| Index: src/pathops/SkDLineIntersection.cpp
|
| ===================================================================
|
| --- src/pathops/SkDLineIntersection.cpp (revision 0)
|
| +++ src/pathops/SkDLineIntersection.cpp (revision 0)
|
| @@ -0,0 +1,282 @@
|
| +/*
|
| + * Copyright 2012 Google Inc.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license that can be
|
| + * found in the LICENSE file.
|
| + */
|
| +#include "SkIntersections.h"
|
| +#include "SkPathOpsLine.h"
|
| +
|
| +/* Determine the intersection point of two lines. This assumes the lines are not parallel,
|
| + and that that the lines are infinite.
|
| + From http://en.wikipedia.org/wiki/Line-line_intersection
|
| + */
|
| +SkDPoint SkIntersections::Line(const SkDLine& a, const SkDLine& b) {
|
| + double axLen = a[1].fX - a[0].fX;
|
| + double ayLen = a[1].fY - a[0].fY;
|
| + double bxLen = b[1].fX - b[0].fX;
|
| + double byLen = b[1].fY - b[0].fY;
|
| + double denom = byLen * axLen - ayLen * bxLen;
|
| + SkASSERT(denom);
|
| + double term1 = a[1].fX * a[0].fY - a[1].fY * a[0].fX;
|
| + double term2 = b[1].fX * b[0].fY - b[1].fY * b[0].fX;
|
| + SkDPoint p;
|
| + p.fX = (term1 * bxLen - axLen * term2) / denom;
|
| + p.fY = (term1 * byLen - ayLen * term2) / denom;
|
| + return p;
|
| +}
|
| +
|
| +int SkIntersections::computePoints(const SkDLine& line, int used) {
|
| + fPt[0] = line.xyAtT(fT[0][0]);
|
| + if ((fUsed = used) == 2) {
|
| + fPt[1] = line.xyAtT(fT[0][1]);
|
| + }
|
| + return fUsed;
|
| +}
|
| +
|
| +/*
|
| + Determine the intersection point of two line segments
|
| + Return FALSE if the lines don't intersect
|
| + from: http://paulbourke.net/geometry/lineline2d/
|
| + */
|
| +
|
| +int SkIntersections::intersect(const SkDLine& a, const SkDLine& b) {
|
| + double axLen = a[1].fX - a[0].fX;
|
| + double ayLen = a[1].fY - a[0].fY;
|
| + double bxLen = b[1].fX - b[0].fX;
|
| + double byLen = b[1].fY - b[0].fY;
|
| + /* Slopes match when denom goes to zero:
|
| + axLen / ayLen == bxLen / byLen
|
| + (ayLen * byLen) * axLen / ayLen == (ayLen * byLen) * bxLen / byLen
|
| + byLen * axLen == ayLen * bxLen
|
| + byLen * axLen - ayLen * bxLen == 0 ( == denom )
|
| + */
|
| + double denom = byLen * axLen - ayLen * bxLen;
|
| + double ab0y = a[0].fY - b[0].fY;
|
| + double ab0x = a[0].fX - b[0].fX;
|
| + double numerA = ab0y * bxLen - byLen * ab0x;
|
| + double numerB = ab0y * axLen - ayLen * ab0x;
|
| + bool mayNotOverlap = (numerA < 0 && denom > numerA) || (numerA > 0 && denom < numerA)
|
| + || (numerB < 0 && denom > numerB) || (numerB > 0 && denom < numerB);
|
| + numerA /= denom;
|
| + numerB /= denom;
|
| + if ((!approximately_zero(denom) || (!approximately_zero_inverse(numerA)
|
| + && !approximately_zero_inverse(numerB))) && !sk_double_isnan(numerA)
|
| + && !sk_double_isnan(numerB)) {
|
| + if (mayNotOverlap) {
|
| + return fUsed = 0;
|
| + }
|
| + fT[0][0] = numerA;
|
| + fT[1][0] = numerB;
|
| + fPt[0] = a.xyAtT(numerA);
|
| + return computePoints(a, 1);
|
| + }
|
| + /* See if the axis intercepts match:
|
| + ay - ax * ayLen / axLen == by - bx * ayLen / axLen
|
| + axLen * (ay - ax * ayLen / axLen) == axLen * (by - bx * ayLen / axLen)
|
| + axLen * ay - ax * ayLen == axLen * by - bx * ayLen
|
| + */
|
| + // FIXME: need to use AlmostEqualUlps variant instead
|
| + if (!approximately_equal_squared(axLen * a[0].fY - ayLen * a[0].fX,
|
| + axLen * b[0].fY - ayLen * b[0].fX)) {
|
| + return fUsed = 0;
|
| + }
|
| + const double* aPtr;
|
| + const double* bPtr;
|
