Index: src/pathops/SkDQuadImplicit.cpp |
=================================================================== |
--- src/pathops/SkDQuadImplicit.cpp (revision 0) |
+++ src/pathops/SkDQuadImplicit.cpp (revision 0) |
@@ -0,0 +1,117 @@ |
+/* |
+ * Copyright 2012 Google Inc. |
+ * |
+ * Use of this source code is governed by a BSD-style license that can be |
+ * found in the LICENSE file. |
+ */ |
+#include "SkDQuadImplicit.h" |
+ |
+/* from http://tom.cs.byu.edu/~tom/papers/cvgip84.pdf 4.1 |
+ * |
+ * This paper proves that Syvester's method can compute the implicit form of |
+ * the quadratic from the parameterized form. |
+ * |
+ * Given x = a*t*t + b*t + c (the parameterized form) |
+ * y = d*t*t + e*t + f |
+ * |
+ * we want to find an equation of the implicit form: |
+ * |
+ * A*x*x + B*x*y + C*y*y + D*x + E*y + F = 0 |
+ * |
+ * The implicit form can be expressed as a 4x4 determinant, as shown. |
+ * |
+ * The resultant obtained by Syvester's method is |
+ * |
+ * | a b (c - x) 0 | |
+ * | 0 a b (c - x) | |
+ * | d e (f - y) 0 | |
+ * | 0 d e (f - y) | |
+ * |
+ * which expands to |
+ * |
+ * d*d*x*x + -2*a*d*x*y + a*a*y*y |
+ * + (-2*c*d*d + b*e*d - a*e*e + 2*a*f*d)*x |
+ * + (-2*f*a*a + e*b*a - d*b*b + 2*d*c*a)*y |
+ * + |
+ * | a b c 0 | |
+ * | 0 a b c | == 0. |
+ * | d e f 0 | |
+ * | 0 d e f | |
+ * |
+ * Expanding the constant determinant results in |
+ * |
+ * | a b c | | b c 0 | |
+ * a*| e f 0 | + d*| a b c | == |
+ * | d e f | | d e f | |
+ * |
+ * a*(a*f*f + c*e*e - c*f*d - b*e*f) + d*(b*b*f + c*c*d - c*a*f - c*e*b) |
+ * |
+ */ |
+ |
+// OPTIMIZATION: test, verify tricky arithmetic |
+static bool straight_forward = true; |
+ |
+SkDQuadImplicit::SkDQuadImplicit(const SkDQuad& q) { |
+ double a, b, c; |
+ SkDQuad::SetABC(&q[0].fX, &a, &b, &c); |
+ double d, e, f; |
+ SkDQuad::SetABC(&q[0].fY, &d, &e, &f); |
+ // compute the implicit coefficients |
+ if (straight_forward) { // 42 muls, 13 adds |
+ fP[kXx_Coeff] = d * d; |
+ fP[kXy_Coeff] = -2 * a * d; |
+ fP[kYy_Coeff] = a * a; |
+ fP[kX_Coeff] = -2*c*d*d + b*e*d - a*e*e + 2*a*f*d; |
+ fP[kY_Coeff] = -2*f*a*a + e*b*a - d*b*b + 2*d*c*a; |
+ fP[kC_Coeff] = a*(a*f*f + c*e*e - c*f*d - b*e*f) |
+ + d*(b*b*f + c*c*d - c*a*f - c*e*b); |
+ } else { // 26 muls, 11 adds |
+ double aa = a * a; |
+ double ad = a * d; |
+ double dd = d * d; |
+ fP[kXx_Coeff] = dd; |
+ fP[kXy_Coeff] = -2 * ad; |
+ fP[kYy_Coeff] = aa; |
+ double be = b * e; |
+ double bde = be * d; |
+ double cdd = c * dd; |
+ double ee = e * e; |
+ fP[kX_Coeff] = -2*cdd + bde - a*ee + 2*ad*f; |
+ double aaf = aa * f; |
+ double abe = a * be; |
+ double ac = a * c; |
+ double bb_2ac = b*b - 2*ac; |
+ fP[kY_Coeff] = -2*aaf + abe - d*bb_2ac; |
+ fP[kC_Coeff] = aaf*f + ac*ee + d*f*bb_2ac - abe*f + c*cdd - c*bde; |
+ } |
+} |
+ |
+ /* Given a pair of quadratics, determine their parametric coefficients. |
+ * If the scaled coefficients are nearly equal, then the part of the quadratics |
+ * may be coincident. |
+ * FIXME: optimization -- since comparison short-circuits on no match, |
+ * lazily compute the coefficients, comparing the easiest to compute first. |
+ * xx and yy first; then xy; and so on. |
+ */ |
+bool SkDQuadImplicit::match(const SkDQuadImplicit& p2) const { |
+ int first = 0; |
+ for (int index = 0; index <= kC_Coeff; ++index) { |
+ if (approximately_zero(fP[index]) && approximately_zero(p2.fP[index])) { |
+ first += first == index; |
+ continue; |
+ } |
+ if (first == index) { |
+ continue; |
+ } |
+ if (!AlmostEqualUlps(fP[index] * p2.fP[first], fP[first] * p2.fP[index])) { |
+ return false; |
+ } |
+ } |
+ return true; |
+} |
+ |
+bool SkDQuadImplicit::Match(const SkDQuad& quad1, const SkDQuad& quad2) { |
+ SkDQuadImplicit i1(quad1); // a'xx , b'xy , c'yy , d'x , e'y , f |
+ SkDQuadImplicit i2(quad2); |
+ return i1.match(i2); |
+} |