 2 * E; // D = d - 2*e + f |
+ E -= F; // E = -(d - e) |
+ F -= axisIntercept; |
+ return SkDQuad::RootsValidT(D, 2 * E, F, roots); |
+ } |
+ |
+ int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) { |
+ addVerticalEndPoints(top, bottom, axisIntercept); |
+ double rootVals[2]; |
+ int roots = verticalIntersect(axisIntercept, rootVals); |
+ for (int index = 0; index < roots; ++index) { |
+ double quadT = rootVals[index]; |
+ SkDPoint pt = quad.xyAtT(quadT); |
+ double lineT = (pt.fY - top) / (bottom - top); |
+ if (PinTs(&quadT, &lineT)) { |
+ intersections->insert(quadT, lineT, pt); |
+ } |
+ } |
+ if (flipped) { |
+ intersections->flip(); |
+ } |
+ return intersections->used(); |
+ } |
+ |
+protected: |
+ // add endpoints first to get zero and one t values exactly |
+ void addEndPoints() { |
+ for (int qIndex = 0; qIndex < 3; qIndex += 2) { |
+ for (int lIndex = 0; lIndex < 2; lIndex++) { |
+ if (quad[qIndex] == line[lIndex]) { |
+ intersections->insert(qIndex >> 1, lIndex, line[lIndex]); |
+ } |
+ } |
+ } |
+ } |
+ |
+ void addHorizontalEndPoints(double left, double right, double y) { |
+ for (int qIndex = 0; qIndex < 3; qIndex += 2) { |
+ if (quad[qIndex].fY != y) { |
+ continue; |
+ } |
+ if (quad[qIndex].fX == left) { |
+ intersections->insert(qIndex >> 1, 0, quad[qIndex]); |
+ } |
+ if (quad[qIndex].fX == right) { |
+ intersections->insert(qIndex >> 1, 1, quad[qIndex]); |
+ } |
+ } |
+ } |
+ |
+ void addVerticalEndPoints(double top, double bottom, double x) { |
+ for (int qIndex = 0; qIndex < 3; qIndex += 2) { |
+ if (quad[qIndex].fX != x) { |
+ continue; |
+ } |
+ if (quad[qIndex].fY == top) { |
+ intersections->insert(qIndex >> 1, 0, quad[qIndex]); |
+ } |
+ if (quad[qIndex].fY == bottom) { |
+ intersections->insert(qIndex >> 1, 1, quad[qIndex]); |
+ } |
+ } |
+ } |
+ |
+ double findLineT(double t) { |
+ SkDPoint xy = quad.xyAtT(t); |
+ double dx = line[1].fX - line[0].fX; |
+ double dy = line[1].fY - line[0].fY; |
+ if (fabs(dx) > fabs(dy)) { |
+ return (xy.fX - line[0].fX) / dx; |
+ } |
+ return (xy.fY - line[0].fY) / dy; |
+ } |
+ |
+ static bool PinTs(double* quadT, double* lineT) { |
+ if (!approximately_one_or_less(*lineT)) { |
+ return false; |
+ } |
+ if (!approximately_zero_or_more(*lineT)) { |
+ return false; |
+ } |
+ if (precisely_less_than_zero(*quadT)) { |
+ *quadT = 0; |
+ } else if (precisely_greater_than_one(*quadT)) { |
+ *quadT = 1; |
+ } |
+ if (precisely_less_than_zero(*lineT)) { |
+ *lineT = 0; |
+ } else if (precisely_greater_than_one(*lineT)) { |
+ *lineT = 1; |
+ } |
+ return true; |
+ } |
+ |
+private: |
+ const SkDQuad& quad; |
+ const SkDLine& line; |
+ SkIntersections* intersections; |
+}; |
+ |
+// utility for pairs of coincident quads |
+static double horizontalIntersect(const SkDQuad& quad, const SkDPoint& pt) { |
+ LineQuadraticIntersections q(quad, *(static_cast<SkDLine*>(0)), |
+ static_cast<SkIntersections*>(0)); |
+ double rootVals[2]; |
+ int roots = q.horizontalIntersect(pt.fY, rootVals); |
+ for (int index = 0; index < roots; ++index) { |
+ double t = rootVals[index]; |
+ SkDPoint qPt = quad.xyAtT(t); |
+ if (AlmostEqualUlps(qPt.fX, pt.fX)) { |
+ return t; |
+ } |
+ } |
+ return -1; |
+} |
+ |
+static double verticalIntersect(const SkDQuad& quad, const SkDPoint& pt) { |
+ LineQuadraticIntersections q(quad, *(static_cast<SkDLine*>(0)), |
+ static_cast<SkIntersections*>(0)); |
+ double rootVals[2]; |
+ int roots = q.verticalIntersect(pt.fX, rootVals); |
+ for (int index = 0; index < roots; ++index) { |
+ double t = rootVals[index]; |
+ SkDPoint qPt = quad.xyAtT(t); |
+ if (AlmostEqualUlps(qPt.fY, pt.fY)) { |
+ return t; |
+ } |
+ } |
+ return -1; |
+} |
+ |
+double SkIntersections::Axial(const SkDQuad& q1, const SkDPoint& p, bool vertical) { |
+ if (vertical) { |
+ return verticalIntersect(q1, p); |
+ } |
+ return horizontalIntersect(q1, p); |
+} |
+ |
+int SkIntersections::horizontal(const SkDQuad& quad, double left, double right, double y, |
+ bool flipped) { |
+ LineQuadraticIntersections q(quad, *(static_cast<SkDLine*>(0)), this); |
+ return q.horizontalIntersect(y, left, right, flipped); |
+} |
+ |
+int SkIntersections::vertical(const SkDQuad& quad, double top, double bottom, double x, |
+ bool flipped) { |
+ LineQuadraticIntersections q(quad, *(static_cast<SkDLine*>(0)), this); |
+ return q.verticalIntersect(x, top, bottom, flipped); |
+} |
+ |
+int SkIntersections::intersect(const SkDQuad& quad, const SkDLine& line) { |
+ LineQuadraticIntersections q(quad, line, this); |
+ return q.intersect(); |
+} |
+ |
+int SkIntersections::intersectRay(const SkDQuad& quad, const SkDLine& line) { |
+ LineQuadraticIntersections q(quad, line, this); |
+ return q.intersectRay(fT[0]); |
+} |