| + if (fabs(axLen) > fabs(ayLen) || fabs(bxLen) > fabs(byLen)) {
|
| + aPtr = &a[0].fX;
|
| + bPtr = &b[0].fX;
|
| + } else {
|
| + aPtr = &a[0].fY;
|
| + bPtr = &b[0].fY;
|
| + }
|
| + double a0 = aPtr[0];
|
| + double a1 = aPtr[2];
|
| + double b0 = bPtr[0];
|
| + double b1 = bPtr[2];
|
| + // OPTIMIZATION: restructure to reject before the divide
|
| + // e.g., if ((a0 - b0) * (a0 - a1) < 0 || abs(a0 - b0) > abs(a0 - a1))
|
| + // (except efficient)
|
| + double aDenom = a0 - a1;
|
| + if (approximately_zero(aDenom)) {
|
| + if (!between(b0, a0, b1)) {
|
| + return fUsed = 0;
|
| + }
|
| + fT[0][0] = fT[0][1] = 0;
|
| + } else {
|
| + double at0 = (a0 - b0) / aDenom;
|
| + double at1 = (a0 - b1) / aDenom;
|
| + if ((at0 < 0 && at1 < 0) || (at0 > 1 && at1 > 1)) {
|
| + return fUsed = 0;
|
| + }
|
| + fT[0][0] = SkTMax(SkTMin(at0, 1.0), 0.0);
|
| + fT[0][1] = SkTMax(SkTMin(at1, 1.0), 0.0);
|
| + }
|
| + double bDenom = b0 - b1;
|
| + if (approximately_zero(bDenom)) {
|
| + fT[1][0] = fT[1][1] = 0;
|
| + } else {
|
| + int bIn = aDenom * bDenom < 0;
|
| + fT[1][bIn] = SkTMax(SkTMin((b0 - a0) / bDenom, 1.0), 0.0);
|
| + fT[1][!bIn] = SkTMax(SkTMin((b0 - a1) / bDenom, 1.0), 0.0);
|
| + }
|
| + bool second = fabs(fT[0][0] - fT[0][1]) > FLT_EPSILON;
|
| + SkASSERT((fabs(fT[1][0] - fT[1][1]) <= FLT_EPSILON) ^ second);
|
| + return computePoints(a, 1 + second);
|
| +}
|
| +
|
| +int SkIntersections::horizontal(const SkDLine& line, double y) {
|
| + double min = line[0].fY;
|
| + double max = line[1].fY;
|
| + if (min > max) {
|
| + SkTSwap(min, max);
|
| + }
|
| + if (min > y || max < y) {
|
| + return fUsed = 0;
|
| + }
|
| + if (AlmostEqualUlps(min, max)) {
|
| + fT[0][0] = 0;
|
| + fT[0][1] = 1;
|
| + return fUsed = 2;
|
| + }
|
| + fT[0][0] = (y - line[0].fY) / (line[1].fY - line[0].fY);
|
| + return fUsed = 1;
|
| +}
|
| +
|
| +// OPTIMIZATION Given: dy = line[1].fY - line[0].fY
|
| +// and: xIntercept / (y - line[0].fY) == (line[1].fX - line[0].fX) / dy
|
| +// then: xIntercept * dy == (line[1].fX - line[0].fX) * (y - line[0].fY)
|
| +// Assuming that dy is always > 0, the line segment intercepts if:
|
| +// left * dy <= xIntercept * dy <= right * dy
|
| +// thus: left * dy <= (line[1].fX - line[0].fX) * (y - line[0].fY) <= right * dy
|
| +// (clever as this is, it does not give us the t value, so may be useful only
|
| +// as a quick reject -- and maybe not then; it takes 3 muls, 3 adds, 2 cmps)
|
| +int SkIntersections::horizontal(const SkDLine& line, double left, double right, double y) {
|
| + int result = horizontal(line, y);
|
| + if (result != 1) {
|
| + SkASSERT(result == 0); // FIXME: this is incorrect if result == 2
|
| + return result;
|
| + }
|
| + double xIntercept = line[0].fX + fT[0][0] * (line[1].fX - line[0].fX);
|
| + if (xIntercept > right || xIntercept < left) {
|
| + return fUsed = 0;
|
| + }
|
| + return result;
|
| +}
|
| +
|
| +int SkIntersections::horizontal(const SkDLine& line, double left, double right,
|
| + double y, bool flipped) {
|
| + int result = horizontal(line, y);
|
| + switch (result) {
|
| + case 0:
|
| + break;
|
| + case 1: {
|
| + double xIntercept = line[0].fX + fT[0][0] * (line[1].fX - line[0].fX);
|
| + if (xIntercept > right || xIntercept < left) {
|
| + return fUsed = 0;
|
| + }
|
| + fT[1][0] = (xIntercept - left) / (right - left);
|
| + break;
|
| + }
|
| + case 2:
|
| + double a0 = line[0].fX;
|
| + double a1 = line[1].fX;
|
| + double b0 = flipped ? right : left;
|
| + double b1 = flipped ? left : right;
|
| + // FIXME: share common code below
|
| + double at0 = (a0 - b0) / (a0 - a1);
|
| + double at1 = (a0 - b1) / (a0 - a1);
|
| + if ((at0 < 0 && at1 < 0) || (at0 > 1 && at1 > 1)) {
|
| + return fUsed = 0;
|
| + }
|
| + fT[0][0] = SkTMax(SkTMin(at0, 1.0), 0.0);
|
| + fT[0][1] = SkTMax(SkTMin(at1, 1.0), 0.0);
|
| + int bIn = (a0 - a1) * (b0 - b1) < 0;
|
| + fT[1][bIn] = SkTMax(SkTMin((b0 - a0) / (b0 - b1), 1.0), 0.0);
|
| + fT[1][!bIn] = SkTMax(SkTMin((b0 - a1) / (b0 - b1), 1.0), 0.0);
|
| + bool second = fabs(fT[0][0] - fT[0][1]) > FLT_EPSILON;
|
| + SkASSERT((fabs(fT[1][0] - fT[1][1]) <= FLT_EPSILON) ^ second);
|
| + return computePoints(line, 1 + second);
|
| + }
|
| + if (flipped) {
|
| + // OPTIMIZATION: instead of swapping, pass original line, use [1].fX - [0].fX
|
| + for (int index = 0; index < result; ++index) {
|
| + fT[1][index] = 1 - fT[1][index];
|
| + }
|
| + }
|
| + return computePoints(line, result);
|
| +}
|
| +
|
| +int SkIntersections::vertical(const SkDLine& line, double x) {
|
| + double min = line[0].fX;
|
| + double max = line[1].fX;
|
| + if (min > max) {
|
| + SkTSwap(min, max);
|
| + }
|
| + if (min > x || max < x) {
|
| + return fUsed = 0;
|
| + }
|
| + if (AlmostEqualUlps(min, max)) {
|
| + fT[0][0] = 0;
|
| + fT[0][1] = 1;
|
| + return fUsed = 2;
|
| + }
|
| + fT[0][0] = (x - line[0].fX) / (line[1].fX - line[0].fX);
|
| + return fUsed = 1;
|
| +}
|
| +
|
| +int SkIntersections::vertical(const SkDLine& line, double top, double bottom,
|
| + double x, bool flipped) {
|
| + int result = vertical(line, x);
|
| + switch (result) {
|
| + case 0:
|
| + break;
|
| + case 1: {
|
| + double yIntercept = line[0].fY + fT[0][0] * (line[1].fY - line[0].fY);
|
| + if (yIntercept > bottom || yIntercept < top) {
|
| + return fUsed = 0;
|
| + }
|
| + fT[1][0] = (yIntercept - top) / (bottom - top);
|
| + break;
|
| + }
|
| + case 2:
|
| + double a0 = line[0].fY;
|
| + double a1 = line[1].fY;
|
| + double b0 = flipped ? bottom : top;
|
| + double b1 = flipped ? top : bottom;
|
| + // FIXME: share common code above
|
| + double at0 = (a0 - b0) / (a0 - a1);
|
| + double at1 = (a0 - b1) / (a0 - a1);
|
| + if ((at0 < 0 && at1 < 0) || (at0 > 1 && at1 > 1)) {
|
| + return fUsed = 0;
|
| + }
|
| + fT[0][0] = SkTMax(SkTMin(at0, 1.0), 0.0);
|
| + fT[0][1] = SkTMax(SkTMin(at1, 1.0), 0.0);
|
| + int bIn = (a0 - a1) * (b0 - b1) < 0;
|
| + fT[1][bIn] = SkTMax(SkTMin((b0 - a0) / (b0 - b1), 1.0), 0.0);
|
| + fT[1][!bIn] = SkTMax(SkTMin((b0 - a1) / (b0 - b1), 1.0), 0.0);
|
| + bool second = fabs(fT[0][0] - fT[0][1]) > FLT_EPSILON;
|
| + SkASSERT((fabs(fT[1][0] - fT[1][1]) <= FLT_EPSILON) ^ second);
|
| + return computePoints(line, 1 + second);
|
| + break;
|
| + }
|
| + if (flipped) {
|
| + // OPTIMIZATION: instead of swapping, pass original line, use [1].fY - [0].fY
|
| + for (int index = 0; index < result; ++index) {
|
| + fT[1][index] = 1 - fT[1][index];
|
| + }
|
| + }
|
| + return computePoints(line, result);
|
| +}
|
| +
|
| +// from http://www.bryceboe.com/wordpress/wp-content/uploads/2006/10/intersect.py
|
| +// 4 subs, 2 muls, 1 cmp
|
| +static bool ccw(const SkDPoint& A, const SkDPoint& B, const SkDPoint& C) {
|
| + return (C.fY - A.fY) * (B.fX - A.fX) > (B.fY - A.fY) * (C.fX - A.fX);
|
| +}
|
| +
|
| +// 16 subs, 8 muls, 6 cmps
|
| +bool SkIntersections::Test(const SkDLine& a, const SkDLine& b) {
|
| + return ccw(a[0], b[0], b[1]) != ccw(a[1], b[0], b[1])
|
| + && ccw(a[0], a[1], b[0]) != ccw(a[0], a[1], b[1]);
|
| +}
|
|
